
HAL Id: hal-03145773
https://hal.science/hal-03145773

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bias in CMIP6 models as compared to observed regional
dimming and brightening

Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian
Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason Cole, Toshihiko

Takemura, Naga Oshima, et al.

To cite this version:
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, et al..
Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric
Chemistry and Physics, 2020, 20 (24), pp.16023-16040. �10.5194/acp-20-16023-2020�. �hal-03145773�

https://hal.science/hal-03145773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Atmos. Chem. Phys., 20, 16023–16040, 2020
https://doi.org/10.5194/acp-20-16023-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Bias in CMIP6 models as compared to observed regional
dimming and brightening
Kine Onsum Moseid1, Michael Schulz1,2, Trude Storelvmo2, Ingeborg Rian Julsrud2,1, Dirk Olivié1, Pierre Nabat3,
Martin Wild4, Jason N. S. Cole5, Toshihiko Takemura6, Naga Oshima7, Susanne E. Bauer8, and Guillaume Gastineau9

1Norwegian Meteorological Institute, Research Department, Oslo, Norway
2University of Oslo,Department of Geosciences, Section for Meteorology and Oceanography, Oslo, Norway
3Centre National de Recherches Meteorologiques (CNRM), Universite de Toulouse, Météo-France, CNRS, Toulouse, France
4Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
5Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada
6Climate Change Science Section, Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
7Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan
8Center for Climate Systems Research, Columbia University, NASA Goddard Institute for Space Studies,
New York, NY, USA
9LOCEAN, IPSL, Sorbonne Université, IRD, MNHN, CNRS, Paris, France

Correspondence: Kine Onsum Moseid (kristineom@met.no)

Received: 30 December 2019 – Discussion started: 4 February 2020
Revised: 9 November 2020 – Accepted: 9 November 2020 – Published: 22 December 2020

Abstract. Anthropogenic aerosol emissions have increased
considerably over the last century, but climate effects and
quantification of the emissions are highly uncertain as one
goes back in time. This uncertainty is partly due to a lack
of observations in the pre-satellite era, making the observa-
tions we do have before 1990 additionally valuable. Aerosols
suspended in the atmosphere scatter and absorb incoming
solar radiation and thereby alter the Earth’s surface energy
balance. Previous studies show that Earth system models
(ESMs) do not adequately represent surface energy fluxes
over the historical era. We investigated global and regional
aerosol effects over the time period 1961–2014 by look-
ing at surface downwelling shortwave radiation (SDSR). We
used observations from ground stations as well as multiple
experiments from eight ESMs participating in the Coupled
Model Intercomparison Project Version 6 (CMIP6). Our re-
sults show that this subset of models reproduces the ob-
served transient SDSR well in Europe but poorly in China.
We suggest that this may be attributed to missing emissions
of sulfur dioxide in China, sulfur dioxide being a precursor
to sulfate, which is a highly reflective aerosol and responsi-
ble for more reflective clouds. The emissions of sulfur diox-
ide used in the models do not show a temporal pattern that

could explain observed SDSR evolution over China. The re-
sults from various aerosol emission perturbation experiments
from DAMIP, RFMIP and AerChemMIP show that only sim-
ulations containing anthropogenic aerosol emissions show
dimming, even if the dimming is underestimated. Simulated
clear-sky and all-sky SDSR do not differ greatly, suggest-
ing that cloud cover changes are not a dominant cause of
the biased SDSR evolution in the simulations. Therefore we
suggest that the discrepancy between modeled and observed
SDSR evolution is partly caused by erroneous aerosol and
aerosol precursor emission inventories. This is an important
finding as it may help interpret whether ESMs reproduce the
historical climate evolution for the right or wrong reason.

1 Introduction

Aerosol particles scatter and absorb radiation and change the
radiative properties of clouds, thereby altering Earth’s en-
ergy balance (Boucher et al., 2013). Anthropogenic aerosol
emissions have substantially increased over the last century,
but the quantification of the effect has been characterized by
large uncertainties. Earth system models (ESMs) are evalu-
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ated based on their ability to reproduce the climate evolution
of the past 165 years, and the sparsity of aerosol-related ob-
servations in the pre-satellite era plays a dominant role in the
uncertainty connected to these historical experiments. An im-
proved understanding of the historical aerosol effect would
increase the accuracy and credibility of ESM future climate
projections.

Aerosol particles cause changes in the amount of sun-
light reaching the surface together with changes in insolation,
cloud cover, water vapor and other radiatively active gases
(Wild et al., 2018). Extraterrestrial influences like the 11-
year cycle of the Sun have not created any important trends
on decadal timescales in Earth’s surface solar radiation in
the past century (Eddy et al., 1982; Wild, 2009). Water va-
por amount has not changed sufficiently in recent decades
to have an effect on decadal fluctuations of incoming sun-
light at the surface (Wild, 2009; Wang and Yang, 2014; Yang
et al., 2019; Hoyt and Schatten, 1993; Ramanathan and Vo-
gelmann, 1997; Solomon et al., 2010), and radiatively ac-
tive gases dominate in the longwave spectrum (Ramanathan
et al., 1989).

The relative roles of clouds, aerosols and their interac-
tions in historical variations of surface downwelling short-
wave radiation (SDSR) are still disputed, but previous stud-
ies have found that aerosol effects dominate on multidecadal
timescales, while cloud effects are relevant on shorter
timescales (Wild, 2016; Romanou et al., 2007). Aerosol ef-
fects can be divided into the direct and indirect effects. The
direct effect is the scatter or absorption directly caused by a
dry aerosol, also called the aerosol–radiation interaction (ari)
(Boucher et al., 2013), and the indirect effect is how aerosols
change properties in clouds, also called aerosol–cloud inter-
actions (aci). Aci includes both a change in cloud lifetime
and most importantly a change in cloud albedo, making the
cloud appear brighter (Boucher et al., 2013).

Assuming aerosol effects dominate the multidecadal
timescales, SDSR can serve as a proxy for aerosol effects.
The Global Energy Balance Archive (GEBA) dataset con-
tains measurements of SDSR as far back as in 1922 (Wild
et al., 2017) and as such represents a unique and valuable
dataset for evaluation of simulated aerosol effects prior to
the satellite era.

