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, for which we offer a mathematical perspective. We review thoroughly the case of subsets of the plane whose boundary is a conic curve and show that Mehler's formula can be helpful in the analysis of these cases, including for the higher dimensional case investigated in the paper [39] by E. Lieb and Y. Ostrover. Using the Feichtinger algebra, we show that, generically in the Baire sense, the Wigner distribution of a pulse in L 2 (R n ) does not belong to L 1 (R 2n ), providing as a byproduct a large class of examples of subsets of the phase space R 2n on which the integral of the Wigner distribution is infinite. We study as well the case of convex polygons of the plane, with a rather weak estimate depending on the number of vertices, but independent of the area of the polygon.

Foreword

As indicated by the title of this article, this paper is a survey of properties of integrals of the Wigner distribution on subsets of the phase space. Since it is quite lengthy, we wish in this foreword to describe the content of this paper, browsing through the table of contents, expecting that the reader will find some organization with the way this article is written. In particular, we shall point here what is original in our survey (to the best of our knowledge) and what was well-known beforehand. There is no doubt that the fifty-five articles quoted in the references list are a small part of the literature on the topic and could be probably extended tenfold: we expect nevertheless that our choice of references will be enough to cover the most important contributions.

Section 1 is Preliminaries and Definitions and is very classical. We have used J. Leray's book [START_REF]A mathematical structure related to asymptotic expansions and the Maslov index[END_REF] and other Lecture Notes of this author at the Collège de France such as [START_REF] Leray | Analyse lagrangienne et mécanique quantique, Séminaire sur les Équations aux Dérivées Partielles[END_REF], L. Hörmander's four-volume treatise, The Analysis of Linear Partial Differential operators and in particular Volume III, as well as K. Gröchenig's [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF] Foundations of time-frequency analysis, along with G.B. Folland's [START_REF] Folland | Harmonic analysis in phase space[END_REF], A. Unterberger's [START_REF] Unterberger | Oscillateur harmonique et opérateurs pseudo-différentiels[END_REF] and N. Lerner's [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]. Some details are given, in particular on positive quantizations, but that section is far from being self-contained, which is probably unavoidable: the link of properties of the Wigner distribution and of the Weyl quantization of classical Hamiltonians is easy to obtain but turns out to be an important piece of information for our purpose.

Section 2 is stressing the link Quantization of radial functions -Mehler's formula and is also very classical: here also the link aforementioned is easy to get but gives some simplifications in the formulas providing the quantization of radial Hamiltonians: in one dimension for the configuration space (phase space R 2 ), we are reduced to check simple integrals related to the Laguerre polynomials, following P. Flandrin's method in his 1988 article [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF].

Section 3 is dealing with Conics with eccentricity < 1. The result for the disc in R 2 is due to P. Flandrin and the result for the Euclidean ball in R 2n to E. Lieb & Y. Ostrover in [START_REF] Lieb | Localization of multidimensional Wigner distributions[END_REF]. Using Mehler's formula simplifies a little bit the presentation, but leaves open the case of anisotropic ellipsoids for which we formulate a conjecture.

Section 4 is dealing with Epigraphs of Parabolas. The results obtained in that section follow easily from Section 3 but nevertheless the precise diagonalization proven there seems to be new. We formulate also a conjecture on anisotropic paraboloids which is closely related to the conjecture in Section 3.

Section 5 is concerned with Conics with eccentricity > 1. Many of the results in that section are contained in the paper [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF] by J.G. Wood and A.J. Bracken; however since the latter article contains some formal calculations, using for instance test functions which do not belong to L 2 (R), we have made a mathematically sound presentation. As certainly the most important contribution of this work, we provide a "theoretical" disproof of Flandrin's conjecture on integrals of the Wigner distribution on convex subsets of the phase space: we find in particular some a > 0 and some function u ∈ L 2 (R) with norm 1 such that

[0,a] 2 W(u, u)(x, ξ)dxdξ > 1,
where W(u, u) is the Wigner distribution of u. This fact was already proven in our joint paper [START_REF] Delourme | On integrals over a convex set of the Wigner distribution[END_REF] with B. Delourme and T. Duyckaerts, using a rigorous numerical argument.

Section 6 is entitled Unboundedness is Baire generic and most of its content is included in Chapter 12 of K. Gröchenig's book [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF], Foundations of time-frequency analysis. Using the Feichtinger algebra, we show that, generically in the Baire sense, the Wigner distribution of a pulse in L 2 (R n ) does not belong to L 1 (R 2n ), providing as a byproduct a large class of examples of subsets of the phase space R 2n on which the integral of the Wigner distribution is infinite. We raise a couple of questions, in particular whether we can find a pulse u ∈ L 2 (R n ) such that

E + (u) = {(x, ξ) ∈ R 2n , W(u, u)(x, ξ) > 0} is connected.
Section 7 is Convex polygons in the plane: we study there the sets defined by the intersection of N half-spaces in the plane R 2 and the integrals of the Wigner distribution on these sets. We start with convex cones (N = 2) for which a complete result is known and we go on with triangles (N = 3) for which we find an upper bound: the integral of W(u, u) on a triangle of R 2 for a normalized pulse in L 2 (R) is bounded above by a universal constant. We show also that the integral of W(u, u) on a convex polygon with N sides of R 2 for a normalized pulse in L 2 (R) is bounded above by a universal constant × √ N . We raise a couple of questions: in particular it seems possible that the behaviour of convex subsets of the plane is such that there exists a constant α > 1 such that

∀C convex subset of the plane R 2 , ∀u ∈ L 2 (R) with u L 2 (R) = 1, we have C W(u, u)(x, ξ)dxdξ ≤ α.
That would be a weak version of Flandrin's conjecture: the original Flandrin's conjecture was the above statement with α = 1, which is untrue, but that does not rule out the existence of a number α > 1 such that the above estimate holds true.

Section 8 is entitled Open questions and Conjectures: we review in that section the various conjectures that we meet along the text of the article, estimating the importance and difficulty of the various questions. Section 9 is an Appendix containing only classical material, hopefully helping the reader by improving the self-containedness of this paper.

Preliminaries & Definitions

1.1. The Wigner Distribution. Let u, v be given functions in L 2 (R n ). The function Ω, defined on R n × R n by (1.1.1)

R n × R n (z, x) → u(x + z 2 )v(x - z 2 ) = Ω(u, v)(x, z),
belongs to L 2 (R 2n ) from the identity (1.1.2)

R 2n |Ω(u, v)(x, z)| 2 dxdz = u 2 L 2 (R n ) v 2 L 2 (R n ) .
We have also (1.1.3)

sup x∈R n R n |Ω(x, z)|dz ≤ 2 n u L 2 (R n ) v L 2 (R n ) .
We may then give the following definition.

Definition 1.1. Let u, v be given functions in L 2 (R n ). We define the joint Wigner distribution W(u, v) as the partial Fourier transform 1 with respect to z of the function 1 For f ∈ S (R N ), we define its Fourier transform by f (ξ) = R N e -2iπx•ξ f (x)dx and we obtain the inversion formula f (x) =

R N e 2iπx•ξ f (ξ)dξ. Both formulas can be extended to tempered distributions: for T ∈ S (R N ), we define the tempered distribution T by (1.1.4) T , φ S (R N ),S (R N ) = T, φ S (R N ),S (R N ) .

Ω defined in (1.1.1). We have for (x, ξ) ∈ R n x × R n ξ , using (1.1.3), (1.1.6)

W(u, v)(x, ξ) = R n e -2iπz•ξ u(x + z 2 )v(x - z 2 )dz.
The Wigner distribution of u is defined as W(u, u).

N.B. By inverse Fourier transformation we get, in a weak sense,

(1.1.7) u(x 1 ) ⊗ v(x 2 ) = W(u, v)( x 1 + x 2 2
, ξ) e 2iπ(x 1 -x 2 )•ξ dξ.

Lemma 1.2. Let u, v be given functions in L 2 (R n ). The function W(u, v) belongs to L 2 (R 2n ) and we have

(1.1.8) W(u, v) L 2 (R 2n ) = u L 2 (R n ) v L 2 (R n ) .
We have also

(1.1.9) W(u, v)(x, ξ) = W(v, u)(x, ξ), so that W(u, u) is real-valued.

Proof. Note that the function W(u, v) is in L 2 (R 2n ) and satisfies (1.1.8) from (1.1.2) and the definition of W as the partial Fourier transform of Ω. Property (1.1.9) is immediate and entails that W(u, u) is real-valued.

Remark 1.3. We note also that the real-valued function W(u, u) can take negative values, choosing for instance u 1 (x) = xe -πx 2 on the real line, we get W(u 1 , u 1 )(x, ξ) = 2 1/2 e -2π(x 2 +ξ 2 ) x 2 + ξ 2 -1 4π .

In fact the real-valued function W(u, u) will take negative values unless u is a Gaussian function, thanks to a Theorem due to E. Lieb (see [START_REF] Elliott | Integral bounds for radar ambiguity functions and Wigner distributions[END_REF] and the books [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF]). As a matter of fact, this range of W(u, u) intersecting R -for most "pulses" u in L 2 (R n ) makes rather weird the qualification of W(u, u) as a "quasi-probability" (anyhow the emphasis must be on quasi, not on probability).

Remark 1.4. We have also by Fourier inversion formula, say for u ∈ S (R n ), , so that D α x u = ξ α û(ξ), with ξ α = ξ α1 1 . . . ξ α N N .

the former formula following from (1.1.10) and the latter from (1.1.13) W(u, u)(x, ξ)dx = e -2iπzξ u(x + z 2 )ū(x -z 2 )dzdx = e -2iπξ(x 1 -x 2 ) u(x 1 )ū(x 2 )dx 1 dx 2 = |û(ξ)| 2 .

Lemma 1.5. Let u be a function in L 2 (R n ) which is even or odd. Then W(u, u) is an even function.

Proof. Using the notation (1.1.14) ǔ(x) = u(-x),

we check

W(u, v)(-x, -ξ) = R n e 2iπz•ξ u(-x + z 2 )v(-x - z 2 )dz = R n e 2iπz•ξ ǔ(x - z 2 ) v(x + z 2 )dz = R n e -2iπz•ξ ǔ(x + z 2 ) v(x - z 2 )dz = W(ǔ, v)(x, ξ),
so that if ǔ = ±u, we get W(u, u)(-x, -ξ) = W(u, u)(x, ξ).

N.B. This lemma is a very particular case of the symplectic covariance property displayed below in (1.2.74).

N.B.

In Part 1 of Volume IV in the collected works [START_REF] Paul | The collected works of Eugene Paul Wigner[END_REF] of Eugene P. Wigner, we find the first occurrence of what will be called later on the Wigner distribution along with a physicist point of view.

It turns out that most of the properties of the Wigner distribution (in particular Lemma 1.5) are inherited from its links with the Weyl quantization introduced by H. Weyl in 1926 in the first edition of [START_REF] Weyl | Gruppentheorie und Quantenmechanik[END_REF] and our next remarks are devised to stress that link. 1.2. Weyl quantization, Composition formulas, Positive quantizations.

1.2.1. Weyl quantization. The main goal of Hermann Weyl in his seminal paper [START_REF] Weyl | Gruppentheorie und Quantenmechanik[END_REF] was to give a simple formula, also providing symplectic covariance, ensuring that real-valued Hamiltonians a(x, ξ) get quantized by formally self-adjoint operators. The standard way of dealing with differential operators does not achieve that goal since for instance the standard quantization of the Hamiltonian xξ (indeed realvalued) is the operator xD x , which is not symmetric (D x is defined in (1.1.5)); H. Weyl's choice in that case was xξ should be quantized by the operator 1 2 (xD x + D x x), (indeed symmetric), and more generally, say for a ∈ S (R 2n ), u ∈ S (R n ), the quantization of the Hamiltonian a(x, ξ), denoted by Op w (a), should be given by the formula (1.2.1) (Op w (a)u)(x) = e 2iπ(x-y)•ξ a x + y 2 , ξ u(y)dydξ.

For v ∈ S (R n ), we may consider

Op w (a)u, v L 2 (R n ) = a(x, ξ)e -2iπz•ξ u(x + z 2 )v(x - z 2 )dzdxdξ = R n ×R n a(x, ξ)W(u, v)(x, ξ)dxdξ,
and the latter formula allows us to give the following definition.

Definition 1.6. Let a ∈ S (R 2n ). We define the Weyl quantization Op w (a) of the Hamiltonian a, by the formula (1.2.2) (Op w (a)u)(x) = e 2iπ(x-y)•ξ a x + y 2 , ξ u(y)dydξ, to be understood weakly as

(1.2.3) Op w (a)u, v S (R n ),S (R n ) = a, W(u, v) S (R 2n ),S (R 2n ) .
We note that the sesquilinear mapping

S (R n ) × S (R n ) (u, v) → W(u, v) ∈ S (R 2n ),
is continuous so that the above bracket of duality a, W(u, v) S (R 2n ),S (R 2n ) makes sense. We note as well that a temperate distribution a ∈ S (R 2n ) gets quantized by a continuous operator Op w (a) from S (R n ) into S (R n ). This very general framework is not really useful since we want to compose our operators Op w (a)Op w (b). A first step in this direction is to look for sufficient conditions ensuring that the operator Op w (a) is bounded on L 2 (R n ). Moreover, for a ∈ S (R 2n 

(a b)(x, ξ) = k≥0 1 (4iπ) k |α|+|β|=k (-1) |β| α!β! (∂ α ξ ∂ β x a)(x, ξ)(∂ α x ∂ β ξ b)(x, ξ), (1.2.5)
which involves here a finite sum. This follows from (2.1.26) in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] where several generalizations can be found (see in particular in that reference the integral formula (2. 1.18) which can be given a meaning for quite general classes of symbols). As a consequence of (1.2.5), we get that

(a b) = k≥0 ω k (a, b), ω 0 (a, b) = ab, ω 1 (a, b) = 1 4iπ
{a, b} , (1.2.6)

{a, b} = ∂ ξ a • ∂ x b -∂ x a∂ ξ b, (1.2.7)
where {a, b} is called the Poisson bracket of a and b. Proposition 1.7. Let a be a tempered distribution on R 2n . Then we have (1.2.8) Op w (a) B(L 2 (R n )) ≤ min 2 n a L 1 (R 2n ) , â L 1 (R 2n ) .

Proof. In fact we have from (1.2.3), u, v ∈ S (R n ),

Op w (a)u, v L 2 (R n ) = a(x, ξ)u(2x -y)v(y)e -4iπ(x-y)•ξ 2 n dydxdξ, so that defining for (x, ξ) ∈ R 2n the operator σ x,ξ by (1.2.9) (σ x,ξ u)(y) = u(2x -y)e -4iπ(x-y)•ξ , we see that the operator σ x,ξ (called phase symmetry, also known as the Grossman-Royer operator ) is unitary and self-adjoint 2 and

(1.2.11) Op w (a) = 2 n a(x, ξ)σ x,ξ dxdξ, proving the first estimate of the proposition. As a consequence of (1.2.11), we obtain that (1.2.12) (Op w (a)) * = Op w (ā), so that for a real-valued, (Op w (a)) * = Op w (a).

To prove the second estimate, we introduce the so-called ambiguity function A(u, v) as the inverse Fourier transform of the Wigner function W(u, v), so that for u, v in the Schwartz class, we have

(A(u, v))(η, y) = W(u, v)(x, ξ)e 2iπ(x•η+ξ•y) dxdξ,
i.e.

(1.2.13)

(A(u, v))(η, y) = u(x + y 2 )v(x - y 
2 )e 2iπx•η dx, which reads as well as

(1.2.14) (A(u, v))(η, y) = u( y 2 + z 2 ) v( y 2 - z 2 ) e 2iπz• η 2 dz 2 -n = W(u, v)( y 2 , - η 2 )2 -n .
N.B. The ambiguity function is called the Fourier-Wigner transform in G.B. Folland's book [START_REF] Folland | Harmonic analysis in phase space[END_REF].

Remark 1.8. With Ω(u, v) defined by (1.1.1), we have

(1.2.15) W(u, v) = F 2 Ω(u, v) ,
where F 2 stands for the Fourier transformation with respect to the second variable.

Taking the Fourier transform with respect to the second variable in the previous formula gives, with F j (resp. F) standing for the Fourier transform with respect to the j th variable (resp. all variables),

F 2 W = C 2 Ω, FW = F 1 C 2 Ω, A = CFW = F 1 C 1 Ω,
where C (resp. C 1 or C 2 ) stands for the "check" operator C in R n × R n given by (1.1.14) (resp. with respect to the first or second variable), the latter formula being (1.2.13).

2 Indeed we have (1.2.10) (σ 2 x,ξ u)(y) = (σ x,ξ u)(2x -y)e -4iπ(x-y)•ξ = u(2x -(2x -y))e -4iπ(x-(2x-y))•ξ e -4iπ(x-y)•ξ = u(y), so that σ 2 x,ξ = Id . We have σ *

x,ξ u, v

L 2 (R n ) = u, σ x,ξ v L 2 (R n ) = W(v, u)(x, ξ) = W (u, v)(x, ξ) = σ x,ξ u, v L 2 (R n ) , proving that σ * x,ξ = σ x,ξ .
Applying Plancherel formula on (1.2.3), we get (1.2.16) Op w (a)u, v L 2 (R n ) = â, A(u, v) S (R 2n ),S (R 2n ) .

We note that a consequence of (1.2.5) is that for a linear form L(x, ξ), we have L L = L 2 , and more generally L N = L N .

As a result, considering for (y, η) ∈ R 2n , the linear form L η,y defined by (1.2.17)

L η,y (x, ξ) = x • η + ξ • y, we see that (1.2.18) A(u, v)(η, y) = Op w (e 2iπ(x•η+ξ•y) )u, v L 2 (R n ) ,
and thus we get Hermann Weyl's original formula (1.2.19) Op w (a) = a(η, y)e iOp w (Lη,y) dydη, which implies the second estimate in the proposition.

Proposition 1.9. Let a ∈ S (R 2n ). The distribution kernel k a (x, y) of the operator Op w (a) is

(1.2.20) k a (x, y) = a [2] ( x + y 2 , y -x),

where a [2] stands for the Fourier transform of a with respect to the second variable. Let k ∈ S (R 2n ) be the distribution kernel of a continuous operator A from S (R n ) into S (R n ). Then the Weyl symbol a of A is

(1.2.21) a(x, ξ) = e -2πit•ξ k(x + t 2 , x - t 2 )dt,
where the integral sign means that we take the Fourier transform with respect to t of the distribution k(x + t 2 , x -t 2 ) on R 2n (see (1.1.4) in footnote 1 for the definition of the Fourier transformation on tempered distributions).

Proof. With u, v ∈ S (R n ), we have defined Op w (a) via Formula (1.2.3) and using Remark 1.8, we get Op w (a)u, v S (R n ),S (R n ) = a(x, ξ), Ω [2] (x, ξ) S (R 2n ),S (R 2n ) = a [2] (t, z), u(t

+ z 2 )v(t - z 2 ) S (R 2n ),S (R 2n )
= a [2] ( x + y 2 , y -x), u(y)v(x) S (R 2n ),S (R 2n ) ,

proving (1.2.20). As a consequence, we find that k a (x + t 2 , x -t 2 ) = a [2] (x, -t), and by Fourier inversion, this entails (1.2.22) 

a(x, ξ) = Fourier t k a (x + t 2 , x - t 2 ) (ξ) = e -2πit•ξ k a (x + t 2 , x - t 2 )dt,
where the integral sign means that we perform a Fourier transformation with respect to the variable t.

A particular case of Segal's formula (see e.g. Theorem 2.1.2 in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]) is with F standing for the Fourier transformation on R n , (1.2.23)

F * Op w (a)F = Op w (a(ξ, -x)).

1.2.2. The symplectic group. We define the canonical symplectic form σ on R n × R n by (1.2.24) σX, Y = X, Y = ξ • y -η • x, with X = (x, ξ), Y = (y, η).

The symplectic group 3 Sp(n, R) is the subgroup of S ∈ Gl(2n, R) such that It is easy to prove directly from (1.2.25) that Sp(1, R) = Sl(2, R).

Theorem 1.10. Let n be an integer ≥ 1. The group Sp(n, R) is included in Sl(2n, R) and generated by the following mappings

I n 0 A I n
, where A is a n × n symmetric matrix, (1.2.27) B -1 0 0 B * , B ∈ Gl(n, R), (1.2.28)

I n -C 0 I n
, where C is a n × n symmetric matrix. (1.2.29)

For A, B, C as above, the mapping

(1.2.30) Ξ A,B,C = B -1 -B -1 C AB -1 B * -AB -1 C = I n 0 A I n B -1 0 0 B * I n -C 0 I n .
belongs to Sp(n, R). Moreover, we define on R n × R n the generating function S of the symplectic mapping Ξ A,B,C by the identity

(1.2.31) S(x, η) = 1 2 Ax, x + 2 Bx, η + Cη, η so that Ξ ∂S ∂η ⊕ η = x ⊕ ∂S ∂x .
For a symplectic mapping Ξ, to be of the form (1.2.30) is equivalent to the assumption that the mapping x → π R n ×{0} Ξ(x ⊕ 0) is invertible from R n to R n ; moreover, if this mapping is not invertible, the symplectic mapping Ξ is the product of two mappings of the type Ξ A,B,C .

Proof. The expression of Ξ above as well as (1.2.31) follow from a simple direct computation left to the reader. The inclusion of the symplectic group in the special linear group follows from the statement on the generators. We consider now Ξ in Sp(n, R): we have We can note also that the mapping Ξ → Ξ * is an isomorphism of Sp(n, R) since Ξ ∈ Sp(n, R) means

Ξ * σΞ = σ =⇒ Ξ -1 σ -1 (Ξ * ) -1 = σ -1 =⇒ Ξ -1 (-σ -1 )(Ξ * ) -1 = (-σ -1 ),
and since (-σ -1 ) = 0 I n -I n 0 , we get that Ξ * ∈ Sp(n, R). As a result, (1.2.35)

Ξ = P Q R S ∈ Sp(n, R),
is also equivalent to Let us assume that the mapping P is invertible, which is the assumption in the last statement of the theorem. We define then the mappings A, B, C by A = RP -1 , B = P -1 , C = -P -1 Q, so that we have A * = P * -1 R * P P -1 = P * -1 P * RP -1 = RP -1 = A, as well as C * = -Q * P * -1 = -P -1 P Q * P * -1 = -P -1 QP * P * -1 = -P -1 Q = C,

and P = B -1 , R = AB -1 , Q = -B -1 C, S = P * -1 (I n + R * Q) = B * (I n -B * -1 A * B -1 C) = B * -AB -1 C.
We have thus proven that any symplectic matrix Ξ as above such that P is invertible is indeed given by the product appearing in Theorem 1.10.

Let us now consider the case where a symplectic mapping Ξ (given by (1.2.35)) is such that det P = 0; writing R n = ker P ⊕ N we have that P is an isomorphism from N onto ran P . Let B 1 ∈ Gl(n, R) such that B 1 P is the identity on N 4 . We have (1.2.37)

B 1 0 0 B * 1 -1 P Q R S = B 1 P B 1 Q B * 1 -1 R B * 1 -1 S .
If p = dim(ker P ), we have for the n × n matrix B 1 P the following block decomposition (1.2.38) B 1 P = 0 p,p 0 p,n-p 0 n-p,p I n-p , where 0 r,s stands for a r × s matrix with only 0 as an entry. On the other hand, we know from (1.2.34) that the mapping

(B 1 P ) * B * 1 -1 R = P * R is symmetric. Writing B * 1 -1 R = Rp,p
Rp,n-p Rn-p,p Rn-p,n-p

, where Rr,s stands for a r × s matrix, this gives the symmetry of 0 p,p 0 p,n-p 0 n-p,p I n-p

Rp,p

Rp,n-p Rn-p,p Rn-p,n-p = 0 p,p 0 p,n-p Rn-p,p Rn-p,n-p , implying that Rn-p,p = 0. The symplectic matrix (1.2. The invertibility of (1.2.37) implies that Rp,p is invertible. We consider now the n × n symmetric matrix C = I p,p 0 p,n-p 0 n-p,p 0 n-p,n-p , and the symplectic mapping (1.2.39)

I n C 0 I n B 1 0 0 B * 1 -1 P Q R S = I n C 0 I n B 1 P B 1 Q B * 1 -1 R B * 1 -1 S ,
which is a symplectic mapping P Q R S with

P = B 1 P + CB * 1 -1 R
= 0 p,p 0 p,n-p 0 n-p,p I n-p + I p,p 0 p,n-p 0 n-p,p 0 n-p,n-p

Rp,p

Rp,n-p 0 n-p,p Rn-p,n-p = Rp,p Rp,n-p 0 n-p,p Ĩn-p , which is an invertible mapping. From the equation (1.2.39) and the first part of our discussion, we get that

P Q R S = I n 0 A I n B -1 0 0 B * I n -C 0 I n ,
with A , C symmetric and B invertible and

Ξ = B 1 -1 0 0 B * 1 I n -C 0 I n I n 0 A I n B -1 0 0 B * I n -C 0 I n ,
proving that the Ξ A,B,C generate the symplectic group and more precisely that every Ξ in the symplectic group is the product of at most two mappings of type Ξ A,B,C . The proof of Theorem 1.10 is complete.

Corollary 1.11. We have Sp(n, R) ⊂ Sl(2n, R).

Proof. Indeed the symplectic mappings (1.2.27), (1.2.28) and (1.2.29) do have determinants equal to 1 and since Theorem 1.10 implies that they generate the symplectic group, this proves the sought result.

Remark 1.12. Of course for n ≥ 2, Sp(n, R) is a proper subgroup of Sl(2n, R). Indeed the following matrix

M =     1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1    
has determinant 1 but fails to be symplectic: using Notation (1.2.32), we see that the first and the third equation are satisfied, which is not the case for the second one.

N.B. Since the matrix -I 2n belongs to Sp(n, R) ((1.2.25) holds trivially), we find that S ∈ Sp(n, R) is equivalent to -S ∈ Sp(n, R).

Claim 1. [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF]. The symplectic group is also generated by the mappings

(i) (x, ξ) → (B -1 x, B * ξ), B ∈ Gl(n, R), (1.2.40) (ii) (x, ξ) → (ξ, -x), (1.2.41) (iii) (x, ξ) → (x, ξ + Ax), A ∈ Sym(n, R). (1.2.42)
Another set of generators of the symplectic group is given by the mappings

(j) (x, ξ) → (B -1 x, B * ξ), B ∈ Gl(n, R), (1.2.43) (jj) (x, ξ) → (ξ, -x), (1.2.44) (jjj) (x, ξ) → (x -Cξ, ξ), C ∈ Sym(n, R). (1.2.45) Indeed, we have for C * = C a real symmetric n × n matrix 0 -I n I n 0 σ -1 I n -C 0 I n 0 I n -I n 0 σ = I n 0 C I n .
Remark 1.14. The symplectic matrix

(1.2.46) 0 I n -I n 0 = 2 -1/2 I n I n -I n I n 2 -1/2 I n I n -I n I n = Ξ 2 -In,2 1/2 In,-In ,
is not of the form Ξ A,B,C but is the square of such a matrix. It is also the case of all the mappings (x k , ξ k ) → (ξ k , -x k ) with the other coordinates fixed. Similarly the symplectic matrix (1.2.47)

0 -I n I n I n = I n -I n 0 I n I n 0 I n I n ,
is not of the form Ξ A,B,C but is the product Ξ 0,I,I Ξ I,I,0 . 

(M A,B,C v)(x) = R n e 2iπS(x,η) v(η)dη(det B) 1/2 ,
where (det B) 1/2 is a square root of det B. This operator is an automorphism of S (R n ) and of S (R n ) which is unitary on L 2 (R n ), and such that, for all a ∈ S (R 2n ),

(1.2.49) M * A,B,C Op w (a)M A,B,C = Op w (a • Ξ A,B,C
), where Ξ A,B,C is defined in Theorem 1.10.

N.B.

We have for A, B, C as above,

(M A,I,0 v)(x) = e iπ Ax,x v(x), (1.2.50) (M 0,B,0 v)(x) = (det B) 1/2 v(Bx), (1.2.51) (M 0,I,C v)(x) = e iπ CDx,Dx v (x), (1.2.52)
three operators which are obviously automorphisms of S (R n ) and of S (R n ) as well as unitary operators in L 2 (R n ).

Proof. Formula (1.2.49) is easily checked for each operator (1.2.50), (1.2.51) and (1.2.52). Since Ξ A,B,C = Ξ A,I,0 Ξ 0,B,0 Ξ 0,I,C and

(1.2.53) M A,B,C = M A,I,0 M 0,B,0 M 0,I,C ,
we get (1.2.49) and the proposition.

Remark 1.16. We define

(1.2.54) m(B) = arg(det B) π = k2π π = 2k ∈ {0, 2} mod 4 for det B > 0, k2π+π π = 2k + 1 ∈ {1, 3} mod 4 for det B < 0, so that (1.2.55) det B = | det B|e iπm(B) , (det B) 1/2 ∈ | det B| 1/2 {e i π 2 m(B) , e i π 2 (m(B)+2) }. 5
We shall consider m(B) as an element of Z/4Z, so that the function m(B)

→ e i π 2 m(B)
is well-defined. For A, B, C as in Proposition 1.15, we may define

(1.2.56) M {m(B)} A,B,C v (x) = e iπm(B) 2 | det B| 1/2 R n e iπ(Ax 2 +2Bx•η+Cη 2 ) v(η)dη, 6
but most of the time, we shall omit the super-script m(B) when we do not want to distinguish between the two roots of det B. 7 We note also that for B ∈ Gl(n, R), we have

(1.2.57) m(B * ) = m(B) = m(B -1 ), since det B = det B * and det(B -1 ) = (det B) -1 so that arg(det B) = arg(det B -1
).

Moreover we have for B ∈ Gl(n, R),

det(-B) = (-1) n det B, arg(det(-B)) = arg(det B) if n is even, arg(det B) + π if n is odd, so that (1.2.58) m(-B) = n + m(B).
Examples. Let us start with a one-dimensional example: in Remark 1.14, we have seen in particular that

0 1 -1 0 = 2 -1/2 1 1 -1 1 2 , 2 -1/2 1 1 -1 1 = Ξ -1,2 1/2 ,-1 ,
where we have used (1.2.30) to get the second equation. We have also with the notations of Theorem 1.10,

(M -1,2 1/2 ,-1 v)(x) = R e 2iπ 1 2 (-x 2 +2 3/2 xη-η 2 ) v(η)dη2 1/4 , so that the kernel k 1 (x, y) of the operator M -1,2 1/2 ,-1 is k 1 (x, y) = 2 1/4 e iπ(-x 2 +2 3/2 xη-η 2 ) e -2iπyη dη = use (9.1.8)
2 1/4 e -iπ/4 e iπ(x 2 +y 2 ) e -2 3/2 iπxy , so that the kernel k 2 of the operator (M -1,2 1/2 ,-1 ) 2 is (using again (9.1.8)),

k 2 (x, y) = k 1 (x, z)k 1 (z, y)dz = 2 1
/2 e -iπ/2 e iπ(x 2 +y 2 ) e 2iπz 2 e -2iπz2 1/2 (x+y) dz = e -iπ/4 e -2iπxy , 6 We can of course define M {m} A,B,C for any m, but to stay in the metaplectic group (cf. Definition 1.17), we have to make sure that m ∈ {m(B), m(B) + 2} modulo 4. 7 We note in particular that we have

M {0} 0,In,0 = Id L 2 (R n ) , M {2} 0,In,0 = -Id L 2 (R n )
, and also with the notation (1.2.9), M {n} 0,-In,0 = e iπn 2 σ 0 , M {n+2} 0,-In,0 = -e iπn 2 σ 0 . More generally, we have

for det B > 0, M {0} A,B,C = -M {2} A,B,C , for det B < 0, M {1} A,B,C = -M {3} A,B,C . so that (1.2.59) (M -1,2 1/2 ,-1 ) 2 = e -iπ/4 F 1 ,
with F 1 standing for the 1d Fourier transformation. We get similarly that in n dimensions,

(1.2.60) (M -In,2 1/2 In,-In ) 2 = e -iπn/4 F, with F standing for the Fourier transformation. Similar expressions can be obtained for F k , the Fourier transformation with respect to the variable

x k in n dimensions, k ∈ 1, n with (1.2.61) (M A k ,B k ,C k ) 2 = e -iπ/4 F k ,
where B k is the n × n diagonal matrix with diagonal entries equal to 1 except for the kth equal to 2 1/2 , the n × n diagonal matrices A k = C k with diagonal entries equal to 0, except for the kth equal to -1.

Definition 1.17. The metaplectic group M p(n) is defined as the subgroup of the group of unitary operators on L 2 (R n ) generated by Proof. According to Footnote 7 on page 15, we have C,I,0 (e -iπn/4 Fv) (η) = e -iπn/4 e iπCη 2 v(η), so that (e -iπn/4 F) * = e iπn/4 Fσ 0 = e -iπn/4 Fe iπn/2 σ 0 = e -iπn/4 FM {n} 0,-In,0 . As a consequence, e -iπn/4 F, e -iπn/2 σ 0 , e iπn/2 σ 0 belong to the metaplectic group.

M A,I,0 , where A is a n × n symmetric matrix, cf. (1.2.50), (1.2.62) M 0,B,0 , with B ∈ Gl(n, R), with (det B) 1 2 = | det B| 1 2 e iπm(B) 2 , cf. (1.2.54), (1.2.51), (1.2 
M {2} 0,In,0 = -M {0} 0,In,0 = -Id L 2 (R n ) so that -Id L 2 (R n ) belongs to M p(n), proving the claim. Proposition 1.19. The metaplectic group M p(n) is generated by M A,I,0 , where A is a n × n symmetric matrix, cf. (1.2.50), (1.2.65) M 0,B,0 , with B ∈ Gl(n, R), with (det B) 1 2 = | det B| 1 2 e iπm(B) 2 , cf
e iπn/4 F -1 (e -iπn/4 e iπCη 2 v(η)) (x) = e 2iπxη e iπCη 2 v(η)dη = (M {0} 0,I,C v)(x), yielding e iπn/4 F -1 M {0} 0,I,C e -iπn/4 F = M {0}
Lemma 1.21. For Y ∈ R 2n , we define the linear form L Y on R 2n by

(1.2.69) L Y (X) = σY, X = [Y, X].
For any M ∈ M p(n) there exists a unique χ ∈ Sp(n, R) such that

(1.2.70) ∀Y ∈ R 2n , M * Op w (L Y )M = Op w (L χ -1 Y ).
Proof. Indeed, thanks to (1.2.49) and Definition 1.17, we can find χ ∈ Sp(n, R) such that

M * Op w (L Y )M = Op w (L Y • χ) = Op w (L χ -1 Y ), since (L Y • χ)(X) = σY, χX = χ * σχχ -1 Y, X = σχ -1 Y, X = L χ -1 Y (X). Moreover, if χ 1 , χ 2 ∈ Sp(n, R) are such that for all Y ∈ R 2n , 0 = Op w (L χ -1 2 Y -L χ -1 1 Y ) = Op w (L (χ -1 2 -χ -1 1 )Y ), we get L (χ -1 2 -χ -1 1 )Y = 0, implying ∀Y ∈ R 2n , (χ -1 2 -χ -1 1 )Y = 0, i.e. χ 1 = χ 2 .
We can thus define a mapping (1.2.71)

Ψ : M p(n) → Sp(n, R), with Ψ(M ) = χ satisfying (1.2.70).
In particular we have from ( 

Ψ(M A,B,C ) = Ξ A,B,C , Ψ e -iπn 4 F = σ = 0 I n -I n 0 . Theorem 1.22. The mapping Ψ defined in (1.2.71) is a surjective homomorphism of groups with kernel {± Id L 2 (R n ) }.
Proof. This mapping is an homomorphism of groups: if M 1 , M 2 belong to M p(n), we have with

χ j = Ψ(M j ), (M 1 M 2 ) * Op w (L Y )M 1 M 2 = M * 2 Op w (L χ -1 1 Y )M 2 = Op w (L χ -1 2 χ -1 1 Y ) = Op w (L (χ 1 •χ 2 ) -1 Y ), proving that Ψ(M 1 M 2 ) = Ψ(M 1 )Ψ(M 2 ).
Moreover the homomorphism Ψ is onto, thanks to (1.2.49) and Theorem 1.10. The kernel of Ψ is made with

M ∈ M p(n) such that for all Y ∈ R 2n , M * Op w (L Y )M = Op w (L Y ), i.e. Op w (L Y ), M = 0,
so that, thanks to (1.2.5), (1.2.6), if µ(x, ξ) is the Weyl symbol of M (M is an endomorphism of S (R n ) and thus has a distribution kernel as well as a Weyl symbol via Formula (1.2.22)), we get for all (y, η) ∈ R 2n , 0 = {η • x -y • ξ, µ(x, ξ)} so that dµ = 0, and µ is a constant so that M = c Id L 2 (R n ) , necessarily with |c| = 1 (since M is unitary). Applying Theorem 9.17 gives c ∈ {±1}, concluding the proof.

N.B. The proof of Theorem 9.17 is relegated in our Appendix, and requires some effort.

Corollary 1.23. For χ ∈ Sp(n, R), the fiber Ψ -1 {χ} contains exactly two metaplectic transformations and more precisely

Ψ -1 {χ} = {M, -M },
where M is a metaplectic transformation.

Proof. This corollary is an immediate consequence of Theorem 1.22.

Theorem 1.24 (Symplectic covariance of the Weyl calculus). Let a be in S (R 2n ) and let χ be in Sp(n, R). Then for a metaplectic operator M such that Ψ(M ) = χ, we have

(1.2.73) M * Op w (a)M = Op w (a • χ). For u, v ∈ S (R n ), we have (1.2.74) W (M u, M v) = W(u, v) • χ -1 ,
where W is the Wigner distribution given in (1.1.6).

Proof. The first property follows immediately from (1.2.49) and Definition 1.17 whereas (1.2.74) is a consequence of (1.2.3) and (1.2.73).

We note also that for Y = (y, η) ∈ R 2n , the symmetry S Y is defined by S Y (X) = 2Y -X and is quantized by the phase symmetry σ Y as defined by (1.2.9) with the formula

(1.2.75) Op w (a • S Y ) = σ * Y Op w (a)σ Y = σ Y Op w (a)σ Y . Similarly, the translation T Y is defined on the phase space by T Y (X) = X + Y and is quantized by the phase translation τ Y , (1.2.76) (τ (y,η) u)(x) = u(x -y)e 2iπ(x-y 2 )•η ,
and we have

(1.2.77) Op w (a • T Y ) = τ * Y Op w (a)τ Y = τ -Y Op w (a)τ Y .
Remark 1.25. Property (1.2.74) can be extended to the affine symplectic group and we have with the phase translations defined in (1.2.76),

(1.2.78) ∀(X, Y ) ∈ R 2n × R 2n , W (τ Y u, τ Y v) (X) = W(u, v)(X -Y ).
We shall define the affine group M p a (n) as the group of unitary transformations of L 2 (R n ) generated by transformations (1.2.50), (1.2.51), (1.2.52) and phase translations given by (1.2.76).

N.B. More information on the metaplectic group is given in J. Leray's book [START_REF]A mathematical structure related to asymptotic expansions and the Maslov index[END_REF], the same author's articles [START_REF]The meaning of Maslov's asymptotic method: the need of Planck's constant in mathematics[END_REF], [START_REF] Leray | Analyse lagrangienne et mécanique quantique, Séminaire sur les Équations aux Dérivées Partielles[END_REF], as well as A. Weil's paper [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] (see also V.S. Buslaev's article [START_REF] Buslaev | Quantization and the WKB method[END_REF], Chapter 9 in K. Gröchenig's book [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF], H. Reiter's Lecture Notes [START_REF] Reiter | Metaplectic groups and Segal algebras[END_REF]).

Theorem 1 in E. Lieb's classical article [START_REF] Elliott | Integral bounds for radar ambiguity functions and Wigner distributions[END_REF] gives a more precise version of (1.2.80), (1.2.81) and (1.2.82) below.

