
HAL Id: hal-03145759
https://hal.science/hal-03145759v1

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Global Drivers on Southern Ocean Ecosystems:
Changing Physical Environments and Anthropogenic

Pressures in an Earth System
Simon Morley, Doris Abele, David Barnes, César Cárdenas, Cédric Cotté,

Julian Gutt, Sian Henley, Juan Höfer, Kevin Hughes, Stephanie Martin, et al.

To cite this version:
Simon Morley, Doris Abele, David Barnes, César Cárdenas, Cédric Cotté, et al.. Global Drivers on
Southern Ocean Ecosystems: Changing Physical Environments and Anthropogenic Pressures in an
Earth System. Frontiers in Marine Science, 2020, 7, �10.3389/fmars.2020.547188�. �hal-03145759�

https://hal.science/hal-03145759v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


fmars-07-547188 December 9, 2020 Time: 18:38 # 1

REVIEW
published: 15 December 2020

doi: 10.3389/fmars.2020.547188

Edited by:
Monica M. C. Muelbert,

Federal University of São Paulo, Brazil

Reviewed by:
Fabien Roquet,

University of Gothenburg, Sweden
Leticia Cotrim Da Cunha,

Rio de Janeiro State University, Brazil

*Correspondence:
Simon A. Morley
smor@bas.ac.uk

Specialty section:
This article was submitted to

Global Change and the Future Ocean,
a section of the journal

Frontiers in Marine Science

Received: 30 March 2020
Accepted: 23 November 2020
Published: 15 December 2020

Citation:
Morley SA, Abele D, Barnes DKA,

Cárdenas CA, Cotté C, Gutt J,
Henley SF, Höfer J, Hughes KA,

Martin SM, Moffat C, Raphael M,
Stammerjohn SE, Suckling CC,

Tulloch VJD, Waller CL and
Constable AJ (2020) Global Drivers

on Southern Ocean Ecosystems:
Changing Physical Environments

and Anthropogenic Pressures in an
Earth System.

Front. Mar. Sci. 7:547188.
doi: 10.3389/fmars.2020.547188

Global Drivers on Southern Ocean
Ecosystems: Changing Physical
Environments and Anthropogenic
Pressures in an Earth System
Simon A. Morley1* , Doris Abele2, David K. A. Barnes1, César A. Cárdenas3,
Cedric Cotté4, Julian Gutt2, Sian F. Henley5, Juan Höfer6,7, Kevin A. Hughes1,
Stephanie M. Martin8, Carlos Moffat9, Marilyn Raphael10, Sharon E. Stammerjohn11,
Coleen C. Suckling12, Vivitskaia J. D. Tulloch13, Cath L. Waller14 and
Andrew J. Constable15

1 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, 2 Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany, 3 Instituto Antártico Chileno, Punta Arenas, Chile,
4 Cedric Cotte Sorbonne Université, CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France, 5 School of GeoSciences, University
of Edinburgh, Edinburgh, United Kingdom, 6 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso,
Valparaiso, Chile, 7 Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia,
Chile, 8 Tristan da Cunha Government, Edinburgh of the Seven Seas, Tristan da Cunha, 9 School of Marine Science
and Policy, University of Delaware, Newark, DE, United States, 10 Department of Geography, University of California, Los
Angeles, Los Angeles, CA, United States, 11 Institute of Arctic and Alpine Research (INSTAAR), University of Colorado,
Boulder, CO, United States, 12 Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston,
RI, United States, 13 Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, BC, Canada,
14 Department of Biological and Marine Sciences, Faculty of Science and Engineering, University of Hull, Hull,
United Kingdom, 15 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

The manuscript assesses the current and expected future global drivers of Southern
Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the
1970s, has been a key driver, resulting in springtime cooling of the stratosphere and
intensification of the polar vortex, increasing the frequency of positive phases of the
Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific
sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector.
SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low
leading to either positive or negative sea ice anomalies in the west and east Pacific
sectors, respectively. The strengthening of westerly winds is also linked to shoaling of
deep warmer water onto the continental shelves, particularly in the East Pacific and
Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with
glacial and ice sheet melting in both sectors, opening up new ice free areas to biological
productivity, but increasing seafloor disturbance by icebergs. The increased melting is
correlated with a salinity decrease particularly in the surface 100 m. Such processes
could increase the availability of iron, which is currently limiting primary production
over much of the SO. Increasing CO2 is one of the most important SO anthropogenic
drivers and is likely to affect marine ecosystems in the coming decades. While levels
of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and
plastics have been detected in the SO, with concentrations likely enhanced by migratory
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species. With increased marine traffic and weakening of ocean barriers the risk of the
establishment of non-indigenous species is increased. The continued recovery of the
ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light
of the abrupt transition from record high to record low Antarctic sea ice extent since
spring 2016. The current rate of change in physical and anthropogenic drivers is certain
to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region
in the near future and will have a wide range of impacts across the marine ecosystem.

Keywords: Southern Annular Mode, ozone hole, cryosphere and climate change, biogeochemsitry, carbon
dioxde, non-indigenous species, warming, freshening

INTRODUCTION

The Southern Ocean (SO) physical environment is shaped by
permanent cold and predictable seasonal cycles. However, despite
its relative isolation within the Antarctic Circumpolar Current
(ACC) inter-annual variation of the SO is strongly influenced
through atmospheric and oceanic teleconnections. In an era of
rapid climate change it is vital to identify the global drivers
of the SO marine ecosystems. It is important to understand
the regions within the SO where their effects are greatest, the
expected impacts of any changes in these drivers, and crucially
their interactions. For the working group, Marine Ecosystem
Assessment of the SO (MEASO), global drivers are classified as
those that influence the whole of the SO, even though their affects
may manifest more strongly in some regions than others. Local
drivers are defined as those that influence a particular location or
series of locations within the SO (Grant et al., to be published
in this research topic). While there is a global demand for
protein to feed the ever increasing human population, southern
ocean fisheries have regional impacts on stocks and ecosystems.
A key difference is that local drivers can be managed with local
interventions, e.g., regional regulation of fisheries. Yet, global
drivers can only be managed externally to the region, e.g., climate
change, ozone and plastic. Global tourism is driven by global
drivers such as increasing wealth and demand for wilderness
experiences. However, the regional impacts of tourism can also
be managed through local regulation. Tourism therefore appears
as both a global and local driver.

The manuscript outlines the global phenomena that impact
the SO now and are expected to continue to impact it in the
future. Atmospheric drivers considered here include changes
in ozone, trends in Southern Annular Mode (SAM), variability
in El Niño Southern Oscillation (ENSO), elevated air and
ocean temperatures and ongoing increases in atmospheric CO2.
Global oceanic connections considered here include the global
thermohaline (overturning) circulation as well as changes in
the SO, including eddies currents and the exchange of water
masses (Figure 1). Other global anthropogenic drivers include
pollution and tourism.

These drivers, and their interactions, affect a range of
attributes of the SO environment. Those considered here are: the
cryosphere including marine ice, ice shelves and glaciers as well
as salinity. For the purposes of MEASO the SO is separated into
five sectors and three zones (Figure 2)

The majority of the biological consequences within pelagic
and benthic marine ecosystem are discussed in the specific
MEASO biota papers (as described in Constable et al., 2014 to be
published in this research topic), but the impact of changes in the
biogeochemical cycles, including the impacts of CO2 and ocean
acidification are included. The increased risk of non-indigenous
species establishing in the SO (range extensions in Figures 1, 2, 4)
and the external influences on species that migrate in and out of
the SO are also discussed as external drivers in this manuscript.

There have been several recent attempts to assess the
dynamism of stressors impacting the Southern Ocean and its
inhabitants (Constable et al., 2014; Gutt et al., 2015; Rogers et al.,
2020). Where the current work differs is in taking a detailed look
at large scale, global, influences on the physical environment, and
to set these into a MEASO context. Where appropriate, the level
of confidence in a conclusion is given according to the approach
of the IPCC (Mastrandrea et al., 2011). These are given in italics in
parentheses, with an appropriate reference where the confidence
level has been judged elsewhere. When not accompanied by a
reference, we judged confidence from the levels of agreement we
observe in the scientific literature and the amount of evidence
presented to support the conclusion, including consideration of
any contrary evidence. Sometimes, we only report on the scope
of the evidence in terms of agreement and amount. The levels
of confidence are not to be used as the inverse of confidence for
alternative hypotheses, as those alternatives may not be addressed
in the literature. The future prognosis of these drivers is assessed
and gap analysis is used to define future priorities.

PHYSICAL DRIVERS

SAM/ENSO
Stratospheric ozone concentration in the middle and high
latitudes of the southern hemisphere has been decreasing in
spring, summer and winter since the 1970s (e.g., WMO, 2011).
Termed stratospheric ozone depletion, it is considered the single
largest driver of change in summer, tropospheric (atmospheric)
circulation in the southern high latitudes (Polvani et al., 2011).
Normally, ozone absorbs UV radiation, radiatively warming
the stratosphere. Its depletion, caused by chlorofluorocarbon
(CFC) emissions, that began in the 1970s, means reduced
absorption when sunlight returns to the southern high latitudes
in the southern spring, and results in radiative cooling of the
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FIGURE 1 | Description of the global drivers affecting the Southern Ocean. Northern drivers are global drivers whose influence reaches from North of the Southern
Ocean.

stratosphere over Antarctica. The dynamic response is increased
shear in the zonal wind field and a strengthened stratospheric
polar vortex as the atmosphere moves to restore the thermal wind
balance (Thompson and Solomon, 2002). These changes in the
stratosphere propagate to the troposphere, in approximately 2
months. The tropospheric effect is therefore observed in summer
and is seen as a poleward shift of the mid-latitude jet and the
accompanying storm track (Thompson and Solomon, 2002).

