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A NEW CLASS OF HIGHER-ORDERED/EXTENDED BOUSSINESQ SYSTEM FOR

EFFICIENT NUMERICAL SIMULATIONS BY SPLITTING OPERATORS

RALPH LTEIF AND STÉPHANE GERBI

Abstract. In this work, we numerically study the higher-ordered/extended Boussinesq system

describing the propagation of water-waves over flat topography. A reformulation of the same
order of precision that avoids the calculation of high order derivatives on the surface deformation

is proposed. We show that this formulation enjoys an extended range of applicability while

remaining stable. Moreover, a significant improvement in terms of linear dispersive properties
in high frequency regime is made due to the suitable adjustment of a dispersion correction

parameter. We develop a second order splitting scheme where the hyperbolic part of the system

is treated with a high-order finite volume scheme and the dispersive part is treated with a finite
difference approach. Numerical simulations are then performed under two main goals: validating

the model and the numerical methods and assessing the potential need of such higher-order

model. The applicability of the proposed model and numerical method in practical problems is
illustrated by a comparison with experimental data.
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1. Introduction

1.1. Motivation. In this paper, we numerically study higher-ordered/extended Boussinesq type
models. These equations describe the one-dimensional flow of the free surface of a homogeneous,
immiscible fluid moving above a flat topography. They are obtained from the free surface water-
waves (Euler) equations [41] (see Eq. (1.3) therein) for an irrotational and incompressible fluid.

The derivation classically relies on a re-scaling of the system in order to reveal small dimension-
less parameters which allow to perform asymptotic expansions of non-local operators (Dirichlet-
Neumann), thus ignoring the terms whose influence is minimal. We start by introducing respec-
tively the commonly known nonlinear and shallowness parameters:

0 ≤ ε =
a

h0
=

wave amplitude

reference depth
≤ 1 ,

0 ≤ √µ =
h0

λ
=

reference depth

wave-length of the wave
< 1 .

The order of magnitude of these parameters makes it possible to identify the considered physical
regime.

In a specific long wave regime, ε is considered of the same order as µ (ε ∼ µ). In this regime,
Boussinesq derived in [6, 7] a weakly nonlinear model bearing his name. In what follows we refer
to it as the “original” or “standard” Boussinesq system. Using the horizontal depth-mean velocity
v and the free surface parametrization ζ, the standard Boussinesq (sB) equations reads:

(1)

 ∂tζ + ∂x
(
(1 + εζ)v

)
= 0 ,(

1− ε1

3
∂2
x

)
∂tv + ∂xζ + εv∂xv = O(ε2) .

This model can be derived from the Green-Naghdi (GN) equations (see [32]) by neglecting all terms
of order O(ε2, µε, µ2). Equivalent Boussinesq systems enjoying a better mathematical structure
or physical properties have been studied and derived extensively in the literature, see for in-
stance [44, 54, 57, 58]. The sB equations are restricted by containing only weak dispersion and
non-linearity (only O(µ, ε) terms are retained). This normally limits precise applications to a
small zone moderately exterior to the surf zone.

Significant improvement have been made in recent years to expand the application range and
cover the range fully from deep water into the surf zone. Madsen et al. [48, 51] reached this
goal by rearranging the dispersive terms (or O(µ) terms) in order to improve linear dispersion
properties. On the other hand, Nwogu [56] achieved the same result by redefining the dependent
velocity variable. These models have been extensively examined for their utility in the prediction
of near-shore problems (wave breaking, run-up, wave-induced circulation) as detailed in [45, 46,
64]. However, these Boussinesq-type models which assume the velocity profiles to be second
order polynomials in the vertical coordinate induce inaccuracies near wave breaking [31]. Several
mechanisms exists in order to handle wave breaking that occurs as waves approach the shore. For
instance, a hybrid method consisting in suppressing the dispersive terms in breaking regions was
initially suggested by Tonelli and Petti [68]. Another strategy consists of on an eddy viscosity
approach based on the solution of a turbulent kinetic energy following early work by Nwogu [56].
The interested reader is referred to [35] for a comparison between the hybrid and eddy viscosity
strategies. Other efficient mechanisms that allow solving the wave breaking problem are worth
mentioning, see for instance [39, 19] and references therein.

Many attempts have been made to extend Boussinesq-type models in order to offer better dis-
persive properties. To this end, in order to incorporate high-order dispersive and nonlinear effects
in Boussinesq-type models, one should include some high-order terms in the asymptotic expan-
sion of the velocity potential. The first attempt to derive higher-order Boussinesq-like equations
(retaining O(µ2) terms) was performed by Dingemans in [15]. Two versions of equations were
given, one based on the depth-averaged velocity and one based on the velocity at the still water
level. Dingemans did not provide analyses or computations based on these equations. One can see
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also the review papers written by Kirby [38] and Madsen & Schäffer [49, 50] where Boussinesq-
type equations of higher order in dispersion as well as in non-linearity are derived, intensified
and analyzed with emphasis on linear dispersion, shoaling and nonlinear properties for large wave
numbers. A fully non-linear Boussinesq-type model retaining O(µ2) terms was derived for an hor-
izontal bottom in [31] and examined for its ability to represent weakly nonlinear wave evolution
in intermediate depth and its numerical properties of solitary wave solutions in shallow water.
Algorithms for the numerical solution of the latter model are described in [30], where the model is
applied to the study of wave shoaling and harmonic generation in the problem of waves propagating
over an isolated step. Including higher order terms in the model is not the only method to improve
the dispersion relation. In fact, there are other strategies to improve the disperive properties, for
instance, improving the degree of freedom of the velocity unknown [10, 16, 34]. The interested
reader is also referred to [25] where a hierarchy of new models is derived with a layer-wise approach
incorporating non-hydrostatic effects to approximate the Euler equations. The linear dispersion
relation of these models is analyzed therein and proved to converge to the dispersion relation for
the Euler equations when the number of layers goes to infinity. One can see also [20] where a
two-layer non-hydrostatic model with improved dispersive properties is derived and [22] where
a numerical scheme is designed for theses models. Other higher-order asymptotic shallow-water
models were derived in the literature. For instance, the extended Green-Naghdi (eGN) equations
(accurate up to the order O(µ3) while the full non-linearity is preserved) were firstly derived in
their Hamiltonian formulation by Matsuno in [52, 53]. More recently, Khorbatly et al. derived
the eGN equations in [36] by performing an asymptotic analysis of the Dirichlet–Neumann oper-
ator that originates from the formulation of the water wave problem [41]. In the aforementioned
papers of Khorbatly et al., the mathematical analysis is addressed which is mainly devoted to the
well-posedness of the equations.

Note, however, that less determined efforts were made to numerically study higher-ordered
asymptotic equations for the water-waves problem. Due to their extensive length, the high-order
equations incorporating very high order derivatives (see for example fifth-order derivatives in [31])
may not seem viable as a basis for a numerical model. At this point, it is worth mentioning
several recent advances presenting novel hyperbolic reformulation of Serre-Green-Naghdi [1] and
Boussinesq-type [21] models, see also [24] for the first derivation of hyperbolic reformulation of
a dispersive system from variational principles in the flat bottom case. Those new first-order
reformulations are based on a relaxed augmented system in which the divergence constraints of
the velocity flow variables are coupled with the other conservation laws via an evolution equation
for the depth-averaged non-hydrostatic pressures. They avoid the use of high order derivatives
which are not easy to treat numerically due to the large stencil usually needed. Moreover allow to
overcome the numerical difficulties and the severe time step restrictions arising from higher order
terms [9].

Bearing these facts in mind, we develop in this paper a numerical model solving a class of
higher-ordered/extended Boussinesq type models where we discuss their usefulness for practi-
cal applications. We propose a new reformulation of the model with improved linear dispersive
properties and an extended range of applicability. This new reformulation is suitable to the imple-
mentation of a hybrid scheme splitting the hyperbolic and dispersive parts of the equations. This
strategy has been initially introduced for Boussinesq-like and Green-Naghdi equations in order to
handle correctly wave breaking, see [68, 4, 42]. The hyperbolic part of the system is treated with
a high-order finite volume scheme whereas the dispersive part is treated with a finite difference
method at the same order. This splitting strategy allowed us to overcome the severe time step
restriction induced due to the presence of high order derivatives by calculating the time step in the
first finite-volume sub-step. The numerical investigations show that the time step restriction from
the CFL condition (according to which the time step must be chosen proportional to the mesh
spacing) of the finite-volume step is enough to ensure stability for the whole numerical method.
As a preliminary step, we treat in this paper the case of flat bottom topography, investigating
the variable topography case can be based on the results of this paper and will be faced in a
forthcoming work. We would like to emphasize that this paper provides sufficient grounds for
treating the more complex variable topography case. The goal of this paper is to give a numerical
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assessment of the potential need of such a new formulation of higher-order model that avoids the
calculation of higher order derivatives and evaluate the effect of adding factorized high order terms
to standard models.

1.2. Higher-ordered/extended Boussinesq equations. Let us start first by introducing the higher-
ordered extended Boussinesq (eB) equations that naturally show up through the asymptotic ap-
proximation of the Dirichlet–Neumann operator. These equations are a straightforward extension
of the sB equations (1). Neglecting the terms of order O(ε3) while keeping the O(ε2) terms in
the equations one gets the eB equations. Alternatively, one can easily recover the eB equations
from the eGN equations derived in [36], by considering weak non-linearity (ε ∼ µ) and dropping
all terms of order O(µε2, µ2ε, ε3) therein. Thus, one can write the weakly nonlinear Boussinesq
system including higher order dispersive effects as follows:

(2)

{
∂tζ + ∂x(hv) = 0 ,

(1 + εT [εζ] + ε2T)∂tv + ∂xζ + εv∂xv + ε2Qv = O(ε3) ,

where h = 1 + εζ is the non-dimensionalised height of the fluid and denote by

T [εζ]w = − 1

3h
∂x
(
h3∂xw

)
, Tw = − 1

45
∂4
xw, Qv = −1

3
∂x
(
vvxx − v2

x

)
.

Actually, neglecting terms of order O(ε2) in (2), the second order differential operator becomes
T [εζ]w = − 1

3∂
2
xw and one can easily recover (1). The eB model (2) can be found in [49] (see Eq.