Theorem 1.26. Let u, v be in L 2 (R n ). Then W(u, v) is a uniformly continuous function belonging to L 2 (R 2n ) ∩ L ∞ (R 2n
) and using the definitions (1.2.76), (1.2.9) for the phase translations and phase symmetry, we have

W(u, v)(X) = 2 n σ X u, v L 2 (R n ) = 2 n τ * X u, τ X v L 2 (R n ) (1.2.79) = 2 n σ 0 τ -2X u, v L 2 (R n ) , W(u, v) L 2 (R 2n ) = u L 2 (R n ) v L 2 (R n ) , (1.2.80) ∀p ∈ [1, +∞], W(u, v) L ∞ (R 2n ) ≤ 2 n u L p (R n ) v L p (R n ) . (1.2.81)
More generally, for q ≥ 2 and r ∈ [q , q], we have

8 (1.2.82) W(u, v) L q (R 2n ) ≤ 2 n(q-2) q u L r (R n ) v L r (R n ) .
Moreover, we have

(1.2.83) lim R 2n X,|X|→+∞ W(u, v)(X) = 0. Proof. We have with v(x) = v(-x) = (σ 0 v)(x), W(u, v)(x, ξ) = 2 n u(x + z)v(x -z)e -4iπzξ dz = 2 n u(z -(-x))e 2iπ(z--x 2 )(-ξ) v(z -x)e -2iπ(z-x 2 )ξ e -4iπzξ+2iπ(z--x 2 )ξ+2iπ(z-x 2 )ξ dz = 2 n (τ (-x,-ξ) u)(z)(τ (x,ξ) v)(z)dz = 2 n τ * (x,ξ) u, τ (x,ξ) v L 2 (R n ) , or for short (1.2.84) W(u, v)(X) = 2 n τ * X u, τ X v L 2 (R n ) . As a consequence we find from (1.2.11) that Op w (a)u, v = a(X)2 n σ 0 τ * 2X u, v dX,
and since (σ x,ξ u)(y) = u(2x -y)e -4iπ(x-y)•ξ , we can verify directly that (1.2.85)

σ 0 τ -2X = σ X .
Indeed, composing the translation of vector -2X in R 2n with the symmetry with respect to 0, we have

Y → Y -2X → 2X -Y = Y , 1 2 (Y + Y ) = X,
that is the symmetry with respect to X. Quantifying this equality, we use

(τ (-2x,-2ξ) u)(z) = u(z + 2x)e 2iπ(z--2x 2 )(-2ξ) = u(z + 2x)e -4iπ(z+x)ξ ,
so that we obtain 

σ 0 (τ (-2x,-2ξ) u)(z) = u(-z + 2x)e -4iπ(-z+x)ξ = (σ x,ξ u)(z),
W(u, v) L q ⊗L q ≤ Ω(u, v) L q ⊗L q ≤ |u| q * |v| q 1/q L q/q 2 n q-2 q ,
and since Young's inequality 9 gives

|u| q * |v| q L q/q ≤ |u| q L a/q |v| q L b/q , a, b ≥ q with 1 - q q = 1 - q a + 1 - q b , i.e. q 1 a + 1 b = 1 + q q , that is 1 a + 1 b = 1, so that |u| q * |v| q L q/q ≤ u q L a v q L b , in such a way that (1.2.86) yields W(u, v) L q ⊗L q ≤ 2 n q-2 q u L a v L b , a, b ≥ q , 1 a + 1 b = 1,
which is (1.2.82) . We are left with the proof of uniform continuity of W(u, v). We have for X, Y ∈ R 2n ,

W(u, v)(Y ) -W(u, v)(X) = 2 n (σ Y -σ X )u, v L 2 (R n ) ,
and since σ 2 Y = Id (see the footnote 2 on page 8), we find

W(u, v)(Y ) -W(u, v)(X) = 2 n (σ Y σ X -Id)σ X u, v L 2 (R n ) = 2 n σ X u, (σ X σ Y -Id)v L 2 (R n ) .
According to Formula (2.1.16) in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF], we have

(1.2.88) σ X σ Y = τ 2X-2Y e 4iπ[Y,X] ,
and this implies

(1.2.89) |W(u, v)(Y ) -W(u, v)(X)| ≤ 2 n u L 2 (R n ) τ 2(X-Y ) v L 2 (R n ) .
We have from (1.2.75),

τ z,ζ v(x) -v(x) = v(x -z)e 2iπ(x-z 2 )ζ -v(x) = v(x -z) -v(x) e 2iπ(x-z 2 )ζ + v(x) e 2iπ(x-z 2 )ζ -1 , 9 For p, q, r ∈ [1, +∞] with 1 p + 1 q = 1 r , we have (1.2.87) f * g L r ≤ f L p g L q .
and thus

τ Z v -v L 2 (R n ) ≤ |v(x -z) -v(x)| 2 dx 1/2 + |v(x)| 2 |e 2iπ(x-z 2 )ζ -1| 2 dx 1/2 .
We have the classical result, due to the density in L 2 of continuous compactly supported functions, lim

R n z→0 |v(x -z) -v(x)| 2 dx = 0,
and moreover the Lebesgue Dominated Convergence Theorem implies

lim (z,ζ)→(0,0) |v(x)| 2 ∈L 1 (R n ) |e 2iπ(x-z 2 )ζ -1| 2 ≤4 dx = 0, so that lim R 2n Z→0 τ Z v -v L 2 (R n ) = 0. As a consequence (1.2.89) implies the uniform continuity of W(u, v). Moreover, we have, for φ, ψ ∈ S (R n ), W(u, v) = W(u -φ, v) + W(φ, v -ψ) + W(φ, ψ), so that |W(u, v)(x, ξ)| ≤ |(u -φ)(x + z 2 )||v(x - z 2 )|dz + |(v -ψ)(x - z 2 )||φ(x + z 2 )|dz + |W(φ, ψ)(x, ξ)| ≤ 2 n u -φ L 2 (R n ) v L 2 (R n ) + 2 n v -ψ L 2 (R n ) φ L 2 (R n ) + |W(φ, ψ)(x, ξ)|.
We choose now sequences

(φ k ), (ψ k ) of S (R n ) converging respectively in L 2 (R n ) towards u, v.
We obtain for all k ∈ N,

(1.2.90) |W(u, v)(x, ξ)| ≤ 2 n u -φ k L 2 (R n ) v L 2 (R n ) + 2 n v -ψ k L 2 (R n ) φ k L 2 (R n ) + |W(φ k , ψ k )(x, ξ)|, so that using that W(φ k , ψ k ) belongs to S (R 2n ), we get lim sup R 2n X,|X|→+∞ |W(u, v)(X)| ≤ 2 n u -φ k L 2 (R n ) v L 2 (R n ) + 2 n v -ψ k L 2 (R n ) φ k L 2 (R n ) ,
and thus, taking the limit when k → +∞, we obtain lim

R 2n X,|X|→+∞ |W(u, v)(X)| = 0,
completing the proof of Theorem 1.26.

Remark 1.27. Let u be in L 2 (R n ) be an even function. We then have

(1.2.91) W(u, u)(0, 0) = 2 n u 2 L 2 (R n ) = W(u, u) L ∞ (R 2n ) . On the other hand if u is odd we have (1.2.92) W(u, u)(0, 0) = -2 n u 2 L 2 (R n ) = -W(u, u) L ∞ (R 2n ) ,
showing that for odd functions the minimum of the Wigner distribution is negative (we assume u = 0 in L 2 (R n )) and attained at 0. Let us check for instance the (odd) function u 1 of Remark 1.3. We have

2 u 1 2 L 2 (R) = 2 x 2 e -2πx 2 dx = 4 +∞ 0 t 2π e -t (2π) -1/2 1 2 t -1/2 dt = 2Γ(3/2) (2π) 3/2 = Γ(1/2) (2π) 3/2 = 1 2 3/2 π = -W(u 1 , u 1 )(0, 0).
1.2.4. On weak versions of the Wigner distribution. Let u, v be in the space S (R n ) of tempered distributions. Then we can define as above the tempered distribution

Ω(u, v) in R 2n : we set (1.2.93) Ω(u, v)(x, z), Φ(x, z) S (R 2n ),S (R 2n ) = u(x 1 ) ⊗ v(x 2 ), Φ( x 1 + x 2 2 , x 1 -x 2 ) S (R 2n ),S (R 2n ) ,
and then we define the Wigner distribution W(u, v) as the Fourier transform with respect to z of Ω(u, v), meaning that

(1.2.94) W(u, v), Ψ S (R 2n ),S (R 2n ) = Ω(u, v), F 2 Ψ S (R 2n ),S (R 2n ) ,
where

(F 2 Ψ)(x, ξ) = R n e -2iπz•ξ Ψ(x, z)dz.
Of course W(u, v) is only a tempered distribution on R 2n and we have the inversion formula, using the notations of Remark 1.8,

(1.2.95)

Ω(u, v) = F 2 C 2 W(u, v).
The above remarks show that there is no difficulty to extend the definition of the joint Wigner distribution W(u, v) to the case where u, v are both tempered distributions on R n . Some properties are surviving from the L 2 theory, in particular the inversion formula, but one should be reasonably cautious at avoiding to write brackets of duality as integrals. Theorem 2 in [START_REF] Elliott | Integral bounds for radar ambiguity functions and Wigner distributions[END_REF] gives a more complete version of the following result.

Theorem 1.28.

Let u ∈ L 2 (R n ) such that W(u, u) ∈ L 1 (R 2n ). Then u belongs to L p (R n ) for all p ∈ [1, +∞] and we have u L 1 (R n ) u L ∞ (R n ) ≤ 2 n W(u, u) L 1 (R 2n ) .
N.B. We refer the reader to our Section 6.3 and in particular to our Theorem 6.18 on page 114 showing that the set of

u in L 2 (R n ) such that W(u, u) belongs to L 1 (R 2n ) is meager.
Proof. Thanks to Theorem 1.26, we have W(u, u) ∈ L p (R 2n ) for all p ∈ [1, +∞] and we have in a weak sense,

u(x + z 2 )ū(x - z 2 ) = e 2iπz•ξ W(u, u)(x, ξ)dξ, so that (1.2.96) u(x 1 )ū(x 2 ) = e 2iπ(x 1 -x 2 )•ξ W(u, u)( x 1 + x 2 2 , ξ)dξ,
and thus

|u(x 1 )||u(x 2 )|dx 1 ≤ W(u, u)( x 1 + x 2 2 , ξ) dξdx 1 = 2 n W(u, u) L 1 (R 2n ) , i.e. u L 1 (R n ) u L ∞ (R n ) ≤ 2 n W(u, u) L 1 (R 2n ) ,
proving the lemma.

1.2.5. Composition Formulas. The following lemma is classical (see e.g [START_REF] Grossmann | Parity operator and quantization of δ-functions[END_REF], [START_REF] Royer | Wigner function as the expectation value of a parity operator[END_REF]); however we shall provide a proof for the convenience of the reader.

Lemma 1.29. Let u, v, f, g be in L 2 (R n ). Then (1.2.97) u, g L 2 (R n ) f, v L 2 (R n ) = W(u, v)(x, ξ)W(f, g)(x, ξ)dxdξ.
In other words, the Weyl symbol of the rank-one operator u → u, g

L 2 (R n ) f is W(f, g). In particular if f = g is a unit vector in L 2 (R n ) we find that W(f, f ) is the Weyl symbol of the orthogonal projection onto Cf . Proof. Both functions W(u, v), W(f, g) belong to L 2 (R 2n
), so that the integral on the right-hand-side of (1.2.97) actually makes sense. Also W(u, v) is the partial Fourier transform with respect to the variable z of (x, z) → u(x + z/2)v(x -z/2), thus applying Plancherel formula 10 we obtain that

W(u, v)(x, ξ)W(f, g)(x, ξ)dxdξ = u(x + z/2)v(x -z/2)f (x -z/2)ḡ(x + z/2)dxdz = u, g L 2 (R n ) f, v L 2 (R n ) .
The last property follows from (1.2.3).

Using Section 2.1.5 in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF], we obtain that for a, b ∈ S (R 2n )

Op w (a)Op w (b) = R 2n ×R 2n a(Y )b(Z)2 2n σ Y σ Z dY dZ.
We get (1.2.99) Op w (a)Op w (b) = Op w (a b), 10 We refer of course to the formula û, v L 2 (R n ) = u, v L 2 (R n ) , when using the complex Hilbert space L 2 (R n ). Note however that Formula (1.1.4) is using the real duality between S (R n ) and S (R n ) so that to check, with S * (R N ) standing for the anti-dual of S (R N ) (i.e. continuous anti-linear forms on S (R N )), we have also

(1.2.98) T , φ S * (R N ),S (R N ) = T , φ S (R N ),S (R N ) = T, φ S (R N ),S (R N ) = T, φ S (R N ),S (R N ) = T, φ S * (R N ),S (R N ) .
with

(a b)(X) = 2 2n R 2n ×R 2n e -4iπ[X-Y,X-Z] a(Y )b(Z)dY dZ (1.2.100) = R 2n ×R 2n e -2iπ Ξ,Z a X + σ -1 Ξ 2 b(Z + X)dΞdZ, (1.2.101) = R 2n e 2iπ X,Ξ a X + σ -1 Ξ 2 b(Ξ)dΞ, (1.2.102)
where [•, •] is the symplectic form (1.2.24) and σ is (1.2.26). Formula (1.2.101) is interesting since very close to the group J t defined in Formula (4.1.14) of [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF].

Lemma 1.30. Let u 0 , u 1 , u 2 , u 3 be in L 2 (R n ). Then we have for all X ∈ R 2n , (1.2.103) | u 1 , u 2 L 2 ||W(u 0 , u 3 )(X)| ≤ 2 n |W(u 0 , u 2 )| * |W(ǔ 1 , u 3 )| (X).
Proof. According to Lemma 1.29, we have

for v ∈ L 2 (R n ), Op w (W(u 0 , u 2 ))Op w (W(u 1 , u 3 ))v = Op w (W(u 0 , u 2 )) v, u 3 L 2 (R n ) u 1 = v, u 3 L 2 (R n ) u 1 , u 2 L 2 (R n ) u 0 = u 1 , u 2 L 2 (R n ) Op w (W(u 0 , u 3 ))v,
so that with the notation (1.2.99), we get

(1.2.104) W(u 0 , u 2 ) W(u 1 , u 3 ) = u 1 , u 2 L 2 (R n ) W(u 0 , u 3 ),
and using (1.2.102), we get

(1.2.105) W(u 0 , u 2 ) W(u 1 , u 3 ) (x, ξ) = e 2iπ(x•η+ξ•y) W(u 0 , u 2 ) x - y 2 , ξ + η 2 A(u 1 ,u 3 )(-η,-y) F W(u 1 , u 3 ) (η, y) dydη,
where F stands for the Fourier transformation and A for the ambiguity function (cf.

(1.2.13)). With Formula (1.2.14), we obtain

(1.2.106) W(u 0 , u 2 ) W(u 1 , u 3 ) (x, ξ) = e 4iπ(-x•η+ξ•y) W(u 0 , u 2 )(x -y, ξ -η)W(ǔ 1 , u 3 )(y, η)dydη2 n , yielding from (1.2.104) for any X ∈ R 2n , (1.2.107) u 1 , u 2 L 2 W(u 0 , u 3 )(X) = R 2n e 4iπ[X,Y ] W(u 0 , u 2 )(X -Y )W(ǔ 1 , u 3 )(Y )dY 2 n ,
which implies the lemma.

1.2.6. L 2 -boundedness.

Theorem 1.31. Let a be a semi-classical symbol on R 2n , i.e. a smooth function of (x, ξ) depending on h ∈ (0, 1] such that

(1.2.108) ∀l ∈ N, p l (a) = sup (x,ξ)∈R 2n ,h∈(0,1] |α|+|β|≤l |(∂ α x ∂ β ξ a)(x, ξ, h)|h -|α|+|β| 2 < +∞.
Then the operator Op w (a(x, ξ, h)) is bounded on L 2 (R n ) and such that

(1.2.109) Op w (a(x, ξ, h)) B(L 2 (R n )) ≤ c n p n (a),
where c n and n depend only on n.

Proof. Theorem 1.2 in A. Boulkhemair's article [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF] is providing that result (and more) with n = [n/2] + 1. Note also that Theorem 1.1.4 in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] is providing an elementary proof of the above result for the ordinary quantization of a given by

(1.2.110) (Op 0 (a)u)(x) = e 2iπx•ξ a(x, ξ, h)û(ξ)dξ = e 2iπ(x-y)•ξ a(x, ξ, h)u(y)dydξ. N.B. Formula (1.2.102) appears as (1.2.111) (a b)(X) = Op 0 a X - σΞ 2 b (X),
where Op 0 (•) stands for the ordinary quantization in 2n dimensions.

The following classical result is a consequence of Theorem 1.31.

Theorem 1.32. Let C ∞ b (R 2n
) be the set of bounded smooth complex-valued functions on R 2n such that all derivatives are bounded and let a be in

C ∞ b (R 2n ). Then the operator Op w (a) is bounded on L 2 (R n ) and the B(L 2 (R n )) norm of Op w (a) is bounded above by a fixed semi-norm of a in the Fréchet space C ∞ b (R 2n
). 1.2.7. On the Heisenberg Uncertainty Relations. Let u ∈ S (R). We have, using the notations (1.1.5),

(1.2.112) 2 Re D x u, ixu L 2 (R) = [D x , ix]u, u L 2 (R) = 1 2π u 2 L 2 (R) , implying in particular (1.2.113) D x u L 2 (R) xu L 2 (R) ≥ 1 4π u 2 L 2 (R) ,
which is an equality for u(x) = e -πx 2 ; moreover we infer also from (1.2.112) that

π(D 2 x + x 2 )u, u ≥ 1 2 u 2 L 2 (R) , (1.2.114) and for (1.2.115) q µ (x, ξ) = 1≤j≤n µ j (x 2 j + ξ 2 j ), 0 ≤ µ 1 ≤ • • • ≤ µ n , the inequality (1.2.116) Op w πq µ (x, ξ) u, u L 2 (R n ) ≥ u 2 L 2 (R n ) 1 2 1≤j≤n µ j defined as trace + (qµ)
, which is an equality for u(x) = e -π|x| 2 . Note that the above (optimal) inequality can be reformulated as

(1.2.117) R 2n πq µ (x, ξ)W(u, u)(x, ξ)dxdξ ≥ u 2 L 2 (R n ) 1 2 trace + (q µ ).
Note also that with the symplectic matrix σ defined by (1.2.26), the so-called fundamental matrix of q µ is defined by

(1.2.118) F qµ = σ -1 Q µ = 0 -I I 0 M 0 0 M = 0 -M M 0 , with M = diag(µ 1 , . . . , µ n ), so that (1.2.119) Spectrum F qµ = {±iµ j } 1≤j≤n , trace + (q µ ) = λ eigenvalue of Fq µ with Im λ>0 λ/i.
With the notations 

C j = D x j + ix j , creation operators, C * j = D x j -ix j ,
(q µ ) = π 1≤j≤n µ j C j C * j + 1 2 trace + (q µ ),
which provides another proof of (1.2.116).

Lemma 1.33 (Quantum Mechanics must deal with unbounded operators 11 ). Let H be a Hilbert space and let J, K ∈ B(H); then the commutator [J, K] = Id.

Proof. Let J, K be bounded operators with [J, K] = Id. Then for all N ∈ N * , we have

(1.2.122) [J, K N ] = N K N -1 .
Indeed, this is true for N = 1 and if it holds for some N ≥ 1, we find that

[J, K N +1 ] = JK N K -K N +1 J = [J, K N ]K + K N JK -K N +1 J = [J, K N ]K + K N (JK -KJ) = [J, K N ]K + K N = (N + 1)K N , qed.
11 Thus QM must involve infinite dimensional Hilbert spaces and unbounded operators on them.

Note that (1.2.122) implies that for all N ∈ N * , we have K N = 0: of course K = 0 since [J, K] = Id and if we had K N = 0 for some N ≥ 2, (1.2.122) would imply K N -1 = 0 and eventually K = 0. As a consequence, we get from (1.2.122) that for all N ≥ 2,

N K N -1 B(H) ≤ 2 J B(H) K N B(H) ≤ 2 J B(H) K B(H) K N -1 B(H) , implying since K N -1 B(H) > 0, that ∀N ≥ 2, N ≤ 2 J K ,
which is impossible and proves the lemma.

Lemma 1.34 (Hardy's inequality: the study of non-self-adjoint operators may be useful to determine lowerbounds of self-adjoint operators).

Let n ∈ N, n ≥ 3; let u in L 2 (R n ) such that ∇u ∈ L 2 (R n ), |x| -1 u ∈ L 2 (R n ). Then we have (1.2.123) ∇u 2 L 2 (R n ) ≥ n -2 2 2 |x| -1 u 2 L 2 (R n ) .
Proof. We write first

1≤j≤n (D x j -iφ j )u 2 L 2 (R n ) = |D| 2 u, u L 2 (R n ) + |φ| 2 u, u L 2 (R n ) - 1 2π (div φ)u, u L 2 (R n ) ,
so that with φ(x) = νx 2π|x| 2 , we get the operator inequality

|D| 2 + ν 2 4π 2 |x| 2 ≥ ν(n -2) 4π 2 |x| 2 , so that -∆ ≥ |x| -2 ν(n -2 -ν) largest at ν=(n-2)/2
, proving the lemma.

N.B.

A modern approach to the Heisenberg Uncertainty Principle should certainly begin with reading C. Fefferman's article [START_REF] Fefferman | The uncertainty principle[END_REF] as well as E. Lieb's book [START_REF]The stability of matter: from atoms to stars[END_REF].

1.2.8. Non-negative quantizations formulas. Lemma 1.35. Let χ be an even function in S (R 2n ) with L 2 (R 2n ) norm equal to 1. We define

(1.2.124) Γ χ = χ χ.
Then the function Γ χ belongs to S (R 2n ), is real-valued even and is such that

R 2n Γ χ (X)dX = 1.
Let u be in L 2 (R n ). Then the convolution W(u, u) * Γ χ is non-negative. As a result, the operator with Weyl symbol a * Γ χ is a non-negative operator whenever a is a non-negative function.

Proof. According to the book [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF], the composition formula (1.2.100) is bilinear continuous from S (R 2n ) 2 into S (R 2n ) and we have also

a b = b ā.
so that Γ χ is indeed real-valued. Moreover, we have

R 2n Γ χ (X)dX = 2 2n (R 2n ) 3 e -4iπ[X-Y,Y -Z] χ(Y )χ(Z)dY dZdX = |χ(Y )| 2 dY = 1,
and

Γ χ (-X) = 2 2n R 2n ×R 2n e -4iπ[-X-Y,-X-Z] χ(Y )χ(Z)dY dZ = 2 2n R 2n ×R 2n e -4iπ[-X+Y,-X+Z] χ(Y )χ(Z)dY dZ = Γ χ (X).
We have also

W(u, u) * Γ χ (Y ) = R 2n W(u, u)(Y -X)Γ χ (X)dX = R 2n W(u, u)(Y + X)Γ χ (X)dX = R 2n W(u, u)(T Y (X))Γ χ (X)dX = R 2n W(τ -Y u, τ -Y u)(X)Γ χ (X)dX = R 2n W(τ -Y u, τ -Y u)(X)( χ χ)(X)dX = Op w ( χ χ)τ -Y u, τ -Y u L 2 (R n ) = Op w (χ)τ -Y u 2 L 2 (R n ) ≥ 0,
proving the first statement of non-negativity. Let a be a non-negative function, say in L 1 (R 2n ); we have

Op w (a * Γ χ ) = 2 n a(Y )Γ χ (X -Y )σ X dY dX = a(Y ) ( χ χ)(X -Y )2 n σ X dXdY = a(Y ) ( χ χ)(T -Y (X))2 n σ X dXdY = a(Y )τ Y Op w ( χ χ)τ -Y dY = a(Y )τ Y Op w ( χ)Op w (χ)τ -Y dY = a(Y ) Op w (χ)τ -Y * Op w (χ)τ -Y non-negative operator dY ≥ 0,
if a(Y ) ≥ 0 for all Y ∈ R 2n and this concludes the proof.

We can write as well (1.2.125)

Op w (a * Γ χ ) = R 2n a(Y ) τ Y Op w (χ)τ -Y * τ Y Op w (χ)τ -Y dY = R 2n a(Y )Σ χ (Y )dY, with (1.2.126) Σ χ (Y ) = τ Y Op w (χ)τ -Y * τ Y Op w (χ)τ -Y = Op w (χ(• -Y )) * Op w (χ(• -Y )).
Remark 1.36. The Gaussian case in the previous lemma gives rise to the standard non-negativity properties of coherent states. In fact choosing χ(X) = 2 n e -2π|X| 2 , we see that χ is even, belongs to the Schwartz space and

χ 2 L 2 (R 2n ) = 2 2n R 2n e -4π|X| 2 dX = 2 2n 4 -2n/2 = 1.
We have also12 

Γ χ (X) = 2 4n (R 2n ) 2 e -4iπ[X-Y,X-Z] e -2π(|Y | 2 +|Z| 2 ) dY dZ = 2 3n R 2n e 4iπ[Y,X] e -2π(|X+Y | 2 +|Y | 2 ) dY = 2 3n R 2n e 4iπ[Y,X] e -2π(|Y + X 2 | 2 +|Y -X 2 | 2 ) dY = 2 3n e -π|X| 2 R 2n e 4iπ[Y,X] e -4π|Y | 2 dY = 2 3n e -π|X| 2 4 -n e -π|X| 2 = χ(X).
In that case we find that Op w (χ) is a rank-one orthogonal projection on the fundamental state Ψ 0 of the Harmonic Oscillator π(|D x | 2 + |x| 2 ). According to (9.1.31) the one-dimensional k-th Hermite function is

(1.2.127) ψ k (x) = (-1) k 2 k √ k! 2 1/4 e πx 2 d √ πdx k (e -2πx 2 ),
so that Ψ 0 (x) = 2 n/4 e -π|x| 2 . We calculate

Γ(x, ξ) = W(Ψ 0 , Ψ 0 )(x, ξ) = 2 n/2 R n e -π(|x+z/2| 2 +|x-z/2| 2 ) e -2iπzξ dz = 2 n/2 e -2π|x| 2
R n e -πz 2 /2 e -2iπzξ dz = 2 n e -2π|x| 2 e -2π|ξ| 2 = χ(x, ξ).

The anti-Wick quantization of a symbol a is defined as (see e.g. M. Shubin's book [START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF])

(1.2.128) Op aw (a) = R 2n a(Y )Σ Y dY,
where Σ Y is the rank-one orthogonal projection given by (1.2.129) Σ y,η u = u, τ y,η Ψ 0 τ y,η Ψ 0 .

Remark 1.37. It is interesting to notice that to produce non-negativity of the operator with Weyl symbol a * Γ χ when a is a non-negative function, we do not use the non-negativity of Γ χ as a function, which by the way does not always hold (except in the Gaussian cases), but we use the fact that the quantization of Γ χ is non-negative, as it is defined as Op w ( χ χ) = (Op w (χ)) * Op w (χ).

Remark 1.38. Another important remark is concerned with the Taylor expansion of a * Γ χ : we have

(a * Γ χ )(X) = a(X -Y )Γ χ (Y )dY = a(X + Y )Γ χ (Y )dY = a(X) + a (X)Y + 1 0 (1 -θ)a (X + θY )Y 2 Γ χ (Y )dY = a(X) + 1 0 (1 -θ)a (X + θY )Y 2 Γ χ (Y )dY.
As a result the difference (a * Γ χ )a depends only on the second derivative of a. If for instance a is a semi-classical symbol, i.e. a smooth function of (x, ξ) depending on h ∈ (0, 1] such that

(1.2.130) ∀(α, β) ∈ N n × N n , sup (x,ξ)∈R 2n ,h∈(0,1] |(∂ α x ∂ β ξ a)(x, ξ, h)|h -|α|+|β| 2 < +∞.
then the difference Op aw (a) -Op w (a) is bounded on L 2 (R n ) with an O(h) operatornorm, so that if a happens also to be non-negative, we find Theorem 1.39. Let χ be an even function in the Schwartz space S (R 2n ) with L 2 (R 2n ) norm equal to 1 and let Γ χ be given by (1.2.124). For a ∈ L ∞ (R 2n ), we define

(1.2.132) Op(χ, a) = Op w (a * Γ χ ).
Then Op(χ, a) is a bounded operator in L 2 (R n ) and we have

(1.2.133) Op(χ, a) B(L 2 (R n )) ≤ a L ∞ (R 2n ) .
Moreover, if a is valued in some interval J of the real line, we have the operator inequalities

(1.2.134) inf J ≤ Op(χ, a) ≤ sup J.
In particular if a(x, ξ) ≥ 0 for all (x, ξ) ∈ R 2n , we have the operator-inequality Op(χ, a) ≥ 0.

N.B. The non-negativity of the anti-Wick quantization (1.2.128) and its avatars Husimi ([25]), Coherent States, Gabor wavelets (see e.g. [START_REF]Advances in Gabor analysis[END_REF]), are particular cases of the above theorem. More information on this topic is available in Section 2.4 of the book [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]. Another remark is that this result can easily be extended to matrixvalued symbols as in Remark 2 page 79 of L. Hörmander's [START_REF]The analysis of linear partial differential operators[END_REF] and even to symbols valued in B(H), where H is a Hilbert space.

Proof. We start with Formulas (1.2.125), (1.2.126), entailing [START_REF]Fonctions classiques[END_REF] and thus Op(χ, 1) = Id. We infer that for u, v ∈ S (R n ),

Op(χ, a) = R 2n a(Y )Σ χ (Y )dY, with Σ χ (Y ) = Op w (χ(• -Y )) * Op w (χ(• -Y )) = τ Y Op w ( χ χ)τ -Y . We note that Op(χ, 1) = R 2n τ Y Op w ( χ χ)τ -Y dY, so has Weyl symbol X → R 2n Γ χ (X -Y )dY = 1 from Lemma 1.
Op(χ, a)u, v L 2 (R n ) = R 2n a(Y ) Op w (χ(• -Y ))u, Op w (χ(• -Y ))v dY, so that with any ν > 0, | Op(χ, a)u, v L 2 (R n ) | ≤ a L ∞ (R 2n ) R 2n 1 2 ν Op w (χ(• -Y ))u 2 L 2 (R n ) + ν -1 Op w (χ(• -Y ))v 2 L 2 (R n ) dY = a L ∞ (R 2n ) 1 2 ν Op(χ, 1)u, u L 2 (R n ) + ν -1 Op(χ, 1)v, v L 2 (R n ) = a L ∞ (R 2n ) 1 2 ν u 2 L 2 (R n ) + ν -1 v 2 L 2 (R n )
, and taking the infimum of the right-hand-side with respect to ν, we obtain

| Op(χ, a)u, v L 2 (R n ) | ≤ a L ∞ (R 2n ) u L 2 (R n ) v L 2 (R n ) ,
proving (1.2.133). To prove (1.2.134), it is enough to prove the last statement in the theorem which follows immediately from (1.2.125), (1.2.126) since each operator Σ Y is non-negative. The proof of the theorem is complete.

It is nice to have examples of non-negative quantizations, but somehow more importantly, it is crucial to relate these quantizations to the mainstream quantization, that is to the Weyl quantization. This is what we do in the next theorem, dealing with semi-classical symbols.

Theorem 1.40 (Sharp Gårding Inequality). Let a be a function defined on R n × R n × (0, 1] such that a(x, ξ, h) is smooth for all h ∈ (0, 1] and such that

(1.2.135) ∀(α, β) ∈ N n × N n , sup (x,ξ,h)∈R n ×R n ×(0,1] |(∂ α x ∂ β ξ a)(x, ξ, h)|h -|β| < +∞.
Let us assume that the function a is valued in R + . Then, there exists a constant C such that We note now that Segal's formula (1.2.73) applied to the symplectic mapping

(
(x, ξ) → (h 1/2 x, h -1/2 ξ),
shows that Op w (b) is unitarily equivalent to Op w (a), providing the sought result.

N.B. Several versions of the above theorem can be found in the literature, in particular Theorem 18.1.14 in [START_REF]The analysis of linear partial differential operators[END_REF]. The first proof of this result was given in 1966 by L. Hörmander in [START_REF] Hörmander | Pseudo-differential operators and non-elliptic boundary problems[END_REF] for scalar-valued symbols and a proof for systems was given by P. Lax & L. Nirenberg in [START_REF] Lax | A sharp inequality for pseudo-differential and difference operators, Singular Integrals[END_REF] on the same year. Far-reaching refinements of that inequality were given by C. Fefferman & D.H. Phong, who proved in [START_REF] Fefferman | On positivity of pseudo-differential operators[END_REF] in 1978 that, under the same assumption as in Theorem 1.40 for scalar-valued symbols, they obtain the much stronger

(1.2.138) Op w (a) + Ch 2 ≥ 0.
A thorough discussion of these questions is given in Section 18.6 of [START_REF]The analysis of linear partial differential operators[END_REF] and in Section 2.5 of [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] (see also [START_REF] Amour | Lower bounds for pseudodifferential operators with a radial symbol[END_REF]).

1.3. Examples.

1.3.1. Hermite functions. We can easily calculate the Wigner distribution of Hermite functions and since the Wigner distributions respect tensor products as partial Fourier transforms, it is enough to do so in one dimension. With ψ k given in (1.2.127), the Wigner distribution W(ψ k , ψ k ) appears as the Weyl symbol of P k;1 = P k as defined in (9.1.32). We find that the Weyl symbol of P 0;n , following (9.3.3), is

2 n e -2π(|x| 2 +|ξ| 2 ) .
More generally, the paper [START_REF] Janssen | Positivity and spread of bilinear time-frequency distributions, The Wigner distribution[END_REF] provides in one dimension

(1.3.1) W(ψ k , ψ k )(x, ξ) = (-1) k 2e -2π(x 2 +ξ 2 ) L k 4π(x 2 + ξ 2 ) ,
where L k is the standard Laguerre polynomial with degree k (see (9.4.1)). As a result, the Weyl symbol of P k;n is equal to π k,n (x, ξ) with

(1.3.2) π k,n (x, ξ) = (-1) k 2 n e -2π(|x| 2 +|ξ| 2 ) α∈N n ,|α|=k 1≤j≤n L α j 4π(x 2 j + ξ 2 j ) .
Note that the leading term in the polynomial (-1) k L k (t) is t k /k! and this implies that the set

{(x, ξ) ∈ R 2 , W(ψ k , ψ k )(x, ξ) < 0}
where W(ψ k , ψ k ) is given by (1.3.1) is a relatively compact open subset of R 2 : Indeed we have

W (ψ k , ψ k )(X) = 2e -2π|X| 2 (4π|X| 2 ) k k! 1 + 0≤l≤k-1 a l (4π|X| 2 ) -(k-l) ≥1/2 for |X| ≥ R 0 which implies that {X ∈ R 2 , |X| ≥ max(R 0 , 1)} ⊂ {X ∈ R 2 , W (ψ k , ψ k )(X) > 0} and thus {W (ψ k , ψ k )(X) ≤ 0} ⊂ {|X| < max(R 0 , 1)}.
1.3.2. One-sided exponentials. Let us define for a > 0,

(1.3.3) f a (t) = H(t)a 1/2 e -at/2 .
We have 

W(f a , f a )(x, ξ) = aH(x) |z|≤2x e -2iπzξ e -a 2 (x+z/2) e -a 2 (x-z/2) dz = aH(x)e -xa
W(f a , f a )(x, ξ) 2 dxdξ = a 2 π 2 +∞ x=0 e -2ax sin 2 (4πxξ) ξ 2 dξdx = 1 = f a 4 L 2 (R) .
On the other hand, the ambiguity function A(f a , f a ) is the inverse Fourier transform of W and we have

A(f a , f a )(η, y) = a π H(x)e -x(a-2iπη) sin ξ ξ e 2iπ y 4πx ξ dxdξ = a +∞ |y|/2 e -x(a-2iπη) dx = ae -1 2 |y|(a-2iπη)
a -2iπη , which corresponds to Formula (9) in [START_REF] Gröchenig | Zeros of the Wigner distribution and the shorttime Fourier transform[END_REF] noting that with our notations, we have

A(f, f )(η, y) = A(f, f )(y, -η),
where A(f, f ) is the normalization chosen in [START_REF] Gröchenig | Zeros of the Wigner distribution and the shorttime Fourier transform[END_REF]. Going back to the Wigner distribution, that simple example is interesting since we have

(x, ξ), W(f a , f a )(x, ξ) < 0 = ∪ k∈N (x, ξ) ∈ (0, +∞) × R * , k 2 + 1 4 < x|ξ| < k 2 + 1 2 ,
and we see that the Lebesgue measure of

E k = (x, ξ) ∈ (0, +∞) × R * , k 2 + 1 4 < x|ξ| < k 2 + 1 2 ,
is infinite since

|E k | = 2 +∞ 0 dx 4x = +∞. Moreover the function W(f a , f a )(x, ξ) does not belong to L 1 (R 2 ) since H(x)e -xa sin (4πxξ) πξ dxdξ ≥ (0,+∞) 2 e -xa sin η πη dxdη = +∞.
As a consequence, we have, using the notation for α ∈ R,

(1.3.6) α ± = max(±α, 0), (1.3 
.7) W(f a , f a )(x, ξ) + dxdξ = W(f a , f a )(x, ξ) -dxdξ = +∞, since the real-valued function W(f a , f a ) does not belong to L 1 (R 2
) and is such that

W(f a , f a )(x, ξ)dxdξ = f a 2 L 2 (R) = 1.
We shall see in Section 6.4 several important consequences of that phenomenon for the quantization of the indicatrix of some subsets of R2 , such as

(1.3.8) E ± = (x, ξ), ±W(f a , f a )(x, ξ) > 0 .
1.3.3. Box functions. We start with (1.3.9)

β 0 (t) = 1 [-1 2 , 1
2 ] (t), for which a straightforward calculation gives

(1.3.10) W(β 0 , β 0 )(x, ξ) = 1 [-1 2 , 1 2 ] (x) sin 2π(1 -2|x|)ξ πξ .
More generally for real parameters a ≤ b, defining

β = (b -a) -1/2 1 [a,b] (x)e 2iπωx , we find W(β, β)(x, ξ) = [(b -a)π(ξ -ω)] -1 1 [a, a+b 2 ] (x) sin[4π(ξ -ω)(x -a)] + 1 [ a+b 2 ,b] (x) sin[4π(ξ -ω)(b -x)] . Checking now (1.3.11) β 1 (t) = 1 [-1
we find after a simple (but this time a bit tedious) calculation

(1.3.12) W(β 1 , β 1 )(x, ξ) = 1 |x| ≤ 1 4
2 sin(4π|x|ξ) -sin 2π(1 -2|x|)ξ πξ

+ 1 1 4 ≤ |x| ≤ 1 2 sin 2π(1 -2|x|)ξ πξ .
1.4. Integrals of the Wigner distribution on subsets of the phase space.

Lemma 1.41. Let E be a measurable subset with finite Lebesgue measure of the phase space R n × R n and let 1 E be the indicator function of the set E. Then the operator with Weyl symbol 1 E is bounded self-adjoint on L 2 (R n ) and for any u ∈ L 2 (R n ), we have

(1.4.1) Op w (1 E )u, u L 2 (R n ) = E W(u, u)(x, ξ)dxdξ.
Proof. It follows immediately from (1.2.3) and (1.2.8).

Remark 1.42. A consequence of the above formula is that a spectral analysis of the operator Op w (1 E ) would display interesting extremalization properties for the right-hand-side of (1.4.1); for instance if

λ -= inf spectrum(Op w (1 E )) , λ + = sup spectrum(Op w (1 E )) ,
we obtain that for u normalized in L 2 (R n ), we have

(1.4.2) λ -≤ E W(u, u)(x, ξ)dxdξ ≤ λ + .
In particular, if λ -is an eigenvalue related to a normalized eigenfunction u -, (resp. if λ + is an eigenvalue related to a normalized eigenfunction u + ), we get for all u normalized in L 2 (R n ),

(1.4.3) E W(u -, u -)(x, ξ)dxdξ ≤ E W(u, u)(x, ξ)dxdξ resp. ≤ E W(u + , u + )(x, ξ)dxdξ.
We shall see below several examples where the operator Op w (1 E ) is bounded on L 2 (R n ) with an E having infinite Lebesgue measure. We may note in particular that Op w (1 R 2n ) = Id, and for a given non-zero linear form L(x, ξ) on R 2n and (1.4.4)

E = {(x, ξ) ∈ R 2n , L(x, ξ) ∈ J}, where J is a subset of R,
we may find affine symplectic coordinates (y, η) on R 2n such that L(x, ξ) = y 1 , implying with (1.2.73) that Op w (1 E ) is unitarily equivalent to the orthogonal projection u → u(y)1 J (y 1 ).

Although in that case, the quantization of the indicatrix of E given by (1.4.4) is trivial, we shall see below that in many cases, including some rather explicit ones, the Weyl quantization of the rough Hamiltonian 1 E (x, ξ) could be far from a projection and may have a rather complicated spectrum with a supremum which could be strictly larger than 1 and an infimum which could be negative.

In some sense, although we have the trivial identity 1 E (x, ξ) 2 = 1 E (x, ξ), we shall see that the quantization process by the Weyl formula is destroying that property; to understand integrals of the Wigner distribution on subsets of the phase space, Formula (1.4.1) forces us to consider the Weyl quantization of the function 1 E (x, ξ) and the Heisenberg Uncertainty Principle shows that non-commutation properties are governing operators and these properties are of course distorting the classical identities satisfied by classical Hamiltonians.