Observed SDSR from the GEBA dataset reveals a
widespread negative trend from the 1950s to the late 1980s,
commonly referred to as “global dimming” (Liepert, 2002;
Wild, 2016). The magnitude of this dimming differs vastly
between regions, which is expected if the cause of dimming
were regionally different increases in aerosol emissions, as
has been proposed by Wild et al. (2007), Sanchez-Romero
et al. (2014), and Wild (2016). In some areas a positive trend
in SDSR follows the dimming, and this SDSR increase has
been termed “brightening” (Wild et al., 2005). Brightening
is connected to the reduction in anthropogenic aerosol emis-
sion (Nabat et al., 2014). Fewer particles suspended in the air
allow for more sunlight to reach the surface and thus an in-

crease in the measured SDSR. Previous studies show that his-
torical simulations from ESMs do not reproduce the observed
global transient development of SDSR (Storelvmo et al.,
2018; Wild, 2009; Allen et al., 2013; Wild and Schmucki,
2011). The cause of this discrepancy is not known but may
be connected to uncertainties in aerosol emission inventories
of the past, or, as Storelvmo et al. (2018) suggested, other un-
certainties concern how models treat processes that translate
aerosol emissions into radiative forcing.

In this study we use gap-filled data based on the GEBA
dataset, together with several recent CMIP6 historical model
experiments from eight climate models to investigate the
aerosol effect in the time period 1961–2014, globally and re-
gionally. In the middle of this time period (around the late
1990s), the main region of high anthropogenic aerosol emis-
sions shifted from Europe and North America to Asia. We
have chosen to focus on the regions of Europe and Asia in
this study, as the models exhibit diverging abilities to repro-
duce the observed SDSR in these regions. We also use obser-
vational cloud cover data to briefly assess the role of cloud
cover in the historical development of SDSR. We explore the
relation between regional SDSR and aerosol emissions us-
ing a set of ESM experiments with differing aerosol emis-
sions; some have pre-industrial aerosol emissions, while oth-
ers use the most recent and best available historical aerosol
emission inventory (Hoesly et al., 2018). This paper thereby
provides new insights into the question of whether state-of-
the-art ESMs can adequately reproduce a part of the changes
in the surface energy budget over the historical era. This is
in turn an important indication of whether the ESMs repro-
duce the dominant processes governing the historical climate
evolution.

The paper is structured as follows. In Sect. 2 we begin by
presenting the two observational datasets used, followed by
a detailed description of the experiments simulated by the
eight models chosen to be part of this study. The methods
used to obtain and analyze the data finalize Sect. 2. The re-
sults are presented in Sect. 3, starting with a global view
of dimming and brightening before focusing on regional as-
sessments of SDSR, clear-sky SDSR, and cloud cover. Sec-
tion 4 discusses the implications of our results and how they
compare to previous studies, before final conclusions are pre-
sented in Sect. 5.

2 Data and methods

2.1 Observations

The GEBA holds data from ground-based stations measuring
energy fluxes at the Earth’s surface around the globe (Wild
et al., 2017). Pyranometers were used in most of the mea-
surement sites, which have an accuracy limitation of 3 %–
5 % of the full signal (Michalsky et al., 1999; Wild et al.,
2013). We use the monthly mean data from 1487 stations
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in the time period 1961–2014 measuring downwelling short-
wave radiation. The GEBA dataset has been complemented
by a machine learning technique (random forests, Breiman,
2001) as explained in Storelvmo et al. (2018) to cover time
periods of missing observations in the measurements and fa-
cilitate comparison to the gridded model data. This allows
for all 1487 stations to have data on each time step, so that
all regions have a complete record and the same number of
stations throughout the entire time period in question.

Monthly mean cloud cover data are provided by the Cli-
matic Research Unit (University of East Anglia) and NCAS,
and we are using version 4.02 of this dataset (CRU). CRU
covers the period 1901–2017 (Harris et al., 2020) and con-
sists of a climatology made from measurements at meteo-
rological stations around the globe, interpolated to a 0.5◦

latitude–longitude resolution grid covering continental areas.
Information on interpolation methods and procedures used to
create the gridded dataset is given in Harris et al. (2020) and
references therein. In short, CRU has its foundation in sta-
tion data but is interpolated to a grid using angular-distance
weighting. The cloud cover variable is largely derived as a
secondary variable, based on measurements of other param-
eters such as sunshine hours and diurnal temperature range.

2.2 Models and CMIP6

Eight climate models (NorESM2, CanESM5, MIROC6,
CESM2, CNRM-ESM2-1, GISS-E2-1-G, IPSL-CM6A-LR,
MRI-ESM2-0) were chosen for this study, based on avail-
able data and their involvement in relevant model intercom-
parison projects within the Coupled Model Intercomparison
Project Phase 6 (CMIP6) (Eyring et al., 2016). As this study
focuses on dimming and brightening, we have chosen exper-
iments from model intercomparison projects (MIPs) that in-
clude perturbed historical simulations with which one can
single out the effect of anthropogenic aerosol emissions in
our diagnostic variables. An overview of models and experi-
ments can be found in Table 1. This section will give a more
detailed description of the experiments in Table 1 and explain
why they were chosen.

Every model that takes part in CMIP6 has to deliver a
set of common experiments; among these is the historical
simulation. As can be seen in Table 1, all the models have
provided historical simulation results. All other experiments
listed in Table 1 are simulations covering the historical pe-
riod (1850–2014) but with specific alterations dependent on
what model intercomparison project they are a part of.

The Detection and Attribution Model Intercomparison
Project (DAMIP) has the goal of improving estimations of
the climate response to individual forcings (Gillett et al.,
2016) and includes three relevant experiments. One exper-
iment traces exclusively the impact of anthropogenically
emitted aerosols as forcing agents over the historical period
and is called hist-aer. This means no anthropogenic green-
house gas emissions or natural climate forcings are used in

this simulation. The hist-nat experiment consists of only the
perturbations due to the evolution of the natural forcing, e.g.,
from stratospheric aerosols of volcanic origin and solar irra-
diance variations. Finally, the hist-GHG experiment has only
forcings from changes in the well-mixed greenhouse gases.
These experiments were chosen as they give a unique insight
into how a fully coupled climate model attributes responses
over the historical period to the different climate forcings.

While DAMIP provides a good framework for one of the
main questions in CMIP6, namely how the Earth system re-
sponds to forcing, RFMIP, the Radiative Forcing Model In-
tercomparison Project, focuses on understanding the forc-
ing itself. RFMIP contains a large set of experiments to
further understand the radiative forcing of the past and the
present (Pincus et al., 2016). We use two experiments from
RFMIP, both with sea surface temperatures prescribed to
pre-industrial values. One experiment includes both anthro-
pogenic and natural aerosol emissions (piClim-histall), while
the other only includes anthropogenic aerosol emissions
(piClim-histaer). When sea surface temperatures are kept to
pre-industrial values, the global surface temperature develop-
ment stalls, and the simulation will keep to first order a pre-
industrial climate. Sea surface temperatures changes would
have an effect on cloud cover, which in turn can affect SDSR.
These piClim experiments will show the direct atmospheric
forcing on SDSR due to greenhouse gases and aerosols, alone
or in combination, without including cloud cover changes in-
duced by global warming.