(3.11) therein after neglecting all terms of order O(εµ4, ε2µ2)). Unfortunately, the eB model (2)
seems to suffer from instabilities that turn out to be fatal for any practical use. This is due
to the positive sign in front of the elliptic fourth-order linear operator T which also prevent the
invertibility of the factorized operator, see [37, Section 3.1]. In fact, linearizing the eB model (2)
around some rest state solution, one gets the following unstable dispersion relation:

(3) w2 =
k2(

1 +
1

3
εk2 − 1

45
ε2k4

) ,
where k is the spatial wave number and w represents the time frequency. Note that one can recover
the dispersion relation associated to (1) by neglecting ε2 terms in (3). As expected, Madsen &
Schäffer [49] noticed an improved accuracy for small wave number values k when comparing with
the lower-order equations (see Figure 1 therein). However, a quick functional study shows that the
denominator of the right hand side of (3) becomes negative whenever k � 1, preventing any hope
concerning the well-posedness of the initial value problem. In fact, a singularity occurs in (3) for

k2 = 1
2 (15 + 9

√
5), i.e. k ≈ 4.2. Despite being a large wave number value, this singularity proves

to be inoperable for any reasonable application of the eB equations (2), see [49].
To overcome this problem and in order to gain some confidence into the model validity, an

enhanced set of equations of same order of precision, without instabilities, has been derived in [37]
by replacing the left most term of the second equation of (2), (1 + εT [εζ] + ε2T)∂tv, by (1 +
εT [εζ] − ε2T)(∂tv) + 2ε2T(∂tv) and making use of a BBM trick (Benjamin-Bona-Mahony) [2]
represented in the following approximate equation ∂tv = −∂xζ+O(ε), see [36] for more details. In
light of these remarks and after setting ±ε2T [εζ](vvx) in the second equation of (2), one obtains
the following model:

(4)


∂tζ + ∂x (hv) = 0,

J (∂tv + εv∂xv) + ∂xζ +
2

45
ε2∂5

xζ +
2

3
ε2∂x((∂xv)2) = O(ε3).

where h = 1 + εζ and

J = 1 + εT [εζ]− ε2T.

The benefit of the new formulation (4) is in replacing (1 + εT [εζ] + ε2T) by a new operator J.

This replacement induces a fifth order derivative term on ζ, namely
2

45
ε2∂5

xζ, but the invertibility
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of the operator J is now earned. In fact, this technique modifies the dispersion relation (3) into:

(5) w2 =
k2
(

1 +
2

45
ε2k4

)
(

1 +
1

3
εk2 +

1

45
ε2k4

) .
This has an important side effect of removing every singularity found in (3), thus making a set of
useless high-order equations applicable. An equivalent formulation of model (4)1 was fully justified
recently in [37]. In fact, a unique solution of the model (4) exist over the time scale of order 1√

ε

and stay close the solution of the full Euler system. Although every singularity found in (3) is
now removed in (5), the phase velocity associated to (5) has the same classical velocity limit of

long waves as k → 0, but a finite limit equal to
√

2 as k →∞ instead of expected zero limit.
In order to improve the model linear dispersive properties in intermediate regime of wave num-

bers and extend the range of applicability without changing the basic limit properties of the
dispersion relation, we derive in this paper a new reformulation (14) of the same order of precision
of (4) that allows the adjustment of a dispersion correction parameter α (see Section 2.1) and
prevents the calculation of high order derivatives on ζ (see Section 2.2). The dispersion relation
obtained around some rest state solution associated to the new formulation (14) is the following
(see detailed calculation in Appendix A):

(6) w2 =

k2
(

1 +
ε(α− 1)k2

3
+
ε2(α− 1)k4

45
+

(7− 5α)ε2k4

45(1 + εα
3 k

2)

)
(

1 +
εα

3
k2 +

ε2α

45
k4
) .

The corresponding phase velocity has in the limit when k → 0 a classical velocity of long waves,

and in the limit of short waves when k →∞ the phase velocity has a finite limit equal to
α− 1

α
.

Consequently, setting α = 1, the phase velocity vanishes in the limit of short waves when k →∞
as in the case of the exact linear dispersion relation (16) for the full Euler equation. This paper
is devoted to the numerical study of the eB system (14). We will show that thanks to the proper
choice of the dispersion correction parameter α (see Section 2.3) the eB model with factorized high
order derivatives (14) have better dispersive properties in intermediate regime of wave numbers
than the eB model without factorization (10). Moreover, we will show that this newly derived
formulation is stable with respect to high frequency perturbations (see Section 2.4).

The paper is organized as follows, we firstly propose a reformulation of the same order of
precision of the extended Boussinesq model (4) up to the third order. This reformulation makes
the model more appropriate for the numerical implementation and significantly improved in terms
of linear dispersive properties due to the suitable adjustment of a dispersion correction parameter.
The reformulation is performed then via the factorization of high order derivatives on the surface
deformation ζ. We will show that the improvement is significant in the dispersive properties of
the model with factorization of high order derivatives on the surface deformation together with an
appropriate choice of an optimal value of the dispersion correction parameter α. We then study
the stability of two models, with and without factorization, and we will show that factorizing only
the fifth order derivative presented in the second model equation induces a destabilizing effect :
we need to factor every high order derivative on ζ.

Secondly, we propose a suitable Strang splitting of operators to solve the improved model : a
hyperbolic part representing the Nonlinear Shallow Water system and a dispersive part represent-
ing the high order derivatives. The hyperbolic part of the system is treated with a high-order
finite volume scheme whereas the dispersive part is treated with a finite difference method at the
same order. This splitting strategy allowed us to calculate the time step in the first finite-volume
sub-step allowing to overcome the time step restrictions induced by high order derivatives existing

1The equivalent formulation is obtained by multiplying both sides of the second equation of system (4) by the
water height function, h.
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in the dispersive part of the model and the numerical investigations show that the time step re-
striction from the CFL condition (according to which the time step must be chosen proportional
to the mesh spacing) of the finite-volume step is enough to ensure stability for the whole numerical
method. Moreover, a reconstruction of nodal unknowns and centered unknowns is presented.

Finally, numerical validations are presented under two main goals: showing the interest of
the proposed formulation of the extended Boussinesq model as well as the good behavior of the
numerical scheme and assessing the potential need of such higher-order models.

2. Reformulation of the extended Boussinesq system

The system (4) is much easier to solve numerically than the standard formulation (2). In
fact, the operator J has an appropriate structure allowing its inversion. Using straightforward
asymptotic expansions, the left-most term of the second equation of (4) can be written under the
form:

J(∂tv + εv∂xv) = (1 + εT [0]− ε2T)(∂tv + εv∂xv)− 2

3
ε2ζ∂2

x(∂tv)− ε2∂xζ∂x(∂tv) +O(ε3).

Now using the fact that ∂tv = −∂xζ+O(ε), one can deduce that the above equation can be recast
under the following form:

J(∂tv + εv∂xv) = (1 + εT [0]− ε2T)(∂tv + εv∂xv) +
2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ +O(ε3).

where T [0]w = −1

3
∂2
xw and Tw = − 1

45
∂4
xw. Hence, system (4) becomes:

(7)


∂tζ + ∂x

(
hv
)

= 0,(
1 + εT [0]− ε2T

)(
∂tv + εv∂xv

)
+ ∂xζ +

2

45
ε2∂5

xζ +
2

3
ε2∂x((∂xv)2)

+
2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ = O(ε3),

where h = 1 + εζ. The left-most factorized operator of the second equation of (7) also enjoys
a structure allowing its inversion. For the proof of the invertibility, one has to apply a Lax-
Milgram theorem where the coercivity condition of the bilinear form is satisfied (see [36, Lemma
1]). Moreover, this operator can be inverted once for all numerical time steps because of its time-
independent form. The simple one-dimensional structure of the model with a time-independent
operator reduce slightly the computational time. In fact, the strategy of removing time-dependency
from the left-most factorized operator was originally initiated for numerical simulations of the fully
nonlinear and weakly dispersive GN models in the two-dimensional case [42], in order to reduce
significantly the computational time.

2.1. A one-parameter family of extended Boussinesq equations. The eB equations are significantly
improved in terms of linear dispersive properties due to the higher-order terms existing in these
equations, see [47]. Additional improvement providing a finer characterization in high frequency
regimes can be brought by adjusting a dispersion correction parameter α. Following the lines
in [13, 48] and without affecting the accuracy of the model, we improve the frequency dispersion
of problem (7). This is possible, if one adds to the second equation of (7) some terms of the same
order as the equation precision and adjusts the parameter α in an appropriate way. See section 2.3
for the discussion on the choice of the parameter α. From the second equation of (7), one deduce
the following approximation:

(8) ∂tv + εv∂xv + ∂xζ + εT [0](∂tv) = O(ε2),

where T [0]w = −1

3
∂2
xw. Using again the fact that ∂tv = −∂xζ + O(ε), thus approximation (8)

can be written as:

∂tv + εv∂xv + ∂xζ +
ε

3
∂3
xζ = O(ε2),
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and hence, for any α ∈ R∗+:

(9) ∂tv = α∂tv + (α− 1)[∂xζ + εv∂xv +
ε

3
∂3
xζ] + (1− α)O(ε2).

The second equation of (7) can be recast after substituting ∂tv by its approximation given in (9):(
1 + εT [0]− ε2T

)(
α∂tv + αεv∂xv + (α− 1)∂xζ +

ε

3
(α− 1)∂3

xζ + (1− α)O(ε2)
)

+
(α− 1

α
+

1

α

)
∂xζ +

2

45
ε2∂5

xζ +
2

3
ε2∂x((∂xv)2) +

2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ = O(ε3).

After neglecting the terms (εT [0]− ε2T)(1−α)O(ε2) and −ε2T
(ε

3
(α−1)∂3

xζ
)

of order O(ε3), one

has:

α∂tv + αεv∂xv + (α− 1)(∂xζ +
ε

3
∂3
xζ) + (1− α)O(ε2)

+
(
εT [0]− ε2T

)(
α∂tv + αεv∂xv + (α− 1)∂xζ

)
+
ε2

3
(α− 1)T [0]∂3

xζ

+
(α− 1

α
+

1

α

)
∂xζ +

2

45
ε2∂5

xζ +
2

3
ε2∂x((∂xv)2) +

2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ = O(ε3).

Using the fact that α∂tv + αεv∂xv = ∂tv + εv∂xv + (α− 1)(∂tv + εv∂xv) one has:

∂tv + εv∂xv + (α− 1)(∂tv + εv∂xv + ∂xζ +
ε

3
∂3
xζ) + (1− α)O(ε2)

+
(
εαT [0]− ε2αT

)(
∂tv + εv∂xv +

(α− 1)

α
∂xζ
)

+
ε2

3
(α− 1)T [0]∂3

xζ

+
(α− 1

α
+

1

α

)
∂xζ +

2

45
ε2∂5

xζ +
2

3
ε2∂x((∂xv)2) +

2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ = O(ε3).

Following straightforward computations and using the fact that
ε2

3
(α−1)T [0]∂3

xζ = −ε
2

9
(α−1)∂5

xζ,

one has:(
1+εαT [0]−ε2αT

)(
∂tv+εv∂xv+

α− 1

α
∂xζ
)

+(α−1)(∂tv+εv∂xv+∂xζ+
ε

3
∂3
xζ)+(1−α)O(ε2)

+
1

α
∂xζ +

(7− 5α)

45
ε2∂5

xζ +
2

3
ε2∂x((∂xv)2) +

2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ = O(ε3).