The tropospheric effect is an indication that stratospheric
ozone depletion directly influences the leading mode of
atmospheric circulation variability in the southern extratropical
regions, the Southern Annular Mode (SAM). A measure of the
SAM is an index calculated as the pressure gradient between mid-
latitudes and Antarctica (Marshall, 2003), which when strongly
positive, results in westerlies that are stronger than average
and shifted poleward (e.g., Swart et al., 2015). Since 1957 there
has been a significant increase in positive SAM in the austral
summer and autumn (Marshall, 2003, 2007). The summer trend
is thought to be forced primarily by stratospheric polar ozone
depletion (Perlwitz et al., 2008). The variability of the SAM has
a significant impact on Antarctic surface temperature (Marshall
and Thompson, 2016), precipitation (Marshall et al., 2017),
and sea ice (e.g., Hobbs et al., 2016; Doddridge and Marshall,

2017). The strong circumpolar westerlies associated with a
positive SAM contributes to a cooler, drier, continental plateau
(Eastern Antarctica) as they prevent the southward penetration of
warmer air. Conversely, the Antarctic Peninsula warms because
of warm air advection by the northwesterly flow, which also
induces orographic precipitation on the western slopes and a
rain shadow on the eastern slopes (Thompson and Solomon,
2002; Marshall and Thompson, 2016; Marshall et al., 2017).
The increase in sea ice extent observed in the satellite era is
attributed, in part, to increased northward Ekman drift associated
with stronger westerlies over the Southern Ocean, facilitating the
spread of the ice.

The SAM interacts with ENSO during the austral summer,
particularly in the Pacific sector (e.g., Carleton, 2003; L’Heureux
et al., 2006; Lim et al., 2019). When a La Niña phase in the
tropical Pacific (cooler than average sea surface temperatures
in the central and eastern tropical Pacific Ocean) co-occurs
with a positive SAM phase at mid-high latitudes, this condition
amplifies the effect of stratospheric ozone depletion. SAM and
the high latitude ENSO both exert an influence on the Amundsen
Sea Low (ASL), a climatological low pressure system centered off
the coast of West Antarctica, the central pressure of which has
deepened in recent years in response to an increase in the number
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FIGURE 2 | Areas for assessing effects of global drivers in the Marine Ecosystem Assessment of the Southern Ocean (black lines) with the Antarctic Peninsula
highlighted (red dashed box). The five sectors (Atlantic, Central Indian, East Indian, West Pacific and East Pacific) and zones (Antarctic, Subantarctic and Northern)
are labeled. Zonal boundaries are the Southern ACC Front between Antarctic and Subantarctic zones, and the Subantarctic Front between Subantarctic and
Northern zones, with the Subtropical Front to the north. Icons indicate currently identified critical locations for increase and decrease in temperature and sea ice,
potential for invasive species, and where circumpolar deep water is increasingly shoaling onto the continental shelf. They also illustrate general effects of ozone
depletion, pollution and ocean acidification.

of cyclones entering the region. This increase is primarily due to
the more positive SAM driven by ozone depletion (Grieger et al.,
2018). This effect on the ASL may have far reaching consequences
since the ASL plays a role in altering ocean currents, allowing
warm Circumpolar Deep Water (CDW) to reach more frequently
under the Pine Island and Thwaites glaciers that drain much of
West Antarctica (Thoma et al., 2008). This has coincided with a
period of thinning of these glaciers (Thoma et al., 2008).

Temperature
Atmospheric Warming
Intensifying warm and moist westerly winds during more
frequent positive phases of the summer SAM cause pronounced
atmospheric warming of the Northern and central sectors of the
West Antarctic Peninsula (WAP). Strong interannual variations
of atmospheric warming/cooling patterns are strongly related
to climatic modes of SAM and ENSO (Bers et al., 2013). The
strengthening of the westerly winds has also resulted in the warm
air passing over the mountains of the Antarctic Peninsula, which
has contributed to the melting of the east Antarctic Peninsula ice
shelves (Cape et al., 2015).

Oceanic Warming
The SO has been a stable cold environment for millions of
years, shaping unique ecosystems of cold adapted Antarctic biota.
Within this stable regime there have been 100’s to 1000’s year

time scale variations of 2–4◦C on the WAP, which are associated
with reconstructions of the SO westerly winds (Shevenell et al.,
2011). The increased intensity of positive summer SAM events
are correlated with significant changes in seawater temperature
that have been recorded in recent decades (high confidence;
Hellmer et al., 2017; Moffat and Meredith, 2018). Circumpolar
deep water (CDW), the temperature maximum layer of Antarctic
Continental Shelf Bottom Water (ASBW) is warming (0.1◦C
decade−1) and shoaling (−30 m decade−1) in most regions
around the Antarctic (high confidence; Schmidtko et al., 2014) and
both hydrographic and climatic forcing, modify the atmospheric
and ocean heat transport.

Regional Patterns
At the northwestern tip of Bransfield Strait and the South
Shetland Islands (East Pacific), ocean temperatures are cooled
by water entering from the Weddell Sea, while mean air
temperatures increased by 0.4◦C per decade between 1991 and
2012 (Schloss et al., 2012). Melt events at the Northern WAP
are regional and episodic, and thus amplify environmental and
ecological variability in coastal and shelf systems (Meredith
et al., 2018). In contrast, the central/south WAP is influenced by
atmospheric warming and by upwelling of warm CDW onto the
shelf, which has driven thinning of about 75% of the ice shelves of
the AP and the Amundsen Sea. Mean atmospheric temperatures
increased by 3◦C (0.6◦C per decade) and sea surface temperatures
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by 1◦C (SST in the upper 100 m) between 1955 and 2004
(Moffat and Meredith, 2018). In spite of a recent superimposed
cooling phase recorded since the early 2000s, which appears
to be associated with shifts in decadal forcing in this region
(Turner et al., 2016), net warming of the WAP atmosphere is
still significant and the ocean has continued to warm (Martinson
et al., 2008). Similarly, increases in seawater temperature have
been reported for the Atlantic Sector, with warming averaging
over 2◦C in the upper 150 m over the past 81 years (Whitehouse
et al., 2008) and 0.3–1.5◦C in subsurface temperature (50–400 m)
at the Eastern Antarctic Peninsula (Etourneau et al., 2019).

Other regions of the SO either remained stable or cooled
in the last two-three decades. These differences originate from
varying patterns in the ocean heat transport around the Antarctic
(Schmidtko et al., 2014) and shoaling of warm deep water
(WDW) up onto the continental shelf. For instance, relatively
warm CDW entering the eastern Weddell Sea gyre causes
shoaling of WDW (+0.8◦) flowing along the continental shelf
break in the Southern Weddell Sea. Models project intrusion
of WDW into the Filchner-Ronne Ice Shelf cavity as part of a
tipping point scenario, which would dramatically increase basal
melt rates, threatening the stability of the largest floating ice mass
fringing the Antarctic continent (Timmermann and Hellmer,
2013; Hellmer et al., 2017). The warming has been observed in
most sectors, but the vertical displacement of the CDW core
shows a more complex pattern, with deepening in the Cosmonaut
and Northern Weddell Seas and shoaling elsewhere (Schmidtko
et al., 2014). It is interesting to note that while the general trend
of CDW also persists in the Ross Sea, no shoaling and intrusions
of CDW onto the shelf have been observed so far (H. Hellmer,
pers. communication). In contrast to the warming of the AP and
CDW in the Weddell and Ross Seas/gyres, the Eastern sections
of the continental SO have shown a cooling trend (Rogers et al.,
2020). With continued warming of the earth’s atmosphere, future
warming between now and 2100, is expected across the whole of
the SO (Rogers et al., 2020).

Many SO marine ectotherms are adapted to a narrow annual
thermal range of only 2–4◦C, and are therefore vulnerable to
the effects of warming (medium confidence). Increasing ocean
temperature is also correlated with the secondary effects of
warming on summer sea ice dynamics and glacial melting
in coastal and near-shore regions (high confidence). Increasing
temperature is therefore projected to shape open ocean
ecosystems and affect coastal communities down to the level of
species ecological performance and molecular composition (high
confidence, Ashton et al., 2017; Peck, 2018).

Currents and Eddies
The SO circulation forms a major horizontal connection between
ocean basins as well as a vertical link between shallow and
deep water masses. The ACC consists of a strong, multi-jet,
and turbulent eastward flow around Antarctica, transporting
approximately 173.3± 10.7× 106 m3.s−1 (Donohue et al., 2016).
The ACC, driven by westerly winds and surface buoyancy fluxes,
is also identified by three main circumpolar fronts, separating
distinct water masses, which contribute to the isolation of the SO
(Sokolov and Rintoul, 2009).

As indexed by the SAM, a clear trend in strengthening of
westerly winds has been observed in recent decades (Swart et al.,
2015), yet there is no evidence of a significant increase in the
ACC transport (medium confidence; Chidichimo et al., 2014).
Although the response of the ACC transport and eddy field
to wind forcing is still uncertain (low confidence), the presence
of active ocean eddy dynamics, and its saturation suggested by
modeling (Munday et al., 2013), buffers the oceanic response to
atmospheric changes. This apparent cascade of energy into small
scale eddies is supported by the satellite derived measurements,
which indicate an increase in eddy kinetic energy over the last
two decades. This is especially significant in the Pacific and Indian
Ocean sectors of the SO (medium confidence; Hogg et al., 2015).

