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Abstract8

Background: The clustering of data produced by liquid chromatog-9

raphy coupled to mass spectrometry analyses (LC-MS data) has recently10

gained interest to extract meaningful chemical or biological patterns. How-11

ever, recent instrumental pipelines deliver data which size, dimensionality12

and expected number of clusters are too large to be processed by classical13

machine learning algorithms, so that most of the state-of-the-art relies on14

single pass linkage-based algorithms.15

Results: We propose a clustering algorithm that solves the powerful16

but computationally demanding kernel k-means objective function in a17

scalable way. As a result, it can process LC-MS data in an acceptable18

time on a multicore machine. To do so, we combine three essential fea-19

tures: a compressive data representation, Nyström approximation and a20

hierarchical strategy. In addition, we propose new kernels based on opti-21

mal transport, which interprets as intuitive similarity measures between22

chromatographic elution profiles.23

Conclusions: Our method, referred to as CHICKN, is evaluated on24

proteomics data produced in our lab, as well as on benchmark data com-25

ing from the literature. From a computational viewpoint, it is particularly26

efficient on raw LC-MS data. From a data analysis viewpoint, it provides27

clusters which differ from those resulting from state-of-the-art methods,28

while achieving similar performances. This highlights the complementar-29

ity of differently principle algorithms to extract the best from complex30

LC-MS data.31

Keywords: Large-scale cluster analysis; Liquid chromatography; Mass-32

spectrometry; Proteomics; Wasserstein kernel; Optimal transport33
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Background1

Liquid chromatography coupled to mass spectrometry (LC-MS) constitute a2

technological pipeline that has become ubiquitous in various omics investiga-3

tions, such as proteomics, lipidomics and metabolomics. Over the past decade,4

the MS throughput has continuously improved, leading to unprecedented data5

volume production. To date, processing these gigabytes of low level MS sig-6

nals has become a challenge on its own, for a trade-off between contradictory7

objectives is sought: On the one hand, one needs to save memory and computa-8

tional time with efficient encoding, compression and signal cleaning methods [1].9

On the other hand, one needs to avoid too important preprocessing that sys-10

tematically smoothes signals of lower magnitudes, as it is now well-established11

that interesting biological patterns can be found near the noise level [2]. To12

face this challenge, a recent and efficient investigation path has been to ap-13

ply cluster analysis to LC-MS data. Cluster analysis refers to a large family14

of unsupervised statistical learning and multivariate analysis techniques which15

share a common goal: Aggregating similar data items into clusters, so that16

within-cluster similarities are larger than between cluster ones. By doing so,17

it becomes possible to consider the various clusters independently, and thus to18

reduce the computational footprint without any quality loss. Moreover, as each19

cluster contains similar data elements, it facilitates the extraction of repetitive20

but small biological patterns.21

State of the art22

To date and contrarily to the presented work, investigations have mainly fo-23

cused on clustering LC-MS data across the chromatographic (or elution time)24

dimension, i.e. when the data elements are MS spectra: MS2grouper [3, 4],25

Pep-Miner [5], PepMerger [6], the MS-Clustering / MS-Cluster / Pride-Cluster26

/ spectra-cluster series [7, 8, 9, 10], Bonanza [11], CAMS-RS [12], MaRaClus-27

ter [13], N-cluster [14], and msCRUSH [15]. All these approaches propose to28

improve peptide identification by benefiting from the aforementioned trade-off:29

By grouping similar fragmentation spectra into a consensus representation, one30

clearly reduces the data volume. Moreover, peaks corresponding to random31

noise should not reinforce between spectra, while on the contrary, small but32

chemically consistent peaks should [16].33

Clustering across the mass-to-charge ratio (m/z) dimension, i.e. when the34

data elements are chromatographic profiles (depicting the signal changes along35

the elution time at a given m/z value), is also insightful for many reasons:36

First, it proposes an original framework to construct and extract precursor37

ion chromatograms, which integration is essential for quantitative analysis [17].38

Second, cluster centroids naturally provide consensus elution profiles which are39

of interest for retention time alignment [18]. Finally, elution profiles are also40

essential to disentangle chimeric spectra [19]. Notably if the clustering is suf-41

ficiently accurate, it can be insightful to disentangle multiplexed acquisitions42

(e.g. Data Independent Acquisition [20], or DIA), without relying on spectral43

2



libraries [21, 22]. To date, these practical problems have been tackled in the1

proteomics literature by applying various heuristics which differ to some extend2

from the cluster analysis framework. For instance, in DIA-Umpire [23], peptide3

fragments’ elution profiles are clustered according to their correlations with pre-4

cursor profiles, so that formally, the approach is more that of classification (i.e.5

supervised) than of clustering (i.e. unsupervised). Similarly, in many quan-6

tification algorithms (Maxquant [24], OpenMS [25], MsInspect [26], Xnet [17])7

cluster analysis aims to extract isotopic envelopes, i.e. to group the elution8

profiles of several isotopes of a given molecule, within a closed neighborhood of9

m/z values. As a consequence, two identical profiles in different m/z regions10

are not grouped together. Although this behavior (that will be referred to as11

the envelope assumption simplification in the rest of the article) concurs with12

the objective of isotopic envelope reconstruction, it makes the heuristic strongly13

attached to one objective; and non applicable to other cluster analysis problems.14

In contrast, we believe generic clustering algorithms would also be of interest,15

as different tuning would make them appropriate to deal with different objec-16

tives: e.g. by adding must-link/must-not-link constraints [27] so as to guide17

the demultiplexing task as in the DIA-Umpire case; or by incorporating an m/z18

difference in the similarity definition, in the case of isotopic envelope extraction;19

and so on.20

Moreover, a refine analysis of the algorithms underlying all these (either21

spectrum or chromatogram) clustering techniques let appear a strong filiation22

between them: All rely on agglomerative and linkage-based methods, be it pre-23

viously published algorithms (HAC [28, 29], DBSCAN [30] or UPGMA [31]) or24

ad-hoc procedures developed in the specific context of LC-MS data clustering25

(proposed in MS2grouper, Pep-Miner, PepMerger, the MS-Cluster series, Bo-26

nanza, CAMS-RS, N-cluster and XNet). Despite their unquestionable efficiency,27

some diversity would help. Cluster analysis is as much an art as a science [32]28

and there does not exist such thing as the perfect clustering – at least, on real29

data. Most of the time, data analysts need to rely on a toolbox of various al-30

gorithms to extract the best of their data [33]. With this respect, MS-based31

omics would benefit from differently principled and complementary algorithms32

which have demonstrated their efficiency in data science [34]. For instance,33

spectral clustering [35, 36, 37] (which should not be confused with the cluster34

analysis of mass spectra [38]), mean shift algorithm [39, 40], and variants of the35

k-medoids [41] and k-means [42, 43] are of prime interest.36

Finally, one observes a difference between algorithms dedicated to spec-37

trum clustering and those dedicated to chromatogram clustering: While the38

former ones are mainly implemented in an independent manner, the latter ones39

are all embedded in computational pipelines (DIA-Umpire [23], Maxquant [24],40

OpenMS [25], MsInspect [26]). The only exception is Xnet [17], which makes it41

a unique literature reference for algorithmic and low-level comparisons. In addi-42

tion, Xnet is the most recently published algorithm, and it displays interesting43

performances on a benchmark dataset.44

In a nutshell, Xnet is a Bayesian algorithm which aims to cluster elution45

profiles into isotopic envelopes. More precisely, it starts from the construction46
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of a network with chromatograms as nodes. Then, the network is decomposed1

into preliminary clusters. The edges within each cluster are scored by estimating2

the likelihood of two parameters: the correlation between chromatograms and3

their m/z separation. Finally, the edge validation is carried out using the scores4

and a chromatogram apex match verification. This leads to the final isotopic5

envelope construction.6

Xnet has many strengths: First, it is a parameter free clustering method7

– the number of clusters can be inferred during the learning process. Second,8

the time complexity of the algorithm is linear with respect to the number of9

chromatograms in the data. However, it also has weaknesses: First, it cannot10

work on raw data and requires an important preprocessing step, referred to as11

ion chromatogram extraction, which denoizes the LC-MS map and aggregates12

independent measurements into well-formed traces (i.e. lists of peak intensities13

corresponding to a same ion, identified in consecutive mass spectra). Concretely,14

starting from a raw file, it is first necessary to extract non trivial information15

and to store them into an input CSV file with the following columns: m/z ratios,16

retention times, intensities and trace labels. In addition to be time consuming,17

it can arguably be considered that excluding the trace construction from the18

algorithm amounts to transferring a bottleneck question to another preliminary19

processing, or to a human annotator. Second, it strongly relies on the envelope20

assumption simplification, making it impossible to group elution profiles which21

m/z difference exceeds a predefined threshold. The third weakness is related22

to the generalization capabilities: As acknowledged in [17], there is not enough23