Finally using (9), one has (α−1)(∂tv+εv∂xv+∂xζ+
ε

3
∂3
xζ)+(1−α)O(ε2) = 0 and thus system (7)

with improved frequency dispersion can be written as:

(10)



∂tζ + ∂x
(
hv
)

= 0,

(
1 + εαT [0]− ε2αT

)(
∂tv + εv∂xv +

α− 1

α
∂xζ
)

+
1

α
∂xζ +

(7− 5α)

45
ε2∂5

xζ

+
2

3
ε2∂x((∂xv)2) +

2

3
ε2ζ∂3

xζ + ε2∂xζ∂
2
xζ = O(ε3).

Similarly, a significant improvement of the dispersive properties has been attained in the derivation
of a three-parameter family of GN equations, see [11]. In here, we will limit ourselves to the one-
parameter family of eB equations (10) for the sake of simplicity.

2.2. Reformulation of the extended Boussinesq equations (10). In what follows, we derive an
equivalent model to (10) (in the sense of precision), i.e. O(ε3), that prevents the calculation of
high order derivatives on ζ. To this effect, we call such a model eB with factorized high order
derivatives. Certainly, the model enclose high order derivatives on ζ, but we make it possible
not to compute them by factoring them out by (1 + εαT [0]). The price to pay is an increase in
computational cost, since one needs to solve an extra linear system but the gain is significant in
extending the range of applicability.
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Using the fact that (1 + εαT [0])(∂xζ) = ∂xζ+O(ε), one has ∂xζ = (1 + εαT [0])−1(∂xζ) +O(ε),
and thus the terms ∂2

xζ, ∂3
xζ and ∂5

xζ become respectively:

(11) ∂2
xζ = ∂x

(
(1 + εαT [0])−1(∂xζ)

)
+O(ε),

(12) ∂3
xζ = ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+O(ε),

(13) ∂5
xζ = ∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+O(ε).

Replacing ∂2
xζ, ∂3

xζ and ∂5
xζ by their expression obtained in (11), (12) and (13) respectively in the

second equation of (10), one can write the eB equations with improved dispersion and factorized
high order derivatives on ζ as:

(14)



∂tζ + ∂x
(
hv
)

= 0,(
1 + εαT [0]− ε2αT

)(
∂tv + εv∂xv +

α− 1

α
∂xζ
)

+
1

α
∂xζ

+
(7− 5α)

45
ε2∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+

2

3
ε2∂x((∂xv)2)

+
2

3
ε2ζ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2∂xζ∂x

(
(1 + εαT [0])−1(∂xζ)

)
= O(ε3),

where h = 1 + εζ. Note, that this formulation avoids the calculation of high order derivatives,
in particular on the surface deformation ζ, but there are still fourth and second order derivatives
(this time not on ζ) in the second equation of (14) and a large stencil is still needed though.
Significant interest is behind the derivation of the eB formulation (14). In fact, we believe that
factorizing high order derivatives, namely on the surface deformation ζ, will extend the range
of applicability to high frequency regimes (see discussion in section 2.3), while remaining stable
(see section 2.4.2). In the following section, we will highlight the advantages of working with the
factorized eB model (14) rather than (10).

2.3. Choice of the parameter α. The main comparison between any asymptotic model and the full
Euler equations is performed at the stage of linear periodic plane wave solutions. At this point, a
part of the model’s properties [62] are summed up in the dispersion relation, relating the spatial
wave number k and the time frequency w. It comes from the earlier linearisation of the system
around some rest state. Improving the dispersive characteristics of our model require a suitable
choice of the parameter α so that the dispersion characteristics of the full Euler system corresponds
with those of the improved eB systems at the dispersion relation level. Following [4], we adjust
this parameter so that both phase and group velocities are minimized over a range of values of
k ∈ [0,K]. This can be done by minimizing a weighted averaged error (see for instance [13])
introduced for this reason.

In what follows, we will show that the eB model with factorized high order derivatives have
better dispersive properties when compared to models including the eB model without factorization
and other lower-order models. The dispersion relation corresponding to (10) can be derived by
investigating the linear behavior of small perturbation to a constant state solution (ζ, v) and then

looking for the corresponding plane wave solutions of the form (ζ0, v0)ei(kx−wt):

(15)
(w − εkv)2

hk2
=

(
1 +

ε(α− 1)k2

3
+

(6− 4α)ε2k4

45
−

2ε2k2ζ

3

)
(

1 +
εα

3
k2 +

ε2α

45
k4
) .

The choice of α is classically made to obtain a good matching with the dispersion relation of the
full Euler equations around the rest state (ζ, v) = (0, 0). The exact dispersion relation for the full
Euler system is recalled below:

(16) w2
S =

|k|√
ε

tanh(
√
ε|k|).
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For small wave numbers, the Taylor expansions of (15) (with (ζ, v) = (0, 0)) and (16) are equivalent
and the choice of α does not play any role in the leading terms (see numerical test 4.5). Indeed,
one has:

w2
α,eB = w2

S ≈
(
k2 − εk4

3
+

2

15
ε2k6 +O(ε3k8)

)
.

Classically, finding an optimal value of α for a range of values of k requires the minimization
of the squared relative weighted error defined below:

(17) Err =

√∫ K

0

1

k

(CpeB − CpS
CpS

+
CgeB − C

g
S

CgS

)2

dk,

over some range k ∈ [0,K], where CpS(k) and CgS(k) are respectively the reference phase and
group velocities associated with the Stokes linear theory. The division by k will emphasize the
importance of keeping errors to a minimum in shallow water. The linear phase and group velocities
associated to (15) are defined as:

CpeB(k) =
wα,eB(k)

|k|
and CgeB(k) =

dwα,eB(k)

dk
.

The weighted averaged error (17) has an absolute minimum of (60%) for wα,eB defined in (15)
(with (ζ, v) = (0, 0)) in the dispersive range 0 ≤ k ≤ 10. The optimal value for α in this case does
not play any role and α = 1 is set. This very big error shows that the eB model (10) without
factorizing high order derivatives on ζ has a limited range of applicability and thus poor dispersion
properties in large wave numbers regime.

Figure 1. Errors on linear phase velocity (red) and group velocity (blue) for
the eB model (10).

In fact, in Figure 1, a clear discrepancy is observed between both ratios
CpeB,1
CpS

(phase veloc-

ity, red solid line) and
CgeB,1
CgS

(group velocity, blue solid line) with α = 1 when compared with

the reference from Stokes theory (black solid line) when k > 2. On the contrary, a very good
correspondence is observed in small wave numbers regime (i.e when k ≤ 1). This shows that the
eB model (10) without factorizing high order derivatives on ζ has good dispersion properties in
small wave numbers regime (k ≤ 1). However, this is not the case in larger wave numbers regime
(k > 2).
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Now, we discuss the dispersive properties of model (14). The dispersion relation associated
to (14) is the following (see Appendix A for detailed calculation):

(18)
(w̃α,eB − εkv)2

hk2
=

(
1 +

ε(α− 1)k2

3
+
ε2(α− 1)k4

45
+

(7− 5α)ε2k4

45(1 + εα
3 k

2)
−

2ε2k2ζ

3(1 + εα
3 k

2)

)
(

1 +
εα

3
k2 +

ε2α

45
k4
) .

At this stage, one has to minimize the error function (17) for w̃α,eB defined in (18) with (ζ, v) =
(0, 0). In Figure 2 we plot the associated error in terms of α. One can clearly see that the weighted
average error has an absolute minimum (≈ 1%) in the dispersive range 0 ≤ k ≤ 10. The optimal
value for α is 1.0610. Meanwhile, the absolute minimum of the weighted averaged error associated
with the lower-order Green-Naghdi model in the Camassa-Holm regime (GN-CH) (precise up to
O(µ2, µε2)) [5] is much larger (≈ 10%) with an optimal value α = 1.0800.

Figure 2. Phase and group velocities weighted averaged error as a function of
α for 0 ≤ k ≤ 10. The eB model (14) is in solid line, the Green-Naghdi model in
the Camassa-Holm regime (GN-CH) [5] is in dashes.
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Figure 3. Errors on linear phase velocity (red) and group velocity (blue). The
reference from Stokes theory (black solid line), the eB model (14) (α = 1.0610) in
solid lines, the eB model (14) (α = 1) in dashes, the GN-CH model [5] (α = 1.0800)
in dots.

In Figure 3, errors on linear phase (red) and group (blue) velocities are plotted. The ratio
CpeB,αopt

CpS
with an optimal choice α = 1.0610 (red solid line) is very close to the reference from Stokes

theory (black solid line) which shows a very good correspondence between the dispersion relation
obtained using the eB model (14) with factorized high order derivatives on ζ with α = 1.0610 and
the theoretical one over 0 ≤ k ≤ 10. Larger difference exists between the group velocity (blue solid
line) and the reference from Stokes theory (black solid line). This difference starts to proliferate
when K > 10, showing an overestimation of this property. When the modeled dispersion relation
is obtained using the lower-order GN-CH model [5] with α = 1.0800, a clear discrepancy exists
between both linear group and phase velocity errors (blue and red dot lines) when compared with
the reference from Stokes theory (black solid line). We also highlight that comparisons of errors
on both linear phase and group velocities of the eB model (14) against other lower ordered models
(for instance, sB or GN type models) are successfully reproduced and a clear superiority of our
higher order model is proved when it comes to approximating properly phase and group speeds.
We do not include these comparisons in the present study for the sake of shortness. In fact similar
results are obtained since the improved formulation (with dispersion correction parameter) of all
second order models (sB, GN-CH and GN) is the same when linearized around some rest state
and thus one expects a similar linear dispersion relation.

In conclusion, the eB model (14) contains factorized higher-order dispersive terms that are
neglected in lower-order models which enlarge the application scope remarkably to cover the area
from deep water (long wavelength regime) into the area of breaking waves (short wavelength regime
i.e. high frequency), see numerical test in section 4.4. This is the reason why, in the numerical
experiments, we choose to work with the model (14), where high order derivatives are factorized,
which as seen above, has an extended range of applicability and good dispersive properties in large
wave numbers regime.

Remark 1. In the case of variable topography, the study of dispersive properties must be sup-
plemented with some hints about linear shoaling. In fact, the minimization of phase and group
velocities errors is quite problematic in the variable topography case as a better phase and group
velocities involves a deterioration of shoaling properties, which are a paramount for near-shore
oceanography. For this reason, and in order to consider stiff configurations that include high har-
monics while keeping the improved dispersive properties of the model, a three-parameter family
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can be derived by adding two additional parameters θ and γ using a change of variables for the
velocity [11]. The range of validity of the three parameter family of equations is extended to deeper
water and considerable improvements in challenging configurations are obtained [42]. This issue is
out of the scope of this article and the variable topography case will be considered in a forthcoming
paper.