The use of sea surface temperature (SST) and sea surface
height (SSH) contours to track front locations has suggested
there has been a latitudinal change in the mean location of
the ACC. This could have major impacts on marine ecosystems
by modifying the environmental conditions experienced by
numerous marine organisms (Bost et al., 2015; Cristofari et al.,
2018; Meijers et al., 2019). However, this approach was challenged
because these parameters are affected by the large-scale thermal
expansion and steric sea-level rise occurring as a result of the
warming of this circumpolar region. Recent studies found no
significant long-term trend in either the annual mean latitude
of zonal wind jets between 1979 and 2009 (Swart et al., 2015)
or the zonally averaged latitude of ACC transport, which seem
insensitive to changes in the SO’s broad-scale structure (Gille,
2014; Chapman et al., 2020). The location of the ACC may be
constrained by sea floor and land mass topography, particularly
close to narrow gaps between land masses, such as Drake’s Passage
(high confidence; Moore et al., 1999).

The assessments of trends in the overturning circulation is
challenging due to the high inter-decadal variability related to
wind stress (low confidence; Waugh et al., 2013; DeVries et al.,
2017; Ting and Holzer, 2017). While the production and export
of Antarctic Bottom Water in the global ocean has decreased
(medium confidence; Purkey and Johnson, 2013; Desbruyeres
et al., 2017), this may reflect the same inter-decadal variability
(low confidence; Abrahamsen et al., 2019).

Future projections for the SO under different warming
scenarios from CMIP5 and CMIP6 models suggest that the trends
observed over the last few decades will continue in the coming
century at a rate that depends on future emission scenarios
(Meredith et al., 2019). Projections include the strengthening
of the westerly winds for all scenarios, except under stringent
mitigation (Bracegirdle et al., 2020), and as a response, increased
eddy activity (Downes and Hogg, 2013). Warming of the ACC
and the freshening of surface water from increasing precipitation
is projected to continue for all emission scenarios (Sallée et al.,
2013; Bracegirdle et al., 2020). Due to their inability to explicitly
resolve eddy processes (Gent, 2016; Downes et al., 2018) and
increased water input from melting ice (Bronselaer et al.,
2018), the projections from CMIP5 or CMIP6 models have low
confidence. Evidence from other models suggests that glacial
meltwater from ice sheet might continue in the future (medium
confidence; Levermann et al., 2020; Seroussi et al., 2020), with
important impacts on ocean circulation, including cooling of
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surface subpolar ocean (Bronselaer et al., 2018; Rye et al., 2020)
and warming of subsurface subpolar waters (Sadai et al., 2020).

Seawater Circulation and Exchange
The observed changes in ocean properties and circulation in
Antarctica reveals the central role that regional variability plays
in understanding the evolution of this system (Thompson and
Solomon, 2002). At depth, warm waters around Antarctica supply
heat and nutrients to the continental shelf. This supply to the
coastal ocean varies greatly around the continent. Circumpolar
Deep Water (CDW) has both warmed significantly since the
late 70s and its core has shallowed by about 30 m per decade
(Schmidtko et al., 2014). The expression of these changes in open
ocean properties is not straightforward, however, as strong shelf
currents, the Antarctic Slope Front (ASF) in particular, act as a
barrier for cross-slope exchange. In the regions where the ASF is
weak or absent, i.e., the Bellingshausen and Amundsen Seas, the
warming of shelf waters more closely follows the changes in the
open ocean (Schmidtko et al., 2014; Thompson et al., 2018).

The rapid warming of the WAP (Meredith and King, 2005)
has impacted ocean properties as a result of increased freshwater
input to the coast (Meredith and King, 2005; van Wessem et al.,
2017) altering the structure of the upper layers of the ocean
(Martinson et al., 2008; Welhouse et al., 2016). This region also
shows strong impacts from ENSO and its interaction with SAM
variability, which has been shown to modulate wind forcing,
which in turns modulates the depth of the mixed layer and marine
productivity on interannual scales (Venables and Meredith,
2014). Warming of the subsurface layers of the Peninsula is
representative of similar trends along the Bellingshausen and
Amundsen Seas, where the weak presence or absence of the
Antarctic Slope Front, found along the shelf break elsewhere in
Antarctica, facilitates the flooding of the shelf by the warming
CDW (Thompson et al., 2018). Deep, steep canyons and other
topographic features play a key role in the across-shelf exchange
of properties along this and other Antarctic shelves (Moffat et al.,
2009; Martinson and McKee, 2012). This exchange is strongly
modulated by small ocean eddies that play a role on both the
supply of heat and nutrients to the shelf (Moffat et al., 2009) as
well as the export of shelf-modified waters to the open ocean
(Brearley et al., 2019). Eddy-driven exchange is a key modulating
factor of ocean properties around the continent, and this process
is modulated by wind forcing (Thompson et al., 2014; Stewart and
Thompson, 2015). The WAP shelf has experienced a build-up of
subsurface heat (Martinson et al., 2008), and while full attribution
of this change remains unresolved, both the changes in open
ocean water properties and the increase of coastal stratification
as a result of increased freshwater discharge from the coast likely
play a role in this process.

The combination of strong regional and temporal variability in
observed ocean properties, combined with what are still relatively
limited datasets, result in significant challenges when trying to
attribute the origin of the changes. Elsewhere in Antarctica,
teasing out anthropogenic change from natural variability has
proven challenging for many variables, suggesting that the
observed change is consistent with the pattern expected from
natural variability (Jones et al., 2016). This implies that process

studies to understand the underlying mechanisms of variability
as well as continued efforts to improve the observational records
around Antarctica are critical to understand the nature of change
around the continent and the impacts on marine ecosystems.

SOUTHERN OCEAN ATTRIBUTES

Marine Ice
Every year Antarctic seasonal sea ice undergoes a sixfold change
in ice-covered area; it is one of the largest seasonal signals on
Earth, with consequent effects on air-sea exchanges of heat,
momentum and gases (most notably CO2), water mass properties
and finally, on marine ecosystems. Antarctic sea ice is, however,
highly variable and frequently exposed to strong storms, high
winds and waves. These factors affect Antarctic sea ice growth and
melt processes, thickness evolution and drift, and impart high
regional and seasonal variability.

Over the past four decades there has been a modest increase
in spatially averaged Antarctic sea ice extent. However, this
Antarctic-wide average hides important regional and seasonal
details, as Antarctic sea ice is not increasing everywhere and
shows high seasonal and regional variability (e.g., Parkinson,
2019). The two regions showing the strongest but opposing
sea ice trends are the east Pacific, Bellingshausen-Amundsen
Sea, sector (where sea ice decreased over 1979–2015) and the
west Pacific, Ross Sea Sector (where sea ice increased over
1979–2015). Although the changes in sea ice were opposite,
the rates were comparable to those observed in the Arctic
(Cavalieri and Parkinson, 2012; Parkinson and Cavalieri, 2012;
Stammerjohn et al., 2012).

These contrasting regional sea ice distributions can in part be
explained by the SAM and ENSO changes detailed previously.
The westerly winds have strengthened mostly in austral summer
and autumn, i.e., when SAM shows the strongest positive trends
(Marshall, 2003, 2007), thus impacting sea ice distributions
mostly in summer and autumn (Stammerjohn et al., 2008; Hobbs
et al., 2016). ENSO also effects regional and seasonal sea ice
distributions, with the strongest signal being an Antarctic Dipole
between the Amundsen/Ross and Bellingshausen/Weddell sea
regions, consisting of positive/negative sea ice anomalies during
a La Niña, and vice-versa for El Niño (e.g., Yuan, 2004).
Together, strong phases in SAM and ENSO can either amplify
or dampen the effect on sea ice distributions, along with other
atmospheric perturbations, e.g., Pacific Decadal Oscillation, the
Atlantic Multi-decadal Oscillation, greenhouse gas increases, not
to mention ocean changes in heat and freshwater content and
stratification, making attribution quite challenging.

This last decade, 2010–2020, has been most notable for
showing the strongest changes in Antarctic-wide sea ice. During
2012–2014 numerous records were broken for Antarctic-wide
high sea ice extent (based on satellite observations since 1979)
(Turner et al., 2013; Reid and Massom, 2015; Reid et al., 2015).
There appeared to be no one dominant factor behind the record
maxima, but instead, for each of these 3 years (2012–2014), there
were different regions and seasons contributing to the record high
sea ice extent (Reid and Massom, 2015). Then, just as abruptly,
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Antarctic-wide sea ice extent since spring 2016 has shown
numerous record lows, for which several explanations have also
been proposed, including anomalies in both the atmosphere
and ocean, with a possible deep ocean driver acting on decadal
or longer timescales (e.g., Stuecker et al., 2017; Turner et al.,
2017; Schlosser et al., 2018; Meehl et al., 2019; Wang et al.,
2019). Whether this recent decline in Antarctic sea ice extent will
continue or not is still unknown, and once again points to the
challenges in attributing and predicting Antarctic sea ice changes.

Previous work has highlighted the effects of changes in sea ice
and how they can transform shallow water benthic ecosystems
associated with changes in light regimes (Clark et al., 2013) and
also by producing longer phytoplankton blooms and increased
iceberg disturbance (Barnes et al., 2018a). Importantly for SO
foodwebs, biodiversity and nutrient cycling and the abundance
of Antarctic krill (Euphausia superba) all depend on the extent
of winter sea ice, which is varying between sectors within the
SO (Atkinson et al., 2019). Sea ice is one of the major drivers of
energy flow into the SO and the effects of future sea ice extent on
SO productivity are difficult to predict (low confidence).