The third MIP included in this study is the Aerosol Chem-
istry Model Intercomparison Project (AerChemMIP), which
is designed to answer questions regarding the specific ef-
fect of aerosols and other near-term climate forcers (NTCF)
on climate. NTCFs include methane, tropospheric ozone,
aerosols and their precursors (Collins et al., 2017). Three ex-
periments have been selected from AerChemMIP, histSST,
with all forcing agents included, and two perturbations which
have pre-industrial aerosol emissions: hist-piAer and hist-
piNTCF. The hist-piNTCF experiment has in addition pre-
industrial NTCF levels for ozone. A difference in these two
simulations would only appear if ozone concentrations were
computed in an interactive chemistry scheme. These two
simulations are coupled and are comparable to the historical
experiment. The experiment histSST uses all forcing agents
and the sea surface temperatures derived from the historical
simulation so that the temperature evolution, and hence its ef-
fect on SDSR, should be similar to the historical experiment
but removes responses involving a coupled ocean. These ex-
periments together with the historical experiment were cho-
sen to differentiate between historical changes in aerosol and
tropospheric ozone or whether a mixing layer in the ocean
may have had an effect on dimming.

Data from all experiment ensembles from each of the
MIPs listed above provide useful information on the role of
anthropogenic aerosol emission in dimming and/or brighten-
ing.

https://doi.org/10.5194/acp-20-16023-2020 Atmos. Chem. Phys., 20, 16023–16040, 2020
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Table 1. Model participation, as used in this study, in CMIP6 model intercomparison projects (MIPs) and their experiments.

Experiment NorESM2 CanESM5 MIROC6 CESM2 CNRM-ESM2-1 GISS-E2-1-G IPSL-CM6A-LR MRI-ESM2-0

historical x x x x x x x x

hist-aer x x x x x x
hist-GHG x x x x x x x
hist-nat x x x x x x

piClim-histaer x x x x
piClim-histall x x x x x

hist-piAer x x x
hist-piNTCF x x x x
histSST x x x x

2.3 Methods

The GEBA stations have been divided into regions based on
the country and continent. The number of stations in a re-
gion is presented together with the first results in the caption
of Fig. 2. The number of stations per region remains con-
stant throughout the time period because of our gap-filling
approach. A figure with the spatial distributions and trend of
SDSR per station in GEBA used in this study is found in
Fig. 1 in Storelvmo et al. (2018).

All model output and CRU results have been co-located to
GEBA station locations using the nearest neighbor method.
This entails that if two GEBA stations are within one grid box
of a model, data from that grid box will be retrieved twice
by nearest neighbor interpolation, as every station has been
weighted equally. A global mean is defined here as the mean
of a variable across all GEBA station locations. A regional
mean is a mean of a variable across the GEBA station loca-
tions registered to that same region in the GEBA data. When
a result is shown as an anomaly, as opposed to an absolute
value, the general formula has been to subtract the baseline
value, defined as the mean of the first 5 years of the investi-
gated time period (1961–2014), from the time series in ques-
tion. To clarify – first an average value per year per region is
calculated, and then a new mean is created from the first 5
years of this time series. This 5-year mean is then subtracted
from each year in the time series for the region in question
and presented as an anomaly. We will often present data as
6-year averages, as yearly variabilities are not the focus of
this study. These 6-year averages are simply made by divid-
ing the time series over 54 years (1961–2014) into nine equal
intervals and averaging these intervals together. When the at-
mospheric burdens of SO4 are shown together with observed
SDSR from GEBA, the time series have been smoothed us-
ing a 10-year running mean, and this is the only data in the
paper shown using this smoothing technique.

The “baseline” values for global SDSR and cloud cover in
the models and observations of this study can be found in the
Appendix in Table A1.

The model data have been retrieved from the Earth Sys-
tem Grid Federation (ESGF) (Cinquini et al., 2014). ESGF is
a data management system consisting of multiple geographi-
cally distributed nodes that coordinate through a peer-to-peer
(P2P) protocol (Fan et al., 2015). We have used three ensem-
ble members for the historical experiment to present inter-
nal variability in the models and one ensemble member from
the rest of the experiments shown, as not every experiment
had requested more than one simulation. Table A2 in the Ap-
pendix shows the resolutions, aerosol schemes, and aerosol
complexity of the models in this study, and Sect. A2 explains
the variables and variant labels downloaded.

3 Results

3.1 Model variability

Figure 1 shows the SDSR anomaly for each model of the
study co-located to all GEBA stations, 1487 in total as com-
pared to the observed SDSR anomaly. The aerosol effective
radiative forcing (aerosol ERF) corresponding to each model
is obtained from Smith et al. (2020) and is listed in each panel
to illustrate the strength of the aerosol radiative effect in the
model.

Each climate model has its own internal variability and
thereby represents its separate climate systems. SDSR is a
highly variable metric on a year-to-year basis, which can be
seen both in the GEBA data in black in Fig. 1 and in fol-
lowing a single ensemble member per model. Within each
model ensemble one can see that no member is equal to an-
other, which is a clear signal of the internal variability of each
model. The spread of all three ensemble members in a 6-year
period can be read from the height (interquartile range) of the
boxes in the 6-year intervals; note that this spread is domi-
nated by large inter-annual variabilities within each member.
One example is GISS-E2-1-G, where each ensemble mem-
ber has large interannual variabilities: the boxes present long
whiskers and large interquartile ranges, but when comparing
the ensemble member 6-year means one by one they mostly

Atmos. Chem. Phys., 20, 16023–16040, 2020 https://doi.org/10.5194/acp-20-16023-2020



K. O. Moseid et al.: Bias in CMIP6 models 16027

Figure 1. Global surface downwelling shortwave radiation (SDSR) anomaly at the surface for GEBA (black) and three ensemble members
for the historical simulation of the eight models in this study. The boxes are made for 6-year intervals (shaded in background) based on
6-yearly means and three ensemble members per model. Colored lines behind boxes show yearly values of SDSR anomaly per ensemble
member. The height of each box represents the interquartile range of the data, and the thick colored line within each box is the median. The
whiskers show the minimum and maximum values of the selection of data, and the outliers are shown as a hollow dot. Results are co-located
to all GEBA stations (1487) throughout the time period. The aerosol ERF as found in Smith et al. (2020) per model is shown in the bottom
left of each panel.

agree on their magnitudes of SDSR anomaly, so the intra-
ensemble spread is not large for GISS-E2-1-G. We find (not
shown here) that the model with the least interannual vari-
abilities is CNRM-ES2-1, while the model with the largest
inter-ensemble disagreements is CanESM5.

Figure 1 also shows that the models in general do not agree
with the observed global SDSR anomaly shown in black.