2.4. Stability of the extended Boussinesq models. The high frequency instabilities of an improved
GN-CH model are studied in [5]. These instabilities are due to the third order derivative existing
in the equation. One of the advantages of the eB is its stability in high frequency regime due to the
presence of higher order derivatives, namely derivatives of order five in ζ. These terms seems to
have a stabilizing effect. In what follows, we discuss qualitatively the stability of both models (10)
and (14). Since the parameter ε do not play a direct role in the stability results and for notational
convenience we set ε = 1 throughout this section.

2.4.1. Stability of the extended Boussinesq model with high order derivatives. Before discussing
the stability of the eB models in high frequency regime, we would like to mention that the choice
of α in the model (10) in high frequency regime does not play an important role. In fact the
latter model has poor dispersive properties in intermediate and large wave numbers regime, see
discussion in Section 2.3. Therefore, one has to choose α = 1.

The dispersion relation (15) associated to (10) with α = 1 reads:

(19)
(w − kv)2

hk2
=

(
1 +

2k4

45
−

2k2ζ

3

)
(

1 +
1

3
k2 +

1

45
k4
) .

The perturbations of the rest state (ζ, v) = (0, 0) are always stable as per the below dispersion
relation:

(20) w2 =
k2
(

1 +
2

45
k4
)

(
1 +

1

3
k2 +

1

45
k4
) .

However, a quick functional study shows that the numerator of the right-hand side of (19) becomes

negative whenever ζ >
2k4 + 45

30k2
. Thus, as provided by (19), w remains real for large wave

numbers, under the condition that ζ <
2k4 + 45

30k2
. In the majority of the applications we have

in mind, the overall surface deformation ζ does not go beyond
2k4 + 45

30k2
, and this condition is

satisfied. Actually, as k gets large (for instance k ≈ 10) in high frequency regime, the upper

bound of ζ gets also large (≈ k2

15
= 6.67), hence extending the range of values of the overall

surface deformation ζ for which the condition is satisfied. This ensures a numerical stability in
most of the situations considered for applications (see Figure 4). However, as we have mentioned
in the introduction, from the dispersion relation (20) one can remark that the phase velocity
associated to the eB model with high order derivatives (10) has the same classical velocity limit

of long waves as k → 0, but a finite limit equal to
√

2 instead of expected zero limit.

Remark 2. Replacing ∂5
xζ by ∂4

x

(
(1 + T [0])−1(∂xζ)

)
in the second equation of (10) with α = 1,

one gets the following model:

(21)


∂tζ + ∂x

(
hv
)

= 0,(
1 + T [0]− T

)(
∂tv + v∂xv

)
+ ∂xζ +

2

45
∂4
x

(
(1 + T [0])−1(∂xζ)

)
+

2

3
∂x((∂xv)2)

+
2

3
ζ∂3
xζ + ∂xζ∂

2
xζ = 0.
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This replacement modifies the dispersion relation (19) into:

(22)
(w − kv)2

hk2
=

(
1− 2

3
k2ζ +

k4

45

( 2

1 + 1
3k

2

))
(

1 +
1

3
k2 +

1

45
k4
) .

A similar functional study to the previous one shows that the r.h.s numerator of (22) is negative

whenever ζ >
2k4 + 15k2 + 45

10k4 + 30k2
. In high frequency regime, the upper bound of the overall surface

deformation ζ is approximately close to 0.2, hence reducing the range of values of ζ for which the
condition is satisfied, namely −1 < ζ < 0.2 (keeping mind that h = 1 + ζ should remain always
positive). Therefore, if this condition is not satisfied the complex square root of w will generate an
instability in the model. Actually, a stability in high frequency regime is ensured if the condition
−1 < ζ < 0.2 is satisfied which we believe is a limitation for the applications that we have in
mind. Thus, one can deduce that factorizing only the fifth order derivative present in the second
equation of (10) does not stabilize the model, at least for a big range of values of the overall surface
deformation ζ (see Figure 4).

At this stage, one may wonder if a factorization of only the third order derivative on ζ may
be enough to control the incriminated sign in the dispersion relation (19). Indeed, this is true

and w remains real for large wave numbers, under the condition that ζ <
2k6 + 6k4 + 45k2 + 135

90k2

(for k ≈ 10 the upper bound of the latter inequality becomes very large). However, factoring only
the third order derivative leads to a model with the same poor linear dispersive properties as (10).
This was expected because the third order derivative term is nonlinear. This is why we suggested
in section 2.2 to factorize second, third and fifth order derivatives present in the second equation
of (10). The stability of the eB model with factorized high order derivatives (14) is discussed in
the next subsection.

2.4.2. Stability of the extended Boussinesq model with factorized high order derivatives. In what
follows, we explore the stability of the eB model with factorized high order derivatives (14). We
recall here the dispersion relation (18) associated to the eB model (14):

(23)
(w − kv)2

hk2
=

(
1 +

(α− 1)k2

3
−

2k2ζ

3(1 + α
3 k

2)
+

(α− 1)k4

45
+

(7− 5α)k4

45(1 + α
3 k

2)

)
(

1 +
α

3
k2 +

α

45
k4
) .

The r.h.s numerator in (23) is positive if and only if

ζ <
k2
(
α
(
(α− 1) k2 + 15α− 12

)
+ (18− 15α)

)
+ 90α− 45

90
+

3

2k2
.

We recall that α > 1. Indeed, improving the dispersive properties of the model (14) in large
frequency regime requires an appropriate choice α = 1.0610 (see discussion in section 2.3). With
this choice of α and in high frequency regime, the r.h.s of the above inequality becomes very large,

namely same order as
α(α− 1)k4

90
. Thus, relaxing the stability condition on ζ. This is another

reason why, for the rest of the paper, we choose to work with the model (14), where high order
derivatives are factorized, which as seen above is stable for the majority of applications we have in
mind. Of course, one could use model (10) which seems to be stable, but at the price of losing the
improved dispersive properties that model (14) enjoys, see section 2.3 and test case of section 4.4.
As we have already mentioned in the introduction, one can remark from the dispersion relation (23)
around some rest state solution (ζ, v) = (0, 0) that the phase velocity associated to (14) has the

same classical velocity limit of long waves as k → 0, namely 1, and a finite limit equal to

√
α− 1

α
as k →∞ which is equal 0 (as in the case of the exact linear dispersion relation for the full Euler
equation (16)) when the dispersion correction parameter is set to α = 1.
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Figure 4 shows the left to right propagation of a solitary wave initially centered at x0 = 15
of amplitude a = 0.6. The computational domain length is L = 30 and discretized with 480
cells. The water surface profiles of our numerical solutions provided by the models (10) (blue
line), (14) (red line) and (21) (green line) are compared at t = 0.5 and t = 0.7 using the fifth order
discretization “WENO5-DF4-RK4” (see sections 3.2 and 3.3). One can clearly see the stability
of the eB models (10) and (14) while the model (21) seems to be unstable in high frequency
regime. In fact, when implementing in model (21) an initial solution that does not satisfy the
limiting stability condition discussed in remark 2, more precisely when choosing ζ = 0.6 > 0.2,
one observes a high frequency instability. We would like to mention that we tried the same test
but starting with an initial solution where the overall surface deformation is ζ = 0.1. All models
seems to be stable but we do not include this test here for the sake of simplicity.

Figure 4. Comparison at different times between the solutions of the
models (10) (blue line), (14) (red line) and (21) (green line) in high frequency

regime.
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3. Numerical methods

In what follows, we will just introduce the numerical scheme devoted to solve the eB model with
factorized high order derivatives (14) in order to ease the reading. A similar numerical scheme is
adopted when the eB model with high order derivatives (10) is concerned.

The remarkable structure of the eB models make them suitable for the implementation of
a hybrid scheme splitting the hyperbolic and dispersive parts of the equations. This strategy
has been initially introduced for Boussinesq-like and Green-Naghdi equations in order to handle
correctly wave breaking that occurs as waves approach the shore, see [4, 42]. A computation of a
half-time step of the hyperbolic part is used as a sensor to evaluate the energy loss occurring during
wave breaking (accurate detection of wave fronts), see [67]. Near the breaking points, the dynamics
of the waves are described correctly using the hyperbolic part but the dispersive components of the
equation become very singular. In order to handle wave breaking, switching from the dispersive
part to the hyperbolic part is indispensable. In this paper, we do not investigate breaking waves.
In fact, our work is limited to the flat topography case and we leave for future research works the
treatment of breaking waves in the variable bottom configuration. However, we stick here to the
splitting strategy since it is computationally efficient, stable and cheap. Moreover, this splitting
strategy allowed us to overcome the severe time step restriction induced due to the presence of high
order derivatives by calculating the time step in the first finite-volume sub-step. The numerical
investigations show that the time step restriction from the CFL condition (according to which the
time step must be chosen proportional to the mesh spacing) of the finite-volume step is enough to
ensure stability for the whole numerical method.The splitting scheme following the lines in [4, 42, 5]
is presented in the section below.

3.1. The splitting scheme. We recall first the eB system (14) under consideration:

(24)



∂tζ + ∂x
(
hv
)

= 0,(
1 + εαT [0]− ε2αT

)(
∂tv + εv∂xv +

α− 1

α
∂xζ
)

+
1

α
∂xζ

+
(7− 5α)

45
ε2∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+

2

3
ε2∂x((∂xv)2)

+
2

3
ε2ζ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2∂xζ∂x

(
(1 + εαT [0])−1(∂xζ)

)
= O(ε3),

where h = 1 + εζ, T [0]w = −1

3
∂2
xw and Tw = − 1

45
∂4
xw.

The solution operator S(.) related to (24) is decomposed at each time step ∆t following a hybrid
Strang splitting scheme:

S(∆t) = S1(∆t/2)S2(∆t)S1(∆t/2).

• S1(t) is the solution operator related to the hyperbolic nonlinear shallow water equations, NSWE:

(25)


∂tζ + ∂x

(
hv
)

= 0,

∂tv + εv∂xv +
α− 1

α
∂xζ +

1

α
∂xζ = 0.

The NSWE system (25) can be written in the following conservative form:

(26)


∂tζ + ∂x

(
hv
)

= 0,

∂tv + ∂x

(ε
2
v2 + ζ

)
= 0,

where h = 1 + εζ.
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• S2(t) is the solution operator related to the remaining (dispersive) part of the equations.

(27)



∂tζ = 0,(
1 + εαT [0]− ε2αT

)(
∂tv −

1

α
∂xζ
)

+
1

α
∂xζ

+
(7− 5α)

45
ε2∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+

2

3
ε2∂x((∂xv)2)

+
2

3
ε2ζ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2∂xζ∂x

(
(1 + εαT [0])−1(∂xζ)

)
= 0

The hyperbolic conservative structure of system (26) allows a computation of S1 following a finite-
volume method. Whereas, a classical finite difference method is used to compute S2.