Ice Shelf Disintegration
The floating ice shelves shape unique conditions in the SO for
marine life living below them. Ice shelves are floating masses of
ice slowly advancing from the glaciers of the interior toward the
ocean, at least regionally and temporarily since the late Oligocene
(Hochmuth and Gohl, 2019). They range from 100 to 1,400 m
thick. The distance between the grounding line, where they lose
contact with the land and the edge facing the open ocean, ranges
from a very short distance to approximately 600 km. By far the
largest two, which are each roughly the size of Spain are the
Ross and Filchner-Rönne Ice shelves in the Pacific and Atlantic
Ocean, respectively. With a total area of 1.63 × 106 km2 ice
shelves cover 36% of the continental shelf being equivalent to 11%
of the size of the continent (Clarke and Johnston, 2003). Their
existence and dynamics demand a replenishment of ice from
the hinterland, permanently low air and water temperatures and
depend on specific geomorphological structures. Ice shelves also
seem to stabilize glacier draining velocity (Miles et al., 2018) and
interact with sea-ice and ocean dynamics (Jourdain et al., 2017).
The Larsen A ice shelf in the North of the Antarctic Peninsula
most likely disintegrated more than once during the Holocene
due to natural temperature changes (Domack et al., 2005).
Further south the Larsen B on the east coast of the Peninsula
(2002) as well as Wordie (2009) ice shelves on the west coast
of the Peninsula, collapsed due to recent regional atmospheric
and ocean warming, respectively (Massom et al., 2018). Ice
shelves shape almost 50% of the coastline and icebergs as large
as the size of Jamaica calve from the seaward edges. Despite
this dynamism, the long-term mass balance currently seems to
remain stable. However, large-scale long-term disintegration and
melting is predicted under ongoing climate-change scenarios
(high confidence; Naughten et al., 2018).

Besides impacts on ocean physics the disintegration of
large ice shelves causes one of the most effective changes in
marine ecosystems (medium confidence). The covering of ice
acts as a barrier to energy exchange between the water and

the atmosphere. Once this barrier is gone then there will be
increased transfer of wind, heat and light energy, affecting the
stability of the water column and the mixed layer depth. When
light penetrates into the water it initiates the production of algal
biomass (medium confidence, Bertolin and Schloss, 2009; Peck
et al., 2010), which is the basis for almost all life in the oceans, in
a previously totally dark and, thus, food-poor environment (Raes
et al., 2010; Gutt et al., 2011). Icebergs calving naturally and more
frequently under climate-change scenarios from ice shelves (high
confidence for the next decades; e.g., Rack and Rott, 2004) drift
in the ACC, scour the sea-floor (see e.g., Post et al., 2020) and
eventually run aground before they disintegrate. These processes
also have local to regional impact on pelagic and benthic systems
(medium confidence; Gutt and Piepenburg, 2003).

Glacier Retreat
A third, smaller but important area of marine ice loss is glacier
retreat. Like sea ice and ice shelves, glaciers are also showing
decreases, and in fairly complex geographic patterns. Nearly 90%
of glaciers along the WAP are now retreating, and their retreat
rates are also increasing (Cook et al., 2016). CDW upwelling
has driven frontline retreat of nearly all glaciers South of the
Bransfield Strait (Cook et al., 2016; Etourneau et al., 2019). There
is also evidence of thinning in southern glaciers around the
East Pacific Sector (Hogg et al., 2017 and references therein).
Until they reach grounding lines this glacier retreat generates
icebergs and therefore coastal ice scouring and is opening up
new fjordic habitats and carbon sinks (see Barnes et al., 2020).
Although the high sedimentation in such environments can be
harsh for new colonists (Sahade et al., 2015), they could be
important for a number of reasons. Unlike elsewhere in the
world, Antarctica has no other low wave energy-high productivity
habitats, e.g., salt marshes, seagrass meadows and mangrove
swamps, that provide hotspot potential for fast track from
carbon capture to burial and sequestration. However, they also
provide a, previously missing, key habitat which may provide
opportunity for invasion of these newly exposed areas by non-
indigenous species.

Meltwater and Freshening
Seawater salinity in the whole SO has decreased during the last
60–70 years (e.g., Jacobs et al., 2002; Jacobs and Giulivi, 2010;
Hellmer et al., 2011; Durack et al., 2012). Surface waters (i.e.,
above 100 m depth) south of the ACC have shown stronger
freshening rates, 0.0011 ± 0.0004 yr−1 (de Lavergne et al.,
2014), than intermediate waters, 0.0002–0.0008 yr−1 (Skliris
et al., 2014), or bottom waters, 0.0004 ± 0.0001 yr−1 (medium
confidence; Menezes et al., 2017). Higher freshening rates have
been recorded over Antarctic continental shelves, although there
are large spatial differences with the Ross and Cosmonaut Sea
displaying intense freshening, whereas the Bellingshausen and
Amundsen Sea (East Pacific sector) are showing the opposite
trend, i.e., increasing salinity, (Schmidtko et al., 2014). The
latter may be the consequence of more frequent and shallower
intrusions of CDW (Schmidtko et al., 2014), a saltier and warmer
water mass (high confidence; Moffat et al., 2009). Despite the high
melting rates of glaciers in west Antarctica (Paolo et al., 2015),
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enough CDW intrusions seem to reach the shelf in order to
prevent a steady freshening of these shelf waters. This may be
the consequence of changes in large scale atmospheric and ocean
circulation patterns (e.g., the increasing frequency and strength
of SAM), since these drive the intrusions of CDW, rather than
shelf hydrographic conditions (Nakayama et al., 2018). Similarly,
a relationship between positive SAM and increased freshening
has been registered for other areas (e.g., Atlantic sector: eastern
Antarctic Peninsula and Weddell Gyre) although atmospheric
warming seems to drive this relationship instead of hydrographic
conditions (Dickens et al., 2019). Although similar freshening
trends have been registered in different Antarctic regions, the
drivers and mechanisms involved vary spatially (high confidence).
For example, except for the WAP, positive SAM has increased
northward Ekman drift of sea ice that is formed close to the
continent (Holland and Kwok, 2012), increasing the transport
of freshwater to the open ocean and promoting the freshening
recorded for offshore waters in the SO (Haumann et al., 2016).

Freshening has other effects besides salinity. Stratification
has a key controlling influence on phytoplankton blooms as do
sources of iron from glacial meltwater and icebergs (De Baar
et al., 1995; Loscher et al., 1997; Dierssen et al., 2002; Höfer
et al., 2019; Hopwood et al., 2019). These inputs may, however,
be more restricted to coastal waters than previously thought
(Hopwood et al., 2019). In contrast, there is limited evidence that
meltwater inputs can dilute the macronutrient concentrations
of seawater (Henley et al., 2017; Höfer et al., 2019). Meltwater
may also carry a high amount of inorganic suspended matter
(e.g., glacial flour) that may kill, or impair the functions of,
pelagic (Pakhomov et al., 2003; Fuentes et al., 2016; Giesecke
et al., 2019) and benthic organisms (high agreement, limited
evidence; Torre et al., 2014; Sahade et al., 2015). Finally, although
there is medium confidence that the volume of Antarctic Bottom
Water has decreased (Purkey and Johnson, 2013; Desbruyeres
et al., 2017), there is almost no direct record of freshening
hindering the formation of Antarctic Bottom Water (Silvano
et al., 2018). Besides, recent studies suggest that the formation and
northward export of Antarctic Bottom Water depends on several
processes varying on multi-annual time scales (Abrahamsen et al.,
2019), which need longer time series in order to detect any
long term trend.

Biogeochemistry
CO2 Uptake and Ocean Acidification
One of the most important functions of the SO in the Earth
System is its uptake of atmospheric CO2 by physical and
biological processes and its release of oceanic CO2 to the
atmosphere (Sarmiento and Le Quere, 1996; Marinov et al., 2006;
Gruber et al., 2009, 2019; Lenton et al., 2013; Henley et al., 2020
this volume). However, this uptake is leading to changes in ocean
biogeochemistry, which could have devastating consequences for
the ecosystem. Ocean acidification driven by oceanic uptake of
atmospheric CO2 is expected to occur earlier in the SO than
most other ocean regions, due to enhanced solubility of CO2 at
low temperature and upwelling of deep waters with high CO2
concentrations (Orr et al., 2005; McNeil and Matear, 2008; Feely

et al., 2009). Ongoing changes in upper ocean temperature and
salinity are very likely to impact the solubility of CO2 in SO
surface waters, and projected increases in the Revelle factor are
expected to increase the biologically mediated uptake of CO2 over
the twenty-first century (Hauck and Völker, 2015; Hauck et al.,
2015; Henley et al., 2020).

At the global scale, oceans have absorbed ∼30% of the
anthropogenic atmospheric CO2 and this has already caused
shifts in seawater carbonate chemistry by reducing seawater
pH, carbonate ion concentrations and therefore saturation states
of the carbonate minerals aragonite and calcite (�, where
values < 1 indicate undersaturated conditions that result in
the dissolution of carbonate structures; Doney et al., 2009; Orr,
2011; McKinley et al., 2017; IPCC, 2019). Prior to the industrial
period, atmospheric CO2 was approximately 280 µatm with
global average surface seawater pH of 8.17 and �arag ∼3.5.
Atmospheric pCO2 has now reached 380–400 ppm, which has
reduced surface seawater pH to 8.01–8.05, equivalent to a 100-
fold increase in hydrogen ion concentration (Guinotte and Fabry,
2008; Doney et al., 2009; IPCC, 2019). Associated decreases in
carbonate saturation have led to a shallowing of the saturation
horizon by 30–200 m (Feely et al., 2002, 2004; Sabine et al.,
2004). These trends are likely to continue and to accelerate in
the coming decades, based on the current RCP 8.5 worst case
“business as usual” emissions scenario. Further reductions of 0.3–
0.4 pH units and �arag ∼1.2 are projected (high confidence) at
atmospheric pCO2 of 851–1,370 by the year 2100 associated with
further shallowing of both aragonite and carbonate saturation
horizons (ASH and CSH) (Houghton et al., 2001; Caldeira and
Wickett, 2003; IPCC, 2019).