We must point out as well that we do not have here at our disposal a semiclassical version of our quantization which could ensure some bridge between classical properties and operator-theoretic results as it is the case for the quantization of nice smooth semi-classical symbols depending on a small parameter h such as a C ∞ function a(x, ξ, h) satisfying (1.2.135). In particular for a symbol a satisfying (1.2.135), we have the following result: if for all (x, ξ, h) ∈ R n × R n × (0, 1] we have a(x, ξ, h) ≤ 1, then there exists a semi-norm C of the symbol a such that (1.4. 

∈ R n × R n × (0, 1] we have 0 ≤ a(x, ξ, h) ≤ 1.
Then there exists a semi-norm C of the symbol a such that

-Ch 2 ≤ Op w (a) ≤ Id +Ch 2 .

Quantization of radial functions and Mehler's formula

This section and the following are essentially based upon the author's paper [START_REF]Mehler's formula and functional calculus[END_REF].

2.1. Basic formulas in one dimension. In this section, we work in one dimension and consider a function F in the Schwartz class of R. We want to calculate somewhat explicitly the Weyl quantization of F (x 2 + ξ 2 ) and also extend that computation to the case where F is merely L ∞ (R). We have, say for F in the Wiener algebra

W (R) = Fourier L 1 (R) , Op w (F (x 2 + ξ 2 )) = R F (τ )Op w (e 2iπτ (x 2 +ξ 2 ) )dτ,
as an absolutely converging integral of a function defined on R (equipped with the Lebesgue measure) valued in B(L 2 (R)) (bounded endomorphisms of L 2 (R)). In fact applying Mehler's Formula (9.3.2), we find Op w (e 2iπτ (x 2 +ξ 2 ) )

operator with Weyl symbol e 2iπτ (x 2 +ξ 2 )

= cos(arctan τ ) e 2iπ(arctan τ )Op w (x 2 +ξ 2 ) exponential e iM , with M self-adjoint operator =2π(arctan τ )Op w (x 2 +ξ 2 ) , so that, using the spectral decomposition (9.1.32) of the Harmonic Oscillator Op w (π(x 2 + ξ 2 )),

we get Op w (F (x 2 + ξ 2 )) = R F (τ ) k≥0 e 2i(arctan τ )(k+ 1 2 ) P k dτ √ 1 + τ 2 = k≥0 R F (τ )e 2i(k+ 1 2 ) arctan τ dτ √ 1 + τ 2 P k ,
where the use of Fubini theorem is justified by

R | F (τ )| dτ √ 1 + τ 2 < +∞, P k ≥ 0, k≥0 P k = Id .
We have

R F (τ )e 2i(k+ 1 2 ) arctan τ dτ √ 1 + τ 2 = R F (τ ) cos(arctan τ + i sin(arctan τ ) 2k+1 dτ √ 1 + τ 2 ,
and, using Section 9.8.1, we get

R F (τ )e 2i(k+ 1 2 ) arctan τ dτ √ 1 + τ 2 = R F (τ ) 1 + iτ 2k+1 dτ (1 + τ 2 ) k+1 .
We have proven the following lemma.

Lemma 2.1. Let F be a tempered distribution on R such that F is locally integrable and such that

(2.1.1) R | F (τ )| dτ √ 1 + τ 2 < +∞.
Then the operator Op w (F (x 2 + ξ 2 )) has the spectral decomposition

Op w (F (x 2 + ξ 2 )) = k≥0 R F (τ )(1 + iτ ) 2k+1 (1 + τ 2 ) k+1 dτ P k (2.1.2) = k≥0 R F (τ )(1 + iτ ) k (1 -iτ ) k+1 dτ P k , (2.1.3)
where the orthogonal projections P k are defined in (9.1.32).

2.2. Higher dimensional questions. We work now in n dimensions and consider a function F in the Schwartz class of R. We want to calculate somewhat explicitly the Weyl quantization of F 1≤j≤n µ j (x 2 j + ξ 2 j ) , where the µ j are positive parameters, denoted by

Op w F ( 1≤j≤n µ j (x 2 j + ξ 2 j )) , q µ (x, ξ) = 1≤j≤n µ j (x 2 j + ξ 2 j ),
and also extend that computation to the case where F is merely L ∞ (R). We have, say for F in the Wiener algebra

W (R) = Fourier L 1 (R) , Op w F q µ (x, ξ) = R F (τ )Op w e 2iπτ 1≤j≤n µ j (x 2 j +ξ 2 j ) dτ,
as an absolutely converging integral of a function defined on R (equipped with the Lebesgue measure) valued in B(L

2 (R n )) (bounded endomorphisms of L 2 (R n )).
In fact applying Mehler's Formula (9.3.2), we find by tensorisation, (2.2.1) Op w e 2iπτ 1≤j≤n µ j (x 2 j +ξ 2 j )

operator with Weyl symbol e 2iπτ qµ(x,ξ) = 1≤j≤n cos(arctan(τ µ j )) e 2iπ(arctan(τ µ j ))Op w (x 2 j +ξ 2 j ) exponential e iM j , with M j self-adjoint operator =2π(arctan(τ µ j ))Op w (x 2 j +ξ 2 j )

, so that, using the spectral decomposition (9.1.36) of the Harmonic Oscillator we get

Op w F (q µ (x, ξ)) = R F (τ )
α∈N n 1≤j≤n e 2i(arctan(τ µ j ))(α j + 1 2 ) P α j 1 1 + (τ µ j ) 2 dτ

= α∈N n R F (τ ) 1≤j≤n e 2i(α j + 1 
2 ) arctan(τ µ j )

1 1 + (τ µ j ) 2 dτ P α ,
where the use of Fubini theorem is justified by

R | F (τ )| dτ √ 1 + τ 2 < +∞, P α ≥ 0, α P α = Id . We have R F (τ ) 1≤j≤n e 2i(α j + 1 2 ) arctan(τ µ j ) 1 1 + (τ µ j ) 2 dτ = R F (τ )
1≤j≤n cos(arctan(µ j τ ) + i sin(arctan(µ j τ ))

2α j +1 1 1 + (τ µ j ) 2 dτ
and, using Section 9.8.1, we get

R F (τ ) 1≤j≤n e 2i(α j + 1 2 ) arctan(τ µ j ) 1 1 + (τ µ j ) 2 dτ = R F (τ ) 1≤j≤n (1 + iτ µ j ) 2α j +1 (1 + (τ µ j ) 2 ) α j + 1 2 1 1 + (τ µ j ) 2
dτ.

We have proven the following lemma.

Lemma 2.2. Let F be a tempered distribution on R such that F is locally integrable and such that

(2.2.2) R | F (τ )| dτ √ 1 + τ 2 < +∞.
Then the operator Op w F ( 1≤j≤n µ j (x 2 j + ξ 2 j )) has the spectral decomposition

(2.2.3) Op w F 1≤j≤n µ j (x 2 j + ξ 2 j ) = α∈N n R F (τ ) 1≤j≤n (1 + iτ µ j ) 2α j +1 (1 + τ 2 µ 2 j ) α j +1 dτ P α = α∈N n R F (τ ) 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ P α ,
where P α is the rank-one orthogonal projection onto Ψ α given by (9.1.33).

Lemma 2.3. Let F be as in Lemma 2.3 and let us assume that all the µ j are equal to µ (positive). Then

(2.2.4) Op w F µ 1≤j≤n (x 2 j + ξ 2 j ) = k≥0 R F (τ ) (1 + iτ µ) k (1 -iτ µ) k+n dτ P k;n , with (2.2.5) P k;n = α∈N n |α|=k P α ,
where P α is the rank-one orthogonal projection onto Ψ α given by (9.1.33).

Proof. With all the µ j equal to µ > 0, we find

1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 = 1≤j≤n (1 + iτ µ) α j (1 -iτ µ) α j +1 = (1 + iτ µ) |α| (1 -iτ µ) |α|+n ,
which depends only on |α|, so that applying the previous lemma gives

F µ 1≤j≤n (x 2 j + ξ 2 j ) w = k≥0 R F (τ ) (1 + iτ µ) k (1 -iτ µ) k+n dτ P k;n ,
giving the sought result.

Conics with eccentricity smaller than 1

3.1. Indicatrix of a disc. Let us assume now that, with some a ≥ 0,

F = 1 [-a 2π , a 2π ] , so that F (x 2 + ξ 2 ) = 1 {2π(x 2 +ξ 2 )≤a} .
According to Section 9.8.3, we have F (τ ) = sin aτ πτ , so that (2.1.1) holds true. We find in this case,

(3.1.1) Op w (F (x 2 + ξ 2 )) = k≥0 F k (a)P k , F k (a) = R sin aτ πτ (1 + iτ ) k (1 -iτ ) k+1 dτ,
so that (note that F k (a) is real-valued since F is real-valued and thus the operator Op w (F (x 2 + ξ 2 )) is self-adjoint), and for a > 0, using the result (9.8.4) of the Appendix page 174, we obtain

F k (a) = 1 π R cos aτ (1 + iτ ) k (1 -iτ ) k+1 dτ = 1 2π R e iaτ (1 + iτ ) k (1 -iτ ) k+1 + (1 -iτ ) k (1 + iτ ) k+1 dτ = 1 2π R e iaτ i k (τ -i) k (-i) k+1 (τ + i) k+1 + (-i) k (τ + i) k i k+1 (τ -i) k+1 dτ = (-1) k 2iπ R e iaτ - (τ -i) k (τ + i) k+1 + (τ + i) k (τ -i) k+1 dτ.
We shall now calculate explicitly both integrals above: let 1 < R be given and let us consider the closed path

(3.1.2) γ R = [-R, R] ∪ {Re iθ } 0≤θ≤π γ 2;R .
We have

-1.0 -0.5 0.5 1.0 0.2 0.4 0.6 0.8 1.0 Figure 1. γ R = [-R, R] ∪ {Re iθ } 0≤θ≤π 1 2iπ γ R e iaτ - (τ -i) k (τ + i) k+1 + (τ + i) k (τ -i) k+1 dτ = Res(e iaτ (τ + i) k (τ -i) k+1 ; i) = 1 k! ( d dτ ) k e iaτ (τ + i) k |τ =i ,
and we note that, for a > 0, lim

R→+∞ γ 2;R e iaτ - (τ -i) k (τ + i) k+1 + (τ + i) k (τ -i) k+1 dτ = 0, since for R ≥ 2, π 0 |e iaRe iθ | - (Re iθ -i) k (Re iθ + i) k+1 + (Re iθ + i) k (Re iθ -i) k+1 |iRe iθ |dθ ≤ π 0 e -aR sin θ - (e iθ -iR -1 ) k (e iθ + iR -1 ) k+1 + (e iθ + iR -1 ) k (e iθ -iR -1 ) k+1 dθ ≤ π 0 e -aR sin θ dθ sup 0≤ρ≤1/2 (1 + ρ) k (1 -ρ) k+1 + (1 + ρ) k (1 -ρ) k+1 .
For a > 0, we obtain lim R→+∞ π 0 e -aR sin θ dθ = 0 by dominated convergence. As a result, we get

F k (a) = (-1) k 1 k! ( d dτ ) k e iaτ (τ + i) k |τ =i = (-1) k 1 k! ( d i a d ) k e -a-(i + i a + i) k | =0 , that is F k (a) = (-1) k k! e -a ( d d ) k e -(2a + ) k | =0 . We note that F k belongs to L 1 (R + )
as the product of e -a by a polynomial. We have also that

(3.1.3) lim a→+∞ F k (a) = 1 (see the Appendix page 174),
and this yields

F k (a) = 1 + a +∞ F k (b)db = 1 - +∞ a (-1) k k! e -b ( d d ) k e -(2b + ) k | =0 db, so that (3.1.4) F k (a) = 1 -e -a P k (a), with (3.1.5) P k (a) = (-1) k k! +∞ 0 e -t ( d d ) k e -2 (a + t + ) k | =0 dt = (-1) k k! +∞ 0 e t ( d d ) k e -2 -2t (a + t + ) k | =0 dt = (-1) k k! +∞ 0 e t ( d dt ) k e -2t (a + t) k dt.
We see that P k is a polynomial with leading monomial 2 k a k k! (by a direct computation) and P k (0) = 1 (since 0 = F k (0) = 1 -P k (0)) and moreover, using Laguerre polynomials (see e.g. (9.4.1) in our Section 9.4), we obtain

P k (a) = (-1) k k! +∞ 0 e -t e 2t+2a ( d 2dt ) k e -2t-2a (2a + 2t) k dt (3.1.6) = (-1) k +∞ 0 e -t L k (2t + 2a)dt, (3.1.7)
and this gives in particular

(3.1.8) P k (a) = (-1) k +∞ 0 e -t 2L k (2t + 2a)dt = (-1) k [e -t L k (2t + 2a)] t=+∞ t=0 + +∞ 0 e -t L k (2t + 2a)dt = (-1) k+1 L k (2a) + P k (a).
Moreover we have from (3.1.5), for k ≥ 1,

P k (a) = (-1) k k! +∞ 0 e t ( d dt ) k e -2t k(a + t) k-1 dt = (-1) k k! +∞ 0 e t d dt ( d dt ) k-1 e -2t k(a + t) k-1 dt = (-1) k k! e t ( d dt ) k-1 e -2t k(a + t) k-1 t=+∞ t=0 - +∞ 0 e t ( d dt ) k-1 e -2t k(a + t) k-1 dt = (-1) k-1 (k -1)! ( d dt ) k-1 e -2t (a + t) k-1 |t=0 + (-1) k-1 (k -1)! +∞ 0 e t ( d dt ) k-1 e -2t (a + t) k-1 dt = (-1) k-1 (k -1)! e 2t+2a ( d 2dt ) k-1 e -2t-2a (2a + 2t) k-1 |t=0 + (-1) k-1 (k -1)! +∞ 0 e t ( d dt ) k-1 e -2t (a + t) k-1 dt = (-1) k-1 L k-1 (2a) + P k-1 (a), so that (3.1.9) ∀k ≥ 1, P k (a) = (-1) k-1 L k-1 (2a) + P k-1 (a) = (-1) k+1 L k (2a) + P k (a).
This implies for N ≥ 1,

1≤k≤N P k (a) - 1≤k≤N (-1) k L k (2a) = 0≤k≤N -1 P k (a) + 0≤k≤N -1 (-1) k L k (2a), yielding P N (a) -P 0 (a) =1=L 0 (a) = 1≤k≤N (-1) k L k (2a) + 0≤k≤N -1 (-1) k L k (2a), and 
(3.1.10) P N (a) = 0≤k≤N (-1) k L k (2a) + 0≤k≤N -1 (-1) k L k (2a).
Note that the previous formula holds as well for N = 0, since P 0 = 1 = L 0 .

Although the function R + a → F k (a) has no monotonicity properties, we prove below that R + a → P k (a) is indeed increasing. For that purpose, let us use (3.1.9), which implies

P k (a) = (-1) k-1 L k-1 (2a) + P k-1 (a), k ≥ 1, P k-1 (a) = P k-2 (a) + (-1) k-2 L k-2 (2a) + (-1) k-1 L k-1 (2a), k ≥ 2, P k (a) = 2(-1) k-1 L k-1 (2a) + (-1) k-2 L k-2 (2a) + P k-2 (a), k ≥ 2.
We claim that that for k ≥ 1,

(3.1.11) P k (a) = 2 0≤l≤k-1 (-1) l L l (2a).
That property holds for k = 1 since P 1 (a) = 1 + 2a: we check P 1 (a) = 2. Moreover we have

P k+1 (a) = (-1) k L k (2a) + P k (a)
(from the first equation in (3.1.9))

(using (3.1.10)) = (-1) k L k (2a) + 0≤l≤k (-1) l L l (2a) + 0≤l≤k-1 (-1) l L l (2a) = 2 0≤l≤k (-1) l L l (2a), qed.
As a byproduct we find from (9.4.3)

(3.1.12) ∀a ≥ 0, P k (a) ≥ 0,
which implies that for a ≥ 0, P k (a) ≥ P k (0) = 1. We have proven the following

Lemma 3.1. The polynomial P k (a) = e a 1-F k (a) is increasing on R + , P k (0) = 1.
Let us take a look at the first P k : we have We note as well that (3.1.13)

P 0 (a) = 1, P 1 (a) = 1 + 2a, P 2 (a) = 1 + 2a 2 , P 3 (a) = 1 + 2a -2a 2 + 4a 3 3 , P 4 (a) = 1 + 4a 2 - 8a 3 3 + 2a 4 3 , P 5 (a) = 1 + 2a -4a 2 + 16a 3 3 -2a 4 + 4a 5 15 , P 6 (a) = 1 + 6a 2 -8a 3 + 14a 4 3 - 16a 5 15 + 4a 6 45 , P 7 (a) = 1 + 2a -6a 2 + 12a
P k (x) = 0≤m≤k x m m! m≤l≤k 2 l (-1) k-l k l , since from (3.1.5), P k (a) = (-1) k k! +∞ 0 e t ( d dt ) k e -2t (a + t) k dt = (-1) k 0≤m≤k +∞ 0 e -t (-2) k-m (k -m)! k! (k -m)!m! (a + t) k-m dt = (-1) k 0≤m≤k +∞ 0 e -t (-2) k-m (k -m)! k! (k -m)!m! 0≤l≤k-m a l t k-l-m k -m l dt = (-1) k 0≤m≤k 0≤l≤k-m (-2) k-m (k -m)! k! (k -m)!m! a l (k -l -m)! k -m l = 0≤l+m≤k (-1) m 2 k-m (k -m)! k! m! a l 1 l! = 0≤l≤k a l l! l≤m ≤k (-1) k-m 2 m k m , qed.
Lemma 3.2. With the polynomial P k defined by (3.1.7), we have

(3.1.14) P k (a) = 2 0≤l≤k-1 (-1) l L l (2a) + (-1) k L k (2a), P k (a) = 2 0≤l≤k-1 (-1) l L l (2a).
Proof. We may use the already proven (3.1.10), (3.1.11), but we may also prove this directly by induction on k.

Proposition 3.3. Let F k be given by (3.1.4) with P k defined by (3.1.5). We have

F k (a) = 1 -e -a P k (a) ≤ 1 -e -a = F 0 (a) for a ≥ 0, (3.1.15) F k (a) = e -a P k (a) -P k (a) = e -a (-1) k L k (2a), (3.1.16) F k (0) = (-1) k , lim a→+∞ F k (a) = 0 + , F k (0) = 0, lim a→+∞ F k (a) = 1 -. (3.1.17)
Proof. We use (3.1.4), (3.1.11) and (3.1.10) for the three first equalities, Lemma 3.1 for the first inequality. The fourth equality follows from L k (0) = 1, while the fifth is due to the fact that the leading monomial of (-1

) k L k (2a) is 2 k a k /k!.
The two last equalities are a consequence of the first line.

Remark 3.4. The zeroes of F k on the positive half-line are the positive zeroes of the Laguerre polynomial L k divided by 2. When k is even (resp. odd) the function F k is positive increasing (resp. negative decreasing) near 0, then oscillates with changes of monotonicity at each a such that L k (2a) = 0 and when 2a is larger than the largest zero of L k , the function F k is increasing, smaller than 1, with limit 1 at infinity.

Typically we have Moreover, we have We note as well that a consequence of the previous remark is that

F 2l (0) = 0, F 2l (0) = +1, (3.1.18) 0 < a 1,2l < a 2 < • • • < a 2l-1,2l < a 2l,
F 2l+1 (0) = 0, F 2l+1 (0) = -1, (3.1.19) 0 < a 1,2l+1 < a 2,2l+1 < • • • < a 2l,2l+1 < a 2l+1,2l+1 , the zeroes of L 2l+1 (2a),
min a≥0 F 2l (a) = min 1≤j≤l {F 2l (a 2j,2l )}, (3.1.20) min a≥0 F 2l+1 (a) = min 0≤j≤l {F 2l+1 (a 2j+1,2l+1 )}, (3.1.21)
where (a p,k ) 1≤p≤k are defined in (3.1.18), (3.1.19). Theorem 3.5. Let a ≥ 0 be given and let

(3.1.22) D a = {(x, ξ) ∈ R 2 , x 2 + ξ 2 ≤ a 2π }.
Then we have

(3.1.23) Op w (1 Da ) = k≥0 F k (a)P k ≤ 1 -e -a .
Proof. An immediate consequence of (3.1.1) and (3.1.15). Note that the inequality in the above theorem is due to P. Flandrin in [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF] (see also the related references [START_REF] Hlawatsch | The interference structure of the Wigner distribution and related time-frequency signal representations, The Wigner distribution[END_REF], [START_REF]Time-frequency/time-scale analysis[END_REF]).

Curves. Let us display some curves of R + a → F k (a) = 1 -e -a P k (a). Theorem 3.6. Let a ≥ 0 be given and let

(3.2.1) Q a,n = Op w (1{2π(|x| 2 + |ξ| 2 ) ≤ a}),
be the Weyl quantization of the characteristic function of the Euclidean ball of R 2n with center 0 and radius a/(2π). Then we have 

(3.2.2) Q a,n = k≥0 F k;n (
F k;n (a) = R sin aτ πτ (1 + iτ ) k (1 -iτ ) k+n dτ.
The spectral decomposition of the previous theorem allows a simple recovery of the result of the article [START_REF] Lieb | Localization of multidimensional Wigner distributions[END_REF] by E. Lieb and Y. Ostrover. Theorem 3.7. Let a ≥ 0, Q a,n , F k;n be defined above. Then we have

(3.2.4) F k;n (a) ≤ 1 - 1 Γ(n) +∞ a e -t t n-1 dt = 1 - Γ(n, a) Γ(n) ,
and thus we have

(3.2.5) Q a,n ≤ 1 - Γ(n, a) Γ(n) ,
where the incomplete Gamma function Γ(•, •) is defined in (9.8.8).

Proof of Theorems 3.6 and 3.7. We use the results of (the previous) Section 3.1: Let us assume now that, with some a ≥ 0,

F = 1 [-a 2π , a 2π ] , so that F (|x| 2 + |ξ| 2 ) = 1{2π(|x| 2 + |ξ| 2 ) ≤ a}.
According to Section 9.8.3, we have F (τ ) = sin aτ πτ , so that (2.1.1) holds true. We find in this case, following the results of Lemma 2.3,

F (|x| 2 + |ξ| 2 ) w = k≥0 F k;n (a)P k;n , P k;n = α∈N n ,|α|=k P α , (3.2.6) F k;n (a) = R sin aτ πτ (1 + iτ ) k (1 -iτ ) k+n dτ, (3.2.7)
where P α is the orthogonal projection onto Ψ α (defined in (9.1.33)), with |α| = 1≤j≤n α j = k. This completes the proof of Theorem 3.6.

We postpone the proof of Theorem 3.7 until after settling a couple of lemmas.

Lemma 3.8. Let (k, n) ∈ N × N * . With F k;n (a)
given by (3.2.7), we have F k;n (a) = 1 -e -a P k,n (a), where P k;n is the polynomial (3.2.8)

P k;n (a) = (-1) k+n-1 (k + n -1)! +∞ 0 e -t (t + a) n-1 e s ( d ds ) n+k-1 s k e -s |s=2t+2a
dt, (3.2.9)

P k;n (a) = (-1) k+n-1 (k + n -1)!2 n-1 +∞ 0 (t + a) n-1 e t ( d dt ) n+k-1 (t + a) k e -2t dt. (3.2.10)
Proof of the lemma. The lemma holds true for n = 1 from Proposition 3.3. We have for a > 0, n ≥ 2,

F k;n (a) = 1 π R cos aτ (1 + iτ ) k (1 -iτ ) k+n dτ = 1 2π R e iaτ (1 + iτ ) k (1 -iτ ) k+n dτ + 1 2π R e iaτ (1 -iτ ) k (1 + iτ ) k+n dτ = i 2iπ R e iaτ i k (τ -i) k (-i) k+n (τ + i) k+n dτ + i 2iπ R e iaτ (-i) k (τ + i) k i k+n (τ -i) k+n dτ, so that F k;n (a) = i 1-n (-1) k Res e iaτ (τ + i) k (τ -i) k+n ; i = i 1-n (-1) k (k + n -1)! ( d dτ ) k+n-1 e iaτ (τ + i) k |τ =i
and thus

F k;n (a) = i 1-n (-1) k (k + n -1)! ( d i a d ) k+n-1 e -a-(i + i a + i) k | =0 = i 1-n (-1) k a n-1 i n-1 (k + n -1)! ( d d ) k+n-1 e -a-(2a + ) k | =0 = e a (-1) k+n-1 a n-1 (k + n -1)! ( d 2d ) k+n-1 e -2a-2 (2a + 2 ) k | =0 , that is F k;n (t) = (-1) k+n-1 (k + n -1)! e t t n-1 ( d ds ) k+n-1 e -s s k |s=2t = (-1) k+n-1 (k + n -1)!2 n-1 e t t n-1 ( d dt ) k+n-1 e -2t t k .
We have also that lim a→+∞ F k;n (a) = 1 (following the arguments of Section 3.1) and this yields

F k;n (a) = 1 - (-1) k+n-1 (k + n -1)!2 n-1 +∞ a e t t n-1 ( d dt ) k+n-1 e -2t t k dt = 1 -e -a (-1) k+n-1 (k + n -1)!2 n-1 +∞ 0 (t + a) n-1 e t ( d dt ) k+n-1 e -2t (t + a) k dt,
concluding the proof of the Lemma.

Let us go back to Formula (3.2.9), written as

(-1) k+n-1 2 n-1 +∞ 0 e -t (2t + 2a) n-1 (k + n -1)! ( d d -1) n+k-1 ( + 2t + 2a) k | =0 dt = P k;n (a) = (-1) k+n-1 2 n-1 +∞ 0 e -t L 1-n k+n-1 (2t + 2a)dt, (3.2.11)
where the generalized Laguerre polynomial L 1-n k+n-1 is defined by (9.4.6) (note that

1 -n + k + n -1 = k which not negative).
Lemma 3.9. Let n ∈ N * , k ∈ N and let P k;n be the polynomial defined in Lemma 3.8 (and thus in (3.2.11)). Then we have

P k;n (X) -P k;n (X) = (-1) k+n-1 2 n-1 L 1-n k+n-1 (2X), P k;n (0) = 1, (3.2.12) for n ≥ 2, P k;n = P k;n-1 . (3.2.13) Proof. From (3.2.11), we find (3.2.14) P k;n (a) = (-1) k+n-1 2 n-1 +∞ 0 e -t 2(L 1-n k+n-1 ) (2t + 2a)dt = (-1) k+n-1 2 n-1 e -t (L 1-n k+n-1 )(2t + 2a) t=+∞ t=0 + +∞ 0 e -t L 1-n k+n-1 (2t + 2a)dt = (-1) k+n 2 n-1 L 1-n k+n-1 (2a) + P k;n (a)
, and since 0 = F k;n (0) = 1 -P k;n (0), this proves (3.2.12). Using now (3.2.11) and (9.4.8), we find that

P k;n (a) = (-1) k+n 2 n-1 +∞ 0 d dt e -t L 1-n k+n-1 (2t + 2a)dt = (-1) k+n 2 n-1 e -t L 1-n k+n-1 (2t + 2a) t=+∞ t=0 - +∞ 0 e -t 2(L 1-n k+n-1 ) (2t + 2a)dt = (-1) k+n 2 n-1 -L 1-n k+n-1 (2a) + +∞ 0 e -t 2(L 2-n k+n-2 )(2t + 2a)dt = (-1) k+n-1 2 n-1 L 1-n k+n-1 (2a) P k;n (a)-P k;n (a) from (3.2.12) + (-1) k+n-2 2 n-2 +∞ 0 e -t L 2-n k+n-2 (2t + 2a)dt P k;n-1 (a) from (3.2.11)
, so that for n ≥ 2, k ∈ N, we obtain (3.2.13), completing the proof of the lemma. Lemma 3.10. Let k, n, P k;n be as in Lemma 3.9. Then we have

(3.2.15) ∀j ∈ 0..n -1 , d dX j P k;n = P k;n-j .
Moreover, for all a ≥ 0 and all k ∈ N, (3.2.16)

P k;n (a) ≥ P 0;n (a) = 1 (n -1)! +∞ 0 e -t (t + a) n-1 dt = e a Γ(n, a) Γ(n) .
Proof. Formula (3.2.15) follows immediately by induction from (3.2.13) since the latter is proving (3.2.15) for j = 1, n ≥ 2, k ∈ N. Assuming that (3.2.15) holds true for some 1 ≤ j < n, all k ∈ N, we have P (j)

k;n = P k,n-j and if j + 1 < n, we obtain from (3.2.13) that P k,n-j-1 = P k,n-j = P (j+1) k;n , proving (3.2.15). The property (3.2.16) holds true for n = 1. From (3.2.13) and P k;n+1 (0) = 1, we find that P k;n+1 (a) = 1 + a 0 P k;n (s)ds and assuming that (3.2.16) holds true for n, we obtain for a ≥ 0,

P k;n+1 (a) ≥ 1 + a 0 1 (n -1)! +∞ 0 e -t (t + s) n-1 dtds = 1 + +∞ 0 e -t (t + s) n n! s=a s=0 dt = 1 + 1 n! +∞ 0 e -t (t + a) n -t n dt = 1 n! +∞ 0 e -t (t + a) n dt,
completing the proof of the lemma.

We can now prove Theorem 3.7: since

F k;n (a) = 1 -e -a P k;n (a) the estimate (3.2.15) implies indeed F k;n (a) ≤ Γ(n,a)
Γ(n) , concluding the proof. Remark 3.11. Our methods of proof in one and more dimensions are quite similar:

• Using Mehler's Formula, we diagonalize in the Hermite basis the quantization of the indicatrix of the Euclidean ball

D a;n = {(x, ξ) ∈ R 2n , 2π |x| 2 + |ξ| 2 ≤ a}.
• Once we get the diagonalization

Op w (1 Da;n ) = k∈N F k;n (a)P k;n ,
we study explicitly the functions F k;n and prove that

F k;n (a) = 1 -e -a P k;n (a),
where P k;n is a polynomial given in terms of the generalized Laguerre polynomials

P k;n (a) = (-1) k+n-1 2 n-1 +∞ 0 e -t L 1-n k+n-1 (2t + 2a)dt.
• Following the Flandrin paper [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF], we use Feldheim inequality in [START_REF] Feldheim | Développments en série de polynomes d'Hermite et de Laguerre à l'aide des transformations de Gauss et de Henkel[END_REF] to tackle the case n = 1, and next we use an induction on n, made possible by the relationship between the standard and the generalized Laguerre polynomials.

It is interesting to note that the functions F k;n have no monotonicity properties: with value 0 at 0, they have an oscillatory behavior for a ≤ a k,n and for a large enough, increase monotonically to 1 (see for instance Figures 2 and 3 in the 1D case); the inequality F k;n (a) ≤ 1 -e -a holds true for all a ≥ 0 in all dimensions. On the other hand the polynomials P k;n are increasing and larger than 1 on the positive half-line.

The key ingredients are thus Mehler's formula and Feldheim inequality, but it should be pointed out that the arguments proving Feldheim inequality (Formula (6.8) and Theorem 12) in the R. Askey & G. Gasper's article [START_REF] Askey | Positive Jacobi polynomial sums[END_REF] are also based upon a version of Mehler's Formula which appears thus as the basic result for our investigation.

The paper [START_REF] Lieb | Localization of multidimensional Wigner distributions[END_REF] by E. Lieb and Y. Ostrover has a slightly different line of arguments and takes advantage of symmetry properties of the sphere. We shall go back to this in a situation where the symmetry is absent, such as for some general ellipsoids.

3.3.

Ellipsoids in the phase space.

3.3.1. Preliminaries. We provide below a couple of remarks on ellipsoids in higher dimensions. Let us first recall a particular case of Theorem 21.5.3 in [START_REF]The analysis of linear partial differential operators[END_REF].

Theorem 3.12 (Symplectic reduction of quadratic forms). Let q be a positivedefinite quadratic form on R n × R n equipped with the canonical symplectic form (1.2.24). Then there exists S in the symplectic group Sp(n, R) of R 2n and µ 1 , . . . , µ n positive such that for all

X = (x, ξ) ∈ R n × R n , (3.3.1) q 
(SX) = 1≤j≤n µ j (x 2 j + ξ 2 j ).
Note that an interesting consequence of this theorem is that, considering a general ellipsoid in R 2n (with center of gravity at 0),

E = {X ∈ R 2n , q(X) ≤ 1}
where q is a positive definite quadratic form, we are able to find symplectic coordinates such that q is given by (3.3.1). Note however that no further simplification is possible and that the µ j are symplectic invariants of E. Note that the volume of E is given by

|E| 2n = π n n!µ 1 . . . µ n .
3.3.2. Spectral decomposition for the quantization of the characteristic function of the ellipsoid. Let a 1 , . . . , a n be positive numbers. We consider the ellipsoid E(a 1 , . . . , a n ) given by

(3.3.2) E(a) = E(a 1 , . . . , a n ) = {(x, ξ) ∈ R n × R n , 2π 1≤j≤n x 2 j + ξ 2 j a j ≤ 1}.
We define on R n the function

F (X 1 , . . . , X n ) = 1 [-1,1] ( 2π a 1 X 1 + • • • + 2π a n X n ).
Theorem 3.13. Let a = (a j ) 1≤j≤n be positive numbers and let E(a) be defined by (3.3.2). Then we have

(3.3.3) Op w (1 E(a) ) = α∈N n F α (a)P α ,
where P α is defined in (9.1.36) and

(3.3.4) F α (a) = 1 -K α (a), with (3.3.5) K α (a) = t j /a j ≥1 t j ≥0 e -(t 1 +•••+tn) 1≤j≤n (-1) α j L α j (2t j )dt, Remark 3.14. For all α ∈ N n , the functions F α , K α are holomorphic on (3.3.6) U = {a ∈ C n , ∀j ∈ 1..n , Re a j > 0}.
Indeed let K be a compact subset of U; there exists ρ > 0 such that

∀(a 1 , . . . , a n ) ∈ K, min 1≤j≤n Re a j ≥ ρ,
and as a result for a ∈ K, we have for

s ∈ R n + |e -(a 1 s 1 +•••+ansn) 1≤j≤n (-1) α j L α j (2a j s j )| ≤ e -ρ(s 1 +•••+sn) C K,α (1 + |s|) |α| , so that s j ≥1 s j ≥0 sup a∈K |e -(a 1 s 1 +•••+ansn) 1≤j≤n (-1) α j L α j (2a j s j )|ds ≤ s j ≥1 s j ≥0 e -ρ(s 1 +•••+sn) C K,α (1 + |s|) |α| ds ≤ C K,α R n e -ρσn|s| (1 + |s|) |α| ds < +∞.

Since we have

K α (a) = s j ≥1 s j ≥0 e -(a 1 s 1 +•••+ansn) 1≤j≤n (-1) α j L α j (2a j s j )dsa 1 . . . a n ,
this proves the sought holomorphy.

Proof of the theorem. We have

Op w (1 E(a) ) = F (x 2 1 + ξ 2 1 , . . . , x 2 n + ξ 2 n ) w = R n F (τ )Op w e 2iπ j τ j (x 2 j +ξ 2 j ) dτ = α∈N n R n F (τ ) 1≤j≤n (1 + iτ j ) 2α j +1 (1 + τ 2 j ) α j +1 dτ P α = α∈N n R n F (τ ) 1≤j≤n (1 + iτ j ) α j (1 -iτ j ) α j +1 dτ P α ,
where P α is defined in (9.1.36). On the other hand we have

F (τ ) = e -2iπτ •x 1 [-1,1] ( 2π a 1 x 1 + • • • + 2π a n x n )dx 1 . . . dx n = a 1 . . . a n (2π) -n e -i j τ j a j y j 1 [-1,1] ( y j )dy,
so that, with M k defined in (9.4.4), using (9.4.5), we get

Op w (1 E(a) ) = a 1 . . . a n α∈N n R n ×R n e -i2π j τ j a j y j 1 [-1,1] ( y j )dy 1≤j≤n (1 + i2πτ j ) α j (1 -i2πτ j ) α j +1 dτ P α = a 1 . . . a n α∈N n R n R n e -i2π j τ j a j y j 1 [-1,1] ( y j )dy 1≤j≤n Ĝα j (τ j )dτ P α = a 1 . . . a n α∈N n R n 1 [-1,1] ( y j ) 1≤j≤n G α j (a j y j )dyP α = α∈N n R n 1 [-1,1] ( t j /a j ) 1≤j≤n (-1) α j H(t j )e -t j L α j (2t j )dtP α , with F α (a) = R n 1 -1 [1,+∞] ( t j /a j ) 1≤j≤n (-1) α j H(t j )e -t j L α j (2t j )dt (3.3.7) = 1 - R n 1 [1,+∞] ( t j /a j ) 1≤j≤n (-1) α j H(t j )e -t j L α j (2t j )dt,
where we have used that P k;1 (0) = 1 (see page 41) , so that setting

K α (a) = t j /a j ≥1 t j ≥0 e -(t 1 +•••+tn) 1≤j≤n (-1) α j L α j (2t j )dt, we have F α (a) = 1 -K α (a)
, concluding the proof of the theorem.

Remark 3.15. We have from (3.3.7)

(3.3.8) F α (a 1 , . . . , a n ) = R n 1 [0,1] ( 1≤j≤n s j ) 1≤j≤n
(-1) α j H(s j )e -a j s j L α j (2a j s j )a j ds, and since the set {s ∈ R n + , 1≤j≤n s j ≤ 1} is compact, we obtain that F α is an entire function, as well as K α which is indeed given by (3.3.5) on the open subset U defined in (3.3.6). Lemma 3.16. With the notations of Theorem 3.13, we have with µ j = 1/a j ,

(3.3.9) F α (a) = 1≤j≤n a j R sin τ πτ 1≤j≤n (a j + iτ ) α j (a j -iτ ) α j +1 dτ = R sin τ πτ 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ.
Proof. Mehler's formula implies in one dimension that (3.3.10) Op w (e 2πiτ (x

2 +ξ 2 ) ) = (1 + τ 2 ) -1/2 exp 2πi(arctan τ )(x 2 + D 2 x )
, and a simple tensorisation gives Op w (e 2πiτ j µ j (x 2

j +ξ 2 j ) ) = j (1 + (τ µ j ) 2 ) -1/2 exp 2πi j (arctan(τ µ j ))(x 2 j + D 2 x j ) , so that we have Op w F j µ j (x 2 j + ξ 2 j ) = R F (τ )Op w e 2πiτ j µ j (x 2 j +ξ 2 j ) dτ = R F (τ ) j (1 + (τ µ j ) 2 ) -1/2 exp 2πi j (arctan(τ µ j ))(x 2 j + D 2 x j ) dτ = α∈N n R F (τ ) j (1 + (τ µ j ) 2 ) -1/2 exp 2i(arctan(τ µ j ))(α j + 1 2 ) dτ P α = α∈N n R F (τ ) j (1 + (τ µ j ) 2 ) -1/2 (1 + iτ µ j ) 2α j +1 (1 + (τ µ j ) 2 ) α j + 1 2 dτ P α = α∈N n R F (τ ) 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ P α ,
and for

F (t) = 1 [-1,1] (2πt), we find F (τ ) = sin τ
πτ and the sought result. Remark 3.17. It is also possible to provide a direct checking for the above lemma, since with the notations (9.4.4), (9.4.5), we have

(1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 = ˇ G α j τ µ j /(2π) ,
and thus

F α (a) = R F (τ ) j ˇ G α j τ µ j /(2π) dτ = R F (τ ) R n j (-1) α j L α j (2t j )H(t j )e -t j e 2πiτ µ j t j /(2π) dtdτ = R n j (-1) α j L α j (2t j )H(t j )e -t j F j µ j t j /2π dt. Now since we have F j µ j t j /2π = 1 [-1,1] ( j µ j t j )
, this fits with the expression of F α in Theorem 3.13. Remark 3.18. Another interesting remark is that the expression (3.3.9) depends obviously only on |α| and a = a 1 = • • • = a n in the case where all the a j are equal: indeed in that case, we have with µ = 1/a, 1≤j≤n

(1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 = (1 + iτ µ) |α| (1 -iτ µ) |α|+n ,
and this gives another (a posteriori) justification of our calculations in the isotropic case of Section 3.2. On the other hand, we get also the identity

(3.3.11) F 0 N n (a 1 , . . . , a n ) = R sin τ πτ Re 1≤j≤n (1 -iτ µ j ) -1 dτ,
where the explicit expression (3.3.13) is given for the left-hand-side.