Remark 3. Treating the two-dimensional case is not the objective of this paper, however, the
extension of the splitting approach to two-dimensional surface waves does not raise theoretical
difficulty. Following the steps of [42], the eB model (24) in the two-dimensional case can be
reformulated in a way that is suitable to the implementation of the splitting strategy with the benefit
of removing numerical obstructions. Indeed, the computation of the dispersive part in the above
splitting scheme requires the inversion of a fourth order differential operator. This operator is a
matricial operator that can be replaced by a new one having a diagonal structure whose inversion
is not computationally demanding; numerically this is equivalent to the resolution of two sparse
linear systems. Moreover, time dependency can be removed from this operator while keeping its
diagonal structure so that it has not to be modified at each time step.

3.2. Finite volume scheme. The hyperbolic system (26) is conveniently rewritten with conservative
variables and a flux function:

(28) ∂tU + ∂x(F (U)) = 0,

where,

(29) U =

(
ζ
v

)
, F (U) =

(
hv

ε

2
v2 + gζ

)
,

with h = 1 + εζ. The Jacobian matrix is given by:

(30) A(U) = d(F (U)) =

(
εv h
g εv

)
.

The homogeneous system (28) is strictly hyperbolic if inf
x∈R

h > 0 that is to say the domain of the

fluid must remain strictly connected.

The Cauchy problem associated to (28) is the following:

(31)

 ∂tU + ∂x(F (U)) = 0, t ≥ 0, x ∈ R.

U(0, x) = U0(x), x ∈ R.

The finite volume method used to the approximation of (31) imposes conservation laws in a one-
dimensional control volume [xi−1/2, xi+1/2] × [tn, tn+1] of dimensions ∆x = xi+1/2 − xi+1/2 and

∆t = tn+1 − tn.

Figure 5. The space discretization.
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The approximate cell average of U on the cell mi = [xi−1/2, xi+1/2] at time t is denoted by U i and
given by:

U i =
1

∆x

∫
mi

U(t, x) dx .

The approximate cell average of U on the cell mi = [xi−1/2, xi+1/2] at time tn is denoted by U
n

i

and given by:

U
n

i =
1

∆x

∫
mi

U(tn, x) dx .

Integrating (25) over the computational cell mi, the semi-discrete form can be represented as:

(32)
dU i(t)

dt
+

1

∆x

(
Fi+1/2 − Fi−1/2

)
= 0

where Fi±1/2 are the numerical fluxes defined at each cell interface as:

(33) Fi+1/2 = F̃ (U i, U i+1) ≈ 1

∆x

∫
mi

F (U(t, xi+1/2))dx.

VFRoe method. In what follows, we consider the numerical approximation of the hyperbolic system
of conservation laws in the form of (28). To this end, we adopt the VFRoe method (see [8, 27, 28])
which is an approximate Godunov scheme. It relies on the exact resolution of the following
linearized Riemann problem:

(34)


∂tU + Ã(U

n

i , U
n

i+1)∂xU = 0,

U(0, x) =

 U
n

i if x < xi+1/2,

U
n

i+1 if x > xi+1/2,

where Ã(U
n

i , U
n

i+1) = A

(
U
n

i + U
n

i+1

2

)
.

By solving the linearized Riemann problem we obtain U
∗
i+1/2 = U(x = xi+1/2, t = tn), the interface

value between two neighboring cells.
CFL condition. It is always necessary to impose what is called a CFL condition (for Courant,
Friedrichs, Levy) on the time step to prevent the blow up of the numerical values. It comes
usually under the form

(35) ai+1/2∆t ≤ ∆x, i = 1, . . . , N,

where ai+1/2 = max
i∈[1,N ]

(j = 1, 2, |λj(Ũi)|) and λj(Ũi) are the eigenvalues of A
(
Ũi =

U
n

i + U
n

i+1

2

)
.

The restriction (35) enables in practice to compute the time step at each time level tn, in order to
determine the new time level tn+1 = tn + ∆t (within this view, ∆t is not constant, it is computed
in an adaptive fashion).

Consistency. The numerical flux F̃ (Ul, Ur) is called consistent with (28) if

(36) F̃ (U,U) = F (U) for all U.

3.2.1. First order finite-volume scheme. The semi-discrete equation (32) is discretized by an ex-
plicit Euler (in time) method to obtain:

(37) U
n+1

i = U
n

i −
∆t

hi
(Fni+1/2 − F

n
i−1/2),

where the numerical flux is defined directly as the value of the exact flux at the interface value,
namely:

Fni+1/2 = F̃ (U
n

i , U
n

i+1) = F (U
∗
i+1/2)

(38)

Fni−1/2 = F̃ (U
n

i−1, U
n

i ) = F (U
∗
i−1/2).
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Let us remark that by construction the numerical flux given by (38) ensures the consistency
property.

In the sequel, we will suppose that the space discretization is uniform.

Algorithm. In the following, we state the algorithm for computing the discrete values U
n+1

i at
tn+1. Given the initial data and boundary conditions and the number CFL ≤ 1, we start with
the known discrete averaged values (U

n

i ) for i = 0, ..., N+1 at tn. As long as (t < T ) one has to do:

1) Computation of Ãi for i = 1, ..., N + 1 where Ãi = A

(
U
n

i−1 + U
n

i

2

)
.

2) Computation of r1
i ,r

2
i and λ1

i , λ
2
i set respectively as the eigenvectors and eigenvalues of Ãi.

3) Computation of ∆t, such that
∆t

∆x
≤ CFL

ai+1/2
.

4) Computation of U
∗
i−1/2 for i = 1, ..., N + 1 by solving the linearized Riemann problem.

In fact we have 3 cases:

• if λ1
i ,λ

2
i<0 then U

∗
i−1/2 = U

n

i .

• if λ1
i ,λ

2
i>0 then U

∗
i−1/2 = U

n

i−1.

• if λ1
i < 0, λ2

i > 0 then for:

(39)



x < λ1
i t one has U

∗
i−1/2 = U

n

i−1,

x > λ1
i t or x < λ2

i t one has U
∗
i−1/2 = U

n

i − (R−1[U ])2r
2
i = U

n

i−1 + (R−1[U ])1r
1
i ,

x > λ2
i t one has U

∗
i−1/2 = U

n

i ,

with R = (r1
i |r2

i ) and [U ] = U
n

i − U
n

i−1.

5) Computation of F (U
∗
i−1/2).

6) Computation of U
n+1

i = U
n

i −
∆t

∆x
(Fni+1/2 − F

n
i−1/2) for i = 1, ..., N .

We repeat this algorithm for the new level of time (tn+1 + ∆t), until we reach the required
final time T .

In what follows, the computation of high-order accurate numerical fluxes is reached by recon-
structing left and right constant averaged values using a fifth-order WENO scheme, before applying

the numerical flux. The only change is in the computation of the interface values U
∗
i+1/2 which will

depend on the high order reconstructed right and left values when solving the linearized Riemann
problem.

3.2.2. High order finite-volume scheme: WENO5-RK4. Considering numerical approximations of
the hyperbolic system (26), we seek a numerical scheme that reach high order accuracy in smooth
regions while avoiding the spurious oscillations around discontinuity. In fact, we aim at dealing with
discontinuous initial data (dam-break problem) generating dispersive shock waves [43, 55] which
needs a special treatment at the numerical scheme level. This can be achieved by using a fifth-order
accuracy WENO reconstruction for hyperbolic conservation laws, following [33, 60]. Second-order
schemes tend to alter the dispersive properties of the model due to dispersive truncation errors.
To prevent this in the study of dispersive waves, high order schemes are imperative [4, 11, 42, 5].
For the sake of simplicity, the reader is referred to [5] for more details concerning the high order
discretization of the hyperbolic system.
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Regarding time discretization, fourth-order explicit Runge–Kutta “RK4” method is used and
one gets the “WENO5-RK4” scheme.

3.3. Finite difference scheme for the dispersive part. The splitting scheme is a mix between a
finite volume discretization and a finite difference method. This mix induces a switching between
cell-averaged values defined by the finite volume discretization and nodal values used by the finite
difference discretization for each unknown and at each time step. Using fifth-order accuracy
WENO reconstruction, one can approximate the nodal values (i.e finite difference unknowns)

(Uni )i=1,N+1 in terms of the cell-averaged values (i.e finite volume unknowns) (U
n

i )i=1,N by the
following relation:

(40) Uni =
1

30
U
n

i−2 −
13

60
U
n

i−1 +
47

60
U
n

i +
9

20
U
n

i+1 −
1

20
U
n

i+2 +O(∆x5), 1 ≤ i ≤ N + 1,

One can easily recover the relation that allows to determine the cell-averaged values (U
n

i )i=1,N

in terms of the nodal values (Uni )i=1,N+1 by inverting the relation (40). The global order of the
scheme is preserved. In fact, the formula is precise up to order O(∆x5) terms. Before proceeding
by the computation of S2, we recall first the remaining (dispersive part) of the equations, given in
section 3.1.

(41)



∂tζ = 0,(
1 + εαT [0]− ε2αT

)(
∂tv −

1

α
∂xζ
)

+
1

α
∂xζ

+
(7− 5α)

45
ε2∂4

x

(
(1 + εαT [0])−1(∂xζ)

)
+

2

3
ε2∂x((∂xv)2)

+
2

3
ε2ζ∂2

x

(
(1 + εαT [0])−1(∂xζ)

)
+ ε2∂xζ∂x

(
(1 + εαT [0])−1(∂xζ)

)
= 0.

Inverting the operator (1+εαT [0]) requires the discretization of (1+εαT [0])X = B (i.e resolution
of linear systems). The linear system is solved using the matrix division operator of Matlab,
X = (1 + εαT [0]) \ B. This produces the solution using Gaussian elimination, without forming
the inverse.

Using an explicit Euler in time scheme, the finite discretization of the system (41) using classical
finite difference methods leads to the following discrete problem:

(42)



ζn+1 − ζn

∆t
= 0,

vn+1 − vn

∆t
− 1

α
D1(ζn) +

(
1− εα

3
D2 +

ε2α

45
D4

)−1[ 1

α
D1(ζn)

+
(7− 5α)

45
ε2D4

((
1− εα

3
D2

)−1
(D1(ζn))

)
+

2

3
ε2D1((D1v

n)2)

+
2

3
ε2ζnD2

((
1− εα

3
D2

)−1
(D1(ζn))

)
+ε2D1(ζn)D1

((
1− εα

3
D2

)−1
(D1(ζn))

)]
= 0.