Dimming and brightening are tendencies in surface radiation
that are observed on longer than interannual timescales; with
this in mind, SDSR from models will in general be presented
as 6-year means for the remainder of this paper. The model
MRI-ESM2-0 shows the most similar SDSR evolution com-
pared to the observed data according to Fig. 1.

https://doi.org/10.5194/acp-20-16023-2020 Atmos. Chem. Phys., 20, 16023–16040, 2020
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The model with the strongest aerosol ERF is CESM2,
while the weakest aerosol ERF is presented by IPSL-CM6A-
LR.

3.2 Dimming and brightening

The change in SDSR in the historical simulations from the
eight models is presented together with GEBA data in Fig. 2.
Panel (a) of this figure corresponds to the results shown in
Fig. 1. Each model graph in Fig. 2 represents the ensemble
mean of the model in question averaged over 6 years, based
on three ensemble members. GEBA data are shown in black,
also as 6-year averages, but with the yearly time series shown
in grey in the background. Model simulations show small
changes in global SDSR compared to observations (Fig. 2a).
Global SDSR is observed to decrease over the 1487 stations
until the late 1980s before increasing again, clearly showing
the global “dimming” and “brightening” as found in previous
studies listed in the introduction.

None of the models outperform one another globally, and
there is a discrepancy of about 2–3 W m−2 between models
and observations. To further identify from where this discrep-
ancy originates, we consider some geographical regions sep-
arately. Asia and Europe are relevant regions in regards to an-
thropogenic aerosol emissions (as explained in Sect. 1) and
thereby also relevant to global dimming and brightening. The
historical SDSR evolutions in Europe and Asia are presented
in Fig. 2b and c, respectively. European SDSR is relatively
well represented by the model simulations. The yearly GEBA
time series has values within the shaded area that shows the
standard deviation of the total of 24 model ensemble values
in almost every 6-year period in Europe. The dimming in
Europe is believed to have started before 1961 (Wild, 2009),
which partly explains why the initial European dimming in
Fig. 2b is weak. GEBA shows a short-term positive anomaly
between 1970 and 1980, which is not caught by the models.
This peak is currently unexplained, but a short assessment of
its possible association with changes in cloud cover is found
in Sect. A1 in the Appendix.

There is generally a large discrepancy between model sim-
ulations and observations of SDSR in Asia, as seen in Fig. 2c.
The ground stations in Asia show a noticeable trend change
in SDSR in the transition from the 1980s to 1990s that is not
apparent in the model simulations. The historical model sim-
ulations show a consistent negative trend during the entire
historical period in question in Asia. Historically, countries
with relatively high emissions in Asia include India, Japan,
and China (Hoesly et al., 2018), and the SDSR evolution for
each of these countries is shown in Fig. 2d, e, and f, respec-
tively.

Figure 2d shows that the models capture a relatively strong
negative trend of SDSR in India, with MIROC6 being the
model with the most modest trend. There are evident differ-
ences between observations and simulations in both Japan
and China. Ground stations in Japan show a sharp decrease

in SDSR until the early 1970s followed by some variations
until a new minimum value is reached around 1990 before an
increase in SDSR is measured. The minimum value around
1990 and the following positive trend is similar to that of
China. Japan is downwind of the Asian continent and thus
believed to be influenced by aerosol emissions from China.
Model simulations do not capture the magnitude of dimming
in Japan or the apparent brightening in the 1990s. The timing
of minimum SDSR occurs differently in models, which was
also seen in Fig. 2a.

Observations from China (Fig. 2f) show a trend change
in SDSR similar to the one identified in Fig. 2c for Asia as
a whole, with the minimum value found in 1989. We note
that China consists of 119 GEBA stations, while Asia as a
whole consists of 311 stations; thus, the Asian average is
largely impacted by SDSR as measured in Chinese stations.
In general the historical model simulations show dimming
throughout the historical period in China, meaning none of
them shows a similar trend change to the one from the obser-
vational dataset. This post-1990 trend change is a source of
discussion within the field, and a thorough assessment, rele-
vant to the conclusions from this study, is found in Sect. 4.1.

3.3 Dimming and brightening over China in various
CMIP6 experiments

In order to understand which forcing agents are responsible
for the overall trends in SDSR in the models, we now in-
vestigate China for the experiments listed in Table 1. Fig-
ure 3a shows perturbed historical simulations as performed
in DAMIP together with observations of SDSR. DAMIP has
two experiments without historical anthropogenic aerosol
emission (dashed/hist-nat and stippled/hist-GHG lines) and
one experiment with historical anthropogenic aerosol emis-
sions (solid lines/hist-aer). The experiment hist-aer is the
only experiment in DAMIP exhibiting a distinguishable dim-
ming signal. SDSR from hist-aer shows patterns similar to
the historical simulations with continuous dimming through-
out the period, unlike the observed SDSR. SDSR in the ex-
periments hist-nat and hist-GHG do not show signs of dim-
ming or brightening over the investigated period in China,
which confirms that water vapor or stratospheric aerosols are
not the dominant cause of multidecadal dimming signals in
the fully coupled historical model simulations. This is sup-
ported by previous work, as mentioned in the introduction.

Out of the three experiments from AerChemMIP only,
histSST, has prescribed sea surface temperatures and con-
tains changes in anthropogenic aerosol emissions. This is
consistent with the time evolution of SDSR in histSST as
the simulations diverge from the other simulations as time
progresses (Fig. 3b). Keeping in mind that histSST also has
anthropogenic greenhouse gas (GHG) emissions in addition
to natural forcers, the only difference from histSST to the his-
torical experiment is the absence of a coupled ocean and the
use of prescribed sea surface temperatures. The model MRI-
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Figure 2. Six-year averages of the SDSR anomaly at the surface for GEBA and eight Earth system models. Results are co-located at (a) all
GEBA stations (1487), (b) European (503), (c) Asian (311), (d) Indian (15), (e) Japanese (100), and (f) Chinese (119) stations. Numbers in
parentheses are the number of ground stations in the respective region. The entire 54-year period has been divided into intervals of 6 years
and then averaged together to make nine data points as shown by the markers. The grey shading represents 1 standard deviation from the
yearly total ensemble mean.

ESM2-0 presents the strongest dimming in both DAMIP and
AerChemMIP. The simulations with pre-industrial aerosols
(hist-piAer) and pre-industial near-term climate forcers, in-
cluding aerosols and ozone (hist-piNTCF), show very small
or negligible changes in the SDSR over the time period con-
sidered.