Lemma 3.19. With the notations of Theorem 3.13, the function K α 1 ,...,αn (a 1 , . . . , a n ) is symmetric in the variables (α 1 , a 1 ; . . . ; α n , a n ), i.e. for a permutation π of {1, . . . , n}, we have

(3.3.12) K α π(1) ,...,α π(n) (a π(1) , . . . , a π(n) ) = K α 1 ,...,αn (a 1 , . . . , a n ).
Proof. Formula (3.3.5) yields

K α (a) = s j ≥1 s j ≥0 1≤j≤n
e -a j s j a j (-1) α j L α j (2a j s j ) ds, and the domain of integration is invariant by permutation of the variables, entailing the sought result. Lemma 3.20. With the notations of Theorem 3.13, we have

K α 1 ,...,αn (a 1 , . . . , a n ) = e -an P αn (a n ) + an 0 (-1) αn L αn (2t n )e -tn K α 1 ,...,α n-1 a 1 (1 -t n /a n ), . . . , a n-1 (1 -t n /a n ) dt n = e -an P αn (a n ) + 1 0 (-1) αn L αn (2a n θ)e -θan K α 1 ,...,α n-1 a 1 (1 -θ), . . . , a n-1 (1 -θ) dθa n .
Proof. The domain of integration is the disjoint union

t 1 a 1 + • • • + t n-1 a n-1 ≥ 1 - t n a n , t j ≥ 0, 0 ≤ t n a n ≤ 1 t n a n > 1, t j ≥ 0, 1 ≤ j ≤ n -1 , so that K α 1 ,...,αn (a 1 , . . . , a n ) = e -an P αn (a n ) + an 0 (-1) αn L αn (2t n )e -tn K α 1 ,...,α n-1 a 1 (1 -t n /a n ), . . . , a n-1 (1 -t n /a n ) dt n = e -an P αn (a n ) + 1 0 (-1) αn L αn (2a n θ)e -θan K α 1 ,...,α n-1 a 1 (1 -θ), . . . , a n-1 (1 -θ) dθa n ,
which is the sought result.

Lemma 3.21. With the notations of Theorem 3.13, we have, assuming that the (a j ) 1≤j≤n are positive distinct numbers,

(3.3.13) K 0,...,0 (a 1 , . . . , a n ) = 1≤j≤n e -a j k =j a k k =j (a k -a j ) .
Proof. The latter formula is true for n = 1 since we have K 0 (a 1 ) = e -a 1 . We have also

K 0∈N n (a 1 , . . . , a n ) = e -an + a n 1 0 e -θan K 0∈N n-1 a 1 (1 -θ), . . . , a n-1 (1 -θ) dθ = e -an + a n 1 0 e -θan 1≤j≤n-1 e -a j (1-θ) k =j a k k =j (a k -a j ) dθ = e -an + a n 1≤j≤n-1 k =j a k k =j (a k -a j ) 1 0 e -θan e -a j (1-θ) dθ = e -an + 1≤j≤n-1 a n k =j a k k =j (a k -a j ) e -a j 1 0 e θ(a j -an) dθ = e -an + 1≤j≤n-1 a n k =j a k k =j (a k -a j ) e -a j e a j -an -1 a j -a n = e -an + 1≤j≤n-1 a n k =j a k k =j (a k -a j ) e -an -e -a j (a j -a n ) = e -an 1 + 1≤j≤n-1 a n k =j a k k =j (a k -a j ) 1 (a j -a n ) + 1≤j≤n-1 a n k =j a k k =j (a k -a j ) e -a j (a n -a j ) OK .
We need to prove that

1 + 1≤j≤n-1 a n k =j,1≤k≤n-1 a k k =j,1≤k≤n-1 (a k -a j ) 1 (a j -a n ) = 1≤l≤n-1 a l 1≤l≤n-1 (a l -a n ) . that is 1≤l≤n-1 a l = 1≤l≤n-1 (a l -a n ) 1 + 1≤j≤n-1 a n k =j,1≤k≤n-1 a k k =j,1≤k≤n-1 (a k -a j ) 1 (a j -a n ) , which is 1≤l≤n-1 a l = 1≤l≤n-1 (a l -a n )+ 1≤j≤n-1 a n k =j,1≤k≤n-1 a k k =j,1≤k≤n-1 (a k -a j ) 1≤l≤n-1 (a l -a n ) (a j -a n ) , i.e.
1≤l≤n-1

a l = 1≤l≤n-1 (a l -a n ) + 1≤j≤n-1 a n k =j,1≤k≤n-1 a k (a k -a n ) k =j,1≤k≤n-1 (a k -a j ) . (3.3.14)
Let us reformulate (3.3.14) as an equality between polynomials (to be proven) with

1≤l≤n-1 (a l -X) + 1≤j≤n-1 X k =j,1≤k≤n-1 a k (a k -X) k =j,1≤k≤n-1 (a k -a j ) - 1≤l≤n-1 a l = 0, (3.3.15)
and let us assume that the (a j ) 1≤j≤n-1 are distinct and different from 0. The polynomial Q on the left-hand-side has degree less than n -1 and we have

Q(0) = 0, and ∀j ∈ 1..n -1 , Q(a j ) = a j k =j,1≤k≤n-1 a k (a k -a j ) k =j,1≤k≤n-1 (a k -a j ) - 1≤l≤n-1 a l = 0,
so that Q has degree less than n-1 with n distinct roots and this proves the identity (3.3.15) when the (a j ) 1≤j≤n-1 are distinct and all different from 0, proving (3.3.13) in that case; of course we may assume that all a j are positive and noting from (3.3.5) that K α is continuous on (R * + ) n , we get Formula (3.3.13) in all cases where all the a j are positive, concluding the proof of the lemma. Lemma 3.22. With the notations of Theorem 3.13, we have, assuming

0 < a 1 ≤ • • • ≤ a n , the inequality (3.3.16) K 0∈N n (a 1 , . . . , a n ) ≥ 1≤j≤n
e -a j 1≤l<j a l (j -1)! ≥ e -min 1≤j≤n a j = max 1≤j≤n e -a j .

Remark 3.23. The above estimate is sharp in the sense that when all the a j are equal to the same a > 0, we have proven in (3.2.4) that

K 0 (a) = e -a (n -1)! +∞ 0 e -s (s + a) n-1 ds = e -a 0≤l≤n-1 a l (n -1 -l)!l! Γ(n -l) = e -a 0≤l≤n-1 a l l! = e -a 1≤j≤n a j-1 (j -1)! = 1≤j≤n e -a j 1≤l<j a l (j -1)! |a 1 =•••=an=a .
Proof. The property is true for n = 1 since K 0 (a 1 ) = e -a 1 . We check the case n = 2 with a 1 < a 2 , and we find

K (0,0) (a 1 , a 2 ) = e -a 1 + a 1 0 e -t 1 e -a 2 (1-t 1 /a 1 ) dt 1 = e -a 1 + e -a 2 e a 2 -a 1 -1 a 2 a 1 -1 = e -a 1 + e -a 2 a 1 e a 2 -a 1 -1 a 2 -a 1 ≥ e -a 1 + e -a 2 a 1 .
Let us consider for some n ≥ 3, 0 < a 1 < • • • < a n and inductively,

K 0∈N n (a 1 , . . . , a n ) = e -a 1 P 0 (a 1 ) + a 1 0 e -t 1 K 0∈N n-1 a 2 (1 -t 1 /a 1 ), . . . , a n (1 -t 1 /a 1 ) dt 1 = e -a 1 P 0 (a 1 ) + a 1 1 0 e -a 1 θ K 0∈N n-1 a 2 (1 -θ), . . . , a n (1 -θ) dθ ≥ e -a 1 + a 1 1 0 e -a 1 θ 2≤j≤n e -a j (1-θ) 2≤l<j a l (j -2)! (1 -θ) j-2 dθ = e -a 1 + 2≤j≤n e -a j a 1 2≤l<j a l 1≤k<j a k 1 0 e (a j -a 1 )θ 1 (j -2)! (1 -θ) j-2 dθ ≥ e -a 1 + 2≤j≤n e -a j 1≤k<j a k 1 0 1 (j -2)! (1 -θ) j-2 dθ = e -a 1 + 2≤j≤n e -a j 1≤k<j a k 1 (j -1)! ,
concluding the proof of the lemma.

Remark 3.24. The reader may have noticed that it is not obvious on Formula (3.3.13)

K 0,...,0 (a 1 , . . . , a n ) = 1≤j≤n e -a j k =j a k k =j (a k -a j )
, that K 0 is an entire function. Let us start with taking a look at

K 0,0 (a 1 , a 2 ) = e -a 1 a 2 a 2 -a 1 + e -a 2 a 1 a 1 -a 2 = a 2 e -a 1 -a 1 e -a 2 a 2 -a 1 = e -(a 1 +a 2 ) 2 a 2 e -a 1 2 + a 2 2 -a 1 e -a 2 2 + a 1 2 a 2 -a 1 = e -(a 1 +a 2 ) 2 a 2 (cosh a 2 -a 1 2 + sinh a 2 -a 1 2 ) -a 1 (cosh a 1 -a 2 2 + sinh a 1 -a 2 2 ) a 2 -a 1 = e -(a 1 +a 2 ) 2 cosh( a 2 -a 1 2 ) + (a 2 + a 1 ) sinh( a 2 -a 1 2 ) a 2 -a 1 = e -(a 1 +a 2 ) 2 cosh( a 2 -a 1 2 ) + 1 2 (a 2 + a 1 ) sinh( a 2 -a 1 2 ) a 2 -a 1 2 = e -(a 1 +a 2 ) 2 cosh( a 2 -a 1 2 ) + 1 2 (a 2 + a 1 ) shc( a 2 -a 1 2 ) , (3.3.17)
where shc stands for the even entire function defined by (3.3.18) shc t = sinh t t .

We have also from Lemma 3.16

(3.3.19) F α (a) = R sin τ πτ 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ,
and defining the function F α (a, λ) as the absolutely converging integral,

(3.3.20) F α (a, λ) = R sin(λτ ) πτ 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ, F α (a) = F α (a, 1), we get ∂F α ∂λ (a, λ) = 1 π R cos(λτ ) 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ = 1 2π R e iλτ 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ + 1 2π R e iλτ 1≤j≤n (1 -iτ µ j ) α j (1 + iτ µ j ) α j +1 dτ = 1 2π R e iλτ 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 + 1≤j≤n (1 -iτ µ j ) α j (1 + iτ µ j ) α j +1 dτ = i 1≤j≤n Res e iλτ 1≤j≤n (1 -iτ µ j ) α j (1 + iτ µ j ) α j +1 ; τ = i/µ j = ia j = i 1≤j≤n Res e iλτ 1≤j≤n (-iµ j ) α j (ia j + τ ) α j (iµ j ) α j +1 (-ia j + τ ) α j +1 ; τ = ia j = 1 i n-1 1≤j≤n
Res e iλτ 1≤j≤n (-1) α j a j (ia j + τ ) α j (τ -ia j ) α j +1 ; τ = ia j , so that assuming that the a j are positive and distinct, we get

∂F α ∂λ (a, λ) = 1 i n-1 ( a k ) × 1≤j≤n 1 α j ! d dτ α j e iλτ (-1) α j (ia j + τ ) α j 1≤k≤n,k =j (-1) α k (ia k + τ ) α k (τ -ia k ) α k +1 |τ =ia j = 1 i n-1 ( 1≤k≤n a k ) 1≤j≤n 1 α j ! × d idσ α j e -λσ (-1) α j (ia j + iσ) α j 1≤k≤n,k =j (-1) α k (ia k + iσ) α k (iσ -ia k ) α k +1 |σ=a j = (-1) n-1+|α| ( 1≤k≤n a k ) 1≤j≤n 1 α j ! × d dσ α j e -λσ (a j + σ) α j 1≤k≤n,k =j (a k + σ) α k (σ -a k ) α k +1 |σ=a j = ( 1≤k≤n a k ) 1≤j≤n (-1) α j α j ! d dσ α j e -λσ (a j + σ) α j 1≤k≤n,k =j (a k + σ) α k (a k -σ) α k +1 |σ=a j .
Since F α (a, +∞) = 1, thanks to Lemma 9.7, we find eventually that

F α (a) = F α (a, 1) = 1 +∞ ∂F α ∂λ (a, λ)dλ + 1 = 1 -K α (a), K α (a) = ( 1≤k≤n a k ) 1≤j≤n (-1) α j α j ! +∞ 1 d dσ α j e -λσ (a j + σ) α j 1≤k≤n,k =j (a k + σ) α k (a k -σ) α k +1 |σ=a j dλ = 1≤j≤n (-1) α j α j ! +∞ 1 e -λa j d dσ -λ α j (a j + σ) α j a j 1≤k≤n,k =j (a k + σ) α k a k (a k -σ) α k +1 |σ=a j dλ. = 1≤j≤n (-1) α j α j ! +∞ 1 e -λa j d dσ -λ α j (a j + σ) α j 1≤k≤n,k =j (a k + σ) α k (a k -σ) α k +1 |σ=a j dλ = 1≤j≤n (-1) α j α j ! +∞ a j e -t j d da j s - t j a j α j (a j + a j s) α j 1≤k≤n,k =j a k (a k + a j s) α k (a k -a j s) α k +1 |s=1 dt j = 1≤j≤n (-1) α j α j ! +∞ a j e -t d ds -t α j (1 + s) α j 1≤k≤n,k =j a k (a k + a j s) α k (a k -a j s) α k +1 |s=1 dt = 1≤j≤n (-1) α j α j ! +∞ a j e -t d ds -1 α j (t + s) α j 1≤k≤n,k =j a k (a k + a j s/t) α k (a k -a j s/t) α k +1 |s=t dt = 1≤j≤n (-1) α j α j ! +∞ a j e -t d d(s + t) -1 α j (t + s) α j 1≤k≤n,k =j ta k (t(a k -a j ) + a j (s + t)) α k (t(a k + a j ) -a j (s + t)) α k +1 |s+t=2t dt = 1≤j≤n (-1) α j × +∞ a j e -t d ds -1 α j s α j α j ! 1≤k≤n,k =j ta k (t(a k -a j ) + a j s) α k (t(a k + a j ) -a j s) α k +1 |s=2t dt = 1≤j≤n (-1) α j e -a j +∞ 0 e -t × d ds -1 α j s α j α j ! 1≤k≤n,k =j (t + a j )a k (t + a j )(a k -a j ) + a j s α k (t + a j )(a k + a j ) -a j s α k +1 |s=2t+2a j dt.
We have also to deal with 1≤k≤n,k =j

(t + a j )a k (t + a j )(a k -a j ) + a j s α k (t + a j )(a k + a j ) -a j s α k +1
and

(t + a j )(a k + a j ) -a j (2t + 2a j ) = a j (a k + a j ) -2a 2 j + t(a k -a j ) = (t + a j )(a k -a j ) (t + a j )(a k + a j ) -a j s = (t + a j )(a k -a j ) + a j (2t + 2a j -s) so that (3.3.21) K α (a) = 1≤j≤n (-1) α j e -a j +∞ 0 e -t × d ds -1 α j s α j α j ! 1≤k≤n,k =j (t + a j )a k (t + a j )(a k + a j ) + a j (s -2t -2a j ) α k (t + a j )(a k -a j ) -a j (s -2t -2a j ) α k +1 |s=2t+2a j dt.

3.4.

A conjecture on integrals of products of Laguerre polynomials. We formulate in this section a conjecture on the behaviour of the functions K α (a); as displayed in the previous sections, we know several useful elements for the analysis of these functions, including some quite explicit expression. However, in the nonisotropic case, we were not able to prove the estimate F α (a) ≤ 1, equivalent to K α (a) ≥ 0, except for the case α = 0. We are thus reduced to conjectural statements.

Conjecture 3.25. Let n ≥ 1 be an integer and let α = (α 1 , . . . , α n ) ∈ N n . For a = (a 1 , . . . , a n ) ∈ (0, +∞) n we define

(3.4.1) K α (a) = t=(t 1 ,...,tn)∈R n + 1≤j≤n t j /a j ≥1 e -(t 1 +•••+tn) 1≤j≤n (-1) α j L α j (2t j )dt,
where L k stands for the classical Laguerre polynomial

(3.4.2) L k (X) = d dX -1 k X k k! .
Then we conjecture that, assuming 0 < a 1 ≤ • • • ≤ a n , we have

(3.4.3) K α (a) ≥ 1≤j≤n
e -a j 1≤l<j a l (j -1)! .

Remark 3.26. A slightly stronger and more symmetrical version of the above conjecture is that for n, α, a, K α as above, we have

(3.4.4) K α (a) ≥ K 0 (a).
It is indeed stronger since we have proven in Lemma 3.22 that K 0 (a) is greater than the right-hand-side of (3.4.3).

Theorem 3.27. The previous conjecture is a proven theorem in the following cases.

(1) When n = 1.

(2) For all n ≥ 1, when all the a j are equal.

( an inequality due to P. Flandrin in the 1988 paper [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF].

) For all n ≥ 1, when α = 0 N n . ( 3 
) 4 
(2) Assuming that all the a j are equal to a > 0, we have proven in Theorem 3.7 that

for α ∈ N n , |α| = 1≤j≤n α j , (3.4.7) K α (a, . . . , a) ≥ Γ(n, a) Γ(n) = e -a 1≤j≤n a j-1 (j -1)! = K 0 (a, . . . , a)
since from (3.3.5), we have

K 0 (a, . . . , a) = t j ≥a t j ≥0 e -(t 1 +•••+tn) dt = tn≥a t j ≥0 e -(t 1 +•••+tn) dt + a 0 e -tn t j ≥a-tn e -(t 1 +•••+t n-1 ) dt (inductively) = e -a + a 0 e -tn e -(a-tn) 1≤j≤n-1 (a -t n ) j-1 (j -1)! dt n = e -a 1 + 1≤j≤n-1 a j j! = e -a 1≤j≤n a j-1 (j -1)! , proving (3.4.4) in that case. With (3.4.8) D (a) = {(x, ξ) ∈ R 2n , 2π |x| 2 + |ξ| 2 a ≤ 1}, this implies that (3.4.9) Op w (1 D (a) ) ≤ 1 -e -a 1≤j≤n a j-1 (j -1)! ,
an inequality proven in the 2010 article [START_REF] Lieb | Localization of multidimensional Wigner distributions[END_REF] by E. Lieb and Y. Ostrover.

(3) When α = 0 N n , we have proven (3.4.3) in Lemma 3.22.

(4) When n = 2, from the case n = 1 we have K α 2 (a 2 ) = e -a 2 P α 2 (a 2 ), so that from Lemma 3.20, we obtain

K α 1 ,α 2 (a 1 , a 2 ) = e -a 1 P α 1 (a 1 ) + a 1 1 0 e -θa 1 -(1-θ)a 2 (-1) α 1 L α 1 (2θa 1 )P α 2 (a 2 (1 -θ))dθ,
and if α 1 =0, it means that

K 0,α 2 (a 1 , a 2 ) = e -a 1 + a 1 1 0 e -θa 1 -(1-θ)a 2 P α 2 (a 2 (1 -θ))dθ ≥ e -a 1 + a 1 1 0 e -θa 1 -(1-θ)a 2 dθ = K 0,0 (a 1 , a 2 ),
and the reasoning is identical for α 2 = 0, concluding the proof of the theorem.

We are interested in the Weyl quantization of the indicatrix of

(3.4.10) D a 1 ,...,an = {(x, ξ) ∈ R 2n , 2π 1≤j≤n x 2 j + ξ 2 j a j ≤ 1}, a j > 0,
and we have a weaker conjecture. Remark 3.29. In the first place, although the second conjecture is much weaker than the first, there is no reason to believe that the weak conjecture should be easier to prove than the first: in particular, in the known cases, it is indeed the proof of the precise statement (3.4.3) which leads to (3.4.11) and we are not aware of a direct proof of (3.4.11), even in one dimension.

A summary of our knowledge on the functions K α . As proven in Remarks 3.14 and 3.15, the functions K α are entire functions given on the open subset (3.3.6) by Formula (3.3.5) (see also Formula (3.3.17)). Moreover the function F α (a) = 1-K α (a) can be expressed as a simple integral for a j > 0,

(3.4.13) F α (a 1 , . . . , a n ) = R sin τ πτ 1≤j≤n (1 + iτ µ j ) α j (1 -iτ µ j ) α j +1 dτ, µ j = 1 a j ,
and we have an explicit expression of the function K α as a sum of simple integrals in (3.3.21). However, having an explicit expression does not mean much and for instance, we do have several explicit expressions for the Laguerre polynomials but Inequality (9.4.3) remains very hard work, requiring a deep understanding of these polynomials. We have also an induction formula in Lemma 3.20. As a further remark, we have the following Lemma 3.30. Let n, α, a, K α as in Conjecture 3.25. Then we have

lim an→+∞ K α 1 ,...,α n-1 ,αn (a 1 , . . . , a n-1 , a n ) = K α 1 ,...,α n-1 (a 1 , . . . , a n-1 ), (3.4.14) lim a 1 →0 + K α 1 ,α 2 ,...,αn (a 1 , a 2 , . . . , a n ) = 1. (3.4.15)
Proof. Formula (3.3.5) and Lebesgue Dominated Convergence Theorem imply the first equality (3.4.14). Lemma 3.20, in which we may swap the variables a 1 and a n gives for a 1 > 0

K α 1 ,α 2 ,...,αn (a 1 , a 2 , . . . , a n ) = e -a 1 P α 1 (a 1 ) + a 1 1 0 e -θa 1 (-1) α 1 L α 1 (2a 1 θ)K α 2 ,...,αn a 2 (1 -θ), . . . , a n (1 -θ) dθ,
and since P α 1 is a polynomial such that P α 1 (0) = 1, we get (3.4.15).

Reasons to believe in the conjecture. This is true in one dimension, also in n dimensions for spheres and it is a quadratic problem in the sense that ellipsoids are convex subsets of R 2n characterized by an inequality

{X ∈ R 2n , p(X) ≤ 0},
where p is a polynomial of degree 2 with a positive-definite quadratic part. We shall see below in this paper that convexity of a set A does not guarantee that the quantization Op w (1 A ) is smaller than 1 as an operator and that Flandrin's conjecture is not true, but it is hard to believe that such a phenomenon could occur for ellipsoids. We must point out a specific feature of anisotropy related to Mehler's formula (2.2.1): if all the µ j are equal to the same µ > 0 (this is the isotropic case), then, with

q µ (x, ξ) = µ(|x| 2 + |ξ| 2 ), we have Op w (e 2iπτ qµ(x,ξ) ) = φ(τ µ)e 2i arctan(τ µ) 1≤j≤n π(x 2 j +D 2 j ) ,
where φ(τ µ) is a scalar quantity. As a consequence, if we quantize F (q µ (x, ξ)), we get

Op w F q µ (x, ξ) = R F (τ )φ(τ µ)e 2i arctan(τ µ) µ πOp w (qµ) dτ,

and thus

Op w F q µ (x, ξ) = F (Op w (q µ )), F (λ) = R F (τ )φ(τ µ)e 2iπ arctan(τ µ) µ λ dτ,
and Op w F q µ (x, ξ) appears as a function of the self-adjoint operator Op w (q µ ).

Following the same route in the anisotropic case, we get, with

q µ (x, ξ) = 1≤j≤n µ j (x 2 j + ξ 2 j ), (3.4.16) Op w F q µ (x, ξ) = R F (τ )φ(τ µ)e 2iπ 1≤j≤n ( arctan(τ µ j µ j )µ j (x 2 j +D 2 j ) dτ, (3.4.17)
and since 1 µ j arctan(τ µ j ) does depend on µ j (and not only on τ ), the operator Op w F q µ (x, ξ) is not a function of the self-adjoint operator Op w (q µ ).

As a final comment on the strongest form of the Conjecture (3.4.4), we would say that it could be seen as a property of the Laguerre polynomials, known in the case n = 1, where it stands as follows: we define for k ∈ N, the polynomial P k by (3.4.18)

P k (x) = +∞ 0 e -t (-1) k L k (2x + 2t)dt,
and we have P k (0) = 1 from (9.4.5). Moreover, we have the inequality (equivalent to (3.4.4) for n = 1)

(3.4.19) ∀x ≥ 0, P k (x) ≥ P k (0).
We note that e -x P k (x) =

+∞ x e -s (-1) k L k (2s)ds, so that the unique solution P k of the Initial Value Problem for the ODE (3.4.20)

P k (x) -P k (x) = (-1) k L k (2x), P k (0) = 1,
does satisfy (3.4.19). We note that from Lemma 3.2, we have 

P k (X) = 2 0≤l<k (-1) l L l (2X
H(s j )e -a j s j × 1≤j≤n a j - 1≤j≤n a j - ∂ ∂s j P α j (a j s j ) ds ≥ 0.
Note that for n = 1, it means for a ≥ 0,

1 0 e -as a -aP k (as) + aP k (as) ds = 1 -e -a + 1 0 d ds e -as P k (as) = 1 -e -a + e -a P k (a) -P k (0) = e -a P k (a) -1 ≥ 0,
which holds true from (3.4.19).

Remark 3.31.

There are several classical results on products of Laguerre polynomials, in particular the article [START_REF] Erdélyi | On Some Expansions in Laguerre Polynomials[END_REF], On some expansions in Laguerre polynomials by A. Erdélyi and also the paper [START_REF] Liu | Linearization of the products of the generalized Lauricella polynomials and the multivariate Laguerre polynomials via their integral representations[END_REF], Linearization of the products of the generalized Lauricella polynomials and the multivariate Laguerre polynomials via their integral representations by Shuoh-Jung Liu, Shy-Der Lin, Han-Chun Lu and H. M. Srivastava. However it seems that the non-negativity of the polynomials P α;1 , P α;1 do not suffice to tackle the conjecture in two dimensions and more.

4. Parabolas 4.1. Preliminary remarks. We start with a picture, demonstrating that the epigraph of a parabola is an increasing union of ellipses. It is easy to see that the epigraph of a parabola, i.e. the set {(x, ξ) ∈ R 2 , ξ > x 2 } is a countable increasing union of ellipses in the sense that (4.1.1) 

P = {(x, ξ) ∈ R 2 , ξ > x 2 } = ∪ k≥1 {(x, ξ) ∈ R 2 , ξ > x 2 + k -2 ξ 2 } E k . Note that for k ≥ 1 we have E k ⊂ E k+1 ⊂ P since x 2 + k -2 ξ 2 ≥ x 2 + (k + 1) -2 ξ 2 > x 2 , from the fact that ξ > 0 on E k . Moreover, if ξ > x 2 and k > ξ/ ξ -x 2 , we get (x, ξ) ∈ E k .
x 2 + k -2 ξ 2 -ξ = x 2 + k -2 ξ - k 2 2 2 - k 2 4 = (λ -1 y) 2 + k -2 λη - k 2 2 2 - k 2 4 = λ -2 y 2 + λ 2 k -2 η - k 2 2λ 2 - k 2 4 , so that choosing λ such that λ -2 = λ 2 k -2 , e.g. λ = √ k, we get x 2 + k -2 ξ 2 -ξ = k -1 y 2 + (η - k 2 2λ ) 2 - k 2 4 ,
and

E k = {(y, ζ) ∈ R 2 , y 2 + ζ 2 < k 3 4 }
, where (y, ζ) are the affine symplectic coordinates

y = xk 1/2 , ζ = ξk -1/2 - k 3/2 2 .
Lemma 4.2. Let u ∈ S (R). Then W(u, u) belongs to S (R 2 ) and with E, E k defined by (4.1.1), we have

ξ>x 2 W(u, u)(x, ξ)dxdξ = lim k→+∞ E k W(u, u)(x, ξ)dxdξ ≤ u 2 L 2 (R) .
Proof. Since W(u, u) belongs to S (R 2n ) ⊂ L 1 (R 2n ), we may apply the Lebesgue Dominated Convergence Theorem and (4.1.1) to obtain the equality in the lemma.

On the other hand Theorem 3.5 and Remark 4.1 imply

E k W(u, u)(x, ξ)dxdξ = Op w (1 E k )u, u ≤ (1 -e -πk 3 2 ) u 2 L 2 (R) ≤ u 2 L 2 (R) ,
and the sought result.

Remark 4.3. Moreover, Theorem 3.5 and the expression of F 0 (a) = 1 -e -a imply that with ψ 0 defined in (9.1.31), we have

E k W(ψ 0 , ψ 0 )(x, ξ)dxdξ = Op w (1 E k )ψ 0 , ψ 0 = ψ 0 2 L 2 (R) (1 -e -πk 3 /3 ), so that from Lemma 4.2, we have P W(ψ 0 , ψ 0 )(x, ξ)dxdξ = ψ 0 2 L 2 (R) , entailing (4.1.2) sup φ∈S (R), φ L 2 (R) =1 P W(φ, φ)(x, ξ)dxdξ = 1.
Remark 4.4. We want to study the operator with Weyl symbol H(ξ -x 2 ) (H = 1 R + is the Heaviside function) and since ξ -x 2 is a polynomial with degree less than 2, see from (1.2.5) that Op w H(ξ -x 2 ) commutes with D x -x 2 = e 2πix 3 /3 D x e -2πix 3 /3 , and the latter has (continuous) spectrum R: we expect thus that Op w H(ξ -x 2 ) should have continuous spectrum and be conjugated to a Fourier multiplier.

4.2.

Calculation of the kernel. The Weyl symbol of the operator Op w (1 P ) is

H(ξ -x 2 ),
(P is defined in (4.1.1), H is the Heaviside function H = 1 R + ), corresponding to the distribution kernel k P (x, y) obtained from Proposition 1.9 by (we use freely integrals meaning only Fourier transform in the distributional sense),

k P (x, y) = e 2iπ(x-y)ξ H(ξ -( x + y 2 ) 2 )dξ = e 2iπ(x-y)(ξ+( x+y 2 ) 2 ) H(ξ)dξ = e 2iπ(x-y)( x+y 2 ) 2 1 2 δ 0 (y -x) + 1 iπ(y -x) = δ 0 (y -x) 2 + e 2iπ(x-y)( x+y 2 ) 2 2iπ(y -x) .
We have 2iπ(y -x) .

4(x -y)( x + y 2 ) 2 = (x 2 -y 2 )(x + y) = x 3 -y 3 + x 2 y -y 2 x = 4 3 (x 3 -y 3 ) + 1 3 (y -x)
We have proven the following result.

Lemma 4.5. The operator with Weyl symbol R 2 (x, ξ) → 1 R + (ξ -x 2 ) has the distribution kernel 

k P (x, y) = e i 2π 3 x 3 δ 0 (y -x) 2 + e i π 6 (y-x) 3 2iπ(y -x) e -i
ω(τ ) = 1 2 1 + 1 π +∞ -∞ sin(sη + s 3 3 ) s ds , η = 2 4/3 π 2/3 τ.
Proof. We calculate in the distribution sense (t = as, a = (2/π) 1/3 ), e -2iπtτ i e -iπt 3 /6 2πt dt = i 2π e -2iπasτ e -iπa 3 s 3 /6 s ds = i 2π

(-i) sin( s 3 3 + 2πasτ ) s ds = 1 2π
sin(2πasτ + s 3 3 ) s ds, so that with η = 2πaτ , we get

ω(τ ) = 1 2 1 + 1 π +∞ -∞ sin(sη + s 3 3 ) s ds = 1 2 1 -F (η) = G(η),
proving the lemma.

Lemma 4.7. We have, with η = 2 4/3 π 2/3 τ ,

ω(τ ) = 1 2 1 + 1 π +∞ -∞ sin(sη + s 3 3 ) s ds = G(η), ω(0) = 2 3 = G(0), (4.2.6) G (η) = 1 2π R cos(sη + s 3 3 )ds = Re 1 2π R exp i(sη + s 3 3 )ds = Ai(η), (4.2.7) G(η) = 2 3 + η 0 Ai(ξ)dξ, (4.2.8)
where Ai is the Airy function defined as the inverse Fourier transform of t → e i(2πt) 3 /3 . Proof. We have (4.2.9)

1 π +∞ -∞ sin( s 3 3 ) s ds = 1 π +∞ -∞ sin(σ) 3 1/3 σ 1/3 3 1/3 1 3 σ -2/3 dσ = 1 3π +∞ -∞ sin σ σ dσ = 1 3 ,
proving (4.2.6). We have also

G(η) = 1 2 + Im Inverse Fourier Transform y → e i(2πy) 3 /3 pv( 1 2πy 
) ,

and thus

G (η) = Im Inverse Fourier Transform y → e i(2πy) 3 /3 i = Im
e 2iπyη e i(2πy) 

G(η) = 1, lim η→-∞ G(η) = 0,
and moreover with η 0 the largest zero of the Airy function (η 0 ≈ -2.33811), the function G has an absolute minimum at η 0 with G(η 0 ) ≈ -0.274352,

(4.2.11) ∀η ∈ R, G(η 0 ) ≤ G(η) < 1.
Proof. The function G is entire on C, real valued on the real line and such that

G(R) = [G(η 0 ), 1),
where η 0 is the largest zero of the Airy function

(4.3.2)
we have η 0 ≈ -2.338107410, G(η 0 ) ≈ -0.2743520591.

The operator with Weyl symbol H(ξ -x 2 ) is self-adjoint bounded on L 2 (R) with norm 1, with spectrum equal to [G(η 0 ), 1] (continuous spectrum) and Let q be a non-negative quadratic form on R n × R n equipped with the canonical symplectic form (1.2.24). Then there exists S in the symplectic group Sp(n, R) of R 2n , r ∈ {0, . . . , n}, µ 1 , . . . , µ r positive, and s ∈ N such that r + s ≤ n, so that for all

(4.3.3) ∀u ∈ L 2 (R), G(η 0 ) u 2 L 2 (R) ≤ ξ≥x 2 W(u, u)(x, ξ)dxdξ ≤ u 2 L 2 (R) .
X = (x, ξ) ∈ R n × R n , (4.4.1) q(SX) = 1≤j≤r µ j (x 2 j + ξ 2 j ) + r+1≤j≤r+s x 2 j .
Definition 4.11. Let n ∈ N * and let R 2n be equipped with the canonical symplectic form (1.2.24). Let q be a non-negative quadratic form on R 2n with rank 2n -1 and T be a non-zero vector in R 2n such that q(σT ) = 0. A paraboloid P of R 2n with vertex 0 and shape (q, T ) is defined by

(4.4.2) P = {X ∈ R 2n , q(X) ≤ [X, T ]}.
A paraboloid Q with vertex m ∈ R 2n and shape (q, T ) is defined as

(4.4.3) Q = P + m,
where P is a paraboloid with vertex 0 and shape (q, T ).

Remark 4.12. We can find some symplectic coordinates such that

q(X) -[X, T ] = 1≤j≤r µ j (x 2 j + ξ 2 j ) + r+1≤j≤r+s x 2 j + 1≤j≤n (x j τ j -ξ j t j ), with 2r + s = 2n -1.
We can get rid of the linear terms x j τ j -ξ j t j when 1 ≤ j ≤ r by writing

µ j (x 2 j + ξ 2 j ) + x j τ j -ξ j t j = µ j x j + τ j 2µ j 2 + µ j ξ j - t j 2µ j 2 - 1 4µ j (t 2 j + τ 2 j ),
and also of x j τ j for r + 1 ≤ j ≤ r + s, since

x 2 j + x j τ j = (x j + τ j 2 ) 2 - τ 2 j 4 .
We are left with using affine symplectic coordinates (y, η) so that

q(X) -[X, T ] = 1≤j≤r µ j (y 2 j + η 2 j ) + r+1≤j≤r+s y 2 j - r+1≤j≤r+s η j t j + r+s+1≤j≤n (y j τ j -η j t j ) -a.
Since we have 2r +s = 2n-1, we get r +s+1 = 2n-r: we cannot have r +s+1 ≤ n since it would imply that 2n -r ≤ n and thus r ≥ n, which is incompatible with 2r + s = 2n -1, r, s ≥ 0. We get then that s = 2l + 1, r = n -1 -l and since r + s ≤ n, 1 ≤ s, we have l = 0, s = 1, r = n -1, and

q(X) -[X, T ] = 1≤j≤n-1 µ j (y 2 j + η 2 j ) + y 2 n -η n t n -a,
and

t n ∈ R * . With y n = t 1/3 ỹn , η n = t -1/3 ηn , we get q(X) -[X, T ] = 1≤j≤n-1 µ j (y 2 j + η 2 j ) + t 2/3 (ỹ 2 n -ηn -at -2/3 ),
and the inequality q(X) -[X, T ] ≤ 0 is equivalent to

1≤j≤n-1 t -2/3 µ j (y 2 j + η 2 j ) + ỹ2 n ≤ ηn + at -2/3 .
We can thus assume ab initio that our paraboloid is given by the inequality (4.4.4)

1≤j≤n-1

ν j (x 2 j + ξ 2 j ) + x 2 n ≤ ξ n .
4.4.2. On the kernel for the paraboloid. We shall consider the paraboloid (4.4.5)

P n = {(x, ξ) ∈ R 2n , x 2 n + 1≤j≤n-1 (x 2 j + ξ 2 j ) ≤ ξ n }.
We have, with X = (x ; ξ ) = (x 1 , . . . , x n-1 ; ξ 1 , . . . , ξ n-1 ),

P = Op w H(ξ n -x 2 n -|X | 2 ) = R Ĥ(τ )Op w (e 2iπτ (ξn-x 2 n ) )Op w (e -2iπτ |X | 2 )dτ = k≥0 R Ĥ(τ )P k;n-1 ⊗ Op w (e 2iπτ (ξn-x 2 n ) )e -i(arctan τ )(2k+n-1) (1 + τ 2 ) -(n-1) 2 dτ = 1 2 Id + 1 2iπ k≥0 P k;n-1 ⊗ R Op w (e 2iπτ (ξn-x 2 n ) ) 1 τ 1 -iτ (1 + τ 2 ) 1/2 2k+n-1 (1 + τ 2 ) -(n-1) 2 dτ = 1 2 Id + 1 2 k≥0 P k;n-1 ⊗ R Op w (e 2iπτ (ξn-x 2 n ) ) (1 -iτ ) k iπτ (1 + iτ ) k+n-1 dτ.
Let k(x n , y n ) be the kernel of the operator in the integral: we have

k(x n , y n ) = e 2iπ 3 (x 3 n -y 3 n ) e -iπ 6 (xn-yn) 3 i π(x n -y n ) (1 + i(x n -y n )) k (1 -i(x n -y n )) k+n-1 .
As a result, we find that P is unitarily equivalent to P , with (4.4.6) We note that for n = 1, the sum is reduced to k = 0 with P 0;0 = I, so that we recover Formula (4.2.6) with ω 0,0 = ω. We find also that (4.4.9)

2 P = k≥0 P k;n-1 ⊗ I n + convolution with ie -iπ 6 x 3 n πx n (1 + ix n ) k (1 -ix n ) k+n-1 . We define (4.4.7) ω k,n-1 (τ ) = 1 2 + ie -iπ 6 t 3 2πt (1 + it) k (1 -it) k+n-1 e -2iπtτ dt = 1 2 + e iπ 6 t 3 2iπt (1 -it) k (1 + it) k+n-1 e 2iπtτ dt,
ω k,n-1 (τ ) = e iπ 6 t 3 (1 -it) k (1 + it) k+n-1 e 2iπtτ dt,
in the sense that the inverse Fourier transform of t → e iπ 6 t 3

(1-it) k (1+it) k+n-1 is the distribution derivative of ω k,n-1 . Going back to the normalization of Lemma 4.7, we have, with η = 2 4/3 π 2/3 τ ,

G k,n-1 (η) = ω k,n-1 (τ ), (4.4.10) G k,n-1 (η) = 2 -4/3 π -2/3 e iπ 6 t 3 (1 -it) k (1 + it) k+n-1 e 2 -1 3 iπ 1 3 tη dt, = t=π -1 3 2 1 3 s 1 2π e is 3 3 (1 -iπ -1/3 2 1/3 s) k (1 + iπ -1/3 2 1/3 s) k+n-1 e isη ds := A k,n-1 (η). (4.4.11)
We have A 0,0 = Ai and A k,n-1 is an entire function, real-valued on the real line; we have

G k,n-1 (η) = η -∞ A k,n-1 (ξ)dξ, G k,n-1 (+∞) = 1.
Remark 4.13. We claim that the asymptotic properties of the functions A k,n-1 are analogous to the properties of the standard Airy function and we have indeed from (4.4.9), (4.4.12)

ω k,n-1 (τ ) = (1 -iD) k (1 + iD) -k-n+1 F -1 (e iπ 6 t 3 ).
We claim as well that

- 1 2 < inf k≥0,η∈R G(η) < 0, sup k≥0,η∈R G(η) = 1,
so that P is bounded on L 2 (R n ) and (4.4.13)

ξn≥x 2 n + 1≤j≤n-1 (x 2 j +ξ 2 j ) W(u, u)(x, ξ)dxdξ ≤ u 2 L 2 (R n ) .

Conics with eccentricity greater than 1

We want to consider now integrals of the Wigner distribution on "hyperbolic" convex subsets of the plane such as (5.0.14)

C σ = {(x, ξ) ∈ R 2 , xξ ≥ σ, x ≥ 0},
where σ is a non-negative parameter. It is convenient to start with the limit-case where σ = 0 and C 0 = {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0} (we will label C 0 as the quarterplane). The indicator function of C 0 is H(x)H(ξ) where H = 1 R + is the Heaviside function.

Acknowledgements. The author is grateful to Thomas Duyckaerts for sharp comments on a first version of this section.

N.B. The reader will see a great similarity between our calculations below in this section and the J.G. Wood & A.J. Bracken paper [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF] (see also [START_REF] Bracken | Bounds on integrals of the Wigner function[END_REF]). This article is very important for the problem at stake -Integrating the Wigner distribution on subsets of the phase space -and was a wealthy source of information for us, although as a mathematician, the author has a quite rigid relationship with calculations, and feels the need to justify formal manipulations; for instance, we may point out that the test functions used in [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF] are homogeneous distributions of type

x -1 2 +iω ± , ω ∈ R, which are not in L 2 (R) (not even in L 2 loc )
, a situation which raises some difficulties, first when you try to normalize in L 2 these test functions and also when trying to give a non-formal meaning to their images under the operator with Weyl symbol H(x)H(ξ), images which are not clearly defined. In our joint paper [START_REF] Delourme | On integrals over a convex set of the Wigner distribution[END_REF] with B. Delourme and T. Duyckaerts, proving that Flandrin's conjecture is not true, we followed numerical arguments which were quite apart from the arguments of [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF]. However, in this article, we do follow many of the arguments of [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF], along with avoiding formal calculations.

5.1. The quarter-plane, a counterexample to Flandrin's conjecture.

5.1.1.

Preliminaries. We study in this section the operator (5.1.1)

A 0 = Op w (H(x)H(ξ))
where H = 1 R + , that is the Weyl quantization of the characteristic function of the first quarter of the plane.

Lemma 5.1. The operator A 0 given by (5.1.1) is bounded self-adjoint on L 2 (R).

Proof. Since the Weyl symbol of A 0 is real-valued, A 0 is formally self-adjoint and it is enough to prove that A 0 is bounded on L 2 (R). Let us start with recalling the classical formulas

(5.1.2)

Ĥ(t) = δ 0 (t) 2 + 1 2iπ pv 1 t , sign = 1 iπ pv 1 t , useful below. The kernel 13 of A 0 is (5.1.3) k 0 (x, y) = H(x + y) Ĥ(y -x) = H(x + y) 1 2 δ 0 (y -x) + 1 iπ pv 1 y -x .
For λ > 0, we define

A 0,λ = H(x)1 [0,λ] (ξ) w , whose distribution-kernel is the L ∞ (R 2n ) function k 0,λ (x, y) = H(x + y)e iπ(x-y)λ sin(π(x -y)λ) π(x -y) .
13 There is no difficulty at defining the product S (x + y)/2 T (x -y) for S, T tempered distributions on the real line since we may use the tensor product with

S(

x

+ y 2 )T (x -y), Φ(x, y) S (R 2 ),S (R 2 ) = S(x 1 ) ⊗ T (x 2 ), Φ(x 1 + x 2 2 , x 1 - x 2 2 ) S (R 2 ),S (R 2 ) .
However, we shall not use directly Formula (5.1.3), since want to avoid formal manipulation involving for instance meaningless products such as H(x)H(y)k 0 (x, y). We refer the reader to footnote 14 on page 77 and to Remark 5.2 for more details on this matter.

We can thus notice that (5.1.4) k 0,λ (x, y) = k 0,λ (x,y) H(x)H(y)e iπ(x-y)λ sin(π(x -y)λ) π(x -y)

+ H(x + y) H(-x)H(y) + H(x)H(-y) sin(π(x -y)λ) π(x -y) e iπ(x-y)λ k 0,λ (x,y)
, and the operator with distribution-kernel k 0,λ is

HOp w (1 [0,λ] (ξ))H, that is H1 [0,λ] (D)H,
where H stands for the operator of multiplication by the Heaviside function H. On the other hand, the operator with distribution kernel k 0,λ is such that

|k 0,λ (x, y)| ≤ H(x + y) H(-x)H(y) + H(x)H(-y) π|x -y| = H(x + y) H(-x)H(y) π(y -x) + H(x + y) H(x)H(-y) π(x -y) .
According to Proposition 9.30 in our Appendix, the Hardy operator and the modified Hardy operators are bounded on L 2 (R) and we obtain that, for φ, ψ ∈ S (R n ), with H = H(x), Ȟ = H(-x),

(5.1.5)

H(x)1 [0,λ] (ξ)W (φ, ψ)(x, ξ)dxdξ ≤ Hφ L 2 (R) Hψ L 2 (R) + 1 2 Hφ L 2 (R) Ȟψ L 2 (R) + 1 2 Ȟφ L 2 (R) Hψ L 2 (R) , so that (5.1.6) | A 0 φ, ψ S * (R),S (R) | = H(x)H(ξ) ∈S (R 2 ) W (φ, ψ)(x, ξ) dxdξ = lim λ→+∞ H(x)1 [0,λ] (ξ)W (φ, ψ)(x, ξ)dxdξ ≤ Hφ L 2 (R) Hψ L 2 (R) + 1 2 Hφ L 2 (R) Ȟψ L 2 (R) + 1 2 Ȟφ L 2 (R) Hψ L 2 (R) ,
yielding the L 2 -boundedness of the operator A 0 , and this concludes the proof of the lemma.

Remark 5.2. That cumbersome detour with the operator A 0,λ is useful to ensure that the operator A is indeed bounded on L 2 (R). The kernel k 0 of A 0 is a distribution of order 1 and the product H(x)H(y)k 0 (x, y) is not a priori meaningful, even when k is a Radon measure 14 . However with the proven L 2 -boundedness of A 0 , the products of operators HA 0 H, ȞA 0 H, HA 0 Ȟ, ȞA 0 Ȟ make sense and for instance we may approximate in the strong-operator-topology the operator HA 0 H by the operator χ(•/ε)Aχ(•/ε), where χ is a smooth function supported in [1, +∞) and equal to 1 on [2, +∞). We have indeed

HAH = H -χ(•/ε) AH + χ(•/ε)A H -χ(•/ε) + χ(•/ε)Aχ(•/ε), so that for u ∈ L 2 (R), HAHu = lim ε→0 + χ(•/ε)Aχ(•/ε)u.
The operator with kernel

H(x + y)χ(x/ε)χ(y/ε)pv 1 iπ(y -x) = χ(x/ε)χ(y/ε)pv 1 iπ(y -x) ,
converges strongly towards the operator H(sign D)H.

Proposition 5.3. Let A 0 = Op w (H(x)H(ξ)) be the operator with Weyl symbol H(x)H(ξ), a priori sending S (R) into S (R). Then A 0 can be uniquely extended to a self-adjoint bounded operator on L 2 (R) with

(5.1.7)

A 0 B(L 2 (R)) ≤ 1 + √ 2 2 ≈ 1.207 N.B.
The bound above can be significantly improved (see Proposition 5.30 for optimal bounds) and moreover we will show below that the spectrum of A 0 actually intersects (1, +∞). In fact it is easier to start with the information that A 0 is indeed bounded on L 2 (R).

Proof. The L 2 (R)-boundedness of A 0 is given by Lemma 5.1. We are left with proving the bound (5.1.7): we note that (5.1.6) implies

| A 0 u, u L 2 (R) | ≤ Hu 2 L 2 (R) + Hu L 2 (R) Ȟu L 2 (R) , proving the proposition, since the eigenvalues of the quadratic form R 2 (x 1 , x 2 ) → x 2 1 + x 1 x 2 are (1 ± √ 2)/2.
We can do much better and actually diagonalize the operator A 0 , using as in Proposition 9.30 logarithmic coordinates on each half-line. We state a lemma on "diagonal" terms whose proof is already given above. 

| B 0 u, u L 2 (R) | ≤ 1 2 Hu L 2 (R) Ȟu L 2 (R) .
Proof of the Lemma. For u ∈ S (R) such that 0 / ∈ supp u, we define for t ∈ R,

(5.1.10) φ 1 (t) = u(e t )e t/2 , φ 2 (t) = u(-e t )e t/2 , so that (5.1.11)

Hu 2 L 2 (R) = φ 1 2 L 2 (R) , Ȟu 2 L 2 (R) = φ 2 2 L 2 (R) .
We have

B 0 u, u L 2 (R) = H(x + y) Ȟ(x)H(y) + H(x) Ȟ(y) 2iπ(y -x) u(y)ū(x)dydx = H(-e s + e t )e s+t 2 
2iπ(e t + e s ) φ 1 (t) φ2 (s)dsdt -H(e s -e t )e s+t 2

2iπ(e t + e s )

φ 2 (t) φ1 (s)dsdt = H(t -s) 4iπ cosh( s-t 2 ) φ 1 (t) φ2 (s)dsdt - H(s -t) 4iπ cosh( s-t 2 )
φ 2 (t) φ1 (s)dsdt so that

B 0 u, u L 2 (R) = S0 * φ 1 , φ 2 L 2 (R) + S 0 * φ 2 , φ 1 L 2 (R) , (5.1.12) S0 (t) = Ȟ(t) 4iπ cosh(t/2) , S 0 (t) = iH(t) 4π cosh(t/2) . (5.1.13) We calculate +∞ 0 dt 4π cosh(t/2) = 1 2π [arctan(sinh(t/2))] +∞ 0 = 1 4 = 0 -∞ dt 4π cosh(t/2) , so that (5.1.14) | B 0 u, u L 2 (R) | ≤ 1 2 φ 1 L 2 (R) φ 2 L 2 (R) = 1 2 Hu L 2 (R) Ȟu L 2 (R) ,
proving the estimate of the lemma for u ∈ S (R) such that 0 / ∈ supp u. We use now that we already know that B 0 is a bounded self-adjoint operator on L 2 (R): let u be a function in L 2 (R) and let (φ k ) k≥1 be a sequence 15 in S (R) such that each φ k vanishes in a neighborhood of 0 so that lim k φ k = u in L 2 (R). We find that

| B 0 u, u L 2 (R) | ≤ | B 0 (u -φ k ), u L 2 (R) | + | B 0 φ k , u -φ k L 2 (R) | + | B 0 φ k , φ k L 2 (R) | ≤ B 0 B(L 2 (R)) u -φ k L 2 (R) u L 2 (R) + u -φ k L 2 (R) φ k L 2 (R) + 1 2 Hφ k L 2 (R) Ȟφ k L 2 (R) ,
providing readily the result of the lemma since the multiplication by H and Ȟ are bounded operators on L 2 (R).

Remark 5.6. The estimate (5.1.9) and Lemma 5.4 are already improving (5.1.7), since the eigenvalues of the quadratic form

R 2 (x 1 , x 2 ) → x 2 1 + 1 2 x 1 x 2 are (2 ± √ 5)/4
, so that the right-hand-side of (5.1.7) can be replaced by (2 + √ 5)/4 ≈ 1.059. Anyhow, we shall provide below a diagonalization of A 0 and optimal bounds. N.B. We shall be a little faster in the sequel on the "cumbersome" detours to avoid formal multiplication of kernels by Heaviside functions but the reader should keep in mind that it is an important point to secure L 2 (R)-boundedness before any further manipulation of the kernels. 

Ψ : L 2 (R) -→ L 2 (R; C 2 ) u → (Hu)(e t )e t/2 , ( Ȟu)(-e t )e t/2
is an isometric isomorphism of Hilbert spaces: indeed we have

u 2 L 2 (R) = R |u(e t )| 2 e t dt + R |u(-e t )| 2 e t dt. Moreover if (φ 1 , φ 2 ) ∈ L 2 (R; C 2 ), we may define for x ∈ R * u(x) = H(x)φ 1 (ln x)x -1/2 + Ȟ(x)φ 2 (ln |x|)|x| -1/2 ,
and we have Ψ(u)(t) = φ 1 (t), φ 2 (t) .

Remark 5.8. Using Lemma 5.4 and Notations (5.1.10) we see that We have

HA 0 Hu, u L 2 (R) = 1 2 φ 1 2 L 2 (R) + 1 2iπ pv e (s+t)/2 e t -e s φ 1 (t) φ1 (s)dsdt = 1 2 φ 1 2 L 2 (R) + 1 4iπ pv 1 sinh( t-s 2 ) φ 1 (t) φ1 (s)dsdt = R | φ1 (τ )| 2 1 2 + T0 (τ ) dτ, ( 5 
T0 = sign * ρ 0 , with ρ 0 (τ ) = t 4 sinh(t/2)
e -2iπtτ dt, (5. 1.18) and we note that the function ρ 0 belongs to S (R), as the Fourier transform of a function in S (R). Also we have Theorem 5.9. Let A 0 be the operator with Weyl symbol H(x)H(ξ). The operator A 0 is bounded self-adjoint on L 2 (R) so that we may define, with Ψ defined in (5.1.15),

(5.1.20)

A 0 = ΨA 0 Ψ -1 .
The operator A 0 is the Fourier multiplier on L 2 (R; C 2 ) given by the matrix

(5.1.21) M 0 (τ ) =   1 2 + T0 (τ ) Ŝ0 (τ ) Ŝ0 (τ ) 0   ,
where T 0 , S 0 are defined respectively in (5.1.17), (5.1.13). In particular we have with

Φ = (φ 1 , φ 2 ) ∈ L 2 (R; C 2 ), (5.1.22) A 0 Φ, Φ L 2 (R;C 2 ) = R e 2iπtτ M 0 (τ ) Φ(τ ), Φ(τ ) C 2 dτ.
Remark 5.10. As a consequence of Theorem 5.9, we find that the spectrum of the self-adjoint bounded operator A 0 is the closure of the set of eigenvalues of the matrices M 0 (τ ) when τ runs on the real line.

Proof. The proof follows readily from Remarks 5.7, 5.8 and Lemmas 5.4, 5.5. 

I(ω) = 1 4π +∞ 0 sin(tω) cosh(t/2)
dt.

Then we have

(5.1.26)

I(ω) = 1 4πω + O(ω -3 ), |ω| → +∞.
Proof. Indeed we have for ω ∈ R * ,

I(ω) = - 1 4πω +∞ 0 d dt cos(tω) cosh(t/2) dt = 1 4πω 1 - +∞ 0 cos(tω) (cosh(t/2)) 2 1 2 sinh(t/2)dt = 1 4πω 1 + g(ω) , with g(ω) = - +∞ 0 d ωdt {sin(tω)}sech(t/2) 1 2 tanh(t/2)dt = 1 2ω +∞ 0 sin(tω) d dt sech(t/2) tanh(t/2) dt = - 1 2ω 2 +∞ 0 d dt cos(tω) d dt sech(t/2) tanh(t/2) dt = 1 2ω 2 +∞ 0 cos(tω) d 2 dt 2 sech(t/2) tanh(t/2) dt + 1 2 = O(ω -2 ),
proving the lemma. e -2iπτ t dt.

We have

1 -a 11 (τ ) = O(τ -N ) for any N when τ → +∞, (5.1.29) Re(a 12 (τ )) = 1 8π 2 τ + O(τ -3 ) when τ → +∞. (5.1.30)
Proof. Formulas (5.1.27), (5.1.28) follow from Theorem 5.9, (5.1. [START_REF] Grossmann | Parity operator and quantization of δ-functions[END_REF]) and (5.1.13). The estimates (5.1.29) follow from the fact that ρ 0 belongs to the Schwartz class and (5.1.30) is a reformulation of Lemma 5.12.

Theorem 5.14. Let A 0 be the operator with Weyl symbol H(x)H(ξ), where H is the Heaviside function. Then A 0 is a bounded self-adjoint operator on L 2 (R) such that (5.1.31) inf spectrum(A 0 ) < 0 < 1 < sup spectrum(A 0 ) .

Proof. Using Remark 5.10 and Proposition 5.13 we find that for τ large enough, Conditions (5.1.24) are satisfied, proving readily (5.1.31).

Corollary 5.15 (A counterexample to Flandrin's conjecture).

There exists a function φ 0 ∈ S (R), with L 2 (R) norm equal to 1 such that

(5.1.32) x≥0,ξ≥0 W(φ 0 , φ 0 )(x, ξ)dxdξ > 1.
There exists a > 0 such that 0≤x≤a,0≤ξ≤a W(φ 0 , φ 0 )(x, ξ)dxdξ > 1.

Remark 5.16. On page 2178 of [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF], we find the sentence "it is conjectured that

(5.1.33) ∀u ∈ L 2 (R), C W(u, u)(x, ξ)dxdξ ≤ u 2 L 2 (R) ,
is true for any convex domain C", a quite mild commitment for the validity of (5.1.33), although that statement was referred to later on as Flandrin's conjecture in the literature. The second part of the above corollary is providing a disproof of that conjecture based upon an "abstract" argument used in the proof of Theorem 5.14; the result of that corollary was already known via a numerical analysis argument after our joint work [START_REF] Delourme | On integrals over a convex set of the Wigner distribution[END_REF] with B. Delourme and T. Duyckaerts.

Proof. From Theorem 5.14, we find

u 0 ∈ L 2 (R) such that u 0 2 L 2 (R) < A 0 u 0 , u 0 . Let ψ ∈ S (R): we have | A 0 u 0 , u 0 -A 0 ψ, ψ | = | A 0 (u 0 -ψ), u 0 + A 0 ψ, u 0 -ψ | ≤ A 0 B(L 2 (R)) u 0 -ψ L 2 (R) u 0 L 2 (R) + ψ L 2 (R) ,
and thus if (ψ k ) k≥1 is a sequence of S (R) converging towards u 0 in L 2 (R), we get

u 0 2 L 2 (R) < A 0 u 0 , u 0 ≤ A 0 ψ k , ψ k + A 0 B(L 2 (R)) u 0 -ψ k L 2 (R) u 0 L 2 (R) + ψ k L 2 (R)
=σ k , goes to 0 when k → +∞.

. There exists k 0 ≥ 1 such that for k ≥ k 0 , we have

0 ≤ σ k ≤ 1 2 A 0 u 0 , u 0 -u 0 2 L 2 (R) = ε 0 2 , ε 0 > 0.
We obtain that for k ≥ k 0 ,

u 0 2 L 2 (R) < A 0 u 0 , u 0 ≤ A 0 ψ k , ψ k + ε 0 2 ,
and thus

ψ k 2 L 2 (R) = ψ k 2 L 2 (R) -u 0 2 L 2 (R) =θ k , goes to 0 when k → +∞ + u 0 2 L 2 (R) = θ k + A 0 u 0 , u 0 -ε 0 ≤ θ k + A 0 ψ k , ψ k + ε 0 2 -ε 0 = A 0 ψ k , ψ k + θ k - ε 0 2 .
Choosing now k ≥ k 0 and k large enough to have θ k < ε 0 /4, we get

ψ k 2 L 2 (R) ≤ A 0 ψ k , ψ k - ε 0 4 < A 0 ψ k , ψ k ,
and since for φ = ψ k , the Wigner distribution W( φ, φ) belongs to S (R 2 ), we have

φ 2 L 2 (R) < A 0 φ, φ = H(x)H(ξ)W( φ, φ)(x, ξ)dxdξ,
and noting that this strict inequality above implies that φ = 0, we may set φ 0 = φ/ φ and get the first statement in the corollary.

N.B. The proof above is complicated by the fact that the identity

a w u, u L 2 (R n ) = R 2n a(x, ξ)W(u, u)(x, ξ)dxdξ,
is valid a priori for u ∈ S (R n ) (and in that case W(u, u) belongs to S (R 2n )), but could be meaningless as a Lebesgue integral even for Op w (a) bounded on

L 2 (R n ) and u ∈ L 2 (R n ), since we shall have W(u, u) ∈ L 2 (R 2n ) but not in L 1 (R 2n ) (we shall see in Section 6 that generically the Wigner distribution of a pulse u in L 2 (R n ) does not belong to L 1 (R 2n )).
Since W(φ, φ) belongs to the Schwartz space of R 2 , the Lebesgue Dominated Convergence Theorem provides the last statement in the Corollary.

N.B. The reader will notice that the results of the incoming Section 5.2 in the special case σ = 0 imply the results of Section 5.1, which could be then erased, say at the second reading. However, as far as the first -and maybe only -reading is concerned, we checked that most of the computational arguments in the next section are much more involved and it seemed worth while to the author to avoid unnecessary complications for the disproof of Flandrin's conjecture via the quarterplane example and set apart the more involved examples of the hyperbolic regions tackled in Section 5.2.

Hyperbolic regions.

We consider in this section the (5.0.14) set C σ with a non-negative σ.

5.2.1.

A preliminary observation. We want to consider the operator A σ with Weyl symbol H(x)H(xξ -σ) and as in Section 5.1.1, we would like to secure the fact that A σ is bounded on L 2 (R).

Claim 5.17. For all σ ≥ 0 the operator A σ is bounded self-adjoint on L 2 (R).

Proof of the Claim. Let us choose (5.2.1)

χ 0 ∈ C ∞ (R; [0, 1]) with χ 0 (t) = 0, for t ≤ 1, χ 0 (t) = 1, for t ≥ 2.
For φ, ψ ∈ S (R), we have

(5.2.2) (A 0 -A σ )φ, ψ S * (R),S (R) = H(x)H(ξ)H(σ -xξ) W(φ, ψ)(x, ξ) ∈S (R 2 ) dxdξ = lim →0 + χ 0 (x/ )H(ξ)H(σ -xξ)W(φ, ψ)(x, ξ)dxdξ.
The kernel k σ, of the operator with Weyl symbol χ 0 (x/ )H(ξ)H(σ -xξ) is 

φ( y) 1/2 φ (y) ψ( x) 1/2 ψ (x) dydx. (5.2.4)
We note that, assuming as we may that σ > 0, As a consequence, since we have also m σ (x, y) Ȟ(x) Ȟ(y) ≡ 0, the inequalities (5.2.5), (5.2.6), (5.2.7), the identities (5.2.4), (5.2.2) and Proposition 9.30 imply that

| (A 0 -A σ )φ, ψ S * (R),S (R) | ≤ 2πσ Hφ L 2 (R) Hφ L 2 (R) Hψ L 2 (R) + Ȟφ L 2 (R) Ȟφ L 2 (R) Hψ L 2 (R) + Hφ L 2 (R) Ȟψ L 2 (R) ,
proving that A 0 -A σ is bounded on L 2 (R); with Proposition 5.3, this implies that A σ is also bounded on L 2 (R), proving the claim.

N.B.

With that important piece of information in Claim 5.17, we shall be less strict in our manipulations of the kernels and accept below some abuse of language in these matters.

The Weyl quantization of 1 Cσ has the kernel (5.2.8)

k σ (x, y) = H(x + y)e 4iπσ( x-y x+y ) 1 2 δ 0 (y -x) + 1 iπ pv 1 y -x ,
a formula to be compared to (5.1.3). Using the Schwartz function φ 0 of Corollary 5.15, we get from the Lebesgue Dominated Convergence Theorem that for σ small enough,

(5.2.9)

Op w (1 Cσ )φ 0 , φ 0 L 2 (R) = xξ≥σ,x>0
W(φ 0 , φ 0 )(x, ξ)dxdξ > 1.

However, this argument does not work for large positive σ and we must go back to a direct calculation.

Diagonal terms.

Denoting by A σ the operator with kernel (5.2.8) (and Weyl symbol H(xξ -σ)H(x)), we find that for u ∈ S (R), u + = Hu, we have 

A σ Hu, Hu L 2 (R) = e 4iπσ( x-y x+y ) 1 2 δ 0 (y -x) + 1 iπ pv 1 y -x u + (y)ū + (x)dydx = 1 2 u + 2 L 2 (R + ) + R 2 e 4iπσ( e
(R) = u + L 2 (R + ) .
We get

A σ Hu, Hu L 2 (R) = 1 2 u 2 L 2 (R + ) + 1 4iπ R 2 e 4iπσ tanh( s-t 2 ) sinh( t-s 2 ) φ(t) φ(s)dsdt,
and noting that sinh x = xC(x), with C even such that 1/C ∈ S (R), we find 

A σ Hu, Hu L 2 (R) = 1 2 φ 1 2 L 2 (R) - 1 2iπ R 2 e 4iπσ tanh( s-t 2 ) (s -t)C( s-t 2 ) φ(t) φ(s)dsdt = 1 2 φ 1 2 L 2 (R) + T σ * φ 1 , φ 1 L 2 (R) = R | φ1 (τ )| 2 1 2 + Tσ (τ )
sinh(t/2)
belongs to the Schwartz space 16 . Note also that the function ρ σ is real-valued on the real line. This entails that (5.2.15) d dτ

1 2 + Tσ = 2ρ σ ,
and since

ρ σ (τ ) = 1 4 F t → te 4iπσ tanh(t/2) sinh(t/2) , implying R ρ σ (τ )dτ = 1 2 ,
we get that (5.2.16)

lim τ →±∞ Tσ (τ ) = ± 1 2 .
This yields that (5.2.17)

1 2 + Tσ (τ ) -1 = τ +∞ 2ρ σ (τ )dτ = -1 + τ -∞ 2ρ σ (τ )dτ ,
where the last equality follows from (5.2.16): indeed we have for τ > 0, from (5.2.15), (5.2.18)

1 2 + Tσ (τ ) -1 = τ +∞ 2ρ σ (τ )dτ = -1 + τ -∞ 2ρ σ (τ )dτ ,
and for τ < 0,

1 2 + Tσ (τ ) = τ -∞ 2ρ σ (τ )dτ = 1 + τ +∞ 2ρ σ (τ )dτ .
We note that

(5.2.19) ∀N ∈ N, sup τ ∈R |τ | N 1 2 + Tσ (τ ) -H(τ ) < +∞.
16 Indeed, the iterated derivatives of tanh are polynomials of tanh (check this by induction on the order of derivatives) and thus bounded on the real line; since the function t → t/ sinh(t/2) belongs to the Schwartz space, this proves that the above product is in S (R).

Indeed for τ > 0, we have, using ρ σ ∈ S (R),

τ N τ +∞ ρ σ (τ )dτ ≤ +∞ τ |ρ σ (τ )|τ N dτ ≤ +∞ 0 |ρ σ (τ )|τ N dτ < +∞.
Also, for τ < 0, we have

τ N τ -∞ ρ σ (τ )dτ ≤ τ -∞ |ρ σ (τ )||τ | N dτ ≤ 0 -∞ |ρ σ (τ )||τ | N dτ < +∞.
This means that the Fourier multiplier 1 2 + Tσ (τ ) is somehow "exponentially close" to H(τ ) for large values of |τ | and in particular close to 1 for large positive values of τ . We have also (5.2.20) 

Tσ (τ ) = i 4π R e -2iπτ t e 4iπσ tanh( t 2 ) sinh(t/2) dt = 1 2π +∞ 0 sin(2πtτ -4πσ tanh(t/2)) sinh(t/2) dt.
The next lemma provides more precise estimates than (5.2.19).

Lemma 5.18. Let τ > 0, σ ≥ 0. Defining a 11 (τ, σ) = 1 2 + Tσ (τ ) as given by (5.2.12), we have

(5.2.21) |1 -a 11 (τ, σ)| ≤ 2e -π 2 τ e 4πσ .
Proof. Using (5.2.18) and Lemma 9.33, we find that for τ > 0,

|1 -a 11 (τ, σ)| ≤ 2 +∞ τ |ρ σ (τ )|dτ ≤ 2 +∞ τ |ρ σ (τ )|dτ ≤ 12e 4πσ
+∞ τ e -π 2 τ dτ = e 4πσ 12 π 2 e -π 2 τ , entailing the sought result.

5.2.3.

Off-diagonal terms. We want now to check the off-diagonal terms: we have with u ∈ S (R),

u + = Hu, u -= Ȟu, (5.2.22) φ 1 (t) = u + (e t )e t/2 , φ 2 (t) = u -(-e t )e t/2
(5.2.23) 

A σ Ȟu, Hu L 2 (R) = e 4iπσ( x-y x+y ) H(x + y) Ȟ(y)H(x) 2iπ pv 1 y -x u -(y)ū + (x)dydx = e 4iπσ( e
A σ = ΨA σ Ψ -1 .
The operator A σ is the Fourier multiplier on L 2 (R; C 2 ) given by the matrix

(5.2.28) M σ (τ ) =   1 2 + Tσ (τ ) Ŝσ (τ ) Ŝσ (τ ) 0   ,
where T σ , S σ are defined respectively in (5.2.12), (5.2.20), (5.2.25). In particular we have with

Φ = (φ 1 , φ 2 ) ∈ L 2 (R; C 2 ), (5.2 

.29)

A σ Φ, Φ L 2 (R;C 2 ) = R e 2iπtτ M σ (τ ) Φ(τ ), Φ(τ ) C 2 dτ.
Proof. We have kernel(HA σ H) = e 4iπσ x-y x+y H(x)H(y) Ĥ(y -x), 

kernel( ȞA σ H + HA σ Ȟ) = e 4iπσ x-
inf spectrum(A σ ) < 0 < 1 < sup spectrum(A σ ) .
The spectrum of A σ is the closure of the set of eigenvalues of M σ (τ ) for τ running on the real line.

Remark 5.21. It is enough to prove that, with a given σ ≥ 0, there exists τ ∈ R such that M σ (τ ) satisfies (5.1.24).

Proof. We have from (5.2.28), (5.2.20), (5.2.26), Proof of Lemma 5.22. Let 0 < < π/2 < π < R be given. We consider the closed path γ ,R of C\iπZ with index γ ,R (iπZ) ≡ 0, cosh(z/2) dz = 0.

M σ (τ ) =      
(5.2.35) γ ,R = [ , R] ∪ [R, R + iπ] ∪ [R + iπ, + iπ] ∪ {iπ + e iθ } 0≥θ≥-π/2 ∪ i[π -, ] ∪ { e iθ } π
We note as well that (5.2.37)

I 2 = [R,R+iπ] e 2iπ(zτ -2σ tanh(z/2) ) cosh(z/2) dz = i π 0 e 2iπ((R+it)τ - 2σ tanh( R+it 2 ) ) cosh( R+it 2 ) dt = ie 2iπRτ π 0 e -2πtτ e -4iπσ 1+e -R-it 1-e -R-it 2dt e R+it 2 (1 + e -R-it )
, so that

|I 2 | ≤ 2e -R/2 π 0 e 4πσ Im 1+e -R-it 1-e -R-it dt |1 -e -R | ,
and since

Im 1 + e -R-it 1 -e -R-it = Im (1 + e -R-it )(1 -e -R+it ) |1 -e -R-it | 2 = -2e -R sin t |1 -e -R-it | 2 ≤ 0, we get (5.2.38) |I 2 | ≤ e -R/2 2π 1 -e -R
, where I 2 is defined in (5.2.37).

Let us now check 17 (5.2.40)

I 4 = - 0 -π/2
e 2iπ((iπ+ e iθ )τ -2σcoth( iπ+ e iθ

2

))

cosh iπ+ e iθ 2 i e iθ dθ = -e -2π We define now

I 5 = - [i ,i(π-)] e 2iπ(zτ -2σ tanh(z/2) ) cosh(z/2) dz = - π-e 2iπ(itτ -2σ tanh(it/2) ) cosh(it/2) idt = - π- e -2πtτ e -4iπσ i tan(t/2) cos(t/2) idt = -i π- e -2πtτ e -4πσ tan(t/2) cos(t/2) dt = -i π- e -2π(π-s)τ e -4πσ tan((π-s)/2) cos((π -s)/2) ds = -ie -2π 2 τ π-
e 2πsτ e -4πσ sin(s/2) cos(s/2) sin(s/2) ds, so that

I 5 = -ie -2π 2 τ π-
e 2πsτ e -4πσ tan(s/2) sin(s/2) ds. (5.2.46)

We have also (5.2.47)

I 3 = [R+iπ, +iπ] e 2iπ(zτ -2σ tanh(z/2) ) cosh(z/2) dz = - R e 2iπ((t+iπ)τ - 2σ tanh((t+iπ)/2) )
cosh((t + iπ)/2) dt, so that using Formulas (5.2.39), we get To complete the proof of Theorem 5.20, it will be enough, according to Lemma 5.11, to prove that, for τ → +∞, |a 12 | 2 1 -a 11 . To achieve that, we note from (5.2.53) that the imaginary part of a 12 is useless and we shall prove simply that (Re a 12 ) 2 1 -a 11 .

I 3 = -e -2π 2 τ R e 2iπ(tτ -2σtanh(t/2)) i sinh(t/
To get this we are going to use (5.2.21) and a precise asymptotic behavior for (Re a 12 ) 2 displayed in the next lemma and issued from the explicit formula (5.2.34).

Lemma 5.24. Let τ ≥ 1, σ ≥ 0 be given and let a 21 (τ, σ) be given by (5.2.32). We have then 

Re a 21 (τ, σ) ≥ e -8π √ τ √ σ 8π 3 τ - 1 2π e -
ω = 2πτ, κ = 2πσ, ν = κ 1/2 ω -1/2 , φ ν (s) = s -ν 2 tan s.
We have

2π tτ -2σ tan(t/2)) = 2πτ t -2ν 2 tan(t/2) = 4πτ t 2 -ν 2 tan t 2 = 2ωφ ν (t/2).
We We eventually go back to the proof of Theorem 5.20: let σ > 0 be given. From Lemma 5.24 and (5.2.21), we have for τ ≥ 1,

|1 -a 11 (τ, σ)| ≤ 2e -π 2 τ e 4πσ , Re a 21 (τ, σ) ≥ e -8π √ τ √ σ 8π 3 τ - 1 2π e -2π 2 τ = e -8π √ τ √ σ 8π 3 τ 1 - 4π 2 τ e 8π √ τ √ σ e 2π 2 τ .
This entails that for τ ≥ τ 0 (σ), we have 2 8 π 6 τ 2 , which is indeed true for τ ≥ τ 1 (σ). As a result for τ ≥ max(4σ, 4, τ 0 (σ), τ 1 (σ)), we obtain that (5.2.61) is satisfied so that Remark 5.21 implies the result of Theorem 5.20, completing our proof.

Remark 5.25. The functions τ 0 (σ), τ 1 (σ) can be determined rather easily, the first one by the condition

τ ≥ τ 0 (σ) =⇒ 4π 2 τ e 8π √ τ √ σ e 2π 2 τ ≤ 1 2 ,
whereas the second one should satisfy

τ ≥ τ 1 (σ) =⇒ e 4πσ 2 9 π 6 τ 2 e 16π √ τ √
σ < e π 2 τ .

5.3.

Comments and further results.

5.3.1.

Qualitative explanations on the various computations. We would like to go back to our proofs that (5.3.1)

|a 12 (τ, σ)| 2 |1 -a 11 (τ, σ)|, τ → +∞,
which is our key argument via Lemma 5.11 and give a couple of qualitative explanations which may enlighten the calculations. It is of course much simpler to begin with the case σ = 0: in that case, according to Proposition 5.13 and (5.1.18), we have

(5.3.2) 1 -a 11 (τ, 0) = +∞ τ 2ρ 0 (τ )dτ, 2ρ 0 (τ ) = t/2 sinh(t/2) =f 0 (t), f 0 ∈ S (R) holomorphic on | Im t| < 2π.
e -2iπtτ ds, so that 2ρ 0 (τ ) = f0 (τ ). We get thus readily that ρ 0 belongs to the Schwartz space, as the Fourier transform of a function in the Schwartz space and this implies in particular that 1 -a 11 (τ, 0) has fast decay towards 0 when τ → +∞, as proven in Proposition 5.13. We note also that (5.2.53) gives Im a 12 (τ, 0) 2 = e -4π 2 τ a 11 (τ, 0) 2 /4, and since the limit of a 11 is 1, we do not expect any help from the imaginary part of a 12 to proving (5.3.1). Turning our attention to Re a 12 in (5.1.30), we have,

(5.3.3) 4π Re a 21 (τ, 0) = +∞ 0 sin (2πtτ ) cosh(t/2) dt,
which is the sine-Fourier transform of the function t → H(t) sech(t/2) = g 0 (t), which has a singularity at t = 0: as a consequence, thanks to Lemma 9.1, the Fourier transform g 0 cannot be rapidly decreasing, cannot even belong to L 1 (R) (that would imply that g 0 is continuous). Moreover the sine-Fourier transform above is the Fourier transform of the odd part of g 0 , g odd (t) = sech(t/2) sign t, which is also singular at 0, thus g odd cannot be rapidly decreasing and is an odd function, which is enough to prove, without more calculations, that (5.3.1) holds true. In Section 5.1, we used a more explicit argument, with providing an equivalent of (5.3.3) equal to 1/(2πτ ) near +∞. Summing-up, (5.3.1) in the case σ = 0 follows from the existence of a singularity of the function g 0 above, which is discontinuous at 0. Let us now take a look at the case σ > 0, which turns out to be more computationally involved. We have from (5.2.32)

4πia 21 (τ, σ) = R H(t) sech(t/2)e -i4πσ coth(t/2) e 2iπtτ dt = ˇ g σ (τ ), (5.3.4) g σ (t) = H(t) sech(t/2)e -i4πσ coth(t/2) . (5.3.5)
The single discontinuity at t = 0 of g σ when σ > 0 is much wilder than for σ = 0: in the latter case, we had only a jump discontinuity with different limits on both sides, whereas when σ > 0, we have an essential discontinuity with an oscillatory behaviour in (-1, +1) when t → 0 + for the real and imaginary parts of a 12 . However, g σ belongs to all L p (R), p ∈ [1, +∞], so that its Fourier transform belongs to L p (R), p ∈ [2, +∞]: we expect then that both sides of (5.3.1) have limit 0 for τ → +∞ and we must prove that 1 -a 11 decays much faster than a 12 . Looking at a slightly simplified model and using the notations (5.2.56), we define for ω, ν positive, a function α presumably close to 4πia 21 , given by (5.3.6) 

α(ω, ν) = +∞ 0 e i2ωµν (s) sech(s)ds, µ ν (s) = s - ν 2 s , µ ν (s) = 1 + ν 2 s 2 .
Trying our hand with the stationary phase method, we look at

α(ω, ν) = 1 2iω +∞ 0 d ds e i2ωµν (s) sech(s) µ ν (s) ds = 1 2iω +∞ 0 d ds e i2ωµν (s) s 2 sech(s) s 2 + ν 2 ds = i 2ω +∞ 0 e i2ωµν (s) d ds s 2 sech(s) s 2 + ν 2 ,
since the boundary term vanishes. Iterating that computation shows that α(ω, ν) = O σ (ω -N ) for all N when ω → +∞, meaning that the information of fast decay for 1 -a 11 will not suffice to get (5.3.1). Also, it is worth noticing that no fast decay of the function α occurs when ω → -∞, otherwise Lemma 9.1 would give smoothness for the function s → e -2iκ/s H(s) sech s: in fact we see also that for σ > 0, τ = -λ, λ > 0, we have

2πia 21 (-λ, σ) = +∞ 0 sech(s)e -i4πσ coth(s) e -4iπsλ ds,
and the phase function is μ(s) = -4iπ(sλ + σ coth(s)) and we have

d ds sλ + σ coth(s) = λ - σ(1 -tanh 2 s) tanh 2 s = (λ + σ) tanh 2 s -σ tanh 2 s ,
which does vanish at tanh s = σ/(λ + σ). As a result we could say that, for σ > 0, the C ∞ wave-front-set (see e.g. Section 8.1 in [START_REF]The analysis of linear partial differential operators. I[END_REF]) of the function g σ is reduced to {0} × (-∞, 0). It turns out that we can show that the Gevrey-2 wave-front-set of g σ is {0} × R * , and it is expressed via the lowerbound estimate (5.2.54); the route that we took for proving this was an explicit calculation of Re a 12 , following the paper [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF]. Finally the upper bound (5.2.21) can be improved as

(5.3.7) |1 -a 11 (τ, σ)| ≤ C σ, e -(π-)2πτ , > 0,
and is expressing the fact the the function t → te 4iπσ tanh( t 2 )

sinh(t/2)
is analytic on the real line, with a radius of convergence on the real line bounded below by π (cf. Proposition 9.2).