The matrices D1, D2 and D4 are respectively the classical centered discretizations of the derivatives
∂x, ∂2

x, and ∂4
x given below. The spatial derivatives are discretized using fourth-order formulas,

“DF4”:

(∂xU)i =
1

12∆x
(−Ui+2 + 8Ui+1 − 8Ui−1 + Ui−2),

(∂2
xU)i =

1

12∆x2
(−Ui+2 + 16Ui+1 − 30Ui + 16Ui−1 − Ui−2),

(∂4
xU)i =

1

6∆x4
(−Ui+3 + 12Ui+2 − 39Ui+1 + 56Ui − 39Ui−1 + 12Ui−2 − Ui−3).

A standard extension to fourth-order classical Runge-Kutta “RK4” scheme is used, and thus
one obtains the “DF4-RK4” scheme.
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Remark 4. At this stage, it is worth mentioning that the numerical scheme of the eB system with
high order derivatives (10) is similar to the one developed for model (14). In fact, the hyperbolic
part of the system is the same as in (25), but the high order derivatives involved in the second
equation of the remaining (dispersive) part should be treated accordingly. More precisely, third and
fifth order derivatives are discretized using the following fourth-order formulas:

(∂3
xU)i =

1

8∆x3
(−Ui+3 + 8Ui+2 − 13Ui+1 + 13Ui−1 − 8Ui−2 + Ui−3),

(∂5
xU)i =

1

6∆x5
(−Ui+4 + 9Ui+3 − 26Ui+2 + 29Ui+1 − 29Ui−1 + 26Ui−2 − 9Ui−3 + Ui−4).

Boundary conditions are imposed using the method presented in Section 3.4.

Remark 5. An investigation of the dispersive properties of the splitting numerical scheme adopted
here is done in [4] for a Green-Naghdi type model. The splitting in time of the hyperbolic and
dispersive parts is the main originality of this approach. Considering the semi-discretized (in time)
version of the splitting scheme adopted in this paper, we believe that the corresponding dispersion
relation can be determined following the same classical steps as in [4]. An extension to the fully-
discretized scheme is possible but very technical and would not lead to any important insight on the
dispersive properties of the hyperbolic/dispersive splitting. To avoid repetition, we do not include
in this paper the analysis of the discrete dispersion relation, the interested reader is referred to [4,
Section 3.4.2].

3.4. Boundary conditions. To close the differential problems, boundary conditions need to be
imposed. Boundary conditions for both the hyperbolic and dispersive parts of the splitting scheme
are treated by imposing suitable relations on both cell-averaged and nodal quantities. In this paper,
we only consider periodic boundary conditions as it was already done in [5] for the study of internal
waves.

For the hyperbolic part, “ghosts” cells are introduced respectively at the western and eastern
boundaries of the domain. The imposed relations on the cell-averaged quantities are the following:
• U−k+1 = UN−k+1, and UN+k = Uk, k ≥ 1, for periodic conditions on western and eastern
boundaries.

For the dispersive part, we simply impose the boundary conditions on the nodal values located
outside of the domain. In this way, we maintain centered formula at the boundaries, while keeping
a regular structure in the discretized model:
• U−k+1 = UN−k+1, and UN+k = Uk, k ≥ 1, for periodic conditions on western and eastern

boundaries.

Remark 6. As we have already said, in the proposed model we do not try to totally avoid the
computations of high order derivatives as in [24, 1, 21], instead we avoid the direct computation
of high order derivatives on the flow variable ζ. There are still fourth order derivatives (but
this time not directly on ζ) and a large stencil is still needed though. Approximating high order
derivatives is one drawback of the proposed numerical scheme due to the large stencil needed and
the development of high-order schemes is not an easy task. In the dispersive part of our model,
the spatial derivatives are discretized using fourth-order formulas and one disadvantage is that the
treatment of boundary conditions is more complex in that case. Moreover, in the case of variable
topography, several challenging situations arise involving the design of robust, well-balanced and
positive preserving numerical schemes for high-order partial differential equations (PDEs).

4. Numerical validations

This part is devoted to the numerical validations of the model and the numerical scheme.
We begin by examining the numerical solution of the eB model for the case of solitary waves

and show that the latter enjoys better approximate solution with respect to lower-order models.
Secondly, we study the propagation of a solitary wave solution with correctors of order O(ε3)

established in [37]. We compare our numerical solution with an analytic one (up to an O(ε3)
remainder) at several times and show that our numerical scheme is very efficient and accurate.
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As usual when dealing with a model in oceanographical science, one has to test the ability of
the model and the numerical method for the test of a head on collision of counter propagating
solitary waves. A very good agreement is observed.

An important fact to reveal is whether or not the improved model is pertinent. The third and
fourth numerical tests reveal that in presence of large wave number, the choice of the parameter α
and the high order derivatives factorization are crucial. In the fifth test, we study the dam-break
problem supplemented by a comparison between the standard and extended Boussinesq models.
This test is build to test the ability of the eB model and the numerical method to deal with irregular
solution. A very good behavior is observed. In the last numerical test, we consider the well-known
“Favre waves” resulting after the impact of a wave on a vertical wall. The numerical results
obtained by the eB model are compared with experimental results of Favre [23] and Treske [69]
and a good agreement is observed.

In all the test cases, we use the “WENO5-DF4-RK4” discretization and a CFL number of 1.
Our numerical investigations highlight that the time step restriction from the CFL condition of
the finite-volume step is enough to ensure stability for the whole numerical method.

4.1. Numerical solitary wave solution of the extended Boussinesq system. Solitary waves consist
of steadily translating disturbances where the nonlinear and dispersive effects counterbalance each
other to create a permanent-form with a single crest solution. In this section, we numerically study
solitary waves solutions of the eB model and compare it to other models including the accurate full
solution of the water-waves model [17, 65] which will be considered as an “exact” solution in our
comparisons. We will show that the eB model enjoys a better approximate solitary wave solution
(when compared to the “exact” solution) with respect to other lower-order models.

In the last decades, there have been several works on nonlinear PDEs modeling solitary waves.
The famous Korteweg-de Vries (KdV) scalar equation or the coupled Boussinesq and Green-Naghdi
evolution equations describe the shallow water waves and admit explicit families of solitary wave
solutions [7, 40, 59, 12]. The calculation of the exact analytic expressions for solitary wave solutions
can be done in many ways, one of which, is the direct integration method. This method seeks
traveling wave solutions. The PDE is replaced by an ordinary differential equation (ODE) by
working in a traveling frame of reference. Hence, one looks for closed-form solutions in terms of
special functions.

In [37], a careful examination of the direct integration method revealed that the third order
non linear ODE associated to the eB model does not admit an explicit analytic solution. The
explicit solution of the eB system remains an open problem. To this effect, we employ the Matlab
solver ode45 to compute numerically the solution of the ODE. The obtained numerical solutions
are compared with the accurate full solution of the water-waves model computed using the Matlab
script of Clamond and Dutykh [14] where a fast and precise approach for computing solitary waves
solution is introduced. The fast and accurate Matlab script in [14] is limited to relatively small
velocities. To this end, three values of velocity are used, namely c = 1.025, c = 1.01 and c = 1.002.
We compare the obtained solutions with other models including the accurate full solution of the
water-waves model, the original Green-Naghdi system (ζGN ) and the Boussinesq system (ζB). The
explicit solution of the original Green-Naghi model [59, 63] reads:

(43) εζGN (x) = (c2 − 1) sech2
(√3(c2 − 1)

4c2ε
x
)

= εc2ζB(x) .

The waves are re-scaled so that the Boussinesq solution do not depend on c. Consistently, we set
ε = 1.

After re-scaling, Figure 6 shows clearly that the solitary waves tend towards the Boussinesq
solution (ζB) as c− 1→ 0. A zoom-in on the crest of half of the solitary waves shows that, of all
models, the eB model has the best match with the full Euler system (water-waves) solution.
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(a) Re-sized waves, c = 1.025, 1.01, 1.002 (b) Zoom in

Figure 6. Comparison of the solitary waves solutions.

Table 1. The normalized l2-norm of the error for the Boussinesq, original GN
and eB models.

Boussinesq original GN ex-Bouss

c− 1 Error Conv. rate Error Conv. rate Error Conv. rate

0.025 0.0459 – 0.0058 – 0.0019 –
0.01 0.0188 0.9743 0.0023 1.0361 3.07× 10−4 1.9984

0.002 0.0038 0.9864 4.45× 10−4 1.0186 1.23× 10−5 1.9990

Figure 7. Errors as a function of c− 1 (log-log plot).
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The normalized l2-norm of the error as a function of c−1 is plotted in a log-log scale in Figure 7.
The convergence rate is indeed quadratic for the extended Boussinesq model whereas it is only
linear for the original Green-Naghdi model. Results are gathered in Table 1. This highlights the
fact that the higher-order extended Boussinesq model have a better approximate solution when
compared to lower-order models.

4.2. Propagation of a solitary wave solution with correctors. A careful examination revealed that
the extended Boussinesq system (2) does not admit an exact solitary wave solution, see [37, Section
4]. In order to validate our numerical scheme we use the explicit solution with correctors of order
O(ε3) found in [37, Section 5] that we disclose below. Such solitary waves are analytical solutions
of the extended Boussinesq system (2) up to O(ε3) remainders. Therefore, this family of solutions
can be used as a validation tool for our present numerical scheme and its given by (ζ, v) with

(44) ζ = ζ1 +
ε2

2

[
(ζ0

2 + v0
2)(x− t) + (ζ0

2 − v0
2)(x+ t) +

∫ t

0

f(s, x− t+ s)ds−
∫ t

0

f(s, x+ t− s)ds
]
,

and

(45) v = v1 +
ε2

2

[
(ζ0

2 + v0
2)(x− t)− (ζ0

2 − v0
2)(x+ t) +

∫ t

0

f(s, x− t+ s)ds+

∫ t

0

f(s, x+ t− s)ds
]
,

where (ζ1, v1) is the well known explicit solution of solitary traveling wave of the sB system (1)
given by:


ζ1(t, x) = a sech2

(
k (x− ct)

)
,

v1(t, x) =
cζ1(t, x)

1 + εζ1(t, x)
,

where k =

√
3a

4
and c =

√
1

1− aε
and a is an arbitrary chosen constant. The initial conditions

ζ0
2 and v0

2 are both given in C∞(R) and set ζ0
2 = v0

2 = exp
(
−
(3πx

10

)2)
. The function f(t, x) is

defined by:

f(ζ1, v1) = ∂xζ1∂x∂tv1 +
2

3
ζ1∂

2
x∂tv1 +

1

45
∂4
x∂tv1 +

1

3
∂x
(
v1(v1)xx − (v1)2

x

)
.