The SO has taken up around 40% of the total oceanic uptake of
anthropogenic CO2 (Orr et al., 2001; Fletcher et al., 2006; Devries,
2014). The �arag is in SO surface waters is largely below 1.5,
with particularly low values in winter (Jones et al., 2017; IPCC,
2019). Trends of ocean acidification have already been observed
in many of the MEASO areas, such as the east Pacific Antarctic
and Subantarctic zones, Atlantic Antarctic zone, west Pacific
Antarctic zone and across the East Indian sector (Hauck et al.,
2010; van Heuven et al., 2011; Midorikawa et al., 2012; Takahashi
et al., 2014; Munro et al., 2015; Williams et al., 2015; Lencina-
Avila et al., 2018). The ASH resides at∼730 m depth southwards
of 60’S, cross-cutting the steep Antarctic continental shelf
(McNeil and Matear, 2008; IPCC, 2019), whilst the CSH resides
at approximately 3,000 m (Sewell and Hofmann, 2011). The ASH
is expected to shoal to the surface during winter periods from
∼2,030 and across all seasons by 2100 (Orr et al., 2005; McNeil
and Matear, 2008; McNeil et al., 2010; IPCC, 2019). This is likely
to impact upon phytoplankton abundance, growth rates and
species composition as well as zooplankton growth, reproductive
success and survival, especially of ecologically important species
of pteropods and krill (Tortell et al., 2008; Kawaguchi et al., 2013;
Trimborn et al., 2013; Gardner et al., 2018; Henley et al., 2020).
Mg-calcites are more soluble than aragonite and Southern Ocean
surface waters are already undersaturated for≥ 12 mol% MgCO3
and are predicted to become undersaturated for 4–5% mol%
MgCO3 by 2100 (Andersson et al., 2008). Areas of upwelling
CDW (from 2 to 3 km depth) can bring seawater with low �arag
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(∼0.9–1.08, ∼490–570 µatm pCO2) toward the upper ocean in
the ACC, leading to conditions that are corrosive for aragonite-
secreting organisms such as pteropods (Bednaršek et al., 2012).
Models suggest that upwelling could become stronger in the near
future but the severity and timeframe with respect to carbonate
undersaturation remain poorly constrained (Constable et al.,
2014; Rintoul, 2018). Potential impacts of ocean acidification on
microbial communities could lead to faster recycling of organic
matter and overall declines in carbon export (Maas et al., 2013;
Deppeler et al., 2018; Westwood et al., 2018), with implications
for large-scale biogeochemical cycling and potentially climate,
but more research is required.

The coastal regions around Antarctica are characterized by
highly variable topography, bathymetry, hydrodynamics and
carbonate chemistry, which leads to highly variable seawater pH,
pCO2 and �. Present day variations include Ross Sea surface
pCO2 values ranging from ∼100 to 450 µatm, equivalent to
aragonite saturation of 3–4, between the autumn and summer,
which then decline > 4-fold during autumn/winter to near-
undersaturation of aragonite at 1.1–1.2, with an associated
reduction of pH by 0.6 units (McNeil et al., 2010). Summer
periods are characterized by high primary production, whilst
entrainment of carbonate-depleted CDW occurs onto the Ross
Sea Shelf during winter (Sweeney, 2004; McNeil et al., 2010).
Similar seasonal patterns have been observed in surface waters
at coastal sites of McMurdo Sound, McMurdo Jetty and Cape
Evans with changes in seawater pH of 0.3 units (Kapsenberg et al.,
2015) and in Prydz Bay with changes of 0.6 pH units (Gibson and
Trull, 1999). Continued ocean acidification is projected to show
large and uncertain regional and local variations, particularly
in coastal regions (high confidence; IPCC, 2019). Nevertheless,
model simulations have projected a pronounced increase in
aragonite undersaturation around 2030, affecting around 30% of
Southern Ocean surface waters by 2060 (Hauri et al., 2016). There
is also medium certainty that the current rates of change are the
fastest observed for at least 300 million years and high confidence
that these changes will continue to rise at an accelerating rate
(Canadell et al., 2007; Hönisch et al., 2012; IPCC, 2019), making
ocean acidification likely to become one of the most important
drivers of Southern Ocean ecosystem structure and functioning
in the near future (Gutt et al., 2015).

Increasing Iron Inputs and Freshwater Flux From
Glacial Ice Melting
The Southern Ocean is a large high nutrient low chlorophyll
(HNLC) zone where primary production is not limited by
the availability of macronutrients, as in other oceans, but of
the essential micronutrient, iron (e.g., De Baar et al., 1990;
Moore et al., 2013). As such, iron supply to Southern Ocean
surface waters has a profound impact on primary production
and ecosystem functioning, and is changing in response to
changes in Earth’s climate, large-scale ocean circulation and
regional environmental conditions (Henley et al., 2020 and
references therein). Increases in iron supply are expected due
to increases in dust flux from lower latitudes (IPCC, 2019),
oceanic iron transport to the sub-Antarctic in strengthening
western boundary currents (Bowie et al., 2009) and enhanced

release of terrigenous iron sources from glacial ice and the
Antarctic continent (Lin et al., 2011; Gerringa et al., 2012;
Sherrell et al., 2015; Winton et al., 2016; van Der Merwe
et al., 2019). However, these may be offset to an extent by
increased stratification of the upper ocean linked to a weakening
overturning circulation, which could lead to a reduction in
iron delivery from underlying waters (Tagliabue et al., 2009;
Rintoul, 2018), and the ongoing declines in sea ice, which can
store iron (Lannuzel et al., 2016). Changes in iron speciation,
solubility, scavenging, internal cycling and remineralization—
as well as phytoplankton dynamics, iron requirements and the
impacts of ocean acidification—further complicate the net effect
of climate and environmental changes on iron availability to
phytoplankton blooms (e.g., Planquette et al., 2013; Blain and
Tagliabue, 2016; Hutchins and Boyd, 2016; Andrew et al., 2019).
Nevertheless, there is good agreement amongst CMIP5 models
that Southern Ocean NPP will increase overall as a result of
increased iron supply, changes in mixed layer depth, declining
sea ice cover, increasing SST and altered westerly winds (Bopp
et al., 2013; Leung et al., 2015; Fu et al., 2016; Moore et al.,
2018). Increased iron supply and temperature could also lead to
a floristic shift to diatoms and potentially Phaeocystis antarctica,
with consequences for benthic and pelagic consumers as well as
nutrient uptake, carbon export and large-scale biogeochemical
cycling (Henley et al., 2020).

Impact of Climate-Induced Physical Changes on
Nutrient and Carbon Supply and Distribution
The ongoing and projected increase in wind speeds and
storminess over large parts of the Southern Ocean is likely to
increase upwelling and upper ocean mixing, thus micro- and
macronutrient flux from the CDW source waters into the mixed
layer (Moore et al., 2018; Rintoul, 2018). As regional warming
continues, anticipated sea ice losses would also increase vertical
mixing and nutrient supply by removing the barrier to wind-
driven mixing of the surface ocean, as has been observed at the
Antarctic Peninsula (Venables et al., 2013; Henley et al., 2017).
The increased vertical flux of iron would be more important than
that of macronutrients for biological productivity in the iron-
limited open Southern Ocean (e.g., Leung et al., 2015). Increasing
wind speeds, storminess and ice losses may also increase the
outgassing of oceanic CO2, as has occurred in the past (Le
Quere et al., 2007; Lenton et al., 2013). Shoaling of carbon-
and nutrient-rich CDW in most regions around Antarctica
(Schmidtko et al., 2014) is also likely to increase the flux of
nutrients and carbon toward the ocean surface. In contrast,
projected increases in glacial meltwater inputs may increase
stratification around Antarctica with the potential to reduce
vertical nutrient fluxes and availability to phytoplankton blooms
(see section on freshening). This could limit primary production
in locations and at times of year when surface macronutrients are
drawn down to limiting concentrations (Henley et al., 2017, 2018;
Höfer et al., 2019). Ice shelf disintegration could have complex
effects on upper ocean mixing and vertical carbon and nutrient
fluxes depending on the relative forcing of increased exposure to
winds and altered strength and position of the buoyant meltwater
plume (e.g., Randall-Goodwin et al., 2015). Projected increases in
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eddy activity within the ACC and the anticipated changes in
ocean currents and frontal positions will influence the transport
and distribution of nutrients and carbon around the Southern
Ocean, as well as air-sea exchange of CO2 (Sallée et al., 2012;
Rintoul, 2018; Chapman et al., 2020).

Biogeochemical Consequences of Climate-Driven
Changes to Pelagic and Benthic Food Webs
The large-scale climatic and environmental drivers of changes
in the abundance and distribution of marine organisms
will also have important consequences for Southern Ocean
biogeochemistry through export fluxes, carbon storage in pelagic
and benthic food webs, and for benthic-pelagic coupling (Henley
et al., 2020). For instance, the southward contraction of krill
populations in the Atlantic sector and linked increases in salp
abundance may reduce carbon transfer through the pelagic
food web, with implications for carbon storage and export
(Atkinson et al., 2004, 2019; Murphy et al., 2016). Phytoplankton,
zooplankton and higher organisms also play an important
role in benthic-pelagic coupling and the transport of nutrients
and carbon vertically and horizontally (e.g., Lavery et al.,
2010; Belcher et al., 2017; Cavan et al., 2019), which could
be interrupted by shifts in abundance, distribution or trophic
interactions. In contrast, increases in primary production and
benthic biomass in response to reduced sea ice duration and
longer growing seasons on the Antarctic Peninsula (Peck et al.,
2010; Moreau et al., 2015) have the potential to increase carbon
storage and invigorate benthic nutrient and carbon cycling as
well as benthic-pelagic coupling (Barnes et al., 2018a). Benthic-
pelagic coupling and water column transport are key to the
(re)distribution of nutrients in the Southern Ocean, such that
climate-forced changes in these mechanisms could hold severe
consequences for the entire ecosystem. Because the microbial
loop plays a decisive role in the fate of organic carbon in pelagic
and benthic food webs (Azam et al., 1991; Sailley et al., 2013),
climate-driven shifts in microbial communities and processes are
very likely to have a strong impact on ecosystem carbon storage,
benthic-pelagic coupling and regional biogeochemistry (Henley
et al., 2019 and references therein).

ANTHROPOGENIC DRIVERS

Tourism
Antarctic Tourism started over 100 years ago (Headland, 1994)
but the modern trend for ecotourism started in 1950’s and the
first dedicated expedition cruise ship for the Southern Ocean
was the Lindblad Explorer launched in 19691. There was a steep
increase in shipborne tourism in Antarctic from around 100
visitors in the late 1950’s to a peak in the 2007–2008 season
of 46,000. Visitor demographics are heavily affected by global
socio-economic factors and the sharp decline following 2008 is
attributed to the world economic crisis and the International
Maritime Organization (IMO) ban on the use and carriage of
heavy fuel oil in Antarctica. Traditionally Antarctic tourism is

1www.iaato.org

seen as an emerging market due to increasing global wealth.
The industry began growing again steadily after 2011, reaching
a new peak of 55,000 visitors in 2018–2019, mostly within the
East Pacific and subAntarctic zone of the Atlantic MEASO areas,
with most passenger landings and traffic concentrated at a few
locations (Bender et al., 2016). Expedition cruising is the fastest
growing market within the entire cruise industry, with new
expedition cruise ships being built at the fastest rate in history,
suggesting that, unless disease outbreaks pause the industry in the
long term, this trend in visitor numbers is expected to continue
(high confidence).

The nature of Antarctic ecotourism is also changing with the
increased number of itineraries expanding the market to attract
more active tourists, with options to kayak, camp on the ice,
dive and snorkel with wildlife as well as skiing, including heli-
skiing2. Additionally, fly cruising options are increasing with
passengers flying into King George Island and starting their trip
from there (Bastmeijer, 2009), spending more of their trip within
the Southern Ocean. New vessels with the latest X-bow design
are expected to increase the ability to push into ice and therefore
expected to open up the West Pacific MEASO area (Ross Sea) to
more tourism (medium confidence).

Today the large majority of all tour operators operating
in Antarctica are members of the International Association
of Antarctic Tour Operators (IAATO), a self-governing body,
including all commercial SOLAS passenger ship operators
(see footnote). The association’s membership comprises 105
companies and organizations from all over the world. The
future protection of Antarctica from the impacts of human
activity requires collaboration on a global scale. To promote
effective visitor management, IAATO annually shares detailed
information on its activities with Antarctic Treaty Parties.
Without further regulation the geographic spread of visits is
virtually certain to increase.

All of these developments are highly likely to increase the
footprint of Antarctic tourism, potentially increasing the impact
on marine ecosystems, particularly through the risk of the
introduction of non-indigenous species. There are also concerns
about the risk of tourists transferring anthropengic diseases to
Antarctic seabirds. However, the greatest health concern for the
cruise ship industry are over human disease transmission within
the close quarters of cruise ships (Hill, 2019). These concerns have
been amplified by the COVID-19 pandemic and the trajectory of
SO tourism is now much less certain.

Pollutants
Many anthropogenic pollutants are resistant to environmental
degradation and can be transported from human population
sources to remote regions of the world, such as the Southern
Ocean. Heavy metals have been detected in ice core samples, with,
for example, lead from Australian mining operations appearing
at concentrations of up to 6 pg.g−1 after the start of the
industrial revolution (McConell et al., 2014). Radioactive isotopes
of elements such as chlorine (36Cl) are, also, still being released

2https://www.adventuresmithexplorations.com/cruises/antarctica/new-
expedition-ships/
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FIGURE 3 | Locations of records of non-indigenous species within the MEASO region. References cited in text and McCarthy et al. (2019). Map produced using
data from the SCAR Antarctic Digital Database.

from the cryosphere after nuclear bomb tests in the 50’s and
60’s (Pivot et al., 2019). The persistent organic pollutants (POPs;
Krasnobaev et al., 2020) and marine debris, amongst which the
plastics have become a focus for policy makers and the public
alike (Rochman et al., 2016), will be discussed in detail here.
Increase in atmospheric CO2 is covered within the previous
biogeochemistry section and the impact of CFCs are covered in
discussions about SAM/ENSO.

POPs consist of a number of different chemicals, including
polychlorinated biphenyls (PCBs), organochloride pesticides (O)
and polybrominated diphenyl ethers (PBDEs). A recent study of
these compounds in the East Pacific region found comparable
PCB and OCP concentrations to those detected 10 years earlier,
but detected PBDEs for the first time (Krasnobaev et al., 2020).

In contrast to some previous studies, there was no indication of
local sources for this pollution, e.g., from research stations (Wild
et al., 2015), rather that the pollution was highly likely to have
come from atmospheric sources (Krasnobaev et al., 2020). This
atmospheric origin is supported by the highest concentration
of POPs being recorded in the surface phytoplankton, early
in the summer, soon after the sea ice, and any snow cover
has melted (Casal et al., 2018, 2019; Krasnobaev et al., 2020).
With changes in the cryosphere, particularly the reduction in
sea ice duration, and the associated changes in phytoplankton
bloom dynamics, the seasonal pattern of POPs is projected to
become less pronounced (high confidence). Global legislation,
such as the Montreal protocol can only control chemicals that
are widely used and once their effects are clearly demonstrated.
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FIGURE 4 | Qualitative network diagram describing the linkages between the global drivers and the benthic and pelagic Southern Ocean assemblages. Northern
drivers are global drivers whose influence comes from North of the Antarctic cirucm-polar current (ACC). Contrasting effects are highlighted by separate west Pacific
(western Antarctic Peninsula) and east Pacific regional networks. Range shifts from north of the ACC (Non-indigenous species) and within the Southern Ocean are
indicated separately. An arrow head indicates a positive influence, an open circle indicates a negative influence.

TABLE 1 | Assessment of the current direction of each of the identified global drivers within the MEASO sectors, in recent times (R) and in the future (F).

Region Zone Ozone SAM ENSO Temperature Tourism Pollution Sea Ice Ice Shelves Salinity pH NIS

R F R F R F R F R F R F R F R F R F R F R F

Atlantic Ocean A + + + + + + + ? + + − ? − − − − ? − No +

S + + + + + + + + + + + − ? N/A N/A − ? − + +

N + + + + + + + + + + + N/A N/A N/A N/A − + − + +

Central Indian A + + + + + + N/A ? + + − ? No No − − ? − No +

S + + + + + + + + + N/A N/A N/A N/A − ? − + +

N + + + + + + + + + N/A N/A N/A N/A − + − + +

East Indian A + + + + + − + + + + ? No No ? − ? − No +

S + + + + + − + + + + ? N/A N/A − ? −− No +

N + + + + + − + + + N/A N/A N/A N/A − + − ? +

West Pacific A + + + + + − + + + + ? No No − − ? − No +

S + + + + + − + + + + ? N/A N/A − ? − No +

N + + + + + − + + + N/A ? N/A N/A − + − ? +

East Pacific A + + + + + + + + ? + + − ? − − − ? ? − No +

S + + + + + + + + ? + + − ? N/A N/A − + − No +

N + + + + + + + + ? + + N/A ? N/A N/A + + − No +

The assessment is drawn from the reviews in the previous text and the citations therein. + indicates an increase,− indicates a decrease, No indicated no change, ?
indicates a known uncertainty. N/A means the category is not applicable in that zone. The MEASO regions and sectors are defined in Figure 2. Full explanations behind
the assessment and references are cited in the text. Currents and eddies are not included due to large uncertainties over their future projections.
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BOX 1 | Research Gaps and Priorities.
Modeling the trajectories of climate change is one of the biggest challenges to understanding the future impacts of drivers on the Southern Ocean and a key
limitation to future projections. Whereas arctic environmental responses to climate over the last decade have been continuous and homogeneous, Antarctic and SO
changes are regional and variable (Stammerjohn et al., 2012; Parkinson, 2019), resulting in ambiguous effects when looking at the global scale.

There is also a degree of uncertainty over when tipping points will be reached (e.g., Timmermann and Hellmer, 2013; Hellmer et al., 2017). Current model predictions
for sea ice extent and duration have been poor despite the mechanisms driving sea ice formation/melting having such a profound impact on the SO (Reid and
Massom, 2015). This is typified by the retreat of tidewater glaciers and floating ice shelves and the number of icebergs that will be present to scour the sea floor. At a
certain point the trend will move from increasing to reducing numbers of icebergs being present, starting to reverse the trends in ice scour (Barnes et al., 2020).
Whether this will happen before irrecoverable change has occurred within benthic communities is hard to predict.

The very limited availability of long-term time series hinders our ability to discern between interannual/interdecadal changes and long-term trends in ecosystem shift.
It is difficult to inform policy and decision makers without a clear distinction between natural variability and global change impacts. Funding agencies must allocate
money to maintain long-term sampling programs. Continued and improved data collection through international effort to obtain standardized datasets,
developments in modeling and integrated work programs, such as the Southern Ocean Observing System (Newman et al., 2019) are allowing improved coverage
and better predictions of future drivers across the Southern Ocean. Only through funding of extended time series can trajectories of change be monitored and
tipping points be better constrained.

As with all remote regions, data coverage is better near locations with the greatest human footfall. This footfall is also higher in summer than winter. Remote sensing
from satellites and remote monitoring stations are key tools to increase the spatio-temporal coverage and improve the reliability of projections that can significantly
reduce the cost of long term sampling programs. The increase in continuous observing systems will be key to improving data coverage. Innovation, technological
advancements on autonomous vehicles and other platforms (e.g., oceanographic moorings), including the ability to measure under the seasonal ice cover and
floating ice sheets should contribute towards improving our understanding of processes occurring during the winter, and how they change in longer time-scales.

Understanding if human behavior will change, and how international treaties will limit the pace of climate change, will be key. Industrial process are developing novel
chemicals, some of these are designed to replace substances that are currently controlled, such as CFCs. However, some of these replacements, such as SF6, are
known to be potent climate gases (Widger and Haddad, 2018) which could markedly change rates of atmospheric warming. The fate of new industrial chemicals
needs to be tracked and understood so that their impacts can be determined and impacts controlled before they have major impacts.

History shows that novel industrial chemicals will continue
to be developed with a considerable time lag before they are
recognized as POPs.

Plastics are a global problem with levels in remote regions of
the Atlantic. There has been a 10 fold increase in the quantity
of plastic debris on beaches in the remote Falkland, Tristan
da Cunha, St Helena and Ascension Islands in the last decade
(Barnes et al., 2018b). The number of items increasing from
approximately 1 to 10 per meter of beach (Barnes et al., 2018b).
Large items of plastic drifting onto the Antarctic Peninsula were
first reported nearly 20 years ago (Barnes and Fraser, 2003).
These were first recognized as vectors for the introduction of
non-indigenous species but in more recent times, the break
down products of waste plastic, the micro- and nanoplastics have
become a major concern as they can affect suspension and deposit
feeders which are dominant members of the Antarctic benthos
(Waller et al., 2017; Horton and Barnes, 2020), even affecting
the immune system, as recently described in the sea urchin,
Sterechinus neumayeri (Bergami et al., 2019). A recent study has
also demonstrated effects of nanoplastics on keystone species
such as the Antarctic krill (Bergami et al., 2020). The local sources
of microplastics are discussed in the local drivers manuscript but
there is also recent evidence of global transport of microplastics
to the SO in the ocean currents and precipitation (Åslund, 2018).

BIOLOGICAL DRIVERS

Non-indigenous Species
The shallow seas of the SO and its outer lying archipelagos have
high levels of endemism in the region; up to 70% in some taxa

(David and Saucède, 2015). Here we term species not native to
the region as non-indigenous species – NIS. Its relative historic
isolation, means that it still has an almost entirely native biota
(Convey et al., 2014; de Broyer et al., 2014), and is the only
large surface environment on the planet where this is still the
case (Bax et al., 2003; Early et al., 2016). There are thought to
be many factors causing this, including its large size, historic
geographic and environmental isolation by the ACC, and long
periods of relatively constant environment (Ruiz and Hewitt,
2009). These attributes mean that NIS that are able to establish are
likely to outcompete or prey upon native biota and entire native
communities could be disrupted.

However, there are “barriers” to species movement. The Polar
Front is both semi-porous and migratory over time (Clarke et al.,
2005). Species can cross the Polar Front in short ecological time
frames in eddies and rafting as well as over longer time frames
with glaciation-interglacial shifts of ocean fronts and crawling
along the seafloor (Sands et al., 2015; Fraser et al., 2018). Recent
human activity, including increasing tourist visitation and more
widespread national Antarctic operator logistical and research
activity (Tin et al., 2014; Bender et al., 2016; Pertierra et al.,
2017), have increased the types of vectors and opportunities,
including ship hulls and plastic in the sea (Barnes, 2002; Lewis
et al., 2003, 2004). Furthermore changes in the cryosphere
and sea temperatures described above have also changed the
potential survivorship of NIS propagules in transit to the region,
their establishment and spread (Clarke et al., 2007; Turner
et al., 2009; McCarthy et al., 2019). Risk of NIS transport and
establishment in marine environments is not evenly spread
around the southern polar region (Barnes et al., 2009) and threat
levels are strongly coincident with human transport routes and
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destinations (Hughes et al., 2019; McCarthy et al., 2019). One
of the main threats is seen as the bivalve mollusc genus Mytilus
which are already well documented NIS elsewhere in the world
(Hughes et al., 2019).

Preventative/biosecurity measures have been considerably
ramped up and enforced within the last decade, including
with the production of a Non-native Species Manual by
the Committee for Environmental Protection (CEP, 2017)
and biosecurity checklists by the Council of Manager of
National Antarctic Programs (COMNAP/SCAR, 2010). Some
steps have been taken to address NIS within ballast water, with
the Antarctic Treaty Consultative Meeting and International
Maritime Organisation (IMO) having agreed ballast water
exchange protocols for ships entering the Southern Ocean
(ATCM, 2006; International Maritime Organisation Marine
Environment Protection Committee [IMO], 2007) and more
stringent internationally applicable ballast water regulations,
having entered into force in 2017, which require ships to treat
or exchange ballast water (International Maritime Organisation
[IMO], 2004). However, there is still little progress to reduce
marine NIS risk associated with hull fouling, possibly due to
the perceived expense and impact on itineraries of hull cleaning
activities. There may also be the perception that traveling though
sea ice will scour the hulls free of NIS, thereby removing the
risk, but research has shown fouling species persisting in sea
chests and water intakes ports on the ship hull (Lee and Chown,
2007; Hughes and Ashton, 2017) and many vessels operating
in polar water actively avoid sea ice, removing any potential
biosecurity benefit (McCarthy et al., 2019). Marine invasions are
harder to detect and much harder (if not impossible) to reverse
(Ojaveer et al., 2014) and effective biosecurity practices depend
more on national operator measures rather than the action of
individuals (e.g., the cost and coordinated effort required to
clean a ship’s hull).

The majority of NIS records have been in the Atlantic
and East Pacific regions where the majority of boat transits
into the Southern Ocean occur (Figure 3). For example, a
NIS marine algae (Ulva intestinalis) arrived and established at
Deception Island (Clayton et al., 1997). It has also been reported
from other frequently visited locations, Half Moon, Livingston,
Robert, Nelson, King George, Penguin and Elephant Islands
and sub-Antarctic Macquarie Island (Figure 3). There have
been concerted efforts to bring experts together for NIS risk
assessment, to identify most likely invader species and vectors
and to provide stronger prevention and management advice (Key,
2018; Roy et al., 2019), which could be usefully undertaken within
other regions of Antarctica.

New approaches to threats to native species (Morley et al.,
2019) and most likely invaders (Hughes et al., 2019) have been
through risk analysis. More than a hundred likely potential
invaders were considered, mainly likely to come from southern
South America and establish in the northern Antarctic Peninsula
and Scotia Arc locations. Mytelid mussels were highest on the
NIS risk, because they are abundant in ports, widely successful
invaders elsewhere, have survived journeys to the SO (Lee and
Chown, 2007) and tend to smother coastal life on establishment
(Hughes et al., 2019). The strength of these approaches has been

illustrated by the recently discovered population of Mytlilus cf.
platensis which settled in a shallow subtidal habitat of the South
Shetland Islands (Cárdenas et al., 2020).

Poleward movement of species to bottlenecks such as
Patagonia, South Africa and Australasia is likely to intensify over
the coming decades, increasing propagule pressure of potential
NIS (Ruiz and Hewitt, 2009). The number of vessels, people and
water-born debris set to reach the region also seems likely to
continue to increase, as does climate-mediated environmental
change (Barnes, 2002; Barnes et al., 2018b; McCarthy et al.,
2019). Consideration of the problem and preventative action have
both been stepped up for some pathways, but the challenge is
considerable and the impacts and costs of NIS can clearly be seen
in every other major non-polar environment.

Migratory Species and External Impacts
Migratory species in Southern Ocean ecosystems include
pinnipeds, cetaceans and seabirds. Many of these species travel
long distances to Antarctic and sub-Antarctic waters during the
austral summer to forage on low-trophic level prey. Migratory
species are uniquely vulnerable to changing environmental
conditions due to their long-distance travel and reliance on
a number of unique integrated factors (Leaper et al., 2006;
Tulloch et al., 2017). These include whole suites of discrete sites
remaining intact, the resources they require at those sites being
available at the right time, and the connections between sites
remaining within reach given a species’ movement capability
(Newson et al., 2009).

Migratory species moving through Southern Ocean
ecosystems face numbers of direct and indirect pressures
from changing physical environments and human activities
across their range. Within Antarctic waters, changing climate
drivers will alter productivity regimes, which will very likely
affect low trophic prey such as krill (Flores et al., 2012),
with possible flow-on effects to dependent migratory fur seal
(medium confidence; Croll and Tershy, 1998), baleen whale (high
confidence; Tulloch et al., 2019) and seabird (medium confidence;
Barbraud et al., 2012) predators that travel to Antarctic waters
to forage. Many of these species are particularly vulnerable
due to low abundances and slow population growth. Historical
commercial exploitation of migratory fur seals and whales
across the Southern Oceans pushed many species almost to
extinction. Although some heavily depleted populations of seals
and whales have begun to recover (Hucke-Gaete et al., 2004;
Tulloch et al., 2017), populations of whale species including blue,
fin and Southern rights are still well below their pre-exploitation
numbers despite international protection. Some populations of
Southern Ocean seabirds are very low numbers due to historical
fisheries interactions, and are likely vulnerable to changes in
adult mortality given their life history characteristics (high
confidence; Phillips et al., 2016).

The long distance movements of Southern Ocean migratory
species make them susceptible to other external anthropogenic
impacts, such pollution, ship strikes fishing gear interactions
diminishing food supplies, and reduced breeding habitats, all of
which can reduce population numbers or negatively affect the
fitness of an animal (Rosenbaum et al., 2014; Clapham, 2016).
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While pollutant exposure is generally low within the SO,
pollutants pose a serious risk to SO migratory species. Migratory
seabirds such as south polar skuas (Catharacta maccormicki) and
brown skua (Catharacta skua lönnbergi) have up to 20 times
higher levels of the persistent organic pollutant (polybrominated
diphenyl ethers) than endemic species that live year round
within the SO, likely due to exposure to contamination events
at lower latitudes during the non-breeding season when they
migrate northward (high confidence; Yogui and Sericano, 2009;
Corsolini et al., 2011).

Due to this exposure when outside of the SO, migratory
species likely act as vectors for transporting pollutants into the
SO (medium confidence; Yogui and Sericano, 2009; Corsolini
et al., 2011). Marine debris can also enter the Antarctic ecosystem
carried by nektonic animals such as seabirds and seals (Barnes
et al., 2004). Fur seals can become entangled on the South
American continental shelf or along populated shores (Laist,
1997; do Sul et al., 2011). During the austral winter migratory
marine biota reach lower latitudes, when seabirds ingest floating
plastics in the open ocean; on nesting areas, plastics may then be
regurgitated to chicks (medium confidence; Fry et al., 1987; van
Franeker and Bell, 1988; Wilcox et al., 2015). Greater quantities
of plastics traveling in the SO likely increase the possibility of
transport of colonists to Antarctica (medium confidence; Barnes,
2002). Terrestrial threats such as disease and predation may
affect migratory seabirds nesting on land (Phillips et al., 2016).
Introduced mammals are the foremost land-based threat to
seabirds on sub-Antarctic islands (high confidence; Jouventin and
Weimerskirch, 1991; Baker et al., 2002).

Since the early 90s, efforts conducted by the Committee
for the Conservation of Antarctic Living Marine Resources
(CCAMLR), via a series of conservation measures, have been
very successful in addressing the problem of incidental mortality,
especially seabirds, in the Convention area. However, during
migrations outside of the SO bycatch and entanglement in
fisheries gear are recognized as the most significant threat to the
survival of cetacean and seabird species and populations globally
(Read, 2008; IWC, 2010; Barbraud et al., 2012). Continued
industrialization of fisheries have led to intensification of
fishing effort in many regions (Pauly, 2009), including increased
presence of fishing gear in whale habitat (Lewison et al., 2004;
Read et al., 2006), increasing the risk of interactions with
such gear (Cassoff et al., 2011). Binding legal requirements
to reduce bycatch exist in the national legislation of many
countries. However, despite new technologies and industry
recognition of the issue, monitoring and management can
be costly, and/or ineffective, and bycatch remains a major
global problem (Tulloch et al., 2020). Unregulated or increased
longline and trawl fishing in key breeding areas for vulnerable
species of albatross (e.g., Thalassarche melanophrys, Diomedea
spp.) is likely to lead to continued population declines (high
confidence; Tuck et al., 2003; Phillips et al., 2016). Some
baleen whale populations (e.g., southern right whales in
the southeastern Pacific off Chile and Peru) are small and
endangered, and, for them, even small numbers of fisheries
gear entanglements are potentially significant (low confidence;
Reeves et al., 2013).

Other external drivers affecting SO migratory species include
vessel traffic and mining activities. Ship strike/collision can
result in injury, displacement, disturbance, and behavioral
modification (high confidence; van der Hoop et al., 2015;
Pirotta et al., 2019). The number of reported vessel strike
incidents has increased over the last 2 decades (Peel et al.,
2018), but reporting biases exist related to species identification,
spatial coverage of reports and type of vessels involved, and
quantifying the rate of occurrence of these collisions is difficult
because many incidents are not detected. Southern right whale
(Eubalaena australis) populations off South Africa and off
eastern South America (Brazil, Uruguay and Argentina) have
historically suffered high mortality due to vessel strikes (56
reported cases before 2007, high confidence; van Waerebeek
et al., 2007). Studies show likely behavioral modifications of
migratory whales including southern right and humpback
whales (Megaptera novaeangliae) with reduced foraging
and shifting of traditional use areas in response to noise
from human activities such as shipping and seismic surveys
(high confidence; Parks et al., 2007; Dunlop et al., 2010;
Blair et al., 2016).

Some migratory animal populations may also be susceptible
to diminishing food supplies in regions where fisheries are
poorly managed, or where climate change impacts may
affect lower trophic prey populations. Overfishing can have
profound implications for higher-order predators. Population-
level impacts on seabirds such as albatrosses and petrels
may occur through direct competition with fisheries for prey
(medium confidence; Croxall and Gales, 1998; Baker et al.,
2002). The level (and the effects) of competition for food
resources between seabird populations and fisheries, however,
is uncertain. Lower trophic prey such as krill are expected to
be affected by future warming oceans given climate change
(high confidence; Flores et al., 2012). It is uncertain how climate
change may facilitate or hinder the recovery of species that
forage heavily on krill or rely on stable sea-ice conditions
in rapidly warming regions of the SO (Simmonds and Isaac,
2007). Blue (Balaenoptera musculus), fin (Balaenoptera physalus)
and humpback whales that forage in mid-latitudes may be
the most at risk from climate-induced impacts on their prey
(medium confidence; Tulloch et al., 2019).

ASSESSMENT

Main Drivers and Their Interactions
The global physical and human drivers, along with their
interactions, were summarized from the proceeding text into a
qualitative network diagram (Figure 4). The Northern drivers,
those whose influence on the SO comes from North of the
region, dominate the changes happening within the SO. The
major effect of the ozone hole on atmospheric circulation and
wind strength which, in turn, have had contrasting regional
effects on the cryosphere of the West Pacific (Ross Sea) and East
Pacific (western Antarctic Peninsula) sectors of the SO, were a
consistent theme throughout the assessment. The importance
of the additive interactive effects of SAM and ENSO were
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also repeated. The other key human driver is the increase in
CO2, which is not only linked to warming, and its impact
on the cryosphere, but will also lead to ocean acidification
and affect the carbon cycle (high confidence). This is expected
to have an impact on both benthic and pelagic ecosystems
(high confidence). Unless human emissions are controlled, the
comparatively limited current impact of pollution and non-
indigenous species is expected to increase into the future
(high confidence).

Future Prognosis and Priorities
The future projections of the global drivers highlighted in
the proceeding literature review are summarized through the
assessment in Table 1. One of the main themes running
through this assessment are the large uncertainties in the
models that are used to make these projections. Only a
concerted international effort will enable these uncertainties
to be reduced (Box 1). International frameworks, working
groups and grants, such as the Antarctic Treaty System and
CCAMLR, the Southern Ocean Observing System (SOOS)
and MEASO, and the EU Rise network project CoastCarb,
are essential to ensure consistent approaches are applied
across the region.

Many of the changes in global drivers that have affected SO
marine ecosystems over recent decades were strongly linked
to the loss of atmospheric ozone since the 1970s (very high
confidence; Table 1 and Figure 4). One of the key future
uncertainties about how global drivers of SO marine ecosystems
will change, therefore, relates to the impact of the expected
reversal of the ozone hole. Will this start to reverse some of
the recent physical changes, or will global and regional increases
in temperature override this? The best estimates suggest that
within decades the global increase in temperature is highly likely
to override any cessation of warming in the Eastern Pacific
sector, particularly the Antarctic Peninsula (high confidence;
Turner et al., 2016; Rogers et al., 2020). Depending on the trend
in SAM, the reversal of the stronger winds may reduce the
cooling influence in the East Indian and West Pacific zones,
ultimately leading to warming across the whole of the SO
(medium confidence).

While the reversal of the winds may slow the shoaling
of warm water onto SO shelves (medium confidence), the
increase in global air temperatures is very likely to continue
the disintegration (giant iceberg formation) and melting of ice
shelves. The number or glaciers in retreat and their retreat
rate will further increase and many will soon reach ground
lines (very high confidence). To make predictions for sea ice
change is much less clear. The mechanisms underlying the
recent drop from near recent maximum to minimum sea
ice extent since spring 2014 including the time-scale over
which these drivers are operating, is uncertain (low confidence).
As one of the key drivers for SO marine ecosystems, and
crucial for key SO species such as krill and some top
predators, this leaves a large area of uncertainty around the
future of sea ice.

Some pollutants such as CFC’s, are subject to global
agreements, their levels are controlled and their impacts are

reversing (medium confidence). As the impact of other industrial
climate gases are identified (e.g., sulfur hexafluoride, SF6;
Widger and Haddad, 2018) research on which pollutants need
to be controlled will need to keep pace with technological
developments. However, even under the best case future emission
scenarios atmospheric CO2 will continue to increase (high
confidence), adding to global increases in temperature. CO2 will
continue to dissolve into the ocean, lowering the pH. Year round
measurements from a wider variety of locations, are required to
constrain uncertainties in the models.

Other anthropogenic drivers also have degrees of uncertainty.
Until very recently global tourism was expected to increase
in parallel with economic prosperity, however, growing health
concerns over mass tourism (Hill, 2019) have been amplified
by the COVID-19 pandemic and the trajectory of near
future SO tourism is now highly uncertain. There are also
concerns about the risk of tourists transferring anthropengic
diseases to Antarctic seabirds which may become reflected in
future recommendations of IAATO and the Antarctic Treaty
(Cerdà-Cuéllar et al., 2019).

In particular the necessity of determining between trends
that are the result of natural variability and those that are
anthropogenic or the result of climate change requires an
increased number of extended time series. Process studies, to
understand the underlying mechanisms of this variability, must
be a priority. Efforts to improve the observational records
around Antarctica are critical to understand the nature of
change around the continent and to predict the impacts on
marine ecosystems.
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