More results and examples:

p balls, corners. For a, φ 0 like in Corollary 5.15, defining

Ω p = {(x, ξ) ∈ R 2 , |x - a 2 | p + |ξ - a 2 | p < a 2 p }, since W(φ 0 , φ 0 ) ∈ S (R 2 ), we get lim p→+∞ Ωp W(φ 0 , φ 0 )(x, ξ)dxdξ = [0,a] 2 W(φ 0 , φ 0 )(x, ξ)dxdξ > φ 0 2 L 2 (R) ,
proving that the spectrum of Op w (1 Ωp ) intersects (1, +∞) for p large enough, showing that a counterexample to Flandrin's conjecture can be a convex analytic open bounded set. Moreover, defining

Q a = {(x, ξ) ∈ R 2 , |x| + |ξ| ≤ a/ √ 2},
we note that Q a is obtained by rotation and translation of [0, a] 2 so that we can find φ 1 in the Schwartz space such that

Qa W(φ 1 , φ 1 )(x, ξ)dxdξ > φ 1 2 L 2 (R) .
Since we have

lim p→1 |x| p +|ξ| p ≤(a/ √ 2) p W(φ 1 , φ 1 )(x, ξ)dxdξ = Qa W(φ 1 , φ 1 )(x, ξ)dxdξ > φ 1 2 L 2 (R) ,
we get that for p -1 small enough we have (5.3.8)

|x| p +|ξ| p ≤(a/ √ 2) p W(φ 1 , φ 1 )(x, ξ)dxdξ > φ 1 2 L 2 (R) ,
proving that p balls are counterexamples to Flandrin's conjecture for p -1 or 1/p small enough.

Convex affine cones with aperture strictly less than π of R 2 are translations and rotations of (5.3.9)

Σ θ 0 = {(x, ξ) ∈ R 2 \(R -×{0}), arg(x+iξ) ∈ (0, θ 0 )}, for some θ 0 ∈ (0, π).
The vertex of Σ θ 0 and its rotations is defined as 0 and the vertex of the translation of vector T 0 of Σ θ 0 is defined as T 0 . We note that all convex affine cones with aperture strictly less than π are symplectically equivalent in R 2 , since Σ θ 0 is symplectically equivalent to (the interior of) the quarter plane Σ π/2 : indeed let θ 0 be in (0, π); the symplectic matrix M θ 0 defined by

M θ 0 = 1 -cotan θ 0 0 1 , is such that M θ 0 1 0 = 1 0 , M θ 0 cos θ 0 sin θ 0 = 0 sin θ 0 , proving that M θ 0 Σ θ 0 = Σ π/2 .
The next result follows from Theorem 1.3 in [START_REF] Delourme | On integrals over a convex set of the Wigner distribution[END_REF] and shows that many counterexamples to Flandrin's conjecture can be be obtained.

Theorem 5.26. Let K be a subset of the closure of a convex affine cone with aperture strictly less than π and vertex X 0 such that K contains a neighborhood of the vertex in the cone 19 . Then there exists λ > 0 such that, with

K λ = X 0 + λ(K -X 0 ), there exists φ ∈ S (R) such that K λ W(φ, φ)(x, ξ)dxdξ > φ 2 L 2 (R) . (5.3.

10)

N.B. Note that (5.3.10) implies that φ is not the zero function. Also, taking K convex produces another counterexample to Flandrin's conjecture since K λ will be then convex, but we do not need that assumption to proving the result.

Proof. There is no loss of generality at assuming X 0 = 0 and

[0, ρ 0 ] 2 ⊂ K ⊂ Σ π/2 , ρ 0 > 0.
Using Corollary 5.15, we find φ 0 ∈ S (R) (so that W(φ 0 , φ 0 ) ∈ S (R 2 )) such that

lim λ→+∞ K λ W(φ 0 , φ 0 )(x, ξ)dxdξ = Σ π/2 W(φ 0 , φ 0 )(x, ξ)dxdξ > φ 0 2 L 2 (R) , implying for λ large enough that K λ W(φ 0 , φ 0 )(x, ξ)dxdξ > φ 0 2 L 2 (R)
, which is the sought result. 

m σ := inf{spectrum(A σ )} = inf τ ∈R λ -(τ, σ). (5.4.6)
Moreover for all σ ≥ 0 we have

(5.4.7) m σ < 0 < 1 < M σ .

5.4.1.

The quarter-plane: σ = 0. Of course, as shown by the respective calculations of Sections 5.1 and 5.2, the case σ = 0, dealing with the quarter-plane is much simpler than the cases where σ > 0. Nonetheless we know explicitly a spectral decomposition of the operator with Weyl symbol H(x)H(ξ) from Theorem 5.19, but we can calculate without difficulty numerical expressions of M 0 , m 0 as defined in (5.4.5), (5.4.6).

Proposition 5.30. We have from (9.6.37), (5.2.33),

a 11 (τ, 0) = 1 1 + e -4π 2 τ , Re a 12 (τ, 0) = 1 4π +∞ 0 sin(2πtτ ) sech(t/2)dt,
and we can use these formulas and (5.4.3), (5.4.4), (5.4.5), (5.4.6) to calculate numerically M 0 ≈ 1.00767997007003, (λ + (τ, 0) at τ ≈ 0.138815397930141), (5.4.8) m 0 ≈ -0.155939843191243, (λ -(τ, 0) at τ ≈ -0.0566304954736227).

(5.4.9) 5.4.2. On hyperbolic regions. We want now to tackle the case σ > 0. In order to use the expressions (9.6.37), (5.2.34) respectively for a 11 and a 12 , we need first to evaluate the residue term in (9.6.37). The mapping z → tanh z is a biholomorphism of neighborhoods of 0 in the complex plane, so that we have for z near the origin, (5.4.11) so that (5.4.12) Res e 2iωz-2iκ coth z cosh z , Proof. Formula (5.4.13) follows from (5.4.12) and (9.6.37) whereas (5.4.14) is (5.2.34) after a change of variable t = 2s, where the second integral term inside the brackets is evaluated (cf. Lemma 9.31); Formula (5.4.15) is a reminder of (5.2.53).

ζ = tanh z, dζ = (1 -ζ 2 )dz, z = arcth ζ = 1 2 ln 1 + ζ 1 -ζ , (5.4.10) e 2iωz-2iκ coth z cosh z dz = 1 + ζ 1 -ζ iω e -2i κ ζ 2 1+ζ 1-ζ 1/2 + 1-ζ 1+ζ 1/2 dζ (1 -ζ 2 ) = (1 + ζ) -1 2 +iω (1 -ζ) -1 2 -iω e -2i κ ζ dζ,
0 = Res (1 + ζ) -1 2 +iω (1 -ζ) -1 2 -iω e -2i κ ζ , 0 .
N.B. Our choice for ρ in the numerical calculations of (5.4.13) is ρ = 3/4, which is a good compromise between using a value of ρ clearly away from 1 (to avoid singularities coming from small denominators in the Log term) and minimize the oscillations and size coming from the term exp(-2iκρ -1 e -iθ ); note that the modulus of the latter is exp(-2κρ -1 sin θ), which is a smooth function of ρ (flat at 0) when θ ∈ [0, π], but is unbounded for ρ → 0 + when θ ∈ (-π, 0). There is no surprise here since although the residue does not depend on the choice of ρ ∈ (0, 1), we cannot get the value of that residue by letting ρ go to 0 because of the part of the path in the lower half-plane. The argument of exp(-2iκρ -1 e -iθ ) is -2κρ -1 cos θ and taking ρ too small would be devastating for the calculations because of the strong oscillations triggered by the term exp(-2iκρ -1 cos θ) all over the circle. Of course for the evaluation of Log 1+ρe iθ 1-ρe iθ is easier for ρ small, but we have to take into account the constraints in that direction mentioned above.

Remark 5.32. It seems easier numerically for the evaluation of a 11 to use (5.4.13) rather than any other expression (see e.g. Lemma 5.18, (5.2.31), (9.6.23)). However the following formula could be interesting, theoretically and numerically: recalling that sinc x = sin x x , we have from (5. but it turns out that numerical calculations involving (5.4.16) seem to be less reliable than the methods using (5.4.13).

We can also take a look at the following curves. Remark 5.33. In the above figure, in order to put the three curves on the same picture, we have used three different logarithmic scales on the vertical axis, namely we have drawn

τ → 1 + α j Log λ + (τ, σ j ) , 1 ≤ j ≤ 3, σ j = j/2π, α 1 = 20, α 2 = 100, α 3 = 500.
Of course we have

1 + α j Log λ + (τ, σ j ) > 1 ⇐⇒ Log λ + (τ, σ j ) > 0 ⇐⇒ λ + (τ, σ j ) > 1,
so that the piece of curves in Figure 8 which are above 1 are indeed corresponding to curves of τ → λ + (τ, σ j ) which go strictly above the threshold 1. We have also

max τ λ + (τ, σ 1 ) ≈ 1 + 55×10 -5 at τ ≈ 0.402030, max τ λ + (τ, σ 2 ) ≈ 1 + 8×10 -5 at τ ≈ 0.613262, max τ λ + (τ, σ 3 ) ≈ 1 + 10 -5 at τ ≈ 0.854746.
We are glad to have a theoretical proof of Theorem 5.20 since the numerical analysis of cases where σ is large, say larger than 10, seem to be very difficult to achieve, at least through a standard use of Mathematica. The reason for that is quite clear since using our Lemma 5.11, we did study the function β defined by (5.4.17)

β(τ, σ) = |a 12 (τ, σ)| 2 + a 11 (τ, σ) -1,
and proved that for each σ ≥ 0 there exists T 0 (σ) such that for all τ ≥ T 0 (σ) we have β(τ, σ) > 0 and a 12 (τ, σ) = 0. Thanks to Lemma 5.18 and (5.2.60) we knew that for τ ≥ T 0 (σ), we had

|1 -a 11 | ≤ 2e -π 2 τ e 4πσ e -16π √ τ √ σ 2 8 π 6 τ 2 ≤ (Re a 21 ) 2 ≤ |a 12 | 2 ,
where the second inequality is in fact comparing for σ fixed two exponential decays. The numerical analysis of that inequality is certainly quite difficult when σ and τ are large since both sides are converging to zero quite fast for σ fixed and τ → +∞; of course taking the logarithm of both sides looks quite reasonable, but in practice does not seem really easy numerically. When σ = 0, the situation is much better, since we had to compare (cf. Subsection 5.3.1) an exponential decay |1 -a 11 | ≤ 2e -π 2 τ to a polynomial decay

| Re a 12 | 2 ∼ 1 2 6 π 4 τ 2 , τ → +∞,
and this could be an a posteriori explanation for which our numerical argument in [START_REF] Delourme | On integrals over a convex set of the Wigner distribution[END_REF] worked smoothly to disprove Flandrin's conjecture. So to pick-up the quarter-plane ((5.0.14) with σ = 0) to produce a counterexample to that conjecture was indeed a very wise choice: if you choose instead C σ for σ large, our Theorem 5.20 shows that it is also a counterexample to Flandrin's conjecture 20 , but we have a theoretical proof for that Theorem and if we were depending on a numerical analysis, it is quite likely that checking numerically the positivity of the function β defined in (5.4.17) could be rather difficult, even say for σ = 10.

Unboundedness is Baire generic

In this section we show that for plenty of subsets E of the phase space R 2n , the operator Op w (1

E ) is not bounded on L 2 (R n ).
Acknowledgements. The author is grateful to H.G. Feichtinger and K. Gröchenig for sharp comments on a first version of this section. 6.1. Preliminaries. 20 As a convex subset of the plane on which the integral of the Wigner distribution of some normalized pulse is > 1.

6.1.1. Prolegomena. Lemma 6.1. Let u, v ∈ L 2 (R n ) and let W(u, u), W(v, v), be their Wigner distribu- tions. Then we have W(u, u) -W(v, v) L 2 (R 2n ) ≤ u -v L 2 (R n ) u L 2 (R n ) + v L 2 (R n ) .

As a consequence if a sequence

(u k ) is converging in L 2 (R n ), then the sequence (W(u k , u k )) converges in L 2 (R 2n ) towards W(u, u).
Proof. We have by sesquilinearity

W(u, u) -W(v, v) = W(u -v, u) + W(v, u -v), so that W(u, u) -W(v, v) L 2 (R 2n ) ≤ W(u -v, u) L 2 (R 2n ) + W(v, u -v) L 2 (R 2n ) = (1.1.8) u -v L 2 (R n ) u L 2 (R n ) + v L 2 (R n ) ,
proving the lemma. Lemma 6.2. Let (u k ) be a converging sequence in L 2 (R n ) with limit u. Let us assume that there exists C 0 ≥ 0 such that

(6.1.1) ∀k ∈ N, |W(u k , u k )(x, ξ)|dxdξ ≤ C 0 .
Then we have |W(u, u)(x, ξ)|dxdξ ≤ C 0 .

Proof. Let R > 0 be given. We check

|x| 2 +|ξ| 2 ≤R 2 |W(u, u)(x, ξ) -W(u k , u k )(x, ξ)|dxdξ ≤ |x| 2 +|ξ| 2 ≤R 2 |W(u -u k , u)(x, ξ)|dxdξ + |x| 2 +|ξ| 2 ≤R 2 |W(u k , u -u k )(x, ξ)|dxdξ ≤ |B 2n |R 2n W(u -u k , u) L 2 (R 2n ) + W(u k , u -u k ) L 2 (R 2n ) = |B 2n |R 2n u -u k L 2 (R n ) u L 2 (R n ) + u k L 2 (R n ) ,
and thus

|x| 2 +|ξ| 2 ≤R 2 |W(u, u)(x, ξ)|dxdξ ≤ |x| 2 +|ξ| 2 ≤R 2 |W(u k , u k )(x, ξ)|dxdξ + |B 2n |R 2n u -u k L 2 (R n ) u L 2 (R n ) + u k L 2 (R n ) ≤ C 0 + |B 2n |R 2n u -u k L 2 (R n ) u L 2 (R n ) + u k L 2 (R n ) ,
implying for all R > 0,

|x| 2 +|ξ| 2 ≤R 2 |W(u, u)(x, ξ)|dxdξ ≤ C 0 ,
and thus the sought result.

6.1.2. An explicit construction. We just calculate W(v 0 , v 0 ) for (6.1.2)

v 0 = 1 [-1/2,1/2] .
Remark 6.3. When u is supported in a closed convex set J, we have in the integral

(1.1.6) defining W, x ± z 2 ∈ J =⇒ x ∈ J, so that supp W(u, u) ⊂ J × R n .
We have

W(v 0 , v 0 )(x, ξ) = -1/2≤x+z/2≤1/2 -1/2≤x-z/2≤1/2 e 2iπzξ dz,
and the integration domain is

-min(1 -2x, 1 + 2x) = max(-1 -2x, 2x -1) ≤ z ≤ min(1 -2x, 1 + 2x),
which is empty unless 1 -2x, 1 + 2x ≥ 0 i.e. x ∈ [-1/2, +1/2], and moreover we have the equivalence

1 -2x ≤ 1 + 2x ⇐⇒ x ≥ 0, so that (6.1.3) W(v 0 , v 0 )(x, ξ) = H(x) 1-2x -(1-2x) e 2iπzξ dz + H(-x) 1+2x -(1+2x) e 2iπzξ dz = H(x) e 2iπξ(1-2x) -e -2iπξ(1-2x) 2iπξ + H(-x) e 2iπξ(1+2x) -e -2iπξ(1+2x) 2iπξ = 1 [0,1/2] (x) sin(2πξ(1 -2x)) πξ + 1 [-1/2,0] sin(2πξ(1 + 2x)) πξ .
More generally for a, b, ω real numbers with a < b and

(6.1.4) u a,b,ω (x) = (b -a) -1/2 1 [a,b] (x)e 2iπωx ,
we have

(6.1.5) W(u a,b,ω , u a,b,ω )(x, ξ) = 1 [a, a+b 2 ] (x) sin[4π(ξ -ω)(x -a)] + 1 [ a+b 2 ,b] (x) sin[4π(ξ -ω)(b -x)] (b -a)π(ξ -ω) .
We check now, using (6.1.3), for N > 0, 

|W(v 0 , v 0 )(x, ξ)|dxdξ ≥ 0≤x≤1/4 N 0 sin(2πξ(1 -2x)) πξ dξdx = 0≤x≤1/4 N 2π(1-2x) 0 sin η πη dηdx
W (u a,b,ω , u a,b,ω )(x, ξ)dx dξ = W (u a,b,ω , u a,b,ω )(x, ξ)dξ dx = u a,b,ω 2 L 2 (R) = 1, W (u a,b,ω , u a,b,ω )(x, ξ) 2 dxdξ = u a,b,ω 4 L 2 (R) = 1.
We shall see in the next sections that most of the time in the Baire Category sense, we have for

u ∈ L 2 (R n ), |W (u, u)(x, ξ)|dxdξ = +∞.
Proof. The proof is already given above for v 0 = u -1/2,1/2,0 . Moreover we have with

α = 1 b -a , β = b + a 2(a -b) , the formula v 0 (y) = e -2iπω(y-β)α -1 u a,b,ω (y -β)α -1 α -1/2
, so that u a,b,ω = Mv 0 , where M belongs to the group M p a (n). (cf. Section 1.2.1) and the covariance property (1.2.74) shows that the already proven (6.1.6) implies (6.1.7).

Modulation spaces.

In this section, we use the Feichtinger algebra M 1 , introduced in [START_REF] Hans | On a new Segal algebra[END_REF] (the terminology Feichtinger algebra goes back to the book [START_REF] Reiter | Classical harmonic analysis and locally compact groups[END_REF]). The survey article [START_REF] Mads | On a (no longer) new Segal algebra: a review of the Feichtinger algebra[END_REF] by M.S. Jakobsen is a good source for recent developments of the theory as well as Chapter 12 in the K. Gröchenig's book [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF]. We refer the reader to the paper [START_REF] Gröchenig | Wiener's lemma for twisted convolution and Gabor frames[END_REF] by K. Gröchenig & M. Leinert as well as to J. Sjöstrand's article [START_REF] Sjöstrand | Wiener type algebras of pseudodifferential operators[END_REF] for the use of modulation spaces to proving a non-commutative Wiener lemma.

6.2.1. Preliminary lemmas. The following lemmas in this subsection are well-known (see e.g. Theorem 11.2.5 in [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF]). However we provide a proof for the self-containedness of our survey.

Lemma 6.5. Let φ 0 be a non-zero function in S (R n ). For u ∈ S (R n ) the following properties are equivalent:

(i) u ∈ S (R n ). (ii) W(u, φ 0 ) ∈ S (R 2n ). (iii) ∀N ∈ N, sup X∈R 2n |W(u, φ 0 )(X)|(1 + |X|) N < +∞.
Proof. Let us assume (i) holds true; with Ω(u, φ 0 ) defined in (1.1.1), we find that Ω(u, φ 0 ) belongs to S (R 2n ), thus as well as its partial Fourier transform W(u, φ 0 ), proving (ii). We have obviously that (ii) implies (iii). Let us now assume that (iii) holds true. Using (1.1.7), we find

u(x 1 ) φ0 (x 2 ) = W(u, φ 0 )( x 1 + x 2 2
, ξ)e 2iπ(x 1 -x 2 )ξ dξ, Proposition 6.10. Let ψ 0 be the standard fundamental state of the Harmonic Oscillator π(D 2 x + x 2 ) given by (6.2.3)

ψ 0 (x) = 2 n/4 e -π|x| 2 . Then M 1 (R n ) u → W(u, ψ 0 ) L 1 (R 2n ) is a norm on M 1 (R n ). Let ψ be a non-zero function in S (R n ): then M 1 (R n ) u → W(u, ψ) L 1 (R 2n ) is a norm on M 1 (R n ),
equivalent to the previous norm.

Proof. The homogeneity and triangle inequality are immediate, let us check the separation: let u ∈ L 2 (R n ) such that W(u, ψ) = 0. Then we have

0 = Op w (W(u, ψ))ψ, u L 2 (R n ) = u 2 L 2 (R n ) ψ 2 L 2 (R n )
, proving the sought result. Let ψ be a non-zero function in S (R n ); according to Lemma 1.30 applied to u 0 = u, u 1 = u 2 = ψ 0 , u 3 = ψ, we find (6.2.4)

|W(u, ψ)(X)| ≤ 2 n |W(u, ψ 0 )| * |W(ψ 0 , ψ)| (X),
so that we have

W(u, ψ) L 1 (R 2n ) ≤ 2 n W(ψ 0 , ψ) L 1 (R 2n ) W(u, ψ 0 ) L 1 (R 2n ) , (6.2.5) W(u, ψ 0 ) L 1 (R 2n ) ≤ 2 n W(ψ, ψ 0 ) L 1 (R 2n ) W(u, ψ) L 1 (R 2n ) , (6.2.6)
proving the equivalence of norms. Proposition 6.11. The space M 1 (R n ), equipped with the equivalent norms of Proposition 6.10, is a Banach space. The space

S (R n ) is dense in M 1 (R n ). Proof. Let (u k ) k≥1 be a Cauchy sequence in M 1 (R n ): it means that (W(u k , ψ 0 )) k≥1 is a Cauchy sequence in L 1 (R 2n ), thus such that (6.2.7) lim k W(u k , ψ 0 ) = U in L 1 (R 2n ).
On the other hand, from Lemma 1.29, we have (6.2.8)

u k -u l = Op w W(u k -u l , ψ 0 ) ψ 0 , so that u k -u l L 2 (R n ) ≤ Op w W(u k -u l , ψ 0 ) B(L 2 (R n )) ≤ cf. (1.2.8) 2 n W(u k -u l , ψ 0 ) L 1 (R 2n ) , implying that (u k ) k≥1 is a Cauchy sequence in L 2 (R n ), thus converging towards a function u in L 2 (R n ). Since from (1.1.8), we have W(u k -u, ψ 0 ) L 2 (R 2n ) = u k -u L 2 (R n ) ,
we obtain as well that (6.2.9)

lim k W(u k , ψ 0 ) = W(u, ψ 0 ) in L 2 (R 2n ),
and this implies along with (6.2.7) that U = W(u, ψ 0 ) in S (R 2n ). As a result, we have W(u,

ψ 0 ) ∈ L 1 (R 2n ), so that u ∈ M 1 (R n ) and lim k W(u k , ψ 0 ) = W(u, ψ 0 ) in L 1 (R 2n ),
entailing convergence towards u for the sequence (u k ) k≥1 in M 1 (R n ) and the sought completeness. We are left with the density question and we start with a calculation. Claim 6.12. With the phase symmetry σ y,η given by (1.2.9) and ψ 0 by (6.2.3) we have for X, Y ∈ R 2n , (6.2.10)

W(σ Y ψ 0 , ψ 0 )(X) = 2 n e -2π|X-Y | 2 e -4iπ[X,Y ] ,
where the symplectic form is given in (1.2.24).

Proof of the Claim. We have indeed

W(σ y,η ψ 0 ,ψ 0 )(x, ξ) = σ y,η ψ 0 (x + z 2 )ψ 0 (x - z 2 )e -2iπz•ξ dz = ψ 0 (2y -x - z 2 )e 4iπη•(x+ z 2 -y) ψ 0 (x - z 2 )e -2iπz•ξ dz = 2 n/2 e -π(|2y-x-z 2 | 2 +|x-z 2 | 2 ) e 2iπz•(η-ξ) dze 4iπη•(x-y) = 2 n/2 e 4iπη•(x-y) e -π 2 (|2y-z| 2 +|2(y-x)| 2 ) e 2iπz•(η-ξ) dz = 2 n/2 e 4iπη•(x-y) e -2π|y-x| 2 e 4iπy•(η-ξ) 2 n/2 e -2π|η-ξ| 2 ,
which is the sought formula.

Let u be a function in M 1 (R n ). For ε > 0 we define

u ε (x) = R 2n W(u, ψ 0 )(Y )e -ε|Y | 2 2 n (σ Y ψ 0 )(x)dY,
and we have

W(u ε , ψ 0 )(X) = R 2n W(u, ψ 0 )(Y )e -ε|Y | 2 2 n W(σ Y ψ 0 , ψ 0 )(X)dY,
so that Lemma 6.5 and (6.2.10) imply readily that u ε belongs to the Schwartz space. Moreover we have u = Op w (W(u, ψ 0 ))ψ 0 , from Lemma 6.8 and thus

W(u, ψ 0 )(X) = R 2n W(u, ψ 0 )(Y )2 n W(σ Y ψ 0 , ψ 0 )(X)dY, so that R 2n |W(u ε , ψ 0 )(X) -W(u, ψ 0 )(X)|dX ≤ 2 n R 2n ×R 2n |W(u, ψ 0 )(Y )||W(σ Y ψ 0 , ψ 0 )(X)| ∈L 1 (R 4n ) from (6.2.10) and u ∈ M 1 (R n ) 1 -e -ε|Y | 2 ∈[0,1]
dY dX.

The Lebesgue Dominated Convergence Theorem shows that the integral above tends to 0 when ε → 0 + , proving the convergence in M 1 (R n ) of the sequence (u ε ), which completes the proof of the density. Theorem 6.13. Let M be an element of the metaplectic group M p(n) (Definition 1.17). Then M is an isomorphism of M 1 (R n ) and we have for

u ∈ M 1 (R n ), φ ∈ S (R n ), (6.2.11) W(Mu, Mφ) = W(u, φ) • S -1 ,
where M is in the fiber of the symplectic transformation S. In particular, the space 

M 1 (R n ) is invariant
∈S (R n ) ) = W(u, ψ 0 ) ∈L 1 (R 2n ) •S -1 ,
and since det S = 1, we have

W(Mu, Mψ 0 ) L 1 (R 2n ) = W(u, ψ 0 ) L 1 (R 2n ) , implying that W(Mu, Mψ 0 ) belongs to L 1 (R 2n
) so that, thanks to Definition 6.9, we get that Mu belongs to M 1 (R n ). The same properties are true for M -1 .

Remark 6.14. From Definition 6.9, we see that, for u ∈ M 1 (R n ), we have

W(u, u) ∈ L 1 (R 2n ),
and this implies, thanks to Theorem 1.28, that

M 1 (R n ) ⊂ L 1 (R n ). Moreover we have F M 1 (R n ) ⊂ M 1 (R n ),
since for u ∈ M 1 (R n ), we have W(û, ψ 0 ) = W(û, ψ0 ) and thanks to (6.2.11),

W(û, ψ0 ) L 1 (R 2n ) = W(u, ψ 0 ) L 1 (R 2n ) .
As a consequence we find

F M 1 (R n ) ⊂ M 1 (R n ) = F 2 C(M 1 (R n )) = F 2 (M 1 (R n )) ⊂ F M 1 (R n ) ,
and consequently (6.2.12)

M 1 (R n ) = F(M 1 (R n )) ⊂ F(L 1 (R n )) ⊂ C (0) (R n ),
where the latter inclusion is due to the Riemann-Lebesgue Lemma with C (0) (R n ) standing for space of continuous functions with limit 0 at infinity. Moreover, for u ∈ M 1 (R n ) and ψ 0 given by (6.2.3), we get from (1.1.7), (6.2.13)

u(x 1 ) ψ0 (x 2 ) = W(u, ψ 0 )( x 1 + x 2 2 , ξ)e 2iπ(x 1 -x 2 )•ξ dξ, so that u(x 1 ) = W(u, ψ 0 )(y, η)e 4iπ(x 1 -y)•η ψ0 (2y -x 1 )dydη2 n , implying (6.2.14) u L 1 (R n ) ≤ W(u, ψ 0 ) L 1 (R 2n ) 2 5n 4 ,
and similarly for p ∈ [1, +∞], (6.2.15)

u L p (R n ) ≤ W(u, ψ 0 ) L 1 (R 2n ) 2 5n 4 p -n 2p , yielding the continuous injection of M 1 (R n ) into L p (R n ).
Theorem 6.15. The space M 1 (R n ) is a Banach algebra for convolution and for pointwise multiplication.

Proof. Let u, v ∈ M 1 (R n ); then the convolution u * v makes sense and belongs to all

L p (R n ) for p ∈ [1, +∞], since we have u ∈ L 1 (R n ). We calculate W(u * v, ψ 0 )(x, ξ) = R n u(y)W(τ y v, ψ 0 )(x, ξ)dy, (τ y v)(x) = v(x -y), so that W(u * v, ψ 0 ) L 1 (R 2n ) ≤ R n |u(y)| W(τ y v, ψ 0 ) L 1 (R 2n
) dy, and since we have

W(τ y v, ψ 0 )(x, ξ) = W(v, τ y ψ 0 )(x, ξ)e -4iπy•ξ , we get (6.2.16) W(u * v, ψ 0 ) L 1 (R 2n ) ≤ R n |u(y)| W(v, τ y ψ 0 ) L 1 (R 2n
) dy, so that using (6.2.5), we obtain

W(u * v, ψ 0 ) L 1 (R 2n ) ≤ R n |u(y)|2 n W(ψ 0 , τ y ψ 0 ) L 1 (R 2n ) dy W(v, ψ 0 ) L 1 (R 2n ) .
We can check now that

W(ψ 0 , τ y ψ 0 )(x, ξ) = 2 n e -2π(ξ 2 +(x-y 2 )
2 ) e 2iπξy , so that (6.2.17)

W(u * v, ψ 0 ) L 1 (R 2n ) ≤ 2 n u L 1 (R n ) W(v, ψ 0 ) L 1 (R 2n ) ≤ (6.2.14) 2 9n 4 W(u, ψ 0 ) L 1 (R 2n ) W(v, ψ 0 ) L 1 (R 2n ) ,
proving that M 1 (R n ) is a Banach algebra for convolution when equipped with the norm (6.2.18)

N (u) = 2 9n 4 W(u, ψ 0 ) L 1 (R 2n ) .
On the other hand, for u, v ∈ M 1 (R n ), the pointwise product u • v makes sense and belongs to L 1 (R n ) (since both functions are in L 2 (R n )) and we have

u • v = CF(û * v), so that W(u • v, ψ 0 )(x, ξ) = W CF(û * v), ψ 0 (x, ξ) = W F(û * v), ψ0 (-x, -ξ),
and since ψ 0 = ψ0 is also even, we get

W(u • v, ψ 0 ) L 1 (R 2n ) = W F(û * v), Fψ 0 L 1 (R 2n ) = cf. (1.2.74) W û * v, ψ 0 L 1 (R 2n ) ≤ (6.2.17) 2 9n 4 W(û, ψ0 ) L 1 (R 2n ) W(v, ψ0 ) L 1 (R 2n ) = 2 9n 4 W(u, ψ 0 ) L 1 (R 2n ) W(v, ψ 0 ) L 1 (R 2n ) ,
proving as well that M 1 (R n ) is a Banach algebra for pointwise multiplication with the norm (6.2.18).

6.3.

Most pulses give rise to non-integrable Wigner distribution. In the sequel, n is an integer ≥ 1.

Lemma 6.16. We have with ψ 0 given by (6.2.3), (6.3.1)

M 1 (R n ) = {u ∈ L 2 (R n ), R 2n |W(u, ψ 0 )(x, ξ)|dxdξ < +∞}. Then M 1 (R n ) is an F σ of L 2 (R n ) with empty interior. Proof. We have M 1 (R n ) = ∪ N ∈N Φ N with Φ N = {u ∈ L 2 (R n ), R 2n |W(u, ψ 0 )(x, ξ)|dxdξ ≤ N }. The set Φ N is a closed subset of L 2 (R n ) since if (u k ) k≥1 is a sequence in Φ N which converges in L 2 (R n ) with limit u, we get for R ≥ 0, |(x,ξ)|≤R |W(u, ψ 0 )(x, ξ)|dxdξ ≤ |(x,ξ)|≤R |W(u -u k , ψ 0 )(x, ξ)|dxdξ + |(x,ξ)|≤R |W(u k , ψ 0 )(x, ξ)|dxdξ ≤ u -u k L 2 (R n ) (|B 2n |R 2n ) 1/2 + N, implying |(x,ξ)|≤R |W(u, ψ 0 )(x, ξ)|dxdξ ≤ N,
and this for any R, so that we obtain u ∈ Φ N . The interior of Φ N is empty, since if it were not the case, as Φ N is also convex and symmetric, 0 would be an interior point of Φ N in L 2 (R n ) and we would find ρ 0 > 0 such that

u L 2 (R n ) ≤ ρ 0 =⇒ R 2n |W(u, ψ 0 )(x, ξ)|dxdξ ≤ N,
and thus for any non-zero u ∈ L 2 (R n ), we would have

R 2n |W(u, ψ 0 )(x, ξ)|dxdξ u -1 L 2 (R n ) ρ 0 ≤ N and thus u M 1 (R n ) ≤ N ρ -1 0 u L 2 (R n ) , implying as well L 2 (R n ) = M 1 (R n )
which is untrue, thanks to the examples of Section 6.1.2, e.g. (6.1.6), and this proves that the interior of Φ N is actually empty. Now the Baire Category Theorem implies that the

F σ set M 1 (R n ) is a subset of L 2 (R n ) with empty interior.
Let us give another decomposition of the space M 1 (R n ).

Lemma 6.17. According to Lemma 6.7, we have

M 1 (R n ) = {u ∈ L 2 (R n ), R n ×R n |W(u, u)(x, ξ)|dxdξ < +∞}.
Then defining

(6.3.2) F N = {u ∈ L 2 (R n ), R n ×R n |W(u, u)(x, ξ)|dxdξ ≤ N }, each F N is a closed subset of L 2 (R n ) with empty interior.
Proof. We have

F = M 1 (R n ) = ∪ N ∈N F N . The set F N is a closed subset of L 2 (R n ) since if (u k ) k≥1 is a sequence in F N which converges in L 2 (R n ) with limit u, we have ∀k ≥ 1, R n ×R n |W(u k , u k )(x, ξ)|dxdξ ≤ N,
so that we may apply Lemma 6.2 with C 0 = N , and readily get that u belongs to F N . We have also that interior

L 2 (R n ) (F N ) ⊂ interior L 2 (R n ) (M 1 (R n )) = ∅. Theorem 6.18. Defining (6.3.3) G = {u ∈ L 2 (R n ), R n ×R n |W(u, u)(x, ξ)|dxdξ = +∞} = L 2 (R n )\M 1 (R n ), we obtain that the set G is a dense G δ subset of L 2 (R n ).
Proof. It follows immediately from Lemma 6.17 and formula

Å c = A c , yielding for F N defined in (6.3.2), L 2 (R n ) = interior(∪ N F N ) c = ∩ N F c N .
Remark 6.19. It is interesting to note that the space M 1 (R n ) is not reflexive, as it can be identified to 1 via Wilson bases, but it is a dual space. It turns out that both properties are linked to the fact that

M 1 (R n ) is an F σ of L 2 (R n
) as proven by Lemmas 6.16 and 6.17: if X is a reflexive Banach space continuously included in a Hilbert space H, it is always an F σ of H, since we may write

X = ∪ N ∈N N B X ,
where B X is the closed unit ball of X and N B X is H-closed since it is weakly compact (for the topology σ(H, H)); we cannot use that abstract argument in the case of the non-reflexive M 1 (R n ), so we produced a direct elementary proof above. Also it can be proven that if X is a Banach space continuously included in a Hilbert space H, so that X is an F σ of H, then X must have a predual. As a result, the fact that M 1 (R n ) has a predual appears as a consequence of the fact that

M 1 (R n ) is an F σ of L 2 (R n ).
6.4. Consequences on integrals of the Wigner distribution. Lemma 6.20. Let G be defined in (6.3.3) and let u ∈ G . Then the positive and negative part of the real-valued W(u, u) are such that

(6.4.1) W(u, u) + (x, ξ)dxdξ = W(u, u) -(x, ξ)dxdξ = +∞.
Proof. For h ∈ (0, 1], we define the symbol

(6.4.2) a(x, ξ, h) = e -h(x 2 +ξ 2 ) ,
and we see that it is a semi-classical symbol in the sense (1.2.108). Let us start a reductio ad absurdum and assume that W(u, u) -(x, ξ)dxdξ < +∞, (which implies since u ∈ G, W(u, u) + (x, ξ)dxdξ = +∞). We note that

Op w (a(x, ξ, h))u, u L 2 (R n ) = a(x, ξ, h) ∈L 2 (R 2n ) W(u, u)(x, ξ) ∈L 2 (R 2n ) dxdξ,
and thanks to Theorem 1.31 we have also

sup h∈(0,1] | Op w (a(x, ξ, h))u, u L 2 (R n ) | ≤ σ n u 2 L 2 (R n ) , so that e -h(x 2 +ξ 2 ) W(u, u)(x, ξ)dxdξ + e -h(x 2 +ξ 2 ) W(u, u) -(x, ξ)dxdξ = e -h(x 2 +ξ 2 ) W(u, u) + (x, ξ)dxdξ,
and thus with θ h ∈ [-1, 1], we have

(6.4.3) θ h σ n u 2 L 2 (R n ) + e -h(x 2 +ξ 2 ) W(u, u) -(x, ξ)dxdξ = e -h(x 2 +ξ 2 ) W(u, u) + (x, ξ)dxdξ. Choosing h = 1/m, m ∈ N * , we note that e -1 m (x 2 +ξ 2 ) W(u, u) + (x, ξ) ≤ e -1 m+1 (x 2 +ξ 2 ) W(u, u) + (x, ξ).
From the Beppo-Levi Theorem (see e.g. Theorem 1.6.1 in [START_REF]A course on integration theory[END_REF]) we get that

lim m→+∞ e -1 m (x 2 +ξ 2 ) W(u, u) + (x, ξ)dxdξ = W(u, u) + (x, ξ)dxdξ = +∞.
However the left-hand-side of (6.4.3) is bounded above by

σ n u 2 L 2 (R n ) + W(u, u) -(x, ξ)dxdξ, which is finite,
triggering a contradiction. We may now study the case where

W(u, u) + (x, ξ)dxdξ < +∞, W(u, u) -(x, ξ)dxdξ = +∞.
The identity (6.4.3) still holds true with a left-hand-side going to +∞ when h goes to 0 whereas the right-hand side is bounded. This concludes the proof of the lemma.

N.B.

A shorter heuristic argument would be that the identity W(u, u)(x, ξ)dxdξ = u 2 L 2 (R n ) and |W(u, u)(x, ξ)|dxdξ = +∞ should imply the lemma, but the former integral is not absolutely converging, so that argument fails to be completely convincing since we need to give a meaning to the first integral. Theorem 6.21.

Defining G = L 2 (R n )\M 1 (R n ) (cf. (6.3.3)) we find that the set G is a dense G δ set in L 2 (R n ) and for all u ∈ G , we have 21 W(u, u) + (x, ξ)dxdξ = W(u, u) -(x, ξ)dxdξ = +∞, (6.4.4) Defining 22 (6.4.5) E ± (u) = {(x, ξ) ∈ R 2n , ±W(u, u)(x, ξ) > 0},
we have for all u ∈ G , (

E ± (u) W(u, u)(x, ξ)dxdξ = ±∞, 6.4.6) 
and both sets E ± (u) are open subsets of R 2n with infinite Lebesgue measure.

Proof. The first statements follow from Theorem 6.18 and Lemma 6.20. As far as (6.4.6) is concerned, we note that W(u, u) > 0 (resp. < 0) on E + (u) (resp. E -(u)), so that Theorem 6.18 implies (6.4.6). Moreover E ± (u) are open subsets of R 2n since, thanks to Theorem 1.26, the function W(u, u) is continuous; also, both subsets have infinite Lebesgue measure from (6.4.4) since W(u, u) belongs to L 2 (R 2n ).

Remark 6.22. There are many other interesting properties and generalizations of the space M 1 and in particular a close link between the Bargmann transform, the Fock spaces and modulation spaces: we refer the reader to Remark 5 on page 243 in Section 11.4 of [START_REF] Gröchenig | Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis[END_REF], to our Section 1.2.8 in this article and to Section 2.4 of [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF].

Remark 6.23. As a consequence of the previous theorem, we could say that for any

generic u in L 2 (R n ) (i.e. any u ∈ G = L 2 (R n )\M 1 (R n )),
we can find open sets E + , E -such that the real-valued ±W(u, u) is positive on E ± and

E ± W(u, u)(x, ξ)dxdξ = ±∞.
We shall see in the next section some results on polygons in the plane and for instance, we shall be able to prove that there exists a "universal number" µ + 3 > 1 such that for any triangle 23 T in the plane, we have

(6.4.7) ∀u ∈ L 2 (R), T W(u, u)(x, ξ)dxdξ ≤ µ + 3 u 2 L 2 (R) .
Remark 7.3. It is interesting to remark that all operators A θ for θ ∈ (0, π) are unitarily equivalent and thus with constant spectrum [µ - 2 , µ + 2 ] as given in Theorem 5.20. Nevertheless the sequence (A θ ) 0<θ<π is weakly converging to the orthogonal projection A π whose spectrum is {0, 1}: indeed for φ ∈ S (R), ψ ∈ S (R), we have

A θ φ, ψ L 2 (R) = Σ θ W(φ, ψ) ∈S (R 2 ) (x, ξ)dxdξ,
and thus the Lebesgue Dominated Convergence Theorem implies that (7.1.4) lim

θ→π - A θ φ, ψ L 2 (R) = A π φ, ψ L 2 (R) .
On the other hand for u, v ∈ L 2 (R) and sequences (φ k ) k≥1 , (ψ k ) k≥1 in S (R) with respective limits u, v in L 2 (R), we have

A θ u, v L 2 (R) = A θ (u -φ k ), v L 2 (R) + A θ φ k , v -ψ k L 2 (R) + A θ φ k , ψ k L 2 (R) , so that A θ u, v L 2 (R) -A π u, v L 2 (R) = A θ (u -φ k ), v L 2 (R) + A θ φ k , v -ψ k L 2 (R) + A θ φ k , ψ k L 2 (R) , -A π (u -φ k ), v L 2 (R) -A π φ k , v -ψ k L 2 (R) -A π φ k , ψ k L 2 (R) , implying | A θ u, v L 2 (R) -A π u, v L 2 (R) | ≤ (µ + 2 + 1) u -φ k L 2 (R) v L 2 (R) + v -ψ k L 2 (R) φ k L 2 (R) + | A θ φ k , ψ k L 2 (R) -A π φ k , ψ k L 2 (R) |,
and thus, using (7.1.4), we get

lim sup θ→0 + | A θ u, v L 2 (R) -A π u, v L 2 (R) | ≤ (µ + 2 + 1) u -φ k L 2 (R) v L 2 (R) + v -ψ k L 2 (R) φ k L 2 (R)
. Taking now the infimum with respect to k of the right-hand-side in the above inequality, we obtain indeed the weak convergence (7.1.5) lim

θ→0 + A θ u, v L 2 (R) = A π u, v L 2 (R) .
Of course we cannot have strong convergence of the bounded self-adjoint A θ towards (the bounded self-adjoint) A π because of their respective spectra and the same lines can be written on the weak limit 0 when θ → 0 + of A θ .

7.2. Triangles. We may consider general "triangles" in the plane that we define as (7.2.1)

T c 1 ,c 2 ,c 3 L 1 ,L 2 ,L 3 = (x, ξ) ∈ R 2 , L j (x, ξ) ≥ c j , j ∈ {1, 2 
, 3} , c j are real numbers and L j are linear forms. To avoid degenerate situations, we shall assume that

(7.2.2) for j = k, dL j ∧ dL k = 0, |T c 1 ,c 2 ,c 3 L 1 ,L 2 ,L 3 | > 0 and T c 1 ,c 2 ,c 3 L 1 ,L 2 ,L 3 is not a cone.
Note that this includes standard triangles (convex envelope of three non-colinear points) but also sets with infinite area such as

(7.2.3) {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, x + ξ ≥ λ},
where λ is a positive parameter.

Without loss of generality, we may assume that L 1 (x, ξ) -

c 1 = x, L 2 (x, ξ) -c 2 = ξ, so that T c 1 ,c 2 ,c 3 L 1 ,L 2 ,L 3 = {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, ax + bξ ≥ ν},
where a, b, λ are real parameters with a = 0, b = 0 from the assumption (7.2.2); using the symplectic mapping (x, ξ) → (µx, ξ/µ) with µ = |b/a|, we see that the condition ax + bξ ≥ ν becomes

x sign a + ξ sign b ≥ λ = ν/ |ab| i.e          x + ξ ≥ ν, x -ξ ≥ ν, -x + ξ ≥ ν, -x -ξ ≥ ν.
The first case requires ν > 0 and the other cases ν < 0. The only case with finite area is the fourth case

(7.2.4) T 4,λ = {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, x+ξ ≤ λ} triangle with area λ 2 /2, λ > 0.
The second case is (7.2.5)

T 2,λ = {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, x -ξ ≥ -λ}, λ > 0,
The third case is

(7.2.6) T 3,λ = {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, ξ -x ≥ -λ}, λ > 0,
and the first case is

(7.2.7) T 1,λ = {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, ξ + x ≥ λ}, λ > 0.
Proposition 7.4. Let T 4,λ be a triangle with finite non-zero area in the plane given by (7.2.4), where λ is a positive parameter. Then the operator Op w (1 T 4,λ ) is unitarily equivalent to the operator with kernel

(7.2.8) k4,λ (x, y) = 1 [0,λ] x + y 2 sin π(x -y)(λ -x+y 2 ) π(x -y) .
The operator Op w (1 T 4,λ ) is self-adjoint and bounded on L 2 (R) so that

(7.2.9) Op w (1 T 4,λ ) B(L 2 (R)) ≤ 1 2 µ + 2 + 1 + (µ + 2 ) 2 := μ3 ,
where µ + 2 is given in (7.1.1).

Proof. The kernel k 4,λ of Op w (1 T 4,λ ) is such that

k 4,λ (x, y) = 1 [0,λ] x + y 2 λ-x+y 2 0 e 2iπ(x-y)ξ dξ = 1 [0,λ] x + y 2 e 2iπ(x-y)(λ-x+y 2 ) -1 2iπ(x -y) = e iπ(λx-x 2 2 ) 1 [0,λ] x + y 2 sin(π(x -y)(λ -x+y 2 )) π(x -y)
e -iπ(λy-y 2 2 ) , proving (7.2.8). We note now that the kernel of the operator with Weyl symbol

H(ξ)H(λ -ξ -x) is (7.2.10) λ (x, y) = e iπ(λx-x 2 2 ) H(λ - x + y 2 ) sin(π(x -y)(λ -x+y 2 )) π(x -y) e -iπ(λy-y 2 2 ) ,
and that

Op w (H(ξ)H(λ -ξ -x))
is unitarily equivalent to the operator Op w (H(x)H(ξ)) as given by Theorem 7.1. We get then

(7.2.11) k 4,λ (x, y) = H(x + y) λ (x, y) = H(x) λ (x, y)H(y) + H(x + y) H(x) Ȟ(y) + Ȟ(x)H(y) H(λ - x + y 2 ) × sin(π(x -y)(λ -x+y 2 )) π(x -y) × e iπ(λx-x 2 
2 ) e -iπ(λy-y 2 2 ) , and we have thus

(7.2.12) Op w (1 T 4,λ ) = HOp w H(ξ)H(λ -ξ -x) H + Ω λ ,
where the kernel ω λ (x, y) of the operator Ω λ verifies

|ω λ (x, y)| ≤ H(x + y) H(x) Ȟ(y) + Ȟ(x)H(y) π|x -y| = H(x + y) H(x) Ȟ(y) + Ȟ(x)H(y) π(|x| + |y|) .
We obtain thanks to Proposition 9.30 [2] that (7.2.13)

|ω λ (x, y)||u(y)||u(x)|dydx ≤ Ȟu L 2 (R) Hu L 2 (R) .
As a result, we find that

| Op w (1 T 4,λ )u, u L 2 (R) | ≤ µ + 2 Hu 2 L 2 (R) + Ȟu L 2 (R) Hu L 2 (R) ,
proving (7.2.9).

Proposition 7.5. Let T 1,λ be a triangle with infinite area in the plane given by (7.2.7), where λ is a positive parameter. Then the operator Op w (1 T 1,λ ) is unitarily equivalent to the operator with kernel

(7.2.14) k1,λ (x, y) = 1 [0,λ] x + y 2 sin π(x -y)(λ -x+y 2 ) π(x -y) .
The operator Op w (1 T 1,λ ) is self-adjoint and bounded on L 2 (R) so that

(7.2.15) Op w (1 T 1,λ ) B(L 2 (R)) ≤ 1 2 µ + 2 + 1 4 + (µ + 2 ) 2 ≈ 1.066294188078,
where µ + 2 is given in (7.1.1).

Proof. The kernel k 1,λ of Op w (1 T 1,λ ) is such that k 1,λ (x, y) = H(x + y)e 2iπ(x-y) max(0,λ-x+y 2 ) 1 2 δ 0 (y -x) + 1 iπ(y -x) = H(x) 1 2 δ 0 (x -y)H(y) + H(x) e 2iπ(x-y) max(0,λ- x+y 2 ) 2iπ(y -x) H(y) 
+ H(x + y) H(x) Ȟ(y) + Ȟ(x)H(y) e 2iπ(x-y) max(0,λ-x+y 2 )
2iπ(y -x) .

We note that the kernel of the operator Op w (H(x + ξ -λ)H(ξ)) is

1 (x, y) = e 2iπ(x-y) max(0,λ-x+y 2 ) 1 2 δ 0 (y -x) + 1 iπ(y -x) , so that (7.2.16) Op w (1 T 1,λ ) = H Op w (H(x + ξ -λ)H(ξ))
unitarily equivalent to Op w (H(x)H(ξ))

H + Ω 1,λ ,
where the kernel ω 1,λ of the operator Ω 1,λ is such that

|ω 1,λ (x, y)| ≤ H(x + y) H(x) Ȟ(y) + Ȟ(x)H(y) 2π(|x| + |y|) ,
and, thanks to Proposition 9.30 [START_REF] Askey | Positive Jacobi polynomial sums[END_REF], we get from (7.2.16) that

| Op w (1 T 1,λ )u, u L 2 (R) | ≤ µ + 2 Hu 2 L 2 (R) + 1 2 Ȟu L 2 (R) Hu L 2 (R) ,
which gives (7.2.15).

We leave for the reader to check the two other cases (7.2.5), (7.2.6), which are very similar as well as the degenerate cases excluded by (7.2.2), which are in fact easier to tackle.

Theorem 7.6. Let T = T c 1 ,c 2 ,c 3 L 1 ,L 2 ,L 3 c j ∈R, L j linear form on R 2
be the set of triangles of R 2 . For all T ∈ T , the operator Op w (1 T ) is bounded on L 2 (R), self-adjoint and we have

(7.2.17) 1.007680 ≈ µ + 2 = sup C cone Op w (1 C ) B(L 2 (R)) ≤ µ + 3 = sup T triangle Op w (1 T ) B(L 2 (R)) ≤ μ3 ≈ 1.213668. N.B.
The L 2 boundedness is easy to prove since it is obvious for triangles with finite areas and in the case of triangles with infinite area, we may note that in the case (7.2.7) (resp. (7.2.5), (7.2.6)) they are the union of two cones (resp. one cone) with a strip [0, 1]×R + . What matters most in the above statement is the effective explicit bound. Our result does not give an explicit value for µ + 3 and it is quite likely that the bound given by μ3 is way too large.

Proof. The second inequality is proven in Propositions 7.4 & 7.5 and the first inequality is a consequence of Theorem 5.26.

Remark 7.7. This implies that for any u ∈ L 2 (R) and any T ∈ T , we have

(7.2.18) T W(u, u)(x, ξ)dxdξ ≤ μ3 u 2 L 2 (R) , with μ3 ≈ 1.213668.
7.3. Convex Polygons. We want to tackle now the general case of a convex polygon in the plane. We consider L 1 , . . . , L N , to be N linear forms of x, ξ (L j (x, ξ) = a j ξ -α j x = [(x, ξ); (a j , α j )]) and c 1 , . . . , c N some real constants. We consider the convex polygon (7.3.1)

P = {(x, ξ) ∈ R 2 , ∀j ∈ {1, . . . , N }, L j (x, ξ) -c j ≥ 0}, so that 1 P (x, ξ) = 1≤j≤N H L j (x, ξ) -c j .
Definition 7.8. Let N ∈ N * , let L 1 , . . . L N be linear forms on R 2 and let c 1 , . . . , c N be real numbers. The polygon with N sides P c 1 ,...,c N L 1 ,...,L N is defined by (7.3.1). We shall denote by P N the set of all polygons with N sides.

N.B. Since we may take some L j = 0 in (7.3.1), we see that P N ⊂ P N +1 .

Note as above that it includes some convex subsets of the plane with infinite area such as (7.2.3). Theorem 7.9. Let P N be the set of convex polygons with N sides of the plane R 2 . We define

(7.3.2) µ + N = sup P∈P N Op w (1 P ) B(L 2 (R))
Then µ + 2 is given by Theorem 5.20 and

(7.3.3) ∀N ≥ 3, µ + N ≤ N/2.
Proof. Using an affine symplectic transformation, we may assume that L N (x, ξ)c N = x, so that

1 P (x, ξ) = H(x) 1≤j≤N -1 H a j ξ -α j x -c j .
and the kernel of the operator Op w (1 P ) is

k N (x, y) = H(x + y) e 2iπ(x-y)ξ 1≤j≤N -1 H a j ξ -α j ( x + y 2 ) -c j dξ.
As a result, we have

k N (x, y) = H(x + y)k N -1 (x, y),
where k N -1 is the kernel of Op w (1 P N -1 ), where

P N -1 = {(x, ξ) ∈ R 2 , ∀j ∈ {1, . . . , N -1}, L j (x, ξ) -c j ≥ 0}.
We may assume inductively that for any convex polygon P k with k ≤ N -1 sides, there exist µ + k such that (7.3.4) Op w (1 P k ) ≤ µ + k , where µ + k depends only on k and not on the area of the polygon, a fact already proven for k = 1, 2, 3. We note that with A N = Op w (1 P N ), we have with H standing for the operator of multiplication by H(x),

HA N H = HA N -1 H, A N -1 = Op w (1 P N -1 ), since the kernel of HA N H is H(x)H(y)k N (x, y) = H(x + y)H(x)H(y)k N -1 (x, y) = H(x)H(y)k N -1 (x, y).
Also we have, with Ȟ(x) = H(-x), that ȞA N Ȟ = 0, since the kernel of that operator is Ȟ(x) Ȟ(y)H(x + y)k N -1 (x, y) = 0. We have thus (7.3.5)

A N = HA N -1 H + 2 Re ȞA N H,
and the kernel of 2 Re ȞA N H is

(7.3.6) ω N (x, y) = H(x + y) Ȟ(x)H(y) + Ȟ(y)H(x) k N -1 (x, y).
We calculate now

(7.3.7) k N -1 (x, y) = e 2iπ(x-y)ξ 1≤j≤N -1 H a j ξ -α j ( x + y 2 ) -c j dξ.
We check first the j such that a j = 0 (and thus α j = 0) 25 . Without loss of generality, we may assume that this happens for 1 ≤ j < N 0 so that with some interval J of the real line, αj = α j /a j , cj = c j /a j ,

k N -1 (x, y) = 1 J ( x + y 2 ) e 2iπ(x-y)ξ N 0 ≤j≤N -1 a j >0 H ξ -αj ( x + y 2 ) -cj × N 0 ≤j≤N -1 a j <0 Ȟ ξ -αj ( x + y 2 ) -cj dξ.
We note that the integration domain is

ψ( x + y 2 ) = max N 0 ≤j≤N -1 a j >0 αj ( x + y 2 ) + cj ≤ ξ ≤ min N 0 ≤j≤N -1 a j <0 αj ( x + y 2 ) + cj = -φ( x + y 2 ),
with φ, ψ convex piecewise affine functions; since φ + ψ is also a convex function, we get the -convex -constraint (φ + ψ)((x + y)/2) ≤ 0, so that (x + y)/2 must belong to a subinterval J of the interval J. As a result we get that

k N -1 (x, y) = 1 J ( x + y 2 ) e -2iπ(x-y)φ( x+y 2 ) -e 2iπ(x-y)ψ( x+y 2 ) 2iπ(x -y) = 1 J ( x + y 2 )e -iπ(x-y)(φ-ψ)( x+y 2 ) e -iπ(x-y)(φ+ψ)( x+y 2 ) -e iπ(x-y)(φ+ψ)( x+y 2 ) 2iπ(x -y) = 1 J ( x + y 2 )e -iπ(x-y)(φ-ψ)( x+y 2 ) sin π(x -y)(φ + ψ)( x+y 2 ) π(y -x) ,
and thus the kernel of 2 Re ȞA N H is

ω N (x, y) = H(x + y) Ȟ(x)H(y) + Ȟ(y)H(x) 1 J ( x + y 2 ) × e -iπ(x-y)(φ-ψ)( x+y 2 ) sin π(x -y)(φ + ψ)( x+y 2 ) π(y -x) ,
so that, thanks to Proposition 9.30 [START_REF] Askey | Positive Jacobi polynomial sums[END_REF],

2 Re ȞA N Hu, u ≤ Hu Ȟu , and with (7.3.5),

A N u, u ≤ µ + N -1 Hu 2 + Hu Ȟu , we get (7.3.9) µ + N ≤ µ + N -1 + (µ + N -1 ) 2 + 1 2 ,
which implies that (7.3.10) ∀N ≥ 3, µ + N ≤ N/2, since it is true for N = 3 and 26 if we assume that it is true for some N ≥ 3, we get

µ + N +1 ≤ µ + N + (µ + N ) 2 + 1 2 ≤ 1 2 N 2 + N + 2 2 ≤ N + 1 2 ,
where the latter inequality follows from the concavity of the square-root function since we have for a concave function F , 1 2

N 2 + 1 2 N + 2 2 = N + 1 2 and thus 1 2 F N 2 + 1 2 F N + 2 2 ≤ F N + 1 2 .
The proof of Theorem 7.9 is complete.

Remark 7.10. The above result is weak by its dependence on the number of sides, but it should be pointed out that it is independent of the area of the polygon (which could be infinite). Another general comment is concerned with convexity: although Flandrin's conjecture is not true, there is still something special about convex subsets of the phase space and it is in particular interesting that an essentially explicit calculation of the kernel of the operator Op w (1 P ) is tractable when P is a polygon with N sides of R 2 .

7.4. Symbols supported in a half-space.

Theorem 7.11.

[1] Let A be a bounded self-adjoint operator on

L 2 (R n ) such that its Weyl symbol a(x, ξ) is supported in R + × R 2n-1 .
Then with Ȟ standing for the orthogonal projection onto

(7.4.1) {u ∈ L 2 (R n ), supp u ⊂ R -× R n-1 },
we have ȞA Ȟ = 0.

[2] Let A be as above; if A is a non-negative operator, then with H = I -Ȟ, we have ȞA = A Ȟ = 0, A = HAH, N.B. We have seen explicit examples of bounded self-adjoint operators such that the Weyl symbol is supported in x ≥ 0 but for which ȞAH = 0: the quarter-plane operator (see Section 5.1) has the Weyl symbol H(x)H(ξ), the kernel of

ȞOp w (H(x)H(ξ))H is Ȟ(x)H(y)H(x + y) 1 2iπ pv 1 y -x ,
which is not the zero distribution and, according to the above result, this alone implies that Op w (H(x)H(ξ)) cannot be non-negative.

Proof. Let us prove first that

ȞA Ȟ = 0; let φ, ψ ∈ C ∞ c (R n ) such that supp φ ∪ supp ψ ⊂ (-∞, 0) × R n-1 .
Since the Wigner distribution W(φ, ψ) belongs to S (R 2n ) and is given by the integral

W(φ, ψ)(x, ξ) = R n φ(x + z 2 ) ψ(x - z 2 )e -2iπz•ξ dz,
we infer right away 27 that supp W(φ, ψ) ⊂ (-∞, 0) × R 2n-1 . We know also that

Aφ, ψ L 2 (R n ) = Aφ, ψ S (R n ),S (R n ) = a, W(φ, ψ) S (R 2n ),S (R 2n ) = 0.
As a result, the L 2 (R n ) bounded operator ȞA Ȟ is such that, for u, v ∈ L 2 (R n ), φ, ψ as above,

ȞA Ȟu, v L 2 (R n ) = ȞA Ȟ Ȟu, Ȟv L 2 (R n ) = ȞA Ȟ( Ȟu -φ), Ȟv L 2 (R n ) + ȞA Ȟφ, Ȟv -ψ L 2 (R n ) + ȞA Ȟφ, ψ L 2 (R n ) Aφ,ψ L 2 (R n ) =0
, so that

| ȞA Ȟu, v L 2 (R n ) | ≤ A B(L 2 (R n )) Ȟu -φ L 2 (R n ) v L 2 (R n ) + Ȟv -ψ L 2 (R n ) φ L 2 (R n ) . Using now that the set {φ ∈ C ∞ c (R n ), supp φ ⊂ (-∞, 0) × R n-1 } is dense 28 in (7.4.2) {w ∈ L 2 (R n ), supp w ⊂ (-∞, 0] × R n-1 },
we obtain that ȞA Ȟu, v L 2 (R n ) = 0 and the first result. Let us assume that the operator A is non-negative. We have

A = B 2 , B = B * bounded self-adjoint.
It implies with L 2 (R n ) norms and dot-products, Au, u = HAHu, u + 2 Re ȞAHu, Ȟu = HBBHu, u + 2 Re ȞBBHu, Ȟu

= BHu 2 + 2 Re BHu, B Ȟu = BHu + B Ȟu 2 -B Ȟu 2 = Bu 2 -B Ȟu 2 = Au, u -B Ȟu 2 ,
and thus B Ȟ = 0, so that ȞB = 0 and thus ȞB 2 = ȞA = 0 = A Ȟ, so that ȞAH = 0 = HA Ȟ, and A = HAH, concluding the proof of [START_REF] Askey | Positive Jacobi polynomial sums[END_REF].

Corollary 7.12. Let A be a bounded self-adjoint operator on L 2 (R n ) such that its Weyl symbol is supported in R + × R 2n-1 and such that Re( ȞAH) = 0, then the spectrum of A intersects (-∞, 0). 28 Let χ 0 be a function satisfying (5.2.1) and let w be in the set (7.4.2). Let (φ k ) k≥1 be a sequence in

C ∞ c (R n ) converging in L 2 (R n ) towards w; the function defined by φk (x) = χ 0 (-kx 1 )φ k (x), belongs to C ∞ c (R n ), is supported in (-∞, -1/k] × R n-1 , and that sequence converges in L 2 (R n ) towards w since φk -w L 2 (R n ) ≤ χ 0 (-kx 1 ) φ k (x) -w(x) L 2 (R n ) ≤ φ k -w L 2 (R n ) → 0 when k → +∞. + (χ 0 (-kx 1 ) -1)w(x) L 2 (R n ) and (χ 0 (-kx 1 ) -1)w(x) 2 L 2 (R n ) ≤ 1 -2 k ≤ x 1 ≤ 0 |w(x)
| 2 dx which has also limit 0 when k goes to +∞ by the Lebesgue Dominated Convergence Theorem.

Proof. We have from [START_REF] Amour | Lower bounds for pseudodifferential operators with a radial symbol[END_REF] in the previous theorem, A = (H + Ȟ)A(H + Ȟ) = HAH + 2 Re HA Ȟ, and from [START_REF] Askey | Positive Jacobi polynomial sums[END_REF], if A were non-negative, we would have A Ȟ = 0 and Re HA Ȟ = 0, contradicting the assumption. Remark 7.13. If C is a compact convex body of R 2n , we may use the fact (see e.g. [START_REF] Rockafellar | Convex analysis[END_REF]) that C =

H j closed half-spaces containing K H j .
Then of course Op w (1 C ) is a bounded self-adjoint operator on L 2 (R n ), and if H j is defined by

H j = {(x, ξ) ∈ R 2 , L j (x, ξ) ≥ c j },
where L j is a linear form on R 2 and c j a real constant, we obtain with the symplectic covariance of the Weyl calculus, setting

H j (x, ξ) = H(L j (x, ξ) -c j ),
that for all H j closed half-spaces containing K, we have

(7.4.3) Op w (1 K ) = Op w (H j )Op w (1 K )Op w (H j ) + 2 Re Op w ( Ȟj )Op w (1 K )Op w (H j ),
where Ȟ(x, ξ) = H(-L j (x, ξ) + c j ).

Open questions & Conjectures

In this section we review the rather long list of conjectures formulated in the text and we try to classify their statements by rating their respective interest, relevance and difficulty. We should keep in mind that the study of Op w (1 E ) for a subset E of the phase space is highly correlated to some particular set of special functions related to E: Hermite functions and Laguerre polynomials for ellipses, Airy functions for parabolas, homogeneous distributions for hyperbolas and so on. It is quite likely that the "shape" of E will determine the type of special functions to be studied to getting a diagonalization of the operator Op w (1 E ). A sharp version of this result was proven for n = 1 in the 1988 P. Flandrin's article [START_REF] Flandrin | Maximum signal energy concentration in a time-frequency domain[END_REF], and was improved to an isotropic higher dimensional setting in the paper [START_REF] Lieb | Localization of multidimensional Wigner distributions[END_REF] by E. Lieb and Y. Ostrover. Without isotropy, it remains a conjecture. As described in more details in Section 3.4, it can be reformulated as a problem on Laguerre polynomials. That conjecture is a very natural one and it would be quite surprising that a counterexample to (8.1.1) could occur from an anisotropic ellipsoid 29 . We introduced in Section 4.4 a conjecture on anisotropic paraboloids directly related to Conjecture 8.1.

Conjecture 8.2. Let E be an anisotropic paraboloid in R 2n equipped with its canonical symplectic structure. Then the operator Op w (1 E ) is bounded on L 2 (R n ) and we have

(8.1.2) Op w (1 E ) ≤ Id .
In terms of special functions, it is related to a property of Airy-type functions. As a contrast with ellipses, we do not expect (8.1.2) to leave any room for improvement whereas (8.1.1) can certainly be improved with its right-hand-side replaced by a smaller operator as in (3.2.5). 8.2. Balls for the p norm. We have seen in Section 5.3.2 that the quantization of the indicatrix of a p ball could have a spectrum intersecting (1, +∞) when p = 2. More generally one could raise the following question. p be the unit p ball in R 2n . For λ > 0, we define the operator (8.2.1) P n,p,λ = Op w (1 λB 2n p ). Is it possible to say something on the spectrum of the operator P n,p,λ , even in a twodimensional phase space (n = 1)? Is there an asymptotic behaviour for the upper bound of the spectrum of P n,p,λ when λ goes to +∞? 8.3. On generic pulses in L 2 (R n ). We have seen that the set G defined in (6.3.3) is generic in the Baire category sense, but our explicit examples were quite simplistic. Question 8.4. Let G be defined in (6.3.3). Does there exist u ∈ G such that the set E + (u) (defined in (6.4.5)) is connected? Then the sequence (µ + N ) N ≥2 is increasing 30 and there exists α > 0 such that (8.4.2) ∀N ≥ 2, µ + N ≤ α ln N.

N.B. Theorem 7.9 is a small step in this direction.

A stronger version of Conjecture 8.5 would be Conjecture 8.6. We define

(8.4.3) µ + = sup C convex bounded Spectrum (Op w (1 C )) .
Then we have µ + < +∞.

The invalid Flandrin's conjecture was µ + = 1 and we know now that µ + ≥ µ + 2 > 1 as given by ( 7 All the explicitly avalaible examples are compatible with that conjecture (see also Remark 7.2) and the second part of Theorem 7.11 is also an indication in that direction. It would be nice in that instance to reach a spectral characterization of a subset modulo the affine symplectic group. 9. Appendix 9.1. Fourier transform, Weyl quantization, Harmonic Oscillator. 9.1.1. Fourier transform. We use in this paper the following normalization for the Fourier transform and inversion formula: for u ∈ S (R n ),

(9.1.1) û(ξ) = R n e -2iπx•ξ u(x)dx, u(x) = R n e 2iπx•ξ û(ξ)dξ,
a formula that can be extended to u ∈ S (R n ), with defining the distribution û by the duality bracket

(9.1.2) û, φ S (R n ),S (R n ) = u, φ S (R n ),S (R n ) .
Checking (9.1.1) for u ∈ S (R n ) is then easy, that is

(9.1.3) ǔ = u,
where the distribution ǔ is defined by

(9.1.4) ǔ, φ S (R n ),S (R n ) = u, φ S (R n ),S (R n ) , with φ(x) = φ(-x).
It is useful to notice that for u ∈ S (R n ), (9.1.5) ǔ = û.

Using (1.2.9) and denoting the Fourier transformation by F, (9.1.3) and (9.1.5) read (9.1.6)

σ 0 F 2 = Id, [F, σ 0 ] = 0, so that F * = F -1 = σ 0 F = Fσ 0 .
This normalization yields simple formulas for the Fourier transform of Gaussian functions: for A a real-valued symmetric positive definite n × n matrix, we define the function v A in the Schwartz space by (9.1.7) v A (x) = e -π Ax,x , and we have v A (ξ) = (det A) -1/2 e -π A -1 ξ,ξ .

Similarly when B is a real-valued symmetric non-singular n × n matrix, the function w B defined by

w B (x) = e iπ Bx,x
is in L ∞ (R n ) and thus a tempered distribution and we have

(9.1.8) w B (ξ) = | det B| -1/2 e iπ 4 sign B e -iπ B -1 ξ,ξ ,
where sign B stands for the signature of B that is, with E the set of eigenvalues of B (which are real and non-zero), (9.1.9)

sign B = Card(E ∩ R + ) ν + (B) -Card(E ∩ R -) ν -(B)=index (B)
.

The integer ν -(B) is called the index of B, noted index (B); Formula (9.1.8) can be written as We note also that (9.1.11) sign(det B) = (-1) index B , so that

i -index B | det B| -1/2 2 = (-1) ν -| det B| -1 = sign(det B)| det B| -1 = (det B) -1 ,
and thus the prefactor i -index B | det B| -1/2 in the rhs of (9.1.10) is a square root of 1/ det B.

With H standing for the characteristic function of R + , we have

1 = H + Ȟ, δ 0 = Ĥ + Ĥ, D sign = δ 0 iπ , D sign = 1 iπ , ξ sign = 1 iπ , sign = 1 iπ pv 1 ξ , (principal value)
the latter formula following from the fact that ξ sign -pv 1 iπξ = 0, which implies sign -pv 1 iπξ = cδ 0 = 0, since sign -1 iπξ is odd. We infer from that Ĥ -Ȟ = sign = pv 1 iπξ , and (9.1.12)

Ĥ = δ 0 2 + pv 1 2iπξ
.

Lemma 9.1. Let T be a compactly supported distribution on R n such that

(9.1.13) ∀N ∈ N, ξ N T (ξ) is bounded, with ξ = 1 + |ξ| 2 .
Then T is a C ∞ function.

Proof. Note that T is an entire function, as the Fourier transform of a compactly supported distribution. Moreover, from (9.1.13) with N = n + 1, we get that T belongs to L 1 (R n ) and thus T is a continuous function. Moreover, we have for any α ∈ N n , Then we have 

(D α x T )(x) = e 2iπx•ξ ξ α T (ξ) ∈L 1 (R n ) dξ, so that T is a C ∞ function.
(9.1.16) ∀ξ ∈ R, | f (ξ)| ≤ Ce -2πρ|ξ| , with C = max(C + , C -), C ± = R |f (x ± iρ)|dx. Conversely, if f is a bounded mea- surable function such that f (ξ) is O(e -2πr|ξ| ) for some r > 0, then f is holomorphic on {z ∈ C, | Im z| < r}.
(a)u, v S (R n ),S (R n ) = a, W(u, v) S (R 2n ),S (R 2n ) ,
where the so-called Wigner function

W(u, v) is defined for u, v ∈ S (R n ) by (9.1.19) W(u, v)(x, ξ) = e -2iπz•ξ u(x + z 2 )v(x - z 2 )dz.
We note that the sesquilinear mapping

S (R n ) × S (R n ) (u, v) → W(u, v) ∈ S (R 2n
) is continuous so that the above bracket of duality a, W(u, v) S (R 2n ),S (R 2n ) , makes sense. We note as well that a temperate distribution a ∈ S (R 2n ) gets quantized by a continuous operator a w from S (R n ) into S (R n ).

Also, we find that W(u, u) is real-valued since Remark 9.4. In particular if q(x, ξ) is a quadratic polynomial and

W(u, u)(x, ξ) = e 2iπz•ξ ū(x + z 2 )u(x - z 2 )dz = e -2iπz•ξ ū(x - z 2 )u(x + z 2 )dz = W(u, u)(x, ξ).
ω k (a, b) = 1 (4iπ) k |α|+|β|=k (-1) |β| α!β! (∂ α ξ ∂ β x a)(x, ξ)(∂ α x ∂ β ξ b)(x,
a(x, ξ) = H 1 -q(x, ξ) ,
is the characteristic function of the set {(x, ξ), q(x, ξ) ≤ 1}, then we have (9.1.25) Op w (a), Op w (q) = 0.

Proof. Applying (1.2.4), (1.2.5), we obtain that this lemma follows from (9.1.22), that we check now:

(4iπ) k ω k (a, b) = |α|+|β|=k (-1) |β| α!β! (∂ α ξ ∂ β x a)(x, ξ)(∂ α x ∂ β ξ b)(x, ξ) = |α|+|β|=k (-1) |α| α!β! (∂ β ξ ∂ α x a)(x, ξ)(∂ β x ∂ α ξ b)(x, ξ) = |α|+|β|=k (-1) k-|β| α!β! (∂ β ξ ∂ α x a)(x, ξ)(∂ β x ∂ α ξ b)(x, ξ) = (-1) k (4iπ) k ω k (b, a),
which is the sought result. 

supp a = [-1 + 0 , 1 -0 ] × R, supp b = [1 + 0 , 3 -0 ] × R,
so that the supports are disjoint and all ω k (a, b) are identically vanishing. We check now (a b)(x, ξ) = 4 χ 0 (y)e -πη2 χ 0 (z -2)e -πζ 2 e -4iπ(ξ-η)(x-z) e 4iπ(x-y)(ξ-ζ) dydηdzdζ = 4 χ 0 (y)χ 0 (z -2)e -4π(x-z) 2 e -4π(x-y) 2 e 4iπξ(z-x+x-y) dydz = 4 χ 0 (y)e -4iπξy e -4π(x-y) 2 dy χ 0 (z)e 4iπξz e -4π(x-2-z) 2 dz , so that

(a b)(0, 0) = 4 χ 0 (y)e -4πy 2 dy >0 χ 0 (z)e -4π(2+z) 2 dz >0 > 0.
9.1.3. Some explicit computations. We may also calculate with (9.1.26) u a (x) = (2a) 1/4 e -πax 2 , a > 0,

(9.1.27) W(u a , u a )(x, ξ) = (2a) 1/2 e -2iπz•ξ e -πa|x-z 2 | 2 e -πa|x+ z 2 | 2 dz = (2a) 1/2 e -2iπz•ξ e -2πax 2 e -πaz 2 /2 dz = (2a) 1/2 e -2πax 2 2 1/2 a -1/2 e -π 2 a ξ 2 = 2e -2π(ax 2 +a -1 ξ 2 ) ,
which is also a Gaussian function on the phase space (and positive function). The calculation of W(u a , u a )(x, ξ) is interesting since we have

4π 2 D x b w D x u a , ūa S (R n ),S (R n ) = b w u a , ū a S (R n ),S (R n ) = b, W(u a , u a ) S (R 2n ),S (R 2n ) ,
and for b(x, ξ) real-valued we have

ξ b ξ = ξb + b x 4iπ ξ = ξ 2 b + b x ξ 4iπ - ∂ x 4iπ ξb + b x 4iπ = ξ 2 b + b xx 16π 2 , so that 4π 2 2e -2π(ax 2 +a -1 ξ 2 ) ξ 2 b + b xx 16π 2 dxdξ = b, W(u a , u a ) , proving that W(u a , u a )(x, ξ) = 2e -2π(ax 2 +a -1 ξ 2 ) 4π 2 ξ 2 + 1 4 2∂ 2 x e -2π(ax 2 +a -1 ξ 2 ) = 2e -2π(ax 2 +a -1 ξ 2 ) 4π 2 ξ 2 + 1 4 ((-4πax) 2 -4πa) = 8π 2 e -2π(ax 2 +a -1 ξ 2 ) a a -1 ξ 2 + ax 2 - 1 4π .
We obtain that the function W(u a , u a ) is negative on

a -1 ξ 2 + ax 2 < 1 4π ,
which has area 1/4. We may note as well for consistency that for u a given by (9.1.26), we have u a = (2a) 1/4 (-2πax)e -πax 2 , u a and W(u a , u a )(x, ξ)dxdξ = 8π 2 a e -2π(y 2 +η 2 ) (y

2 + η 2 - 1 4π )dydη = 8π 2 a 8π = πa = u a 2 L 2 .
For λ > 0 and a ∈ S (R 2n ), we define (9.1.28) a λ (x, ξ) = a(λ -1 x, λξ),

and we find that

(a λ ) w = U * λ a w U λ , (9.1.29) for f ∈ S (R n ), (U λ f )(x) = f (λx)λ n/2 , U * λ = U λ -1 = (U λ ) -1 . (9.1.30)
We note that the above formula is a particular case of Segal's Formula (see e.g. Theorem 2.1.2 in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]). 9.1.4. The Harmonic Oscillator. The Harmonic oscillator H n in n dimensions is defined as the operator with Weyl symbol π(|x| 2 + |ξ| 2 ) and thus from (9.1.29), we find that

H = U √ 2π 1 2 |x| 2 + 4π 2 |ξ| 2 w U * √ 2π = U √ 2π 1 2 -∆ + |x| 2 U * √ 2π .
We shall define in one dimension the Hermite function of level k ∈ N, by (9.1.31)

ψ k (x) = (-1) k 2 k √ k! 2 1/4 e πx 2 d √ πdx k (e -2πx 2 ),
and we find that (ψ k ) k∈N is a Hilbertian orthonormal basis on L 2 (R). The onedimensional harmonic oscillator can be written as (9.1.32)

H 1 = k≥0 ( 1 2 + k)P k ,
where P k is the orthogonal projection onto ψ k .

In n dimensions, we consider a multi-index (α 1 , . . . , α n ) = α ∈ N n and we define on R n , using the one-dimensional (9.1.31), (9.1.33)

Ψ α (x) = 1≤j≤n ψ α j (x j ), E k = Vect Ψ α α∈N n ,|α|=k , |α| = 1≤j≤n α j .
We P α , where P α is the orthogonal projection onto Ψ α . 9.1.5. On the spectrum of the anisotropic harmonic oscillator. The standard ndimensional harmonic oscillator is the operator

H n = π 1≤j≤n (D 2 j + x 2 j ), D j = 1 2πi ∂ x j ,
and its spectral decomposition is

H = k≥0 ( n 2 + k)P k;n , P k;n = α∈N n ,α 1 +•••+αn=k P α 1 ⊗ • • • ⊗ P αn ,
where P α j stands for the orthogonal projection onto the one-dimensional Hermite function with level α j . Now let us consider for µ = (µ 1 , . . . , µ n ) with µ j > 0, the operator (9.1.37)

H (µ) = π 1≤j≤n µ j (D 2 j + x 2 j ) = πOp w (q µ (x, ξ)), with (9.1.38) q µ (x, ξ) = 1≤j≤n µ j (x 2 j + ξ 2 j ).
With the notation |µ| = 1≤j≤n µ j and µ • α = 1≤j≤n µ j α j , we have (9.1.39)

H (µ) = α∈N n ( |µ| 2 + µ • α) (P α 1 ⊗ • • • ⊗ P αn )
Pα , so that the eigenspaces are the same as for H n but the arithmetic properties of µ make possible that all eigenvalues

( |µ| 2 + µ • α) are simple. For instance for n = 2, 0 < µ 1 < µ 2 , µ 2 µ 1 / ∈ Q, if β ∈ Z 2 is such that µ 1 β 1 + µ 2 β 2 = 0,
this implies that β = 0 and thus that all the eigenvalues of H (µ) are simple.

Remark 9.6.

If 0 < µ 1 ≤ • • • ≤ µ n and if for all j ∈ [2, n] we have µ j /µ 1 ∈ N, we then have for α ∈ N n , α • µ = µ 1 α 1 + 2≤j≤n α j µ j µ 1 β 1 = β • µ, β = (β 1 , 0, . . . , 0) ∈ N n .
Sinus cardinal. It is a classical result of Distribution Theory that the weak limit when λ → +∞ of the Sinus Cardinal sin(λx)

x is πδ 0 , where δ 0 is the Dirac mass at 0, but we wish to extend that result to more general test functions. Proof. Let χ 0 be a function in C ∞ c (R) equal to 1 near the origin and let us define

χ 1 = 1 -χ 0 . We have R sin(λτ ) πτ f (τ )dτ = R sin(λτ ) π f (τ ) -a τ χ 0 (τ ) ∈L 1 (R) dτ + a R sin(λτ ) πτ χ 0 (τ )dτ + R sin(λτ ) π f (τ )τ -1 χ 1 (τ ) ∈L 1 (R)
dτ, so that the limit when λ → +∞ of the first and the third integral is zero, thanks to the Riemann-Lebesgue Lemma. We note also that sin(λτ )

πτ = 1 [-λ 2π , λ 2π 
] (τ ), and applying Plancherel's Formula to the second integral yields χ 0 (t)dt, whose limit when λ → +∞ is R χ 0 (t)dt = χ 0 (0) = 1, thanks to the Lebesgue Dominated Convergence Theorem, completing the proof of the lemma. 9.2. Further properties of the metaplectic group. 9.2.1. Another set of generators for the metaplectic group. Definition 9.1. Let P, L, Q be n × n real matrices such that P = P * , Q = Q * and det L = 0. We define the operator M P,L,Q by the formula (9.2.1)

(M P,L,Q u)(x) = e -iπn/4 (det L) 1/2
R n e iπ{ P x,x -2 Lx,y + Qy,y } u(y)dy.

N.B.

In that definition, (det L) 1/2 stands for a choice of a square root of the real number det L, that is

± √ det L if det L > 0 and ±i √ -det L if det L < 0.
With m(L) ∈ Z/4Z defined by (1.2.54) we shall also define

(9.2.2) (M {m(L)} P,L,Q u)(x) = e -iπn 4 e iπm(L) 2 | det L| 1/2
R n e iπ{ P x,x -2 Lx,y + Qy,y } u(y)dy.

and since from Claim 9.12, we have M -1 A,B,C = M -C,-B * ,-A , we find that M is in fact a product of 2N terms of type M P,L,Q , and thanks to Proposition 9.16, we get 

M = M P 1 ,L 1 ,Q 1 M P 2 ,L 2 ,Q 2 = M P 1 ,L 1 ,Q 1 e -iπn/4 F M P 1 ,-L 1 ,Q 1 e -iπn/4 F -1 M P 2 ,L 2 ,Q 2 M -Q 2 ,-L * 2 ,-P 2 e -iπn/4 F -1 = M P 1 ,-L 1 ,Q 1 M -Q 2 ,-L * 2 ,-P 2 -1 = M P 1 ,-L 1 ,0 M 0,In,Q 1 M -Q 2 ,-L * 2 ,0 M 0,In,-P 2 -1 = M P 1 ,-L 1 ,0 M 0,In,Q 1 M 0,In,P 2 M -Q 2 ,-L * 2 ,0 -1 = M P 1 ,-L 1 ,0 M 0,In,Q 1 +P 2 M -Q 2 ,-L * 2 ,0 -1 (cf. Formula (1.2.53)) = M P 1 ,-L 1 ,Q 1 +P 2 M A ,
Ξ = I n C 0 I n B 0 0 B * -1 I n 0 -A I n .
Some other properties of the same type are available when det Q or det R are different from 0. Indeed we have for Ξ ∈ Sp(n, R) and σ given by (1.2.26), (9.2.38)

Ξσ = P Q R S σ = -Q P -S R = if det Q = 0 Ξ A,B,C , so that (9.2.39) Ξ = -Ξ A,B,C σ = I n 0 A I n B -1 0 0 B * I n -C 0 I n 0 -I n I n 0 .
If we have det R = 0, using the two first equalities in (9.2.38), we get that (Ξσ) -1 = Ξ A,B,C which gives (9.2.40)

Ξ = I n C 0 I n B 0 0 B * -1 I n 0 -A I n 0 -I n I n 0 .
However, it is indeed possible when n ≥ 2 to have a symplectic matrix in Sp(n, R) in the form (9.2.35) such that all the blocks are singular, as shown in the following remark.

for which the identity is (0, I n ) and the inverse (9.2.45) (A, B) -1 = (-B * -1 AB -1 , B -1 ).

Remark 9.22. A consequence of Lemma 9.20 is, with Ψ defined in (1.2.71), that

{Ψ(M A,B,0 )} A=A * det B =0 = {Ξ A,B,0 } A=A * det B =0 , {Ψ(M 0,B,C )} C=C * det B =0 = {Ξ 0,B,C } C=C * det B =0
, are subgroups of the symplectic group Sp(n, R).

Proposition 9.23. The metaplectic group M p(n) is equal to the set

(9.2.46) {M A 1 ,B 1 ,C 1 M A 2 ,B 2 ,C 2 } A j =A * j ,C j =C * j det B j =0
In other words, every metaplectic operator of M p(n) is the product of two operators of type M A,B,C as given by Proposition 1.15.

Proof. Let M ∈ M p(n); using Proposition 9.16, we may assume that

M = M P 1 ,L 1 ,Q 1 M P 2 ,L 2 ,Q 2 = M P 1 ,L 1 ,Q 1 Fe -iπn/4 Fe -iπn/4 -1 M P 2 ,L 2 ,Q 2 (9.2.3) = M P 1 ,-L 1 ,Q 1 M -1 P 2 ,L 2 ,Q 2 Fe -iπn/4 -1 (Claim 9.12) = M P 1 ,-L 1 ,Q 1 M -Q 2 ,-L * 2 ,-P 2 Fe -iπn/4 -1 (9.2.3), (1.2.53) = M P 1 ,-L 1 ,Q 1 M -1 -Q 2 ,L * 2 ,-P 2 = M P 1 ,-L 1 ,0 M 0,In,Q 1 M -Q 2 ,L * 2 ,0 M 0,In,-P 2 -1 = M P 1 ,-L 1 ,0 M 0,In,Q 1 M 0,In,P 2 M -1 -Q 2 ,L * 2 ,0 = M P 1 ,-L 1 ,0 M 0,In,Q 1 +P 2 M -1 -Q 2 ,L * 2 ,0 = M P 1 ,-L 1 ,Q 1 +P 2 M -1 -Q 2 ,L * 2 ,0 (using Lemma 9.20) = M P 1 ,-L 1 ,Q 1 +P 2 M A ,B ,0 ,
proving the sought result.

Remark 9.24. We have used two different sets of generators of the metaplectic group. First the set

G 1 = M {m(B)} A,B,C
given by (1.2.56) which is somewhat natural, also allowing us to recover the operator e -iπn/4 F where the phase factor appears via Formula (1.2.60). The Identity appears clearly as M {0} 0,In,0 , but the inverse of M {m(B)}

A,B,C cannot always be expressed within G 1 . Also we have the set

G 2 = M {m(B)} A,B,C
given in Definition 9.1, which incorporates a phase prefactor e -iπn/4 , looking a priori rather arbitrary but of course necessary for the sequel (this prefactor is also suggested by (1.2.60)); here to express the identity, we need to write it as M {0} 0,In,0 M {n} 0,-In,0 , but the inverse of M {m(B)} A,B,C is easily obtained by Claim 9.12 within G 2 . Certainly the description given by G 2 is much better, in particular because the calculations leading to Lemma 9.11 and Proposition 9.13 are rather easy as well as the proof of Lemma 9.14; a statement analogous to Proposition 9.16 for G 1 is true (cf. Proposition 9.18), but its proof is quite indirect and relies heavily on the results for G 2 . 9.3. Mehler's formula. We provide here a couple of statements related to the socalled Mehler's formula, appearing as particular cases of L. Hörmander's study in [START_REF]Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] (see also the more recent K. Pravda-Starov' article [START_REF] Pravda-Starov | Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities[END_REF]). In the general framework, we consider a complex-valued quadratic form Q on the phase space R 2n such that Re Q ≤ 0: we want to quantize the Gaussian function (here X stands for (x, ξ)) a(X) = e QX,X , and to relate the operator with Weyl symbol a to the operator exp {Op w ( QX, X )} . Lemma 9. [START_REF] Husimi | Some formal properties of the density matrix[END_REF] 

= 1 (1 + z) n k≥0 1 -z 1 + z k P k;n ,
where P k;n is defined in Section 9.1.4 and the equality holds between L 2 (R n )-bounded operators.

We provide first a proof of a particular case of the results of [START_REF]Symplectic classification of quadratic forms, and general Mehler formulas[END_REF] Proof. By tensorisation, it is enough to prove that formula for n = 1, which we assume from now on. We define

L = ξ + ix, L = ξ -ix, M (t) = β(t)Op w (e -α(t)πL L),
where α, β are smooth functions of t to be chosen below. Assuming β(0) = 1, α(0) = 0, we find that M (0) = Id and

Ṁ + πOp w (|L| 2 )M = Op w βe -απ|L| 2 -β απ|L| 2 e -απ|L| 2 + π(|L| 2 ) βe -απ|L| 2 .
We have from (1.2.5), since

∂ x ∂ ξ |L| 2 = 0, |L| 2 e -απ|L| 2 = |L| 2 e -απ|L| 2 + 1 4iπ =0 |L| 2 , e -απ|L| 2 + 1 (4iπ) 2 1 2 ∂ 2 ξ (|L| 2 )∂ 2 x e -απ|L| 2 + ∂ 2 x (|L| 2 )∂ 2 ξ e -απ|L| 2 = |L| 2 e -απ|L| 2 + 1 (4iπ) 2 1 2 e -απ|L| 2 2 (-2απx) 2 -2απ + 2 (-2απξ) 2 -2απ = |L| 2 e -απ|L| 2 1 - 4α 2 π 2 16π 2 + απ 4π 2 e -απ|L| 2 , so that Ṁ + πOp w (|L| 2 )M = Op w βe -απ|L| 2 -β απ|L| 2 e -απ|L| 2 + πβ|L| 2 e -απ|L| 2 1 - 4α 2 π 2 16π 2 + απβ 4π e -απ|L| 2 = Op w e -απ|L| 2 |L| 2 -π αβ + πβ(1 - α 2 4 ) + β + αβ 4 .
We solve now

α = 1 - α 2 4 , α(0) = 0 ⇐⇒ α(t) = 2 tanh(t/2), and 
4 β + αβ = 0, β(0) = 1 ⇐⇒ β(t) = 1 cosh(t/2)
.

We obtain that Ṁ + πOp w (|L| 2 )M = 0, M (0) = Id, and this implies

β(t)Op w (e -α(t)πL L) = M (t) = exp -tπ(|L| 2 ) w ,
which proves (9.3.4).

In particular, for t = -2is, s ∈ R, s / ∈ π 2 (1 + 2Z), we have in n dimensions (9. Proof. Starting from (9.3.5), we get for τ ∈ R, in n dimensions, (cos(arctan τ )) n exp 2iπ arctan τ Op w (|x| 2 + |ξ| 2 ) = Op w e 2iπτ (|x| 2 +|ξ| 2 ) , so that using the spectral decomposition of the (n-dimensional) Harmonic Oscillator and (9.8.2), we get

(1 + τ 2 ) -n/2 k≥0 e 2i(arctan τ )(k+ n 2 ) P k;n = Op w e 2iπτ (|x| 2 +|ξ| 2 ) , which implies (1 + τ 2 ) -n/2 k≥0 (1 + iτ ) 2k+n (1 + τ 2 ) k+ n 2 P k;n = Op w e 2iπτ (|x| 2 +|ξ| 2 ) , entailing k≥0 (1 + iτ ) k (1 -iτ ) k+n P k;n = Op w e 2iπτ (|x| 2 +|ξ| 2 ) ,
proving the lemma by analytic continuation (we may refer the reader as well to [START_REF] Unterberger | Oscillateur harmonique et opérateurs pseudo-différentiels[END_REF] (pp. 204-205) and note that for any z ∈ C, Re z ≥ 0, we have | 1-z 1+z | ≤ 1 ). 9.4. Laguerre polynomials. 

(x) = 0≤l≤k (-1) l l! k l x l = e x 1 k! d dx k x k e -x = d dx -1 k x k k! ,
and we have

L 0 = 1, L 1 = -X + 1, L 2 = 1 2 (X 2 -4X + 2), L 3 = 1 6 (-X 3 + 9X 2 -18X + 6), L 4 = 1 24 (X 4 -16X 3 + 72X 2 -96X + 24), L 5 = 1 120 (-X 5 + 25X 4 -200X 3 + 600X 2 -600X + 120), L 6 = 1 720 X 6 -36X 5 + 450X 4 -2400X 3 + 5400X 2 -4320X + 720 , L 7 = -X 7 + 49X 6 -882X 5 + 7350X 4 -29400X 3 + 52920X 2 -35280X + 5040 5040 .
We get also easily from the above definition that (9.4.2)

L k+1 = L k -L k , since with T = d/dX -1 L k -L k = T L k = T k+1 ( X k k! ) = T k+1 ( d dX X k+1 (k + 1)! ) = d dX L k+1 .
Formula (6.8) and Theorem 12 in the R. Askey & G. Gasper's article [START_REF] Askey | Positive Jacobi polynomial sums[END_REF] provide the inequalities

(9.4.3) ∀k ∈ N, ∀x ≥ 0, 0≤l≤k (-1) l L l (x) ≥ 0.
This result follows as well from Formula (73) in the 1940 paper [START_REF] Feldheim | Développments en série de polynomes d'Hermite et de Laguerre à l'aide des transformations de Gauss et de Henkel[END_REF] by E. Feldheim.

Let us calculate the Fourier transform of the Laguerre polynomials: we have

L k (x) = d dx -1 k x k k! , so that L k (ξ) = (2iπξ -1) k -1 2iπ k δ (k) 0 k! = (-1) k k! (ξ - 1 2iπ ) k δ (k) 0 (ξ). As a result, defining for k ∈ N, t ∈ R, (9.4.4) M k (t) = (-1) k H(t)e -t L k (2t), H = 1 R + ,
we find, using the homogeneity of degree -k -

1 of δ (k) 0 , M k (τ ) = 1 2 (-1) k k! τ 2 - 1 2iπ k δ (k) 0 ( τ 2 ) * (-1) k 1 + 2iπτ = (-1) k ( d dσ ) k (σ -1 iπ ) k /k! 1 + 2iπ(τ -σ) |σ=0 M k (τ ) = l (-1) k k l (σ -1 iπ ) k-l (k -l)! (k -l)!(2iπ) k-l 1 + 2iπ(τ -σ) 1+k-l |σ=0 = l (-1) k k l (-2) k-l 1 + 2iπτ 1+k-l = (-1) k (1 + 2iπτ ) l k l (-2) k-l 1 + 2iπτ k-l = (-1) k (1 + 2iπτ ) 1 - 2 1 + 2iπτ k = (-1) k (1 + 2iπτ ) -1 + 2iπτ 1 + 2iπτ k = 1 (1 + 2iπτ ) 1 -2iπτ 1 + 2iπτ k so that (9.4.5) M k (τ ) = (1 -2iπτ ) k (1 + 2iπτ ) k+1 = (1 -2iπτ ) 2k+1
(1 + 4π 2 τ 2 ) k+1 . 9.4.2. Generalized Laguerre polynomials. Let α be a complex number and let k be a non-negative integer such that α + k / ∈ (-N * ). We define the generalized Laguerre polynomial L α k by (9.4.6)

L α k (x) = x -α e x d dx k e -x x k+α k! = x -α d dx -1 k x k+α k! .
We note that L α k is indeed a polynomial with degree k with the formula

L α k (x) = k 1 +k 2 =k 1 k! k k 1 (-1) k 2 Γ(k + α + 1) x k-k 1 Γ(k + α + 1 -k 1 ) = 0≤k 1 ≤k (-1) k 2 k 1 !(k -k 1 )! Γ(k + α + 1) x k-k 1 Γ(k + α + 1 -k 1 ) = 0≤l≤k k + α k -l (-1) l x l l! . (9.4.7)
N.B. We recall that the function 1/Γ is an entire function with simple zeroes at -N. As a result to make sense for the binomial coefficient

k + α k -l = Γ(k + α + 1) (k -l)!Γ(l + α + 1)
, we need to make sure that k + α + 1 / ∈ -N, i.e. α / ∈ -N * -k.

Lemma 9.29. Let α ∈ C\(-N * ) and let k be a non-negative integer. For α = 0, we have L α k = L k , where L k is the classical Laguerre polynomial defined in (9.4.1). Moreover we have for l ≤ k, (9.4.8)

d dX l L α k = (-1) l L α+l k-l .
Proof. Indeed, we have from (9.4.7)

d dX l L α k = (-1) l l≤m≤k k + α k -m (-1) m-l X m-l (m -l)! = (-1) l 0≤r≤k-l k -l + α + l k -r -l (-1) r X r r! = (-1) l L α+l k-l ,
proving the sought formula. 9.5. Singular integrals.

Proposition 9.30.

[1] The (Hardy) operator with distribution kernel

H(x)H(y) π(x + y)
is self-adjoint bounded on L 2 (R) with spectrum [0, 1] and thus norm 1.

[2] The (modified Hardy) operators with respective distribution kernels Defining the holomorphic function F by (9.6.4)

F (z) = z sinh z e 2iω(z-ν 2 tanh z) ,
we see that F has simple poles at iπZ * and essential singularities at iπ( 1 2 + Z). We already know that the function ρ σ belongs to the Schwartz space, but we want to prove a more precise exponential decay. We start with the calculation of (9.6.5)

R+i π 4 F (z)dz = R t + i π 4 sinh(t + i π 4 ) e 2iω(t+i π 4 -ν 2 tanh(t+i π 4 )) dt = e -πω/2 2 √ 2 R t + i π 4 (1 + i)e t -(1 -i)e -t e 2iωt e -2iων 2 e t (1+i)-e -t (1-i) e t (1+i)+e -t (1-i) dt = e -πω/2 √ 2 R t + i π 4 sinh t + i cosh t e 2iωt e -2iων 2 e t (1+i)-e -t (1-i) e t (1+i)+e -t (1-i) dt.
We have

Im e t (1 + i) -e -t (1 -i) e t (1 + i) + e -t (1 -i) = Im sinh t + i cosh t cosh t + i sinh t = 1 cosh 2 t + sinh 2 t , so that (9.6.6) R+i π 4 F (z)dz ≤ e -πω 2 √ 2 R t 2 + ( π 4 ) 2 sinh 2 t + cosh 2 t e 2ων 2 sinh 2 t+cosh 2 t dt = e -πω 2 √ 2e 2κ R t 2 + ( π 4 ) 2 sinh 2 t + cosh 2 t dt ≤ 6e -πω 2 e 2κ .
Claim 9.32. We have

lim R→+∞ [R,R+iπ/4] F (z)dz = lim R→+∞ [-R,-R+iπ/4] F (z)dz = 0.
Proof of the Claim. We note first that

[-R,-R+iπ/4] F (z)dz = - [R,R+iπ/4] F (z)dz,
so that it is enough to prove one equality. Indeed for R > 0, we have Proof. We have, with the notations (9.6.2), F given in (9.6.4) and γ

[R,R+iπ/4] F (z)dz = π/4 0 R + it sinh(R + it) e 2iω(R+it-ν 2 tanh(R+it)) idt, so that [R,R+iπ/4] F (z)dz ≤ π/4 0 2 √ R 2 + t 2 |e R+it ||1 -e -2R-2it | e -2ωt e 2κ Im(tanh(R+it)) dt ≤ e -R 4R 2 + π 2 /4 1 -e -2R π/4 0 e 2κ| 1-e -2R-2it 1+e -2R-2it | dt ≤ e -R 4R 2 + π 2 /4 1 -e -2R
R = [-R, -R + i π 4 ] ∪ [-R + i π 4 , R + i π 4 ] ∪ [R + i π 4 , R], ρ σ (τ ) = lim R→+∞ [-R,R] F (s)ds = lim R→+∞ γ R F (z)dz = Claim (9.32) R+ iπ 4 
F (z)dz, so that (9.6.6) implies the lemma. 9.6.3. On the function ψ ν . Let ν ∈ (0, 1) be given. We study first the function φ ν defined on [0, π/2) by (9.6.8)

φ ν (s) = s -ν 2 tan s, so that φ ν (s) = 1 -ν 2 (1 + tan 2 s) = cos 2 s -ν 2 cos 2 s ,
so that (9.6.9)

s 0 s ν t ν π 2 φ ν (s) 1 -ν 2 + 0 - - φ ν (s) 0 φ ν (s ν ) 0 -∞
We have (9.6.10)

s ν = arccos ν = π 2 -ν + O(ν 3 ), φ ν (s ν ) = arccos ν -ν √ 1 -ν 2 = π 2 -2ν + O(ν 3 ), for ν → 0.
The function φ ν is concave on (0, π/2) since we have there

φ ν (s) = -ν 2 (-2)(cos s) -3 (-sin s) = -ν 2 2(cos s) -3 sin s ≤ 0.
We have defined in (5. Let us start with an elementary lemma.

Lemma 9.34. Let λ > 0 be given. Defining (9.6.12) J(λ) = e -λ λ 0 e σ -1 σ dσ, we have

J(λ) = λ -1 + O(λ -2 ), λ → +∞, (9.6.13) ∀λ > 0, J(λ) ≥ λ -1 -λ -2 . (9.6.14)
Proof. Indeed we have for λ > 0, (9.6.15) 

λJ(λ) = λe -λ k≥1 λ 0 σ k-1 k! dσ = λe -λ k≥1 λ k k!k = e -λ k≥1 λ k+1 (k + 1)! k + 1 k = e -λ k≥1 λ k+1 (k + 1)! + e -λ k≥1 λ k+1 (k + 1)! 1 k = e -λ (e λ -1 -λ) + λ -1 e -λ k≥1 λ k+2 (k + 1)! 1 k R(λ) , with 0 ≤ R(λ) ≤ e -λ k≥1 λ k+2 (k + 2)! k + 2 k ≤ e -λ (e λ -1 -λ - λ 2 2 ) × 3 = O(1), (9.6.16) so that λJ(λ) = e -λ (e λ -1 -λ) + λ -1 O(1) = 1 + λ -1 O(1) -(1 + λ)e -λ = 1 + λ -1 O(1),
proving (9.6.13). Note also that (9.6.15), (9.6.16) imply, since R(λ) ≥ 0, λJ(λ) ≥ 1 -e -λ (1 + λ), so that J(λ) ≥ λ -1 -e -λ (1 + λ -1 ), and thus 35 

(ω) ≥ 1 2π 2 ω - 1 2π 3 ω 2 .
It is our goal now to prove a minoration of the same flavour for the function (9.6.11) defined above. 35 We leave for the reader to check that for λ > 0, e -λ (1 + λ -1 ) ≤ λ -2 , which boils dow to study q(λ) = e -λ (λ 2 + λ) reaching its maximum for λ ∈ R + , at λ 0 = (1 + √ 5)/2 with q(λ 0 ) ≈ 0.84 < 1.

Assuming ν ∈ (0, 1/2), we have π 3 < s ν < t ν < π 2 (s ν , t ν are defined in (9.6.9), ψ ν in (9.6.11)), Proof of the Claim. Indeed, we have

2πe πω ψ ν (ω) = tν 0 e 2ωφν (s
φ ν (s)-φ ν (s) sin s = s -ν 2 tan s -sin s + ν 2 (1 + tan 2 s) sin s = ν 2 sin s + sin s tan 2 s -tan s + s -sin s = ν 2 sin s cos 2 s - sin s cos s + s -sin s = ν 2 sin s cos 2 s 1 -cos s + s -sin s ≥ 0, for s ∈ (0, π/2). (9.6.20)
The last part of the claim follows from the first part and the fact that sin s and φ ν (s) are both positive on (0, s ν ).

Going back now to (9.6.19), we obtain that for ν ∈ (0, 1/2) and ω > 0, we have (9.6.21)

2πe πω ψ ν (ω) ≥ sν 0 e 2ωφν (s) -1 φ ν (s) φ ν (s)ds - ln 3 2 = 2ωφν (sν ) 0 e σ -1 σ dσ - ln 3 2 = e 2ωφν (sν ) J(2ωφ ν (s ν )) - ln 3 2 ,
so that, using (9.6.14), we get

ψ ν (ω) ≥ 1 2π e -πω e 2ωφν (sν ) 1 2ωφ ν (s ν ) - 1 (2ωφ ν (s ν )) 2 - ln 3 2 1 2π e -πω ,
and since φ ν (s ν ) = π 2ν , with ν ∈ (0, π/2), we find also that ν is a concave function 36 of ν ∈ (0, 1) and 36 We have from (9.6.10),

πν 2 ≤ ν ≤ 2ν so that 2φ ν (s ν ) = π -2 ν ∈ [π -4ν, π -πν],
ν = π 2 -arccos ν + ν 1 -ν 2 , d ν dν = 2 1 -ν 2 , d 2 ν dν 2 = -2ν/ 1 -ν 2 < 0, so that the concavity gives π 2 ν ≤ ν ≤ 2ν.
so that for ν ∈ (0, 1/2], we have37 (assuming ω > 0),

ψ ν (ω) ≥ 1 2π e -πω e ω(π-2 ν ) 1 ω(π -2 ν ) - 1 (ω(π -2 ν )) 2 - ln 3 2 1 2π e -πω , ≥ 1 2π e -4νω 1 ωπ - 1 ω 2 (π -2) 2 - ln 3 2 1 2π e -πω ,
We recall the notations (9.6.2), so that ν = κ/ω i.e. νω = √ κω and we get (9.6.22) We have used in Section 5.2 the equivalent expression a 11 (τ, σ) = 1 2 + Tσ (τ ), where T σ is defined in (5.2.12) and we were able to prove the estimate in Lemma 5.18. It turns out that (9.6.7) is not optimal, and it is interesting to give an "explicit" expression for a 11 as displayed in [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF].

∀ω > 0, ψ ν (ω) ≥ 1 2π e -4 √ κω 1 πω - 1 ω 2 - ln 3 
Using the notations (9.6.2), we can write (9.6.23) as (9.6.24)

a 11 (τ, σ) = 1 2 + 1 4π R Im exp i(ωt -2κ tanh(t/2)) sinh(t/2) dt = 1 2 + Im lim R→+∞ 1 2π [-R,R]
exp 2i(ωs -κ tanh s) sinh s ds.

Defining the holomorphic function G by (9.6.25) G(z) = exp 2i(ωz -κ tanh z) 2π sinh z , we see that G has simple poles at iπZ and essential singularities at iπ( 1 2 + Z). For R ∈ R + \ π 2 Z, ∈ (0, π/2), we have (9.6.26)

[-R,-]∪[ ,R] G(z)dz + γ - γ -(θ)= e iθ -π≤t≤0 G(z)dz + γ + R γ + R (θ)=Re iθ 0≤t≤π G(z)dz = 2iπ k∈N kπ<2R
Res(G, ikπ/2). Claim 9.37. We have lim →0 γ -G(z)dz = i 2 . Proof. Indeed we have Taking the logarithm of the modulus of both sides, we would get

lim l→+∞ ( π 2 + m l π) cos θ l = 0,
i.e. cos θ l = l π 2 +m l π , lim l→+∞ l = 0. Going back to (9.6.30), we find then lim l→+∞ e -i( π 2 +m l π) sin θ l = 1, i.e. since sin θ l ≥ 0, 

lim l→+∞ exp -i ( π 2 + m l π) 1 - 2 l ( π 2 + m l π) 2 1/2 = 1, implying lim l→+∞ e -i( π 2 +m l π) = 1, which is not possible since e -i( π 2 +m l π) = -i(-
Res (G, ikπ/2) = 1 1 + e -2πω + e -πω i(1 + e -2πω ) Res e 2iωz-2iκ coth z cosh z , 0 . Proof. We have Res(G, ikπ/2) = Res(G k , 0) and with k = 2l, G k (z) = exp 2i(ω(z + ikπ 2 ) -κ tanh(z + ikπ 2 )) 2π sinh(z + ikπ 2 )
= e -2lπω e 2iωz e -2iκ tanh z 2π(-1) l sinh z , so that (9.6.35) Res(G 2l , 0) = (-1) l e -2lπω 2π , whereas for k = 2l + 1, we have

G 2l+1 (z) = exp 2i(ω(z + ilπ + iπ 2 ) -κ tanh(z + ilπ + iπ 2 )) 2π sinh(z + ilπ + iπ 2 ) = e -(2l+1
)πω e 2iωz e -2iκ coth z 2π(-1) l i cosh z , so that (9.6.36)

Res(G 2l+1 , 0) = (-1) l e -(2l+1)πω 2πi Res e 2iωz-2iκ coth z cosh z , 0 , yielding 2π k∈N Res(G, ikπ/2) = l∈N (-1) l e -2lπω + l∈N (-1) l e -(2l+1)πω i Res e 2iωz-2iκ coth z cosh z , 0 , = 1 1 + e -2πω + e -πω i(1 + e -2πω )
Res e 2iωz-2iκ coth z cosh z , 0 , concluding the proof of the lemma.

Proposition 9.41. Using the notations (9.6.2), with a 11 defined in (9.6.23) (see also (9.6.24)), we have for τ > 0, σ ≥ 0, (9.6.37) a 11 (τ, σ) = 1 1 + e -2πω + e -πω 1 + e -2πω Im Res e 2i(ωz-κ coth z) cosh z , 0 .

Proof. Taking the imaginary part of both sides in (9.6.26), and letting R → +∞, → 0 + , we get, using (9.6.34), (9.6.24), Claim 9.37,

a 11 - 1 2 + Im i 2 = Im i 1 1 + e -2πω + e -πω i(1 + e -2πω )
Res e 2iωz-2iκ coth z cosh z , 0 , which is (9.6.37).

Remark 9.42. In particular, when σ = 0, we find for τ > 0 (9.6. With G given by (9.6.25), we note that Im Res e 2iωz-2iκ coth z cosh z , 0 , recovering (9.6.37) from (5.2.53).

N.B. We note that

Res e 2iωz-2iκ coth z cosh z , 0 = 1 2 Res e i(ωz-2κ coth(z/2)) cosh(z/2) , 0 , (9.6.44) so that (9.6.43) corroborates (A14) in [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF]; however, we were not able to understand formulas (A10), (A11) and (20) in [START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF]. 9.7. Airy function. 9.7.1. Standard results on the Airy function. We collect in this section a couple of classical results on the Airy function (see e.g. Definition 7.6.8 in Section 7.6 of [START_REF]The analysis of linear partial differential operators. I[END_REF] or the references [START_REF] Vallée | Airy functions and applications to physics[END_REF], [START_REF] Smirnov | Tables of Airy functions and special confluent hypergeometric functions for asymptotic solutions of differential equations of the second order[END_REF], [START_REF] Lebedev | Special functions and their applications[END_REF]). For all the statements of this section whose proofs are not included, we refer the reader to Chapter 9 of [START_REF]Fonctions classiques[END_REF]. 1 2π e -hξ 2 e i( ξ 3 3 -ξh 2 ) e ixξ dξ.

We note that the function R ξ → e We have also, for any x ∈ C, Ai(x) + j Ai(jx) + j 2 Ai(j 2 x) = 0.

In particular for r ≥ 0, we have The largest zero of Ai is η 0 ≈ -2.338107410 and Ai(η) is positive for η > η 0 . We have also for all k ≥ 0, Ai(η 2k+1 ) = 0, Ai (η 2k+1 ) < 0, Ai(η 2k ) = 0, Ai (η 2k ) > 0, (9.7.12) Ai(η) < 0 for η ∈ (η 2k+1 , η 2k ), Ai(η) > 0 for η ∈ (η 2k+2 , η 2k+1 ), (9.7.13) Ai (η) > 0 for η ∈ (η 2k+1 , η 2k ), Ai (η) < 0 for η ∈ (η 2k+2 , η 2k+1 ). We integrate by parts in the first integral with (-1/2)s -3/2 cos(π/4 + s)ds.

We have to deal with two integrals of type +∞ λ 3/2 s -3/2 d ids e is ds = i(λ 3/2 ) (-3/2) e iλ 3/2 -1 i +∞ λ 3/2 (-3/2)s -5/2 e is ds = O(λ -9/4 ).

Eventually we find G(-λ) = λ -3/4 π -1/2 cos( π 4 + 2 3 λ 3/2 ) + O(λ -9/4 ). With (η k ) k≥0 standing for the decreasing sequence of the zeroes of the Airy function (cf. Lemma 9.52), we have the following table of variation for the function G. Proof. In the first place, we know that G(η 0 ) < 0 and G strictly increases on [η 0 , +∞) so that ξ 0 ≈ -1.38418 is defined as the unique zero of G on (η 0 , 0) since G(0) = 2/3. We may note that we found in particular that 39 It is not hard to obtain an asymptotic version of this, namely the same result for λ large enough. However, asymptotic methods provide asymptotic results and to get a result at a finite distance, we had to use the numerical results of Lemma 9.55, grounded on a numerical estimate of the constants appearing in Theorem 9.50.

We know that Ai (η 2k ) > 0, which implies, thanks 40 proving indeed that G(η 0 ) is the absolute minimum of the function G on the real line, since the desired estimate is proven for η > η 0 and for η < η 0 , either G(η) ≥ 0, or -0.0913016 ≤ G(η) < 0 if η ≤ -12. As said above, the values less than 12 are treated directly by a numerical calculation. The proof of the lemma is complete. 9.8. Miscellaneous formulas. 9.8.1. Some elementary formulas. We define for τ ∈ R, 

cos θ > 0 =⇒ cos θ = 1 √ 1 + τ 2 =⇒ -sin θ = - 1 2 (1 + τ 2 ) -3/2 2τ (1 + τ 2 ),
so that e iθ = 1 √ 1+τ 2 (1 + iτ ). 40 Here this is proven if k is large enough from (9.7.8), and we leave to the reader the proof of a numerical estimate analogous to Lemma 9.55 for the derivative of the Airy function. A direct estimate is possible, using (9.7.5) and the identity (to be differentiated) for λ > 0, Ai(-λ) = λ (-1) l τ 2l (1 + τ 2 ) k+1 dτ.

We see also that 1 + 2k + 2 -2l = 2k + 3 -2l ≥ 3 so that we can take the derivative of F k and get τ j cos(aτ ) (1 + τ 2 ) k+1 dτ makes sense for j ≤ 2k + 1 (and vanishes for j odd). 9.8.3. A proof of the weak limit. We have for u ∈ S (R n ), according to (1.2. As a result, we find that This is indeed the result of Theorem 1 in [START_REF] Lieb | Localization of multidimensional Wigner distributions[END_REF]. x k k! . 

E lo B 2n (R) = sup u L 2 (R n ) =1 |x| 2 +|ξ| 2 ≤R 2 W(u, u)(x, ξ)dxdξ,

Index

  (x, z) = W(u, u)(x, ξ)e 2iπz•ξ dξ, so that, with z = 2x = y, we get the Reconstruction Formula, (1.1.11)u(y)ū(0) = W(u, u)( y 2 , ξ)e 2iπy•ξ dξ, as well as (1.1.12) |u(x)| 2 = W(u, u)(x, ξ)dξ, |û(ξ)| 2 = W(u, u)(x, ξ)dx,Note also that with this normalization, it is natural to introduce the operators D α x defined for α ∈ N N by (1.1.5) D α x u = D α1 x1 . . . D αn x N u, D xj u = ∂u 2iπ∂x j

  ) and b a polynomial in C[x, ξ], we have the composition formula, Op w (a)Op w (b) = Op w (a b), (1.2.4)

( 1 . 2 . 25 )

 1225 ∀X, Y ∈ R 2n , [SX, SY ] = [X, Y ], i.e. S * σS = σ,where S * is the transpose and (1.2.26) σ = 0 I n -I n 0 .

  where P, Q, R, S, are n × n matrices.The equation(1.2.33) Ξ * σΞ = σ is satisfied with σ = 0 I n -I n 0 , which means (1.2.34) P * R = (P * R) * , Q * S = (Q * S) * , P * S -R * Q = I n .

( 1 .

 1 2.36) P Q * = (P Q * ) * , RS * = (RS * ) * , P S * -QR * = I n .

1 Q, where B 1 Q and B * 1 - 1 S

 1111 p 0 p,n-p 0 n-p,p I n-p B are n × n blocks.

  .63) M 0,I,C , where C is a n × n symmetric matrix, cf. (1.2.52). (1.2.64) Claim 1.18. If M belongs to M p(n), then -M belongs to M p(n).

31 +

 31 Op w (a) = Op w (a) -Op w (a * Γ χ ) O(h) as an operator, cf. Theorem 1.Op w (a * Γ χ ) ≥0 as an operator , and we obtain a version of the so-called Sharp Gårding Inequality, (1.2.131) Op w (a) + Ch ≥ 0 (as an operator).

1 = f a 2 L 2 (t 2

 1222 a , f a )(x, ξ)dxdξ = a π +∞ x=0 e -ax sin (4πxξ) ξ dξdx = dt = π, we verify (see Lemma 1.29 and (1.1.6)),

  2l the zeroes of L 2l (2a), F 2l vanishes simply at b 0 = 0 and at b j ∈ (a j , a j+1 ) for 1 ≤ j ≤ 2l -1, also at b 2l > a 2l : 2l + 1 zeroes with a positive (resp. negative) derivative at b 0 , b 2 , . . . , b 2l (resp. at b 1 , b 3 , . . . , b 2l-1 ).

F

  2l+1 vanishes simply at b 0 = 0 and at b j ∈ (a j , a j+1 ) for 1 ≤ j ≤ 2l, also at b 2l+1 > a 2l+1 : 2l + 2 zeroes with a positive (resp. negative) derivative at b 1 , b 3 , . . . , b 2l+1 (resp. at b 0 , b 2 , . . . , b 2l ).

5 F 6 Figure 2 . 1 F 2 F 3 F 23 F 24 F 25 Figure 3 .F k 3 . 2 .

 562123232425332 Figure 2. Functions F 5 , F 6 .

  When n = 2 and min(α 1 , α 2 ) = 0. Proof. (1) When n = 1, we have proven above (in Proposition 3.3) that for α ∈ N, a > 0, (3.4.5) K α (a) = e -a P α (a) ≥ e -a , which is indeed (3.4.4) in that case. With the notations of Theorem 3.5 (and in particular where D a is defined in (3.1.22)) this implies (3.4.6) Op w (1 Da ) ≤ 1 -e -a ,

Conjecture 3 .

 3 28 (A weak form of Conjecture 3.25). With n, α, a, K α as in Conjecture 3.25, we conjecture that (3.4.11) K α (a) ≥ 0. Note that Inequality (3.4.11) is equivalent to (3.4.12) Op w (1 Da 1 ,...,an ) ≤ 1.

Figure 4 .

 4 Figure 4. The epigraph of a parabola is an increasing union of ellipses.

Theorem 4 . 9 .

 49 Let H(ξ -x 2 ) = 1{(x, ξ) ∈ R 2 , ξ ≥ x 2 }be the indicatrix of the epigraph of the parabola with equation ξ = x 2 . Then the operator with Weyl symbol H(ξ -x 2 ) is unitary equivalent to the Fourier multiplier G(2 4/3 π 2/3 τ ) where the Airy function).

Figure 5 . 4 . 4 . 1 .

 5441 Figure 5. The function G. More details on G are given in our Appendix 9.7.

Theorem 4 . 10 (

 410 Symplectic reduction of quadratic forms, Theorem 21.5.3 in[START_REF]The analysis of linear partial differential operators[END_REF]).

and we get that

  

P

  k;n-1 ⊗ ω k,n-1 (D xn ).

Lemma 5 . 4 (Lemma 5 . 5 (

 5455 Diagonal terms). Let A 0 be the operator with Weyl symbol H(x)H(ξ). With H standing as well for the operator of multiplication by H(x), we haveHA 0 H = HH(D)H = H (Id + sign D) Off-diagonal terms). Let B 0 = 2 Re ȞA 0 H = ȞA 0 H + HA 0 Ȟ.Then we have for all u ∈ L 2 (R),(5.1.9) 

5. 1 . 2 .Remark 5 . 7 .

 1257 An isometric isomorphism. The mapping Ψ defined by(5.1.15) 

  τ )dτ = 0 and lim τ →+∞ (sign * ρ 0 )(τ ) = 1 2 .

Lemma 5 . 11 .= a 11 a 12 a 12 0 .Lemma 5 . 12 .

 5110512 Let N be a 2 × 2 Hermitian matrix N Then the eigenvalues λ -≤ λ + of N are such that (5.1.23) λ -< 0 < 1 < λ + , if and only if (5.1.24) a 12 = 0 and |a 12 | 2 > 1 -a 11 . Proof. The characteristic polynomial of N is p(λ) = λ 2 -a 11 λ -|a 12 | 2 and since a 11 is real-valued, has two real roots λ -≤ λ + . If (5.1.24) holds true, the roots are distinct and p(0) = -|a 12 | 2 < 0, p(1) = 1 -a 11 -|a 12 | 2 < 0, implying (5.1.23). Conversely, if (5.1.23) is satisfied, then p(0), p(1) are both negative, implying (5.1.24), completing the proof of the lemma. Let us define for ω ∈ R, (5.1.25)

Proposition 5 . 13 .

 513 The matrix M 0 (τ ) defined in (5.1.21) is equal to

  σ, (x, y)φ(y) ψ(x)dydx = χ 0 x + y 2 e 2iπσ x-y x+y sin( 2πσ(x-y)

( 5 . 2 . 5 )+ y 2 sin 6 )+ y 2 sin 2 . 7 )

 52526227 |m σ (x, y)H(x)H(y)| = χ 0 x |m σ (x, y) Ȟ(x)H(y)| = χ 0 x |m σ (x, y) Ȟ(y)H(x)| = χ 0 x + y 2 sin( 2πσ(x-y) x+y ) π(x -y) Ȟ(y)H(x) ≤ Ȟ(y)H(x)π(x -y) .

( 5 .√ σ 2 8 π 6 τ 2 >

 52 2.60) Re a 21 (τ, σ) ≥ e -8π √ τ √ σ 16π 3 τ , and thus a 21 = 0 and (5.2.61) |a 21