In this test, we investigate the left to right propagation of a solitary wave initially centered at
x0 = 20, of amplitude a = 0.2. The computational domain length is L = 100 and discretized
with 1600 cells. The solitary wave is initially far from boundaries, thus the periodic boundary
conditions do not affect the computation. The water surface profile of our numerical solution
provided by the model (14) with α = 1, is compared with the analytical one given by (44)-(45)
at several times using the fifth order discretization “WENO5-DF4-RK4”. An excellent agreement
between numerical and analytical solutions is observed in Figure 8. The amplitude and shape
of the computed solitary wave are accurately preserved during the propagation, indicating an
accurate discretization of the governing equations in both space and time.
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Figure 8. Propagation of a solitary wave: water surface profiles at t =
0, 10, 30, 50 and 70.

To complete the picture and assess the convergence of our numerical scheme, we compute the
numerical solution for this particular test case for an increasing number of cells N , over a duration
T = 1. We start with N = 400 number of cells (δx = L

N = 0.25) and successively multiply the
number of cells by two. The relative errors EL2(ζ) and EL2(v) on the water surface deformation
and the averaged velocity are computed at t = 1, using the discrete L2 norm ‖.‖2:

(46) EL2(ζ) =
‖ζnum − ζsol‖2
‖ζsol‖2

; EL2(v) =
‖vnum − vsol‖2
‖vsol‖2

,

where (ζnum, vnum) are the numerical solutions and (ζsol, vsol) are the analytical ones coming
from (44)-(45). Results are presented in Table 2 and Figure 9 where EL2(ζ) and EL2(v) are
plotted against δx in log scales, for the considered relative amplitude a = 0.2. Very accurate
results are obtained, indicating that the employed numerical method is capable of computing in
a stable way the propagation of a solitary wave. Moreover, computing a linear regression on all
points yields a slope equal to 2.33 for ζ and 2.34 for the averaged velocity v. This result sounds
rational because the global (time and space) order of our scheme may be limited by the order
of the splitting method used here, which is of order two as already discussed by Bonneton et al.
in [4].

Table 2. Propagation of a solitary wave: relative L2-error table for the conser-
vative variables.

N EL2(ζ) Conv. rate EL2(v) Conv. rate

400 3.50× 10−3 – 3.33× 10−3 –
800 9.32× 10−4 1.9070 8.29× 10−4 2.0064
1600 2.05× 10−4 2.0466 1.70× 10−4 2.1433
3200 3.23× 10−5 2.2449 2.48× 10−5 2.3479
6400 4.79× 10−6 2.3873 3.50× 10−6 2.4845
12800 1.44× 10−6 2.3344 1.49× 10−6 2.3436
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Figure 9. Propagation of a solitary wave: L2-error on the water surface defor-
mation and the averaged velocity for a = 0.2.

4.3. Head on collision of counter propagating solitary waves. A standard nonlinear test case for
numerical methods is the interaction of solitary wave. In this numerical test, we study an impor-
tant phenomenon in the study of nonlinear dispesive waves, the head on collision of two counter
propagating waves with different amplitudes. We used solitary wave solutions with correctors of
order O(ε3) for the eB system established in [37] and defined in (44)-(45). We consider two solitary
waves centered at x = −50 and x = 50 at t = 0 on a spatial domain L = 200 with a constant depth
h0 = 2, see Figure 10. The solitary wave centered at x = −50 travels to the right with a speed
cs,1 = 1.0206 and an initial amplitude a1 = 0.4 while the one centered at x = 50 travels to the
left with a speed cs,2 = 1.0102 and an initial amplitude a2 = 0.2. The domain is discretized using
1200 cells and periodic boundary conditions are imposed. The numerical solutions are computed
using model (14) with α = 1. The collision of the two waves starts at about t = 43, see Figure 10.
After the interaction, each wave continue moving in its own direction and turn up to be unaf-
fected by the collision, see Figure 11. A proper description of the distinctive nature of nonlinear
interactions is illustrated when zooming at the oscillating dispersive tails of very small amplitude
appearing at the center of the domain at t = 70 in Figure 12. One can also observe two dispersive
tails with smaller amplitudes located to the left and right boundaries. The generation of such
dispersive tails is due to the O(ε3) remainder terms as mentioned in the beginning of Section 4.2.
The high precision of our numerical scheme is verified after accurately capturing this phenomenon
and inducing similar observations to earlier works [18, 43] where the head-on collision is carried
out.
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Figure 10. Head on collisions: surface wave shape at t = 0, 43, 46 and t = 49.
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Figure 11. Head on collisions: surface wave shape at t = 53, 55, 58 and 60.
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Figure 12. Head on collisions: surface wave shape at t = 70.

4.4. Breaking of a regular heap of water with a large wave number. In this numerical test, we
highlight the importance of factorizing high order derivatives present in the improved eB model (14)
together with the appropriate choice of the parameter α in improving the frequency dispersion in
high frequency regimes. To this end, we consider a sufficiently regular heap of water with a large
wave number represented by the initial data:

ζ(0, x) = 0.7e−80x2

, v(0, x) = 0,

(dashed lines) with a domain of computation x ∈ (−2, 2) discretized with 512 cells and under peri-
odic boundary conditions. The non-linearity parameter is set as follow: ε = 0.1 (non-dimensional
setting). Our numerical solutions are computed using models (10) (without factorization) and (14)
(with factorization). We compare our numerical solutions with the numerical solutions computed
using the Matlab script of Duchêne, Israwi and Talhouk [16] and with the lower-order GN-CH
model obtained in [5]. In [16], the original Green-Naghdi (GN) model describing a two-layer flow 2

is improved in terms of frequency dispersion by introducing a new class of tailored GN models
with a slight modification of the dispersion components using a class of Fourier multipliers. In
particular, an “improved” GN model is derived sharing the same dispersion relation as the full
Euler (FE) system. These type of models are commonly called full dispersion models [3]. The
“improved” GN model is a full dispersion model and its numerical solution will be used as a refer-
ence solution. Eventually, the goal of this test case is to show that the optimized eB model (14)
may provide some results which are in the same league of full dispersion models.

2One can easily recover the one-layer configuration by setting γ = 0 and δ = 1.
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(a) Comparison of the numerical solutions of the eB model (14) (blue) with the
“improved” GN model (green) and the GN-CH model (red).

(b) Comparison of the numerical solutions of the eB model (10) (blue) with the
“improved” GN model (green) and the GN-CH model (red).

Figure 13. Comparison of the numerical solutions of the eB model (14) and
the eB model (10) with the “improved” GN model and the GN-CH model [5] at

t = 3.

Figure 13(a) shows when α is chosen appropriately as discussed in section 2.3, namely αopt =
1.0610, our numerical solution computed over a sufficient duration t = 3 using model (14) behave
similarly to the one computed with the“improved”GN model (sharing the same dispersion relation
as the FE system). In contrary, when choosing αopt = 1 or when using the model (10) to compute
the solution (Figure 13 (b)), the behavior is different than the“improved”GN model. Note that the
GN-CH model has an improved frequency dispersion due to the careful choice of the parameter α.
Nevertheless, the numerical solution computed using the GN-CH model is far from the numerical
solution of the “improved” GN model. The observed agreement in high frequency regime between
the numerical solutions of the “improved” GN model and the eB model (14) rather than the GN-
CH model is due to the factorized high order dispersion terms existing in (14). In fact, the eB
model (14) is precise up to O(ε3) order and thus contains factorized high-order dispersive terms
that do not exist in the GN-CH model. As already stated in Section 2.3, one can see that the
choice of an optimal value of α when using the model (10) has no beneficial effect due to the
high frequency regime setting. This numerical test confirms that the model (10) has a range of
applicability limited to k ≤ 1 and thus has poor dispersion properties in intermediate and large
wave numbers regime.
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4.5. Breaking of a regular heap of water with a small wave number. In this numerical test, we
consider the breaking of a sufficiently regular heap of water with a small wave number whose initial
data is:

ζ(0, x) = 0.7e−0.4x2

, v(0, x) = 0,

(dashed lines) within a domain of computation x ∈ (−2, 2) discretized with 512 cells and under pe-
riodic boundary conditions. The non-linearity parameter is set as follow: ε = 0.5 (non-dimensional
setting). Our numerical solutions are computed using models (10) and (14) and compared with
the numerical solution of the “improved” Green-Naghdi model and the numerical solution of the
GN-CH model [5] over a sufficient duration t = 3. The parameter α is fixed as 1 since varying α
does not yield significant improvements. In fact, both eB models (10) and (14) have an equivalent
dispersion relation to the one of the full Euler system for small wave numbers and the choice of
α does not play any role in the leading terms. Indeed, Figure 14 shows a fairly good agreement
between the solutions of the eB models (10) (yellow line) and (14) (blue line), and the solution of
the GN-CH model [5] (red line) and the one of the “improved” Green-Naghdi model (green line).
This confirms the fact that, in small wave numbers regime, every aforementioned model behave
similarly and enjoy similar dispersive properties as the one of the full Euler system.

Figure 14. Comparison of the numerical solutions of model (14) (blue line) and
model (10) (yellow line) and the GN-CH model [5] (red line) with the “improved”
Green-Naghdi model (green line) at t = 3.

4.6. Dam-break problem. Dealing with non-regular solutions needs a special treatment at the
numerical scheme level. Earlier works [4, 11, 42] have shown that the use of high-order schemes
in dispersive waves study is necessary to prevent the corruption of the dispersive properties of the
model. In general, dispersive shock waves are generated due to the dispersive effects [43, 55] when
considering discontinuous initial data. In this numerical test, we implement a dam break problem
in order to investigate the performance of our numerical scheme in handling non-regular solutions.
We study the dam-break problem in the extended (eB) and standard (sB) Boussinesq models. We
consider the following initial data:

(47) ζ(0, x) = a[1 + tanh(250− |x|)], v(0, x) = 0,

with a = 0.2091 m defined on the computational domain x ∈ (−700, 700) discretized using 2800
cells and imposed under periodic boundary conditions. The solutions of the eB model are computed
using the dimensional version of the eB model with factorized high order derivatives knowing that
similar results were obtained when using the model without factorization. To this end, we set ε = 1
and add the gravity term to the equations as needed. We make this choice in order to test the
scheme in the challenging conditions of the strongly dispersive regime. In this test, the choice of α
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is not important, thus we choose α = 1. The solutions of the sB model are computed accordingly
using the same splitting scheme. The dam break wave shapes of the sB and eB models are shown at
different times in Figure 15. The initial data break and generate dispersive shock waves. A close-
up on the profiles at t = 30s and t = 65s shows two dispersive shock waves counter-propagating
on both sides of the “dam”, and two rarefaction waves moving in the direction of the center. The
dispersive tail generated by the eB model is larger and have higher amplitude oscillations when
compared to the respective tail generated by the sB model. This result is consistent with the fact
that the eB model contains high order nonlinear dispersive terms not present in the sB model.
This numerical test shows that our high-order numerical scheme was able to capture accurately the
dispersive shock waves phenomenon. Dispersive shock waves in a large class of dispersive shallow
water models were carried out in several works [5, 18, 43, 55] and show a good agreement with
our numerical simulation.