data to accurately train the probability model underlying Xnet, making it nec-24

essary to complement it with a Bayesian prior. This obviously questions the25

applicability to datasets that significantly differ from the ones that served to26

tune the prior. Finally, Xnet does not provide a consensus chromatogram for27

each cluster: Its output is a CSV file that only assigns a cluster index to each28

line of the input CSV file.29

Objectives and contributions30

The objective of this article is twofold: First is to propose a new cluster analysis31

pipeline adapted to the challenging problem of clustering multiplexed chromato-32

graphic profiles resulting from data independent acquisitions. The second ob-33

jective is to build this pipeline around an algorithm which is not agglomerative34

and linkage-based. Concretely, we focused on k-means objective function, for35

two reasons: First, until recently, it was considered by the proteomics commu-36

nity as non-applicable to data as big as LC-MS data [7], while recent theoretical37

progresses have made this scaling-up possible [44] (this explains the historical38

predominance of agglomerative linkage-based clustering, less computationally39

demanding); Second, k-means can be reformulated to fit the reproducing ker-40

nel Hilbert space theory [45] (leading to the so-called kernel k-means frame-41

work [46]), which provides new opportunities to define similarity measures that42

capture the biochemical specificities of LC-MS data (a challenge that has consis-43

tently been pinpointed as essential over the last fifteen years [3, 5, 6, 11, 12, 13]).44
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The contributions of this article are the following: First, it introduces the use1

of Wasserstein-1 (W1) distance (a.k.a. earth mover’s distance, a.k.a. optimal2

transport distance) to account for similarities between elution profiles. Second,3

it shows that combining Nyström method and random Fourier features leads4

to adramatic data compression level that makes the k-means objective function5

minimizable on raw and high resolution proteomics data with a multi-core ma-6

chine. Finally, it demonstrates the applicability and interest of the method to7

process proteomics data from DIA experiments.8

Methods9

Materials10

To conduct our study, we have relied on three datasets. The first one, hereafter11

referred to as UPS2GT, is a publicly available dataset [23]. To be used as a12

benchmark for Xnet, this dataset had been preprocessed and manually anno-13

tated with isotopic envelopes that can serve as ground truth [47]. Moreover,14

the data had been converted into centroid mode, i.e. a compressed version of15

the original profile data. In the profile mode, each peak of the mass spectrum16

is represented by intensities reported for several consecutive m/z values, so as17

to account for the measurement imprecision. In contrast, the centroid mode18

summarises all the values of the profile mode into a single m/z value, located19

at the center of the measurement distribution. It leads to significantly smaller20

memory footprint, at the price of blurring the differences between true signal21

and noise.22

The second dataset, hereafter referred to as Ecoli-DIA, is the raw output of23

a DIA analysis of an Escherichia Coli sample (containing over 15,000 peptides124

which signals are multiplexed). To avoid any distortion or information loss, it25

was stored using the profile mode. The resulting file has an important memory26

footprint of 3.6 GB. Thus, even though chromatogram clustering operates on27

fraction of the data only (the so-called MS1 acquisitions, see Ecoli datasets:28

Data preparation section), it requires adapted software tools and methods.29

Finally, to account for the rapid increment of data size in proteomics (re-30

sulting from using ever longer LC and ever more resoluted MS acquisitions),31

we have considered a third dataset, exactly similar to the Ecoli-DIA dataset,32

but acquired as Full-MS instead of as DIA. This means that 100% of the acqui-33

sition time was dedicated to MS1 signals, so as to mimick the extraction of a34

much larger DIA dataset resulting from more time- and m/z-resoluted acqui-35

sitions. This so-called Ecoli-FMS dataset has a memory footprint of 3.2 GB.36

Even though of equivalent size, this dataset is in fact 16 bigger than Ecoli-DIA37

(four times more MS1 spectra which are four times more resoluted), see Ecoli38

datasets: Data preparation section.39

1We consider that a peptide is characterized by a triplet: its amino acid sequence, a list of
post-translational modifications and their localization on the sequence. Accordingly, different
isotope measurements can be grouped into a single peptide definition.
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UPS2GT benchmark dataset1

The UPS2GT dataset [47] resulted from the liquid chromatography coupled to2

mass spectrometry analysis of 48 human proteins of the Proteomics Dynamic3

Range Standard (UPS2) on a AB Sciex TripleTOF 5600 instrument using data4

dependent acquisition with an MS1 ion accumulation time of 250 ms [23].5

The 28,568,990 detected points in the resulting LC-MS map were anno-6

tated according to their intensity value, either as informative or as noisy. Over7

1,2 million informative points were segmented into 57,140 extracted ion chro-8

matograms referred to as traces. Then, the traces were grouped into 14,0769

isotopic envelopes. These envelopes constitute the dataset ground truth (there-10

fore, the objective of the clustering task would be to re-build the envelopes from11

the traces). The final fully annotated data were stored in a CSV file, where each12

row depicts one LC-MS point with four pieces of information: its mass to charge13

ratio, retention time, intensity, trace label and envelope label. The points that14

were assumed noise were given -1 or 0 as trace label.15

Ecoli datasets: wet-lab analysis16

Escherichia Coli bacteria were lysed with BugBuster reagent (Novagen, final17

protein concentration 1µg/µL). Around 560 µg of proteins were stacked in the18

top of a 4 - 12% NuPAGE ZOOM gel (Life Technologies) and stained with R-19

250 Coomassie blue. Gel was manually cut in pieces before being washed by six20

alternative and successive incubations in 25 mM NH4HCO3 for 15 min, followed21

by 25 mM NH4HCO3 containing 50% (v/v) acetonitrile. Gel pieces were then22

dehydrated with 100% acetonitrile and incubated with 10 mM DTT in 25 mM23

NH4HCO3 for 45 min at 56 ◦C and with 55 mM iodoacetamide in 25 mM24

NH4HCO3 for 35 min in the dark. Alkylation was stopped by the addition of25

10 mM DTT in 25 mM NH4HCO3 (incubation for 10 min). Gel pieces were then26

washed again by incubation in 25 mM NH4HCO3 followed by dehydration with27

100% acetonitrile. Modified trypsin (Promega, sequencing grade) in 25 mM28

NH4HCO3 was added to the dehydrated gel pieces for incubation at 37 ◦C29

overnight. Peptides were extracted from gel pieces in three sequential extraction30

steps (each 15 min) in 30 µL of 50% acetonitrile, 30 µL of 5% formic acid, and31

finally 30 µL of 100% acetonitrile. The pooled supernatants were aliquoted and32

dried under vacuum.33

The dried extracted peptides were resuspended in 5% acetonitrile and 0.1%34

trifluoroacetic acid and 500ng were analyzed by online nanoliquid chromatogra-35

phy coupled to tandem mass spectrometry (LC-MS/MS) (Ultimate 3000 RSLC-36

nano and the Q-Exactive HF, Thermo Fisher Scientific). Peptides were sampled37

on a 300 µm 5mm PepMap C18 precolumn (Thermo Fisher Scientific) and sep-38

arated on a 75 µm 250 mm C18 column (Reprosil-Pur 120 C18-AQ, 1.9 µm, Dr.39

Maisch HPLC GmbH). The nano-LC method consisted of a 120 minute multi-40

linear gradient at a flow rate of 300 nl/min, ranging from 5 to 41% acetonitrile41

in 0.1% formic acid. The spray voltage was set at 2 kV and the heated capillary42

was adjusted to 270◦C. For the Ecoli-FMS dataset, survey full-scan MS spectra43
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(m/z from 400 to 1,400) were acquired with a resolution of 240,000 after the1

accumulation of 3 · 106 ions (maximum filling time 200 ms). For the Ecoli-DIA2

dataset, survey full-scan MS spectra (m/z from 400 to 1,400) were acquired with3

a resolution of 60,000 after the accumulation of 3 · 106 ions (maximum filling4

time 200 ms) and 30 successive DIA scans were acquired with a 33Th width and5

a resolution of 30,000 after the accumulation of 2 · 105 ions (maximum filling6

time set to auto). The HCD collision energy was set to 30%. MS data were7

acquired using the software Xcalibur (Thermo Fisher Scientific).8

Ecoli datasets: Data preparation9

The output of the LC-MS/MS experiments were converted from the proprietary10

RAW format into mzXML files using ProteoWizard [48]. It led to files of 11.411

GB (Ecoli-DIA) and of 10.2 GB (Ecoli-FMS), containing several pieces of infor-12

mation: discretized spectra under the form of coupled lists of m/z and intensity13

values; as well as metadata about the experiment (number of spectra, retention14

time range, etc).15

In the case of the Ecoli-FMS dataset, all the spectra are peptide mass spec-16

tra, also termed MS1. However, the Ecoli-DIA datasets contains two types of17

spectra: precursor spectra (MS1) and fragmentation spectra (MS2). Thus, to18

work on the elution profiles, we have extracted the MS1 signals from the Ecoli-19