Recall that the experiments of RFMIP utilize pre-
industrial SSTs, meaning essentially there is no global
warming in these experiments. In the RFMIP experiments
shown in Fig. 3c both piClim-histaer and piClim-histall con-

tain anthropogenic aerosol emissions, and all simulations
show a continuous dimming throughout the period. There is
no clear distinction between experiments containing GHG
emissions in addition to anthropogenic aerosol emissions
(solid lines/piClim-histall) and the experiments only contain-
ing anthropogenic aerosol emissions (stippled lines/piClim-
histaer). This implies that greenhouse gases without their
global warming effect do not affect multidecadal all-sky
SDSR in a significant way over China throughout the period,
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Figure 3. SDSR anomaly in China for all the CMIP6 simulations as listed in Table 1. All model results are co-located at GEBA station
locations registered to China (119 stations). The entire 54-year period has been divided into intervals of 6 years and then averaged together
to make nine data points as shown by the markers.

again supported by previous work mentioned in the introduc-
tion.

Overall there is a clear difference in SDSR between ex-
periments that include anthropogenic aerosol emissions and
experiments that do not. Dimming is apparent in every simu-
lation containing anthropogenic aerosol emissions but absent
in the simulations using aerosols maintained at constant pre-
industrial levels. This points to anthropogenic aerosol emis-
sions playing a key role in dimming. Whether the sea sur-
face temperature is pre-industrial, prescribed historical, or
decided by a coupled ocean model seems to be unimportant
for the SDSR temporal evolution in China in most models.

No distinct flattening or brightening is identified in any of
the simulations in which dimming is identified, and therefore
none of the model simulations shows a temporal evolution of
SDSR close to the one seen in observations over China.

All-sky SDSR changes can be further decomposed by the
models into a clear-sky contribution as well as a contribu-

tion from changes in cloud cover or other cloud properties.
In the next section we present the decomposed contributions
to all-sky SDSR in China to further understand the discrep-
ancy seen in Fig. 3.

3.4 Clear-sky SDSR and cloud cover in China

So far we have only evaluated all-sky SDSR, which is in-
fluenced by clouds and any aerosol radiative effects. Table 2
shows changes in cloud cover, all-sky SDSR, and clear-sky
SDSR within three different time periods for the models and
observational datasets of this study. Between the years 1961
and 1989 GEBA shows a strong negative change in all-sky
SDSR in Fig. 2f. In Table 2 we thus show changes in this time
period by making two 3-year means and subtracting them
from one another. This is done to avoid extreme values as we
are working with metrics exhibiting large year-to-year vari-
ations. This has been done for two additional time periods
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which have been chosen based on the temporal development
in the all-sky SDSR as measured by GEBA in China (see
Fig. 2f), summarized in the second lowest row in Table 2.

In the first time period the models do not agree on the
sign of cloud cover change, and the simulated all-sky SDSR
is weaker than the observed one, which was already estab-
lished in the previous section. Clear-sky SDSR does not dif-
fer largely from all-sky SDSR within the models. For some
models the negative change in clear-sky SDSR is stronger
than in all-sky SDSR, meaning that the aerosol direct effect
may contribute significantly to dimming for these models.
The aerosol indirect effect changes the radiative properties
of clouds in two ways: by making them appear brighter and
by altering their lifetime (Boucher et al., 2013). Therefore,
a weak change in cloud cover followed by a strong change
in all-sky and clear-sky SDSR points to both the direct and
brightening indirect aerosol effects being the primary cause
of SDSR change, as an altered lifetime of clouds would im-
ply cloud cover changes.

In the second time period GEBA shows a positive change
(which will be further discussed in Sect. 4.1), and CRU
shows a cloud cover change of +3.0 %. Intuitively, an in-
crease in cloud cover would not create a brightening at sur-
face level. The observations are thus not consistent in this
time period if only cloud cover effects were important. The
models disagree in their sign of cloud cover changes and
all-sky and clear-sky SDSR. In the final time period where
GEBA shows a weak slightly positive change in all-sky
SDSR, every model in this study shows a dimming. All mod-
els apart from MIROC6 show simulated clear-sky SDSR
changes that are stronger than the changes found in all-sky
SDSR. Together with the inconsistent simulated cloud cover
and all-sky SDSR changes for this time period, we suggest
that both direct and indirect aerosol effects are responsible
for the changes in SDSR found in the model simulations.

All models show dimming in clear-sky and all-sky SDSR
in the first and last time periods. Some models show a
weak positive change in all-sky SDSR in the same period
as GEBA presents a strong brightening. Both observed and
simulated changes in cloud cover neither act as a brighten-
ing mask for clear-sky dimming nor are convincingly a cause
of dimming/brightening in either observed or simulated all-
sky SDSR. A rough calculation of the effect of 1 % cloud
cover increase on SDSR in China is found in Sect. A3 in
the Appendix, indicating that such an increase could result
in a dimming of 1–3.5 W m−2. As such it shows that ob-
served and modeled changes in cloud cover, as reported in
Table 2, can lead to important contributions to the dimming
and brightening signals in SDSR. However, this calculation
is idealized, does not isolate the cloud cover change effect in
the model results and does not explain the inconclusive data
reported in Table 2. It is important to note that the robustness
of observed cloud cover changes must be verified by satellite
observations, which goes beyond the scope of this study.

In Sect. 3.3 we showed that dimming was only apparent in
simulations that included anthropogenic aerosol emissions.
In this section we found the clear-sky SDSR to be close in
value to or even stronger than all-sky SDSR, indicating the
simulated dimming is primarily caused by aerosol effects.
Table 2 underlines previous findings: dimming in models is
overall weaker than in observations. The next section will
then show how the simulated aerosol burdens are connected
to SDSR.

3.5 Atmospheric burden of SO4

In the atmosphere, the presence of a reflective aerosol is the
cause of scattered shortwave radiation, and the emission of
its precursor is only an indirect indicator of its presence. All
CMIP6 simulations mentioned above have utilized the same
anthropogenic sulfur dioxide gas emissions; however, the re-
sultant dimming differed considerably. SO4 aerosol burdens
should be more closely linked to the radiative effect. There-
fore, we present here also the simulated anomalies in bur-
den of SO4 in the various models over Europe, a location
where dimming and brightening are fairly well represented
in simulations, and over China, where dimming and bright-
ening are poorly represented in simulations (Fig. 4a and b, re-
spectively). The sulfate burdens are co-located to GEBA sta-
tion locations in the respective regions. As expected, sulfate
aerosols have an important role in European dimming and
brightening, as the simulated burdens of SO4 show a strik-
ingly similar pattern (but with opposite sign) to the observed
SDSR over Europe for all the models. The maximum burdens
are found in the early to mid 1980s depending on the model,
and the minimum SDSR around the same time. The vari-
ous models differ in the magnitude of change in SO4 burden
over Europe, but all show similar tendencies. MRI-ESM2-
0 is the model with the largest changes, and GISS-E2-1-G
is the model with the smallest changes in SO4 burden. The
same is observed over China, where MRI-ESM2-0 has an
SO4 burden at the end of the time period which is more than
double the burden of the other models (except NorESM2).
In contrast to Europe, the observed SDSR evolution does not
mirror well the simulated SO4 burden time series over the
GEBA stations in China. In order for the SO4 burden to be
the main cause of the observed changes in SDSR, the Asian
SO4 burden would have to peak around the late 1980s, which
is not seen in the models in Fig. 4b. All the simulated histor-
ical SO4 burdens increase until 2010, showing no signs of
either a trend change or a flattening of aerosol-induced dim-
ming. Assuming GEBA data provide a reasonable represen-
tation – within uncertainty bounds as discussed in Sect. 4.1
– of the historical development of SDSR and implicitly sul-
fur burdens in China, the problem in SO4 burden must come
from either the emissions, aerosol formation, transport or the
removal processes of SO4.