Figure 15. Dam break: wave shape at different times, comparison between the
numerical solution of the eB model (solid red line) and sB model (dashed blue
lines).

Remark 7. The splitting strategy may limit the whole method to second order accuracy, however,
for the study of dispersive waves, it is necessary to use high-order schemes to prevent the corruption
of the dispersive properties of the model by some dispersive truncation errors linked to second-order
schemes. The reader is referred to [5], where the study of dam-break problem in the GN-CH model
is supplemented by a comparison between second (MUSCL-RK2) and fifth (WENO5-RK4) order
accuracy methods. Although a splitting scheme of order 2 was adopted therein, the dispersive
properties were clearly corrupted by the second-order method while the higher-order method was
able to deal with discontinuous initial data and capture the rapid oscillations in dispersive shock
waves.
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4.7. Favre waves. In this numerical test, we consider the well-known “Favre waves” resulting after
the impact of a wave on a vertical wall. Experimental investigations of those waves were addressed
for the first time by Favre [23] in a rectangular channel. Similar experiments have been performed
by Treske in [69] and Soares Frazao and Zech in [26] in open channels. This problem was numeri-
cally studied more recently in [61, 66]. Due to dispersion, the uniform free surface flow impacting a
wall reflects and free surface undulations (called “Favre waves”, see Figure 16) appear. The leading
wave has a maximum amplitude amax and a minimum amplitude amin and is followed by waves
of decreasing heights. The jump height is denoted by am and D denotes the constant velocity of
the wave front. In this kind of experiments, the Froude number F is defined as the ratio between
the wave speed v0 − D and the celerity

√
gh0. Consequently, according to conservation of mass

and momentum, a relation between the Froude number and the upstream and downstream water
depths h0 and h0 + am can be obtained (see the Bélanger formula Eq. (4.10) in [29]):

(48)
h0 + am
h0

=

√
1 + 8F 2 − 1

2
.

Figure 16. A sketch of Favre waves.

In what follows, we will compare the numerical results obtained by the extended Boussinesq
model for the “Favre waves” problem with the experimental results of Favre [23] and Treske [69].
On a computational domain x ∈ (0, 300), we consider a uniform initial profile defined by ζ(0, x) = 0
and an impact velocity v(0, x) = v0 related to the relative Froude number F by the formula [29]:

v0 =
√
gh0

(
F − 1 +

√
1 + 8F 2

4F

)
,

where g = 10 m/s and h0 = 1 m. Reflecting boundary conditions are used on the right wall at
x = 300 m. The solutions of the eB model are computed using the dimensional version of the eB
model (14) with factorized high order derivatives. To this end, we set ε = 1 and add the gravity
term to the equations as needed. In this test, the choice of α is not important, thus we choose
α = 1. The numerical scheme adopted in this paper for the extended Boussinesq equations can be
used to solve this problem until some critical impact velocity determined in terms of the relative
Froude number F . For higher Froude numbers (F >≈ 1.3), the transition from the undular bore
to the bore consisting of a steep front (wave breaking) occurs. At this stage, a special treatment
of the numerical scheme based on the adopted splitting strategy is required in order to handle
wave breaking (see introduction of Section 3). This is not investigated in this paper and is left to
a future work (see [66] for modeling of breaking waves).

In Figure 17, we compare the numerical results obtained by the eB model for different mesh
sizes (N = 1000, 2000, and 3000) with the numerical results of the Serre Green-Naghdi (SGN)
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equations obtained by the method in [24]. The comparison is done at time t = 54 s for a Froude
number F = 1.16 that corresponds to the following upstream velocity v0 = 0.6490 m/s. The solid
red line corresponds to the numerical solution of the SGN equations obtained by the method [24]
on a 2000 cell mesh. A good agreement is observed. Our results for 2000 and 3000 cells are almost
superposed, thus the convergence is guaranteed. The first wave amplitude is well estimated with
a finer mesh, however a small discrepancy is observed in the prediction of the jump height am
between the numerical solutions of the eB model and the SGN model. For a Froude number
F = 1.16, the corresponding jump height obtained using equation (48) is am = 0.215 m which
corresponds exactly to the one predicted by the eB model, see Figure 17. Thus, an accurate
prediction of the jump height am is provided by the eB model rather than the SGN equations.

Figure 17. Comparison of Favre waves at time t = 54 s for the Froude number
F = 1.16. Red solid line corresponds to the numerical solution of the SGN
equations obtained by the method [24]. The results obtained with the eB model
are shown for different mesh sizes: 1000 (blue solid line), 2000 (black dashed line),
3000 (green dashed line).

In addition we compare the amplitudes of undular bores obtained by the eB model with exper-
imental data of Favre [23] and Treske [69]. The computations are performed for different Froude
numbers from the interval F ∈ [1.02, 1.36]. The maximum amax, the minimum amin amplitudes
of the leading wave and the jump height am are taken at t = 54 s with N = 2000. Figure 18
shows that the results obtained by the eB model are in good agreement with experimental data
until the wave breaking occurs corresponding to the Froude number about 1.25. After this critical
value, the transition from the undular bore to the bore consisting of a steep front (breaking bore)
occurs and our numerical scheme is no more valid since it does not handle wave breaking.
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Figure 18. Amplitude of undular bores for different Froude numbers.

5. Conclusion

In this work, a numerical model is developed for a class of higher-ordered/extended Boussinesq
(eB) equations describing the propagation of water-waves over a flat bottom. A reformulation with
the same order of precision that avoids the calculation of high order derivatives on the surface
deformation is proposed including a dispersion correction parameter α to be precisely chosen
which improve the linear dispersion properties. Insights about linear stability and dispersion
optimization are provided showing that the improvement is significant when factorizing every high
order derivative. In fact, factorizing only the fifth order derivative admits a destabilizing effect.
The eB model with factorized high order derivatives provide linear dispersion characteristics which
are accurate for wave numbers k up to 10 which are superior to lower-order models.

A second order time splitting scheme is then proposed relying on a combination of finite volume
and finite difference methods. The hyperbolic part of the equations is discretized using a high-
order finite volume WENO scheme, while the dispersive part is treated using classical high-order
finite differences.

Finally several numerical computations are exhibited validating the model and the numerical
methods. We began by examining the numerical solution of the eB model for the case of solitary
waves and compared it to other lower-order models. The eB model is found to have a better ap-
proximate solution. The propagation of a solitary wave solution with correctors is then considered
allowing to study the accuracy and convergence properties of the proposed numerical scheme. In
the following case, the interaction of two counter propagating solitary waves is considered as a
standard nonlinear test case showing the high precision of our scheme. The optimized higher-
order eB formulation with factorization of high order derivatives provide some results which are
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on par with full dispersion models. In particular, the breaking of a regular heap of water with
both large and small wave numbers are studied highlighting the importance of factorizing high
order derivatives in improving the frequency dispersion in high frequency regimes. The dam-break
problem supplemented by a comparison between the standard and extended Boussinesq models
is studied. The eB model containing high order nonlinear dispersive terms not present in the sB
model generates larger dispersive tails with higher amplitude oscillations. This test shows that
the dispersive properties of the model are well captured thanks to the high order accuracy of the
numerical scheme. In the last numerical test case, a comparison with experimental data was pre-
sented for the study of “Favre waves”. The proposed scheme reproduces the measurements with a
good agreement.

Following the steps of this work, next steps may cover the occurrence of variable topography
to seriously discriminate high order models and two dimensional extension to study more real-life
cases.

Appendix A. Dispersion relation of the eB model (14)

This appendix is devoted to the computation of the dispersion relation associated with the new
eB model (14). We start by investigating the linear behavior of small perturbation (ζ̃, ṽ) to a
constant state solution (ζ, v). The linear equations governing these perturbations are

(49)



∂tζ̃ + vε∂xζ̃ + h∂xṽ = 0,(
1 + εαT [0]− ε2αT

)(
∂tṽ + εv∂xṽ +

α− 1

α
∂xζ̃
)

+
1

α
∂xζ̃

+
(7− 5α)ε2

45
∂4
x

(
(1 + εαT [0])−1(∂xζ̃)

)
+

2ε2

3
ζ∂2
x

(
(1 + εαT [0])−1(∂xζ̃)

)
= O(ε3),

where h = 1+εζ, T [0]w = −1

3
∂2
xw and Tw = − 1

45
∂4
xw. Looking for the corresponding plane wave

solutions of the form (ζ0, v0)ei(kx−wt) with k the spatial wave number and w the time pulsation,
one finds the dispersion relation. From the first equation of (49) one obtains:

(50) −iwζ̃ + v(ikεζ̃) + h(ikṽ) = 0 ⇒ ṽ =
ζ̃(w − εkv)

kh
.

The second equation of (49) becomes:
(51)(

1+
εα

3
k2+

ε2α

45
k4
)(
−iwṽ+εvikṽ+

α− 1

α
ikζ̃
)

+
1

α
ikζ̃+

(7− 5α)ε2

45

ik5ζ̃

1 +
εα

3
k2
−2ε2

3
ζ

ik3ζ̃

1 +
εα

3
k2

= 0.

Substituting ṽ in (51) by its expression given in (50) and multiplying (51) by
k

iζ̃
yields the disper-

sion relation for (49):

(52)
(w − εkv)2

hk2
=

(
1 +

ε(α− 1)k2

3
+
ε2(α− 1)k4

45
+

(7− 5α)ε2k4

45(1 + εα
3 k

2)
−

2ε2k2ζ

3(1 + εα
3 k

2)

)
(

1 +
εα

3
k2 +

ε2α

45
k4
) .

The dispersion relation obtained around some rest state solution (ζ, v) = (0, 0) is the following:

(53) w2 =

k2
(

1 +
ε(α− 1)k2

3
+
ε2(α− 1)k4

45
+

(7− 5α)ε2k4

45(1 + εα
3 k

2)

)
(

1 +
εα

3
k2 +

ε2α

45
k4
) .
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References

[1] C. Bassi, L. Bonaventura, S. Busto, and M. Dumbser, A hyperbolic reformulation of the Serre-Green-
Naghdi model for general bottom topographies, Computers & Fluids, 212 (2020), p. 104716.

[2] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive

systems, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 272 (1972), pp. 47–78.

[3] J. L. Bona, D. Lannes, and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl. (9), 89

(2008), pp. 538–566.
[4] P. Bonneton, F. Chazel, D. Lannes, F. Marche, and M. Tissier, A splitting approach for the fully

nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230 (2011), pp. 1479–1498.
[5] C. Bourdarias, S. Gerbi, and R. Lteif, A numerical scheme for an improved Green-Naghdi model in the

Camassa-Holm regime for the propagation of internal waves, Comput. & Fluids, 156 (2017), pp. 283–304.

[6] J. Boussinesq, Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans
un canal rectangulaire, C.R. Acad. Sci. Paris Sér. A-B, 72 (1871), pp. 755–759.
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