DIA file. Then, for both files, we have reconstructed chromatographic signals20

from MS1 spectrum intensities. As the proposed method aims to work on data21

as raw as possible (i.e. without preliminary denoising, smoothing and so on),22

we converted each mzXML file into an intensity matrix such as the ones of23

Figure 1A (Ecoli-DIA) and of Additional File 1 (Ecoli-FMS), where each row24

corresponds to a spectrum and each column to an elution profile (despite pos-25

sible m/z fluctuations that may hamper the signal continuity). We concretely26

constructed each data matrix using the LC-MS analysis time-stamps and a27

non-uniform sampling of the m/z range (see Additional File 2 for a detailed28

description). Concretely, the resampled m/z values are given by the following29

recursive formula:30

mi+1 −mi =
0.015

Res
EXP

m
3
2
i , (1)

where mi is the ith sampled m/z value and Res
EXP

is the instrument resolution31

used in the experiment (Res
FMS

= 240, 000 and Res
DIA

= 60, 000). Finally, we32

have linearly interpolated the intensity values at each node mi of the grid:33

Ii = Ileft + (mi −mleft) ·
Iright − Ileft
mright −mleft

, (2)

where m and I pairs with sub-indexes ”left”, ”right” refer the left and right34

neighboring peaks. This is followed by the deletion of the few empty columns.35

The resulting Ecoli-DIA data matrix is depicted in Figure 1A: it contains around36

3,300 rows and 190,000 columns and it has a footprint of 4.8 GB. As expected,37

the Ecoli-FMS data matrix (Additional File 1) is bigger: 14,000 rows, 700,00038
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columns and 82 GB. The bar plots in the margins of both figures represent the1

intensity distribution across the matrix columns and rows. They show that the2

Ecoli-FMS and Ecoli-DIA matrices have the same structure and intensity range,3

despite different size.4

Methodology overview5

The proposed methodology is composed of three consecutive parts, hereafter6

detailed:7

1. Profile similarity definition:8

As frequently discussed in the literature [3, 5, 6, 11, 12, 13], the choice9

of a similarity measure that reflects the biochemical semantics of LC-MS10

data is essential to achieve efficient processing. In this article, we relied on11

Wasserstein-1 distance [49, 50][51] (or W1, detailed in the Metric choice12

section) and we transformed it into a similarity by applying a negative13

exponential function: If xi and xj are two chromatograms (or columns14

from the data matrix), their similarity thus reads:15

k(xi, xj) = e−γ·[dW1
(xi,xj)]

p

(3)

where dW1
is the W1 distance and where γ is a neighborhood parameter,16

which tuning authorizes up/down scaling the similarity values. The use17

of a similarity measure of the form of a negative exponential of a distance18

is convenient, since it makes it possible to apply the kernel trick [52] (see19

Kernel trick section), i.e. to apply a machine learning algorithm as if it20

were operating in a so-called feature space (depicting a non-linear data21

transform which respects the semantic of the chosen similarity measure).22

2. Data compression: Applying the kernel trick can be rather computa-23

tionally demanding: For a dataset of size N , it requires the computation24

of a kernel (or similarity) matrix of size N ×N . Thus, with between 10525

and 106 chromatograms in the Ecoli datasets, computing and storing the26

kernel matrix is simply not tractable. The purpose of Nyström method [53]27

(see Nyström approximation section) is to replace the kernel matrix by a28

low rank approximation, as illustrated in Figure 1B. By relying only on29

the similarities between each data element and a randomly selected sub-30

set, it provides a dramatic reduction of the computational burden at the31

price of a small and controlled loss of accuracy. Even though Nyström32

approximation allows for an efficient computation of the kernel matrix, it33

does not accelerate the clustering algorithm itself, which requires multiple34

traversing of the entire dataset (i.e. N elements). To cope for this, it35

has recently been proposed in the compressive learning framework [54] to36

summarize the entire dataset by a relatively small vector of fixed size, re-37

ferred to as data sketch, and to have the algorithm operating on his sketch38

only, irrespective of the original data. Concretely, we built the data sketch39

as an average of random Fourier features of the chromatographic profiles40

in the feature space (see Random Fourier feature sketching section).41
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3. Cluster and centroid definitions: Lloyd algorithm [55] (i.e. the most1

classical algorithm to cluster data according to the k-means objective2

function) cannot directly be applied on sketched data. Fortunately, it3

is possible to rely on the Compressive k-means (CKM) algorithm pro-4

posed in [56] (see Cluster computations section). However, CKM only5

returns a set of cluster centroids and does not cluster the data per se.6

Therefore, traversing the entire (original) dataset to perform the assign-7

ment of each chromatogram to its closest centroid (according to the W18

distance) is necessary (see Cluster assignment section). CKM complexity9

does not depend on the original data size (as it operates on the data sketch)10

which makes it well-scalable. However, its complexity grows rapidly with11

the number of clusters, which is an issue as thousands of clusters can be12

sought in LC-MS data. To cope for this, we implemented a hierarchical13

clustering scheme, where each cluster is recursively divided into a small14

number of sub-clusters until the desired number of clusters is obtained (see15

Cluster assignment section). This procedure provides a set of clusters with16

centroids only defined in the feature space. To recover the corresponding17

consensus chromatograms, one has to solve a pre-image problem. We prac-18

tically did so by computing the mean of the elution profiles neighboring19

each centroid (see Pre-image computation section).20

To the best of the authors’ knowledge, this work is the first one to combine21

Nyström method and compressive learning with random Fourier features on22

a problem as difficult as the clustering of LC-MS data, which combines high-23

dimensionality and a very large number of potential clusters in addition to the24

traditional difficulties of raw biological data (non-linearities, low signal-to-noise25

ratio, etc.). From this point on, we refer to the proposed method as CHICKN26

(standing for Chromatogram HIerarchical Compressive K-means with Nyström27

approximation).28

Profile similarity definition29

Metric choice30

Originally, the Wasserstein-1 (W1) metric was defined to compute optimal trans-31

port strategies, which explains why it is also referred to as the earth mover’s32

distance. It has witnessed a recent gain of interest in machine learning as an ef-33

ficient way to measure a distance between two probability distributions [57, 58]:34

Essentially, if one sees probability distributions as earth heaps, the most energy35

efficient way to move one earth heap in place of the other makes an interest-36

ing distance estimate. In this work, we leveraged a similar analogy between an37

earth heap and a chromatographic elution profile. Concretely, this approach38

is insightful since it accounts for two distinct components of what makes chro-39

matographic elution profiles similar or not: their time separation as well as their40

difference of shape. Let us also note that this distance has recently been applied41

to LC-MS data, yet, to spectra rather than to chromatograms [51].42
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In general, the W1 distance between distributions P and Q is computed by1

solving Kantorovitch minimization problem, namely:2

dW1
(P,Q) = inf

ξ∈J (P,Q)

∫
‖x− y‖dξ(x, y) (4)

where J (P,Q) denotes all joint distributions ξ(x, y) that have marginals P, Q.3

However, in the 1-dimensional discrete setting where distributions P and Q are4

replaced by chromatograms x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn, the5

W1 distance boils down to a difference between empirical cumulative functions:6

dW1(x, y) =

n∑
j=1

|Fx(j)− Fy(j)|, (5)

where Fx(j) =
∑
i≤j

xi
n∑
k=1

xk
is the jth component of the cumulative distribution7

function of chromatogram x.8

Kernel trick9

Converting distances between data vectors into similarities by means of a nega-10

tive exponential function is a good way to derive a similarity measure endowed11

with the positive semi-definite (or PSD) property2. This property is essential12

to the application of the kernel trick [59], which notably explains why kernels13

of the form k(xi, xj) = e−γ·[d2(xi,xj)]
p

, with p = 1 (the Laplacian kernel) or14

p = 2 (the Gaussian kernel) and with d2 depicting the Euclidean distance are15

classically used.16

Concretely, let X = [x1, . . . , xN ] ∈ Rn×N be the data matrix composed of17

N chromatograms. The kernel trick actually consists in using the similarity18

measure to implicitly map the data onto a feature space that better represents19

them. The mapping is deemed ”implicit” as it does not require the computation20

of coordinates of the data point images Φ = [φ(x1), . . . , φ(xN )], where φ denotes21

the mapping function. Two conditions must be met for this trick to work: First,22

the algorithm must rely on similarity measures only (i.e. once the similarities23

are computed, the values of the xi’s are not used any more). Second, the24

similarity measure reproduces the inner product of the feature space: k(x, y) =25