It appears, however, that the simulated burdens of SO4
co-located to GEBA stations in China follow quite closely
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Table 2. Changes in Chinese cloud cover (%), all-sky SDSR AS (W m−2), and clear-sky SDSR CS (W m−2) between two 3-year means for
three time periods. All model results are means made from three ensemble members of the historical simulation, co-located and extracted
at Chinese GEBA station locations. Changes in cloud cover are from CRU gridded data and represent means co-located to Chinese GEBA
stations.

[1961–1963]–[1987–1989] [1990–1992]–[1997–1999] [2000–2002]–[2012–2014]

Data (%) AS CS (%) AS CS (%) AS CS
(W m−2) (W m−2) (W m−2) (W m−2) (W m−2) (W m−2)

NorESM2 −1.0 −4.6 −4.0 0.6 −1.0 −0.4 0.3 −3.9 −5.0
CanESM5 −0.4 −3.5 −4.6 −0.1 0.8 0.6 −1.7 −2.4 −5.7
MIROC6 0.4 −4.4 −3.6 1.2 −1.3 −0.4 0.5 −5.5 −5.3
CESM2 −1.0 −2.6 −3.6 −0.2 0.0 −0.2 0.0 −5.3 −6.7
CNRM-ESM2-1 −0.4 −3.3 −5.2 −0.6 1.1 −1.0 −0.9 −3.5 -6.5
GISS-E2-1-G 1.3 −3.7 −6.4 −0.2 −0.7 −1.2 2.5 −8.7 −9.9
IPSL-CM6A-LR −1.2 −3.3 −5.0 0.5 −0.6 −0.1 −1.6 −0.4 -1.9
MRI-ESM2-0 −0.1 −7.1 −6.9 −0.3 −0.8 −0.9 −1.1 −4.9 -8.8
MODELMEAN −0.3 −4.1 −4.9 0.1 −0.3 −0.4 −0.2 −4.3 −6.2
GEBA −15.4 6.6 0.9
CRU 0.1 3.0 −1.0

Figure 4. Anomaly of simulated atmospheric load of sulfate per model together with observed all-sky SDSR anomaly in (a) Europe and
(b) China. The GEBA data are shown as yearly anomalies, while the atmospheric loads have been smoothed using a 10-year running mean
technique as explained in Sect. 2.3.

the time series of emitted SO2 in the climate models over
China (shown in Appendix Fig. A2), which indicates that
SO4 formation and export of sulfur from the Chinese region
remains rather similar in the period investigated. Following
the logic that emission correlates with burden, which again
anti-correlates with SDSR changes, the temporal develop-
ment of SDSR seen in GEBA cannot be explained from the
current emission inventories, given that sulfate aerosols play
an important role in SDSR in China.

4 Discussion

The climate effect of aerosol emissions over the industrial
era is poorly constrained, in part due to lack of observations
and uncertainty in emissions. The uncertainty in past aerosol
climate effects is an important reason for the large spread in
climate projections for the future. Here, we investigate the

effect of aerosols in GEBA which provides valuable obser-
vations of historical shortwave radiation at the surface.

We have shown that a subset of models participating in
CMIP6 does not accurately represent the observed dimming
and brightening trends globally and regionally in their his-
torical simulation. This is comparable to that of Storelvmo
et al. (2018) and Wild and Schmucki (2011), who showed
that the CMIP5 and CMIP3 ensemble mean SDSR globally
co-located to GEBA stations does not represent dimming or
brightening. Our findings show that reproducibility of SDSR
has not improved from CMIP5 to CMIP6. We find that most
models show an underestimation of changes in SDSR com-
pared to observations, and the development over time greatly
differs between model and observations, especially in China.
This is in agreement with Allen et al. (2013), who studied
the CMIP5 ensemble mean and found a continuous dimming
trend over China but with a severely underestimated magni-

Atmos. Chem. Phys., 20, 16023–16040, 2020 https://doi.org/10.5194/acp-20-16023-2020



K. O. Moseid et al.: Bias in CMIP6 models 16033

tude of modeled clear-sky SDSR during the dimming period
compared to a clear-sky proxy based on GEBA data.

The simulated SDSR on decadal timescales over China
does not differ significantly when comparing the RFMIP ex-
periments (Fig. 3) to the historical experiment. RFMIP ex-
periments have pre-industrial sea surface temperatures and
thus do not include global-warming-induced cloud cover
changes. When experiments with historical cloud cover
changes show dimming in the same magnitude as experi-
ments without historical cloud cover changes, the dimming
can be assumed to be dominated by aerosol effects in China.
This complements the findings by Folini and Wild (2015)
where sea surface temperatures correlate with cloud cover,
not aerosol effects. Table 2 showed inconclusive connections
between modeled and observed cloud cover but clear con-
nections between clear-sky SDSR and all-sky SDSR, again
pointing to aerosol effects dominating SDSR time evolution
in China.

The climate models strongly underestimate the dimming
observed in China in addition to not representing the post-
1990 trend change. This trend change is the topic of discus-
sion in the next section.