〈φ(x), φ(y)〉. According to Mercer’s theorem [60], any PSD similarity measure26

satisfies the second condition. From that point on, we refer to K = ΦTΦ =27

[k(xi, xj)]i,j=1,...,N as the kernel matrix.28

However, when using a distance like dW1
, which does not derive from a29

norm inducing an inner product on the data space (like for instance d2), then30

the PSD-ness is not guaranteed [61]. In this work, we have investigated both the31

Laplacian W1 and the Gaussian W1 kernels: While we exhibit a formal proof32

2Positive semi-definiteness or PSD-ness, means the resulting similarity matrix will have
only non-negative eigenvalues (if the eigenvalues are positive, the matrix is called positive
definite or PD, see Additional File 3, Section 1).
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of the Laplacian W1 kernel PD-ness (see Additional File 3, Section 3), we only1

have empirical evidence in the Gaussian case (see Additional File 3, Section 2).2

As in practice, both kernels lead to similar ranks in pairwise similarities, the3

resulting clusters only marginally differ. Owing to its popularity in life science4

applications, as well as to its easier tuning (interpretation and stability of the5

hyperparameter) the article thus focuses on the Gaussian case. Notably, as6

computational costs are necessarily higher with p = 2 than p = 1, the displayed7

runtimes are an upper bound for both cases. However, for qualitative analysis,8

results with p = 1 are also depicted in various additional files (see below).9

Data compression10

Nyström approximation11

Brute force computation of a kernel matrix has a quadratic complexity, so that it12

does not easily scale-up. To cope for this, a classical solution is to apply Nyström13

approximation. This approach relies on the fast decaying property of the ker-14

nel spectrum (the set of kernel matrix eigenvalues): the smallest eigenvalues15

of the kernel matrix can safely be removed (intuitively, alike principal compo-16

nent analysis). Concretely, one approximates the kernel matrix K ∈ RN×N as17

following:18

K ≈ CW−1C>, (6)

with C = KP ∈ RN×l and W = P>KP ∈ Rl×l, where P ∈ RN×l is constructed19

from an N × N identity matrix where (N − l) randomly selected columns are20

removed. The larger l, the better the approximation, but the heavier the com-21

putations. Finally, according to [53], an additional rank-s truncated singular22

value decomposition (SVD) is of interest to increase numerical stability. This23

leads to Algorithm 1, which complexity3 is O(N · n · l +N · l2).

Algorithm 1 The rank restricted Nyström kernel approximation from [53]

1: Input: data set X ∈ Rn×N , similarity measure k(·, ·), Nyström sample size
l, intermediate rank r, target rank s.

2: Construct a random sample: {xp1 , . . . , xpl} ∈ Rn×l
3: Compute matrix C and W: C = {k(xq, xpj )} q=1,...,N

j,=1,...,l
, W =

{k(xpi , xpj )}i,j,=1,...,l.
4: Perform r-truncated SVD of W : Wr = UrDrU

>
r .

5: Approximate matrix as K ≈ CW−1r C> = CUrD
−1
r U>r C

> = RR>, where
R ∈ RN×r.

6: Perform s-truncated SVD of R: R = UsΣsV
>
s .

7: Output: Matrix approximation K ≈ Φ̃>Φ̃ = UsΣ
2
sU
>
s .

24

3As a recall, O(f(n)) indicates that with an input data of size n, the running time will not
exceed C.f(n) where C is a constant factor (i.e. independent of n).
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It provides the following approximation of the kernel matrix: K ≈ Φ̃>Φ̃1

where the matrix Φ̃ =
[
φ̃(x1), . . . , φ̃(xN )

]
is obtained by applying the fea-2

ture mapping φ̃(xi) = (λ1u1i, . . . , λsusi), where λj and uji, j = 1, . . . , s and3

i = 1, . . . , N are the s highest eigenvalues and eigenvectors (columns of matrix4

Us) of K (see Algorithm 1). Moreover, it is demonstrated in [62] that the ap-5

proximation accuracy is guaranteed when Nyström sample size l is on the order6

of
√
N . It was also shown in [53] that the target dimension s scales to O(

√
l · k),7

where k is the number of clusters, and the intermediate rank r is equal to l
2 .8

Random Fourier feature sketching9

The sketching procedure of [54] is closely related to random Fourier features [63]10

, which seminal idea is to rely on Bochner’s theorem [64] to approximate any11

shift-invariant (i.e. k′(x, y) = κ(x − y)) PD kernel (by leveraging the fact it is12

a Fourier transform of some non-negative measure µ):13

k′(x, y) = Ew∼µ
(
e−iw

>(x−y)
)
. (7)

Elaborating on this, [54] proposed to apply a similar random Fourier map14

ϕ(x) =
1√
m

[
e−iw

>
j x
]m
j=1

, (8)

(where Fourier frequencies w1, . . . , wm are randomly sampled from some dis-15

tribution Ω) and to average it over all data points to approximate the data16

distribution itself, instead of the kernel. Concretely, applying ϕ(·) onto the17

Nyström extended data Φ̃ (that is Z = [ϕ(φ̃(x1)), . . . , ϕ(φ̃(xN ))] ∈ Cm×N ), led18

us to computing the data sketch as:19

SK(Φ̃) =
1

N
√
m

[
N∑
i=1

e−iw
>
j φ̃(xi)

]m
j=1

∈ Cm (9)

The critical step of this data compression method lies in the frequency distri-20

bution estimation. It has been empirically shown in [54] that Ω = N (0, 1
σ2 I)21

is a suitable choice for it mimicks well the fast decaying property of real life22

signals. Then, σ2 can be estimated from a small data fraction using nonlinear23

regression. Applying this frequency distribution law allows to promote more24

informative sketch components and to eliminate small sketch values, which are25

usually related to noise. The key computational benefit of the compression is26

the independence between the data sketch length m and the data size N : m27

should be of the order of k · s [54], where s is the target dimension in Nyström28

approximation and k is the number of clusters.29

12



Cluster and centroid definitions1

Cluster computations2

CKM (the compressive implementation of the k-means clustering presented3

in [56]) can be used to compute the cluster centroids from the data sketch4

SK(Φ̃) introduced in Eq. (9). Briefly, and in contrast with classical Lloyd’s5

algorithm, it is a greedy heuristic based on orthogonal matching pursuit, which6

searches for a data representation as a weighted sum of cluster centroids by7

minimizing the difference between corresponding sketches:8

‖SK(Φ̃)−
k∑
i=1

αiSK(ci)‖22 (10)

The CKM involves two main steps summarized in Algorithm 2. First, across9

several iterations, it alternates between expanding the cluster centroid set with10

a new element, whose sketch is the most correlated to the residue; and recom-11

puting the centroid weights using non-negative least-squares minimization. The12

second step consists in the global minimization of (10) with respect to cluster13

centroids and their weights.

Algorithm 2 Compressive k-means from [56]

1: Input: data sketch SK(Φ̃), frequency set w1, . . . , wm, the number of cen-

troids k, lower and upper bounds lb, ub of data Φ̃.
2: Initialization: r = SK(Φ̃), C = ∅
3: for t ← 1 to 2k do
4: Find new centroid: c = arg max

lb≤c≤ub
<
〈
r, SK(c)
‖SK(c)‖

〉
5: Expand centroid set: C = {C, c}
6: if t > k then

7: β = arg min
β≥0
‖SK(Φ̃)−

|C|∑
i=1

βi
SK(ci)
‖SK(ci)‖‖

2

8: Choose centroids with k largest weights C = {cβi1 , . . . , cβik }
9: end if

10: Project to find weights: α = arg min
α≥0
‖SK(Φ̃)−

|C|∑
i=1

αiSK(ci)‖2

11: Global optimization: C,α = arg min
lb≤ci≤ub
α≥0

‖SK(Φ̃)−
|C|∑
i=1

αiSK(ci)‖2

12: Update residue: r = SK(Φ̃)−
|C|∑
i=1

αiSK(ci)

13: end for
14: Output: C ∈ Rs×k and α1, . . . , αk.

14
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Cluster assignment1

The CKM algorithm only provides the cluster centroids and does not assign data2

points to clusters. Nevertheless, this can be achieved afterwards by finding the3

centroid which has the highest similarity value to each data point. Concretely,4

a cluster centroid c in the feature space can be defined using Nyström extension5

as follows:6

c ≈ φ̃(y) = Σ−1s UTs kc (11)

where y is a cluster centroid in the input (chromatograms) space, and where7

kc = [k(x1, y), . . . , k(xN , y)] is an unknown vector of similarities between y and8

all given chromatograms. The columns of matrix Us contain s eigenvectors of9

K corresponding to its s highest eigenvalues (the diagonal matrix Σs). The10

estimation of kc can be achieved by minimizing the difference between c and11

φ̃(y):12

min
y∈Rn

∥∥∥∥Σ−1s UTs kc −
c

‖c‖

∥∥∥∥2 (12)

The importance of the normalization term in (12) has been highlighted in [65]13

as an energy-preserving term to balance Nyström approximation. The solution14

of (12) can be found using the Moore-Penrose pseudo-inverse:15

kc ≈ UsΣs
c

‖c‖
≈ Φ̃T

c

‖c‖
. (13)

Finally, the chromatographic profile xi, i = 1, . . . , N is associated to cluster j16

if17

cj = arg max
c∈{c1,...,ck}

〈
φ̃(xi),

c

‖c‖

〉
(14)

The most important CKM feature is its constant execution time regardless18

of the data size. However, its computational complexity grows cubically with19

the number of clusters, so that it is not realistic to process LC-MS data where20

tens of thousands of clusters are classically expected. To cope for this, a divi-21

sive hierarchical scheme can be instrumental: Starting from a small number of22

clusters, one iteratively splits each cluster into k sub-clusters until a sufficiently23

large number of clusters ktotal is achieved. However, this strategy requires, for24

each independent call of the clustering algorithm, an update of the data sketch25

as well as a complete assignment to clusters. Thus, to practically improve its26

computational efficiency, we leveraged the expected decrease of the cluster size27

at each iteration to optimize the code, and we decided to compute all the data28

sketches from the same frequency samples, either on the entire dataset (at first29

step) or on the cluster to be re-clustered (at the following iterations). Finally, it30

appeared these repetitive computations of the cluster sketches and assignments31

did not hamper the efficiency of the whole process.32

Pre-image computation33

The combination of Nyström approximation and of random Fourier features34

leads to an additional difficulty: To recover the signal of each consensus elution35
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profile, it is necessary to compute its reverse mapping from the feature space1

back to the input space. This is referred to as a pre-image problem and it is ill-2

posed: only an approximation of the cluster centroids in the input space can be3

obtained. The conventional fixed point iteration method [66] cannot be applied4

due to the use of the W1 distance. Similarly, the reconstruction of a consensus5

chromatogram as the mean of the cluster chromatograms is not adapted, due to6

large scale non-linearities between the input and feature spaces, as illustrated7

in Figure 1C.8

To correct for this, we decided to compute a local (i.e. small-scale) mean9

by considering only a subset of the closest chromatograms. To determine the10

cluster centroid neighbourhood N (c), we proceeded similarly to the cluster as-11

signment step, by choosing the chromatograms in the cluster J (c) with the12

highest similarities to the cluster centroid:13

N (c) = {x1, . . . , xq} ⊂ J (c) | k(c, x) > k(c, y) ∀x ∈ N (c), y ∈ J (c) \ N (c),
(15)

where similarities k(c, ·) were estimated using Eq. (13). Concretely, N (c) was14

defined by selecting the q closest neighbors (so that q = |N (c)|). The tuning15

of parameter q is discussed with that of other parameters in the Parameter16

tuning section.17

Performance metrics18

For experiments annotated with a ground truth (like UPS2GT dataset), clus-19

tering accuracy can be evaluated with the Rand index (RI). The Rand index20

measures the percentage of correctly clustered pairs of signals over the total21

number of pairs. Let us denote as U = {U1, . . . , Uk} the obtained clusters and22

as V = {V1, . . . , Vq} the ground truth clusters. A pair of signals is considered23

as correctly clustered: true positive (TP) or true negative (TN), if signals are24

assigned to the same cluster in U and V or on the contrary, to different clusters25

in U and V . A pair of signals is called false positive (FP) (resp. false negative26

(FN)), if signals are grouped in U (resp. V ) but not in V (resp. U). Then, the27

Rand index is given by:28

RI =
TP + TN

TP + TN + FP + FN
(16)

The maximum value of the Rand index is 1 (perfect match with the ground29

truth). Additionally, it is possible to evaluate how often different chromatograms30

are grouped in the same cluster; and how often similar chromatograms were as-31

signed to different clusters. To do so, one classically relies on the Precision and32

Recall metrics, respectively:33

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(17)

For datasets without ground truth annotation (like both Ecoli datasets), it34

is possible to rely on the Davies - Bouldin (DB) index. Let us denote as J (cj)35

15



the jth cluster with the cluster centroid cj , and as {J (c1), . . . ,J (ck)} the set1

of obtained clusters. The within cluster distance reads:2

Sj =
1

|J (cj)|
∑

xi∈J (cj)

dW1(xi, cj) (18)

The DB index is defined through the ratio of the within cluster distances to the3

between cluster distance dW1
(ci, cj):4

DB =
1

k

k∑
i=1

max
i 6=j

Si + Sj
dW1(ci, cj)

, (19)

It should be noted that the distance metric in the DB index and in the clus-5

tering algorithm must be the same, in our case the W1 distance in the original6

space. Moreover, the smaller the DB index, the better the clustering (as a good7

clustering minimizes cluster overlaps).8

Finally, the computational load can easily be approximated by the recorded9

execution time, i.e. the difference between the end and start times, both of10

which being accessible in R with the Sys.time() function. For sake of brievety,11

execution times are reported for the Gaussian W2 kernel only, as Laplacian12

similarities are necessarily faster to compute (no squared distance to evaluate).13

Results14

Objectives of the experimental assessment15

Many independent elements deserve evaluations: The first one is the practi-16

cal interest of W1 distance in the context of LC-MS data. The second one is17

the computational load of our complete algorithm in function of the parame-18

ter tuning (on the one hand, an efficient compression technique is used; on the19

other hand, one targets the clustering of raw data into a high number of clus-20

ters, making its efficiency a challenge). The third one is the clustering result21

itself. However, a classical evaluation of the clustering performances will be of22

little interest: In fact, all k-means related algorithms (including their kernel-23

ized versions) have been extensively studied [44], so that their strengths and24

weaknesses are now well-documented. For instance, k-means optimizers can25

easily be trapped into local minima and cannot naturally deal with outliers,26

which are both significant drawbacks; however, they scale up well to very-high27

dimensional data, which definitely is an asset for LC-MS applications. In con-28

trast, highlighting the differences of our approach with respect to linkage-based29

agglomerative clustering and showing that despite noticeable differences, one30

obtains clusters which are meaningful, is of real practical interest to computa-31

tional mass spectrometry experts.32

As reported in the Background section, comparisons with Xnet is mandatory.33

However, considering the reported specificities (trace extraction preprocessing,34
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envelope assumption simplification, etc.), comparing Xnet and CHICKN work-1

flows may appear as somewhat arbitrary. To cope for this, we have made the2

following choices: First, we have focused on the core of each algorithm, as repre-3

sented in Figure 2A. Second, we have adapted the UPS2GT and Ecoli datasets4

to be processed by each algorithm: The UPS2GT data are already formatted5

into a CSV file meeting Xnet requirements. To construct a data matrix suit-6

able to CHICKN from the UPS2GT data, we simply loaded the data points7

according to their retention time and trace labels in the matrix columns (simi-8

larly to Xnet, we excluded point with trace indices -1 and 0, as assumed to be9

noise). This led to a data matrix containing 57,140 columns and 6,616 rows.10

Conversely, to build the CSV files from Ecoli datasets, we stored any non-zero11

entry of the data matrix in a row, the column index being used in place of the12

trace labels.13

Wasserstein distance validation14

W1 distance was proposed to discriminate between signals that represent dif-15

ferent elution profiles. To assess this choice, we compared it with two distances16

amongst the most widely used in mass spectrometry signal processing: The first17

one is the classical Euclidean distance. The second one is the peak retention18

time difference (or ∆RT): It corresponds to the difference between the time19

stamps at which each signal reaches its highest intensity value. Based on the20

Ecoli-FMS dataset (which provides the finest temporal sampling), we examined21

two situations presented in Figure 3: In the first one, we selected 3 signals22

with different shapes, that we precisely aligned so that their pairwise ∆RT was23

zero; in other words, only the shape difference makes it possible to discriminate24

them. Conversely, in the second situation, an elution profile was translated to25

mimic a case where only the ∆RT was meaningful. In both situations, the sec-26

ond chromatogram (chr2) stands as an in-between the first (chr1) and the third27

chromatogram (chr3). As illustrated by the distance ratios given in the tables28

embedded in Figure 3, both the Euclidean and the ∆RT distances are meaning-29

ful in one case: The Euclidean distance captures the shape information, while30

∆RT captures the time translation effect. However, none of these classically31

used distances is able to capture both the shape and the translation simultane-32

ously. On the contrary, W1 distance is efficient on both situations, making it a33

suitable distance to construct a similarity measure adapted to LC-MS data.34

Parameter tuning35

Unlike Xnet, CHICKN is governed by eight parameters. Four of them are36

involved in the data compression: Nyström sample size (l), target rank (s),37

kernel parameter (γ) and sketch size (m). Three parameters are involved in the38

hierarchical clustering: number of clusters at each iteration of the hierarchical39

clustering (k), upper bound of the total number of expected clusters (ktotal) and40

maximum number of levels in the hierarchy (T ). The remaining parameter is the41

neighbourhood size in the consensus chromatogram computation (q). However,42
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all parameters except γ and q are interrelated (see the Data compression section1

as well as [62, 53]) and can be expressed through k, ktotal and N (the dataset2

size) as follows:3

l ≈
√
N,

s ≈
√
k ·N1/4,

m ≈ k3/2 ·N1/4,

T = blog(ktotal, k)c.

(20)

These theoretical results can nonetheless be discussed. Notably, tuning the4

sketch size m to a larger value may be of interest if contrarily to our case, the5

computational efficiency is not the only targeted goal. Thus, we have performed6

complementary investigation to relate the clustering performance (in terms of7

DB index) to the sketch size (see Additional File 4, leftmost figure). Oddly8

enough, it appears the DB index increases (i.e. the performances deteriorates)9

when the sketch size increases (leading to a more refined representation of the10

data). However, it appears to be an indirect consequence: when increasing m,11

more differences between the signals are represented, making it possible to define12

a larger number of smaller clusters (see Additional File 4, rightmost figure).13

Finally, four parameters remain (γ, q, k and ktotal). Concretely, we tuned14

the kernel parameter γ as an average of the power of p distances to the ν nearest15

neighbors for all chromatographic profiles:16

γ =
1

N · ν

N∑
i=1

ν∑
j=1

[dW1
(xi, xij )]

p, (21)

where xi1 , . . . , xiν are ν neighbors of xi (selected among the l points of the17

Nyström sample) and p ∈ {1, 2} depending on the kernel type. Practically,18

we observed that tuning ν to 32 guaranteed each data point to be sufficiently19

connected to the rest of the dataset, as advised in [37]. Moreover, we observed20

that γ was rather stable with respect to ν, for both Laplacian W1 and Gaussian21

W1 kernels. However, as expected, the stability is higher with the latter than22

with the former (see Additional File 5).23

For q (in the consensus chromatogram computation) we observed that the24

shape cluster problem (see Pre-image computation section) could only occur25

with significantly large clusters (few tenth of elements). Thus, as preliminary26

stability analysis indicated us that the consensus chromatogram shapes were27

preserved across various values of ν (see Additional File 6), we decided to bound28

q with ν and to set q = min(ν, cluster size).29

A known drawback of k-means objective function is the requirement to set30

the maximum number of expected clusters (knowing some clusters can remain31

empty). In our case, this is achieved by tuning k and ktotal. Yet, it should32

be noted that increasing k leads to decreasing T for a fixed value of ktotal so33

that a trade-off between T and k must be sought. With this respect, we have34

evaluated different scenarios with k = 2, 4, 8 and 16. CHICKN execution times35

(excluding the data compression step, which remains constant whatever the36

18



various scenario) on the smallest (UPS2GT) and largest (Ecoli-FMS) datasets1

are depicted in Additional File 7. This experiment pointed out the importance2

of tuning k to a small enough value, which is coherent with the observation that3

the original CKM algorithm does not scale up well with the number of clusters.4

Practically, working with k = 2 or 4 appeared to be the most efficient.5

In the case of UPS2GT, the expected number of isotopic envelopes is known6

(i.e. 14,076). Thus, it is easy to tune ktotal accordingly (i.e. 214 = 47 = 16, 384).7

However, knowing that CHICKN does not rely on the envelope assumption8

simplification, it can be expected to find a much lower number of clusters:9

broadly, all the isotopic envelopes corresponding to different charge states of10

a same peptide can be expected to cluster together. Therefore, it also makes11

sense to tune ktotal to 45 = 1, 024; i.e. close enough from the expected number12

of identifiable peptides in the sample (around 700, according to [23]).13

Tuning ktotal for any real life data (i.e. unlabeled) is much more complicated.14

However, the Escherichia Coli sample is well studied, and based on prior biolog-15

ical/analytical knowledge, 15,000 different peptides can be expected, broadly.16

Consequently, for both Ecoli datasets, ktotal = 16, 384 seems reasonable. Fi-17

nally, even though it is not as sensible from a biological viewpoint, we have18

decided to also consider ktotal = 46 = 4, 096, which provides an even ground for19

computational load comparisons (see next section for details).20

To summarize, three different ways to tune ktotal are insightful: 1,024 for the21

UPS2GT dataset only (as it matches the number of expected peptides); 4,09622

on all datasets (for computational benchmarcks); and 16,384 on all datasets23

(number of isotopic envelopes in UPS2GT and number of expected peptides in24

Ecoli datasets).25

Finally, we fixed the remaining parameter values using the formulas in Eq.26

(20), as summarized in Table 1.27

Table 1: Summary of the different combinations of parameter tuning.

Dataset γ l s m k
T

ktotal = 1, 024 ktotal = 4, 096 ktotal = 16, 384

UPS2GT
5.96e-06 240 22 44 2 10 12 14
6.9e-06 240 31 124 4 5 6 7

Ecoli-DIA
9.06e-06 432 30 60 2 - 12 14
9.27e-06 432 42 168 4 - 6 7

Ecoli-FMS
7.07e-07 863 42 84 2 - 12 14
7.03e-07 863 59 236 4 - 6 7

Computational load28

We have compared the execution times of CHICKN and Xnet cores (see Fig-29

ure 2A). Previously reported comparisons showed us that CHICKN execution30

time largely depends on k. However, it only has a sub-linear complexity with31

respect to ktotal. : As illustrated in Additional File 8, multiplying ktotal by 432
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only results in a threefold (resp. twofold) increase in the CHICKN run-time for1

the Ecoli-FMS (resp. UPS2GT) dataset. As reducing ktotal to limit the execu-2

tion time will therefore be of little interest, experiments hereafter reported only3

focused on the influence of k. Despite CHICKN being more efficient when run4

with k = 2 and 4 (see Parameter tuning section), we also included comparisons5

with k = 8 and 16 to investigate the consequences of sub-optimal parame-6

ter tuning. The corresponding tests are referred to as CHICKN2, CHICKN4,7

CHICKN8 and CHICKN16. Therefore, to rely on an even basis for comparisons,8

we focused on ktotal = 4, 096: it is a power of 16, contrarily to 1,024 and 16,3849

(which are even not a power of 8).10

Since CHICKN algorithm embeds a compressive k-means algorithm which11

may converge towards different local minima depending on the stochasticity of12

several steps, each scenario was repeated 10 times and the average execution13

time was reported. In contrast, Xnet being deterministic, it was executed once.14

In [17], Xnet exhibits impressive computational times on pre-processed and15

adequately formatted data. However, raw LC-MS data stored in a matrix format16

are more cumbersome. Thus, our first experiment was to compare the efficiency17

of Xnet and of CHICKN on the Ecoli-DIA dataset, using a laptop machine18

with the following characteristics: HP Pavilion g6 Notebook PC with Intel(R)19

Core(TM) i5-3230M CPU @ 2.60GHz, 8 Gb of RAM, 4 cores, running under20

Ubuntu 18.04.4 LTS OS. Xnet produced an ”out-of-memory” error when trying21

to cluster more than 10,000 columns (i.e. 5% of the Ecoli-DIA dataset) in22

a single batch. This is why Figure 2B compares the computational time of23

CHICKN2, CHICKN4, CHICKN8 and of CHICKN16 on the entire Ecoli-DIA24

dataset to that of Xnet on only 5% of the same dataset. On this figure, different25

colors are used to discriminate between the clustering step per se and CHICKN26

preliminary data compression step. Let us note that the compression step is time27

consuming, however, it also includes the computations of all the W1 similarities.28

This as-a-matter-of-factly illustrates the computational cost of relying on more29

elaborated metrics to capture the semantics of data as complex as LC-MS ones.30

Except for CHICKN16, which has already been pointed as suboptimal, CHICKN31

is always faster for a dataset 20 times larger.32

This first experiment clearly showed CHICKN could be used on a simple33

laptop, even with large datasets, in long but acceptable times (half an hour to34

two hours, broadly). Then, to reduce the execution times of our multiple experi-35

ments, but also to allow Xnet working on a larger dataset, we moved to a larger36

station using 10 cores of an Intel Xeon CPU E5-2470 v2 @ 2.40GHz, 94 GB37

of RAM and running with CentOS Linux release 7.4.1708. As depicted in Fig-38

ure 2C, on such a machine, CHICKN was able to process Ecoli-FMS within 5h3039

(most of them being necessary to perform the preliminary compression), despite40

its huge size. On the contrary, with the same machine, Xnet only processed 10%41

of it in a comparable time (almost 8 hours). Moreover, larger fractions of the42

dataset were not processable, as leading to memory failure.43

To explain this discrepancy, we noticed that Xnet spent a considerable time44

to construct the preliminary network. The nature of Ecoli data (raw data45

without any trace pre-processing and recorded with the highly resoluted profile46
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mode, see Materials section) contrasts with that of UPS2GT, on which Xnet is1

really efficient. As it appears on Figure 2D, CHICKN is clearly not as fast as2

Xnet to process UPS2GT: The Xnet analysis took less then 40 seconds, while3

CHICKN computation times varied from 2 to 7 minutes depending on values of4

parameter k (from 2 to 16).5

As a whole, these experiments illustrate the utmost importance of prior6

preprocessing methods when studying LC-MS data. In this context, algorithms7

working on raw data, such as CHICKN, are real assets.8

Cluster evaluation9

Figure 4 reports the Rand index, Precision and Recall (UPS2GT dataset) as well10

as the DB index (Ecoli datasets) with different clustering strategies: CHICKN211

and CHICKN4 (with ktotal ∈ {1, 024 ; 4, 096 ; 16, 384} and with p = 2), as well12

as Xnet (on UPS2GT only, for computational reasons). A similar figure for13

p = 1 is available in Additional File 9.14

First, it can be noted that the Rand index is hardly informative (Figure 4A):15

All clustering methods exhibit an index of almost 1, and it is necessary to go16

three (and sometimes four) decimals to notice a difference. Such high values17

are a direct consequence of the huge number of expected clusters in UPS2GT18

datasets, which comes with an excessively large number of true negative pairs19

(almost 99 % of all possible pairs). In this context, the Rand index obtained20

with ”only” 1,024 expected clusters is particularly highlighting: Despite 16 times21

less clusters, it achieves an equivalent index. This indicates that, relatively, the22

provided clustering is probably of better quality.23

However, contrarily to the Rand index, Precision and Recall are informative24

to compare with Xnet, as the true negative pair count does not level the scores.25

With this regard, it clearly appears on Figures 4B that the Precision is in-26

comparably better with Xnet. Although foreseeable (ground truth with 14,07627

envelopes whereas CHICKN sought a thousand of peptides), this requires a28

deeper analysis: Concretely, Xnet tends to over-cluster (which artificially im-29

proves the Precision index), as it provided 17,153 clusters covering 93% of the30

dataset (7% of the elution profiles are excluded by Xnet) where the ground truth31

labels proposed only 14,076 of them (on 100% of the dataset). In addition, Xnet32

priors were trained on the same UPS2GT dataset as for evaluation, so that high33

performance are expectable. With this regard, it is particularly noteworthy that34

the Recall (Figures 4C) varies the other way around. Concretely, it is best for35

CHICKN4 with ktotal = 1, 024 despite this number being completely different36

from the one derived from the ground truth. In addition to be in line with our37

observations on the Rand index, this concurs with the peptide-level knowledge38

of the dataset: CHICKN was supposed to group together differently charged39

peptides, which it did (see Additional Files 10 and 14 as well as Discussions40

below), as it provided only 510 (CHICKN4)/ 740 (CHICKN2) clusters on the41

entire UPS2GT dataset, hereby leaving 300 to 500 empty clusters4; and leading42

4More generally, the capability of CHICKN to adapt the cluster sizes to the data distribu-
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to a number of clusters in line with the expected number of peptides in the1

sample. Overall, the differences between Xnet and CHICKN on UPS2GT seem2

to be more related to the difference of objectives (finding isotopics envelopes3

vs. finding peptide-related clusters), as already discussed. Interestingly, this4

interpretation is confirmed by the Ecoli dataset experiments.5

In absence of ground truth for both Ecoli datasets, we chose the tuning mini-6

mizing the DB index (see Figure 4D and 4E): ktotal = 16, 384 for Ecoli-FMS and7

for Ecoli-DIA. With such a tuning, we obtained around 11,600 (resp. around8

9,400) non-empty clusters for Ecoli-FMS (resp. Ecoli-DIA). This number is9

obviously lower than the expected number of identifiable peptides (between 1510

and 20 thousands), however under-clustering was clearly supported by empirical11

observations (see above, as well as Additional File 4, rightmost figure). This12

clearly means that CHICKN could not separate too many peptides with too13

similar elution profiles. However, this can be easily explained by the difference14

of complexity between the UPS2GT and the Ecoli samples: while the former15

is fairly simple (a handful of spiked proteins), the latter ones are complex real16

life samples for which the discriminative power of the liquid chromatography is17

clearly challenged (as illustrated in the next section). This is notably why frag-18

mentation spectra are classically used to identify as many as 15 to 20 thousand19

peptides. However, achieving to discriminate half of this number of peptides20

with MS1 processing only is noticeable.21

Finally, let us note, that, in general, relying on k = 4 provided slightly better22

scores. We assume that k = 4 was a trade-off between cluster diversity (k > 4)23

and computational efficiency (k = 2), as discussed above.24

Discussions25

Cluster interpretability26

Beyond evaluation metrics, it is insightful to compare algorithms according to27

the interpretability of the clusters they can provide. Figure 5 represents differ-28

ent elution profiles from UPS2GT (their shape as well as their m/z position) in29

the context of the clusters they fall into, according to CHICKN and Xnet. The30

envelope assumption simplification clearly appears: As expected, Xnet splits31

into different clusters elution profiles that are arguably similar for the reason32

they have too different m/z values. In contrast, CHICKN promotes the inner33

coherency of clusters as it aggregates related Xnet clusters together. Notably,34

Additional Files 10 and 14 show a subset of 12 clusters provided by CHICKN,35

each gathering at least 2 differently charged ions from a same peptide (all of36

them being identified and manually validated with the associated MS2 spec-37

tra). Interestingly, the multiple isotopes of each ion also appear to be grouped,38

as illustrated by the manifold of profile co-clustered with each ion. Morevoer,39

a refine analysis of CHICKN clusters shows that, globally, they contain similar40

chromatograms, which is coherent both with the clustering metrics provided41

tion is illustrated on Additional File 11.
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above, and with the expected behavior of the W1 kernel. However, some clus-1

ters also contain noise signals, as for examples, the first two lines of Figure 5.2

Although undesirable, this is a direct consequence of (i) the grouping capa-3

bilities of CHICKN, which captures similarities between slightly different but4

largely overlapping signals (third line); and (ii) the possibility to run CHICKN5

on raw data, which also contains many spurious signals that need be spread6

across various meaningful clusters.7

Similar conclusions regarding CHICKN behavior can be derived from the8

Ecoli datasets (let us focus on the Ecoli-FMS one, as it displays elution profile9

signals with higher sampling resolution, due to the Full-MS acquisition). The10

majority of clusters (Figure 6 for the Gaussian W1 kernel and Additional File 12,11

for the Laplacian W1 one) containing high intensity signals depicts meaningful12

consensus chromatograms, as well as similar profiles even though corresponding13

to different m/z values. However, we observed that some clusters could be sep-14

arated into several sub-clusters to improve readability (see Additional File 13).15

It could intuitively be interpreted as the necessity to increase ktotal. However,16

two observations goes against this: First, from a signal viewpoint, as the phe-17

nomenon mainly impacts lower intensity profiles, it also highlights the difficulty18

of finding consensus patterns near the noise level, which equally affects most19

of the clustering algorithms. In this context, over-clustering is usually not con-20

sidered a viable solution. Second, from an analytical viewpoint, the clustering21

algorithm cannot be expected to separate beyond the chromatographic capabil-22

ities (as in Additional File 13, where few different profiles have too important23

overlap to expect discrimination).24

Finally, it is worthy focusing on consensus chromatograms: interestingly25

enough, most of those observed in Figure 6 and in Additional File 12 have26

meaningful shapes that are not deteriorated by the presence of noisy signals in27

the cluster, which can be interpreted as a positive consequence of our method28

to compute the cluster centroids pre-image based on a restricted neighborhood29

(see Pre-image computation section).30

Implementation and code availability31

CHICKN algorithm was implemented in R. The W1 distance computations and32

the gradient descent were accelerated using C and interfaced with R thanks33

to Rcpp. The data compression procedure and the hierarchical strategy were34

parallelized with RcppParallel, foreach and doParallel. To access and ma-35

nipulate large data matrices, we relied on the File-backed Big Matrix class of36

the bigstatsr package [67]. A File-backed matrix allows to overcome the mem-37

ory limitation by storing the data on the disk, using a binary memory-mapped38

file. However, bigstatsr is only available under Linux OS, leading to a similar39

restriction for CHICKN.40

For practitioners, the proposed algorithm is available through an R package,41

available on Gitlab [68], as well as on the CRAN [69].42
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Conclusion1

We have presented two complementary contributions to the cluster analysis of2

LC-MS data. First, we have proposed a unique combination of hierarchical3

strategy, of Nyström approximation and of random Fourier features based com-4

pression technique to scale up the kernel k-means clustering to the large size,5

the large dimensionality and the large number of expected clusters of LC-MS6

data. Second, we have proposed to rely on the optimal transport framework7

(Wasserstein-1 distance) to define a similarity measure and we have shown it is8

insightful to capture the semantics of elution profiles in LC-MS data. On a more9

theoretical front, we have established the Wasserstein-1 distance could lead to a10

positive-definite Laplacian kernel, and exhibit a path for further investigations11

about a Gaussian one.12

We have demonstrated these contributions could help extracting other struc-13

tures than isotopic envelopes, even on multiplexed data acquired with Data14

Independent Acquisition protocol. However, the experimental assessment of15

these contributions is difficult to interpret. On the one hand, when compared16

to the canonical application of isotopic envelope extraction, CHICKN does not17

outperform the state-of-the-art algorithm (better Recall and worse Precision,18

as it tends to under-cluster rather than over-cluster). However, it provides an19

important advantage: it can be run on raw data and does not require costly pre-20

processing. As for an application-independent evaluation, it clearly appears that21

CHICKN is able to extract patterns from the data which are not accessible to22

linkage-based algorithms. Put together, we interpret this as following: Although23

cluster analysis has made important progresses in the theoretical front over the24

past 50 years, processing LC-MS data remains a challenge which requires re-25

search efforts. It is still necessary to propose complementary and differently26

principled algorithms that will help make LC-MS practitioners extract the best27

from their data. In this context, new kernels could be defined; and numerous28

state-of-the-art clustering algorithms recently developed in the machine learning29

community could advantageously be applied to LC-MS data.30
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Additional Files6

Additional File 17

Title: Ecoli-FMS data matrix.8

Description: Figure depicting the matrix built thanks to the mass spectrum9

interpolation of Ecoli-FMS data. Each matrix column corresponds to a10

chromatographic profile for a fixed m/z value. Maximum Intensity for11

columns and for rows is depicted in bar plots.12

Format: .png file.13

Additional File 214

Title: Preprocessing details.15

Description: Detailed explanations of Equation 1 (interpolation needs, justi-16

fication of the method and parameter tuning).17

Format: .pdf file.18

Additional File 319

Title: Kernel positive (semi-)definiteness.20

Description: Empirical evidences (Gaussian W1 case) and formal demonstra-21

tion (Laplacian W1 case) of the P(S)D-ness of the proposed kernels.22

Format: .pdf file.23

Additional File 424

Title: Sketch size influence on the clustering.25

Description: Influence of the sketch size on performances clustering of the26

Ecoli-DIA dataset, in function of the computational cost and the number27

of clusters.28

Format: .png file.29
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Additional File 51

Title: Kernel hyperparameter stability.2

Description: Figure showing the stability of the hyperparameter γ of Lapla-3

cian and Gaussian W1 kernels with respect to the neighborhood maximum4

size ν.5

Format: .png file.6

Additional File 67

Title: Consensus chromatogram stability8

Description: A set of 10 figures examplifying the stability of the pre-image9

computation through the averaging of a neighborhood of varying size.10

Format: A zipped folder (.zip) containing .png files.11

Additional File 712

Title: Influence of k on the execution time of CHICKN.13

Description: Figure depicting CHICKN execution time as a function of k,14

the number of clusters at each iteration, for both UPS2GT (blue) and15

Ecoli-FMS (red) datasets.16

Format: .png file.17

Additional File 818

Title: Influence of ktotal on the execution time of CHICKN.19

Description: Figure depicting CHICKN execution time as a function of ktotal,20

the maximum number of clusters, for both UPS2GT (blue) and Ecoli-FMS21

(red) datasets.22

Format: .png file.23

Additional File 924

Title: Performance evaluation for the Laplacian W1 kernel.25

Description: This figure is the same as Figure 4, yet with p = 1 instead of26

p = 2. The performance on the UPS2GT dataset are a bit lower than27

with the Gaussian W1 kernel (equivalent Rand index, better precision,28

lower recall), making it unable to compete with Xnet. However, on raw29

data such as Ecoli-DIA (i.e. on data CHICKN should work with), the30

Laplacian W1 kernel exhibit slightly better DB index than its Gaussian31

counterpart; however, this is hardly significant, making us conclude that32

strict performance should not be the criterion to chose the kernel.33
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Format: .png file.1

Additional File 102

Title: Differently charged ions of a same peptide tend to cluster to-3

gether.4

Description: A subset of clusters were manually inspected so as to label as5

many profiles with the corresponding identified ion. Although this la-6

belling cannot be exhaustively conducted due to the largely incomplete7

coverage of MS/MS analysis, it could be established that ions of a same8

peptide cluster together in many cases.9

Format: .png file.10

Additional File 1111

Title: Cluster size distribution.12

Description: Histograms of the cluster size distribution resulting from the13

application of CHICKN on each of the three datasets.14

Format: .png file.15

Additional File 1216

Title: Examples of well-formed clusters for the Ecoli-FMS dataset.17

Description: Same figure as Figure 6 with Laplacian W1 kernel.18

Format: .png file.19

Additional File 1320

Title: Examples of multiplexed clusters for the Ecoli-FMS dataset21

using CHICKN method.22

Description: Figure illustrating that dividing multiplexed clusters into several23

sub-clusters would improve the elution profile interpretation. The real24

chromatograms and the consensus chromatograms are depicted in gray25

and in red, respectively.26

Format: .png file.27
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Additional File 141

Title: Differently charged ions of a same peptide tend to cluster to-2

gether.3

Description: Figure similar to Additional File 10. It depicts another subset of4

CHICKN clusters with chromatographic profiles manually annotated with5

the corresponding peptide ion. It could be established that ions of a same6

peptide tend to cluster together.7

Format: .png file.8
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Figure 1: Data matrix, Nyström approximation and pre-image illus-
trations. (A) Ecoli-DIA data matrix. Each matrix column corresponds to a
chromatographic profile for a fixed m/z value. Maximum Intensity for columns
and for rows is depicted in bar plots. (B) Nyström kernel approximation. The
matrix C represents the similarity between each data point and the random sam-
ple. The matrix W corresponds to the pairwise similarity evaluation between
selected data points. (C) Pre-image problem. Consensus chromatogram con-
struction amounts to solve a pre-image problem, i.e. to map the feature space
(right) back to the space of chromatograms (left). Blue points depict the elution
profiles (left) and their images in the feature space (right). The red points are the
cluster centroid (right) and the corresponding consensus chromatogram (left).
The yellow circles represent the cluster centroid and consensus chromatogram
neighborhoods. Due to the mapping non-linearity, the mean chromatogram may
lie outside the cluster, while the correct consensus chromatogram should belong
to it.
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Figure 2: Xnet and CHICKN comparison. (A) The method workflows. To
allow for fair comparisons, we have focused on the core algorithms, depicted
within the dotted rectangle. (B - D) The execution time comparison for Ecoli
and for the UPS2GT datasets. The CHICKN execution time is decomposed
into the data compression time (blue) and the clustering time (pink). Note that
XNet had to be run on 5% of the Ecoli-DIA dataset and 10% of the Ecoli-FMS
dataset only, to avoid ”out of memory” issues. The experiments on Ecoli-DIA
were performed on a laptop, while other datasets were processed with a multi-
core machine.
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Figure 3: Distance metrics for chromatographic data analysis. Compar-
ison of Wasserstein-1, Euclidean and RT difference distances on real chromato-
graphic profiles from the Ecoli-FMS dataset.
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Figure 4: Statistical result analysis. (A) Rand index, (B) Precision, (C)
Recall and (D-E) DB index depending on the k and ktotal parameters; CHICKN2
and CHICKN4 tests are depicted in purple and light blue respectively; For the
UPS2GT dataset, additional comparisons with Xnet (in red) are provided.
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Figure 5: Xnet and CHICKN clusters for UPS2GT dataset. Each of the
four lines represent a series of chromatograms in the context of their Xnet and
CHICKN Cluster. On the plot of the leftmost column, a series of chromatograms
with similar shapes are represented in different colors (2 or 3) according to
the distinct Xnet clusters they belong to. In the second column, each elution
profile is represented with the same color, according to its m/z position, hereby
illustrating that Xnet clusters similar signals in different clusters because of a
too large m/z difference. The plot of the third column represents the CHICKN
cluster which encompasses all the Xnets cluster profiles of the leftmost column
(in green), as well as other signals (in gray) falling in the same CHICKN cluster,
hereby illustrating CHICK builds meaningful patterns irrespective of the m/z
information that is essential to isotopic envelope construction. In the rightmost
column, the m/z positions of the signals of the third columns, depicited with
the same color code.
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Figure 6: Examples of well-formed clusters for the Ecoli-FMS dataset.
12 clusters proposed by CHIKN (represented as time series), where each chro-
matogram is represented in gray, and where the consensus chromatogram is
represented in red. The numbers above each example indicate the cluster ID
and the number of chromatograms it encompasses.
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