4.1 The post-1990 trend change in China

Several studies have tried to explain the trend change as pre-
sented here by GEBA in China in the transition from the
1980s to the 1990s. Streets et al. (2006) proposed a peak in
combined emissions of SO2 and black carbon in 1988–1989
as a possible explanation. A later study questions the qual-
ity of the observational data showing the trend change (Tang
et al., 2011), while recent studies propose the post-1990 ini-
tial, strong brightening is to a considerable extent an arti-
fact of a nationwide change in SDSR measurements (Wang
and Wild, 2016; Yang et al., 2018). The change in SDSR
measurements includes a replacement of SDSR instrumenta-
tion, an increase in measurement frequency and in addition
an update in the classification of SDSR stations, and Wang
and Wild (2016) conclude that the upward trend (“jump” be-
tween 1990 and 1999) should be considerably weaker and
that only 20 % of the “jump” has actual physical causes. Yang
et al. (2018) homogenized the data from Wang and Wild
(2016) and Wang et al. (2012) and presented a new SDSR
evolution (results can be seen in Yang et al., 2018, Fig. 10).
The newly homogenized data exhibit a significant dimming
trend (−6.13± 0.47 W m−2 per decade) between 1958 and
1990, a flattening of the curve in 1991–2005, followed by a
brightening trend (6.13± 1.77 W m−2 per decade) between
the years 2005 and 2016. We can use Fig. 2f to compare
our model data to these homogenized data and see that even
without a larger “jump” in the data around 1990 there are
still large discrepancies between model and observation, both
in the form and magnitude of the brightening period after
1990. All the models show dimming in the flattening period
of the newly homogenized data. All the models apart from

CanESM5 show an averaged negative trend between the 6-
year means of 2003–2008 and 2009–2014, where the newly
homogenized data show a brightening. A similar “jump” to
the one seen in China can be identified slightly later in Japan
(Fig. 2e). To our knowledge, we have no information on ei-
ther a replacement of instruments or an update in the classi-
fication of SDSR stations in Japan. Norris and Wild (2009)
investigated the role of clouds for historical SDSR observa-
tions in China and Japan and found the post-1990 brighten-
ing in Japan to be statistically significant, while the Chinese
brightening was found to be insignificant. In this paper (pub-
lished before Wang and Wild, 2016) half of the post-1990
brightening in China and one-third for Japan were attributed
to a reduction in cloud cover. These results point to a need
for more studies assessing and evaluating available observa-
tional SDSR data. However, models do not accurately rep-
resent the strength of dimming throughout the whole period
or the change in trend after 1990 and thus the time evolution
of SDSR observed in China, with or without the early 1990s
“jump” in brightening.

4.2 Aerosol effect on dimming

Out of all the experiments presented in Table 1 and
Fig. 3, only those containing anthropogenic aerosol emis-
sions showed dimming. This is expected as aerosols have
been presented as the main cause of reduction in SDSR in
China by previous studies (Wild, 2009; Yunfeng et al., 2001;
Kaiser and Qian, 2002).

Storelvmo et al. (2018) argue that the discrepancy seen
between observed and modeled CMIP5 model mean global
SDSR can be attributed to errors in the treatment of pro-
cesses that translate aerosol emissions into clear-sky and all-
sky radiative forcings. Here, we can see an anti-correlation
between simulated SO4 burdens from Fig. 4a and b and sim-
ulated SDSR from Fig. 2b and f, respectively. Therefore we
suggest that the simulated SDSR is dominantly a result of
simulated SO4 burdens. Simulated SDSR agrees relatively
well with observed SDSR in Europe (Fig. 2b) along with
simulated SO4 burden anti-correlating relatively well with
observed SDSR in Europe (Fig. 4a). This means that the
model code translating burdens into SDSR in Europe can
simulate changes in SDSR as a consequence of changes in
aerosol emissions. If models translate burden into SDSR cor-
rectly in Europe, this does not necessarily mean that they
translate burden into SDSR correctly in other regions. How-
ever, we suggest that the code translating burdens into SDSR
should also work correctly in China, since also in China we
find that aerosols are the main cause of dimming, in agree-
ment with Wild (2009), Yunfeng et al. (2001), and Kaiser
and Qian (2002). Note also that we find no consistency be-
tween observed cloud cover changes, GEBA data and simu-
lated cloud cover and SDSR anomalies in China (Table 2).
By suggesting the translation process from burden to SDSR
is behaving correctly in both regions, the potential source of
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error causing discrepancies between observed and simulated
SDSR can be traced to the causes of the simulated atmo-
spheric burdens in the first place.

The sulfur dioxide emission inventory used as input for
historical model simulations in CMIP6 is shown in Hoesly
et al. (2018) (Fig. 3), and the emissions as translated in four
of the models of this study is shown in Fig. A2.

Hoesly et al. (2018) have pointed to the need for emission
uncertainties, but this has not been done for these emissions.
Aas et al. (2019) have studied global and regional trends in
atmospheric sulfur and found that uncertainties in emissions
were largest in Asia, even if their study only went back to
1990.

Previous studies estimating SO2 emissions include Lu
et al. (2010), who found that sulfur dioxide emissions in
China increased by 53 % between 2000 and 2006 using
technology-based methodology and thereby found similar re-
sults to that of Hoesly et al. (2018). Lu et al. (2010) also
compared AOD-derived SDSR to GEBA-based SDSR data
as shown in Streets et al. (2006) and found the GEBA-based
SDSR data to not accurately represent SDSR development in
East Asia; this further underlines the need for more studies
evaluating SDSR observations. Other studies such as Kouk-
ouli et al. (2018) have used satellite observations to estimate
a new emission inventory for SO2 between 2005 and 2015 in
China. We note that the year 2005 in Fig. A2 is directly after
the sharp increase in SO2 emissions, and the biggest differ-
ences between the estimation made by Koukouli et al. (2018)
and the SO2 emission inventories in CMIP6 are a decrease
in emissions after the year of 2011. This decrease in SO2
emissions would intuitively result in a brightening, which is
identified over the same time period in the homogenized data
by Yang et al. (2018) (Fig. 10 therein).

The modeled emissions of SO2 as shown in Fig. A2 over
China showed no trace of a significant change in trend after
1990 in our observed SDSR time series as discussed in the
previous section. Assuming sulfate burden is responsible for
the observed multiyear trends of SDSR, we argue that errors
in emissions inventories in China could be part of the prob-
lem.

5 Conclusions

Earlier studies have shown that previous generations of Earth
system models have not been able to reproduce the transient
development of surface downwelling shortwave radiation
(SDSR) in the last decades since 1960 when observations
became available (Storelvmo et al., 2018; Allen et al., 2013).
This discrepancy is hypothesized to be related to increasing
and then partially decreasing trends in global aerosol emis-
sions and subsequent aerosol radiative effects, but the exact
cause is unknown.

In this paper, we compared observations to model-
simulated surface downwelling shortwave radiation and
cloud cover in specific regions for the time period 1961 to
2014. We found that in the historical experiments, CMIP6
models reproduce the transient development of SDSR well
in Europe but poorly in Asia. The multiple historical and as-
sociated perturbation experiments performed under CMIP6
reveal that only those simulations containing anthropogenic
aerosol emissions show dimming, and the dimming is under-
estimated by most models. China exhibits a sharp positive
trend in observed SDSR in the 1990s that is not found in his-
torical model simulations. This “jump” has been suggested
to be an artifact, but historical simulations also do not ac-
curately represent the homogenized observed SDSR as pro-
posed by Yang et al. (2018). We suggest that the continuous
decrease in simulated SDSR is related to the continuous in-
crease in atmospheric sulfate burden in the historical simula-
tions over China. Following this logic, the observed transient
development of SDSR points to the evolution of the sulfate
burden in the models being wrong in this region. The sulfate
burden is a result of sulfur dioxide emissions, gas-to-particle
conversion and wet deposition. Sulfur dioxide emissions over
China show neither sign of the observed trend change from
gap-filled GEBA data nor of the brightening-followed flat-
tening from the homogenized data as proposed by Yang et al.
(2018). Sulfur dioxide emissions used in the models over
China have a strong increase in the early 2000s, which can
be observed as a sharp dimming at the same time in Fig. 2f.
We suggest that the cause of the discrepancy between model
and observations in transient SDSR in China is partly in er-
roneous emission inventories.

As the observed climate change is the result of warm-
ing from greenhouse gases and simultaneous cooling from
aerosol radiative effects, getting aerosol emissions correct is
important in Earth system models.

Since the SDSR measurements are not only sensitive to
aerosol effects, they might not be the most accurate way
to infer historic aerosol loads and forcing. Further studies
could include other observations and proxies for aerosol ef-
fects in the historical era, such as long-term satellite-retrieved
aerosol optical depth, deposition of anthropogenic sulfur, or-
ganic carbon and nitrate in ice cores, as well as daily temper-
ature range records.
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Appendix A: Additional information

A1 The European SDSR evolution

Figure A1 suggests cloud cover variation as a possible expla-
nation of the local maximum in observed European SDSR
during the period 1967–1978. Cloud cover exhibited a sub-
stantial minimum simultaneous with the maximum in SDSR.
The peak is not reproduced in the historical runs of Earth sys-
tem models studied herein (see Fig. 2b). Cloud cover varia-
tions that are not externally forced but are rather a result of
internal variability cannot be expected to be reproduced in
fully coupled Earth system models. This might serve as an
explanation why the substantial peak in SDSR between 1967
and 1978 is not reproduced in the Earth system models.

A2 The data downloaded from ESGF

Table A2 shows an overview of the eight models used in this
study. For the historical simulations three ensemble mem-
bers per model were downloaded, with the variant labels
r[1,2,3]i1p1f[1,2] for the variables rsds, rsdscs and clt. In ad-
dition, the variables loadso4 and areacella were downloaded
for one ensemble member per model in the historical simula-
tion per model. In the remaining experiments listed in Table 1
only one ensemble member per model was downloaded for
the variable rsds; this was done as not every model provides
more than one simulation per experiment.

Table A1. Global all-sky SDSR and cloud cover averaged over the years 1961–1966 (baseline values) as observed (GEBA for radiation,
CRU for cloud cover) and as simulated in the ensemble mean of three ensemble members in the historical experiment by each of the models
of this study. Data from both CRU and models are retrieved after co-location to all GEBA sites.

Model SDSR (W m−2) Cloud cover (%)

CESM2 186.3 63.9
NorESM2 186.8 55.6
CanESM5 189.5 56.2
GISS-E2-1-G 176.6 58.6
MRI-ESM2-0 193.8 56.2
CNRM-ES2-1 192.3 57.2
MIROC6 184.3 50.4
IPSL-CM6A-LR 185.7 54.5
CRU 57.4
GEBA 171.6

A3 Effects of cloud cover change on all-sky SDSR

If we assume that Eclear sky is the diurnal average clear-sky
SDSR in a region and that τcloud is the average cloud optical
depth, we can compute idealized effects of cloud changes on
SDSR using the Beer–Lambert law:

Esurf = Etoa exp(−τ/cosφ), (A1)

where τ and φ denote optical depth and solar zenith angle, re-
spectively. The change in SSR per 1 % change in cloud cover
can then be computed:

1Esurf per 1 % = 0.01×Ecloudy−Eclear sky = 0.01

×Etoa exp(−τcloud/cosφ
+ ln(Eclear sky/Etoa))+ 0.99×Eclear sky

−Eclear sky. (A2)

Idealized computation for China. Assuming that φ is
between 30 and 70◦, that Eclear sky is between 100 and
350 W m−2 and that Etoa = 1362 W m−2 in China, the theo-
retical effect of 1% increase in cloud cover on all-sky SDSR
is between −1 and −3.5 W m−2, using the idealized compu-
tation described above.

https://doi.org/10.5194/acp-20-16023-2020 Atmos. Chem. Phys., 20, 16023–16040, 2020



16036 K. O. Moseid et al.: Bias in CMIP6 models

Table A2. Details on the models used. IA: interactive aerosols. NIA: non-interactive aerosols.

Institution Model Resolution Aerosol module Complexity Reference

NCAR CESM2 1.25× 0.9 MAM4 IA Danabasoglu et al. (2020)
CCCma CanESM5 2.81× 2.81 CanAM4 IA Swart et al. (2019)
CNRM-CERFACS CNRM-ESM2-1 1.4× 1.4 TACTIC_v2 IA Séférian et al. (2019)
IPSL IPSL-CM6A-LR 2.5× 1.27 INCA fields NIA Boucher et al. (2020)
NCC NorESM2-LM 2.5× 1.875 OsloAero6 IA Seland et al. (2020)
MRI MRI-ESM2-0 1.125× 1.125 MASINGAR mk-2r4c IA Yukimoto et al. (2019)
MIROC MIROC6 1.4× 1.4 SPRINTARS IA Tatebe et al. (2019)
NASA-GISS GISS-E2-1-G 2.5× 2.0 OMA fields NIA Kelley et al. (2020)

Figure A1. Time series of cloud cover (blue) and SDSR (red) between 1961 and 2014, co-located at GEBA sites in Europe. Thin lines show
annual running means; bold lines show LOESS-smoothed variants. The shaded area delineates a period of interrupted dimming in Europe,
between 1967 and 1978, which occurred simultaneously with a local minimum in the cloud cover trend.

Figure A2. Emission of SO2 in China, diagnosed by four of the models in this study. China is defined here as the area within latitudes
[20–45◦ N] and longitudes [95–125◦ E].
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Code and data availability. CMIP6 model outputs are freely avail-
able from the World Climate Research Programme (WCRP), 2011;
https://esgf-node.llnl.gov/search/cmip6/ (WCRP, 2020). CRU TS
v4.02 used for the cloud cover analysis is available from the Uni-
versity of East Anglia’s website: https://crudata.uea.ac.uk/cru/data/
hrg/ (University og East Anglia, 2020). The gap-filled GEBA data
is available https://doi.org/10.5281/zenodo.4382033 (Storelvmo,
2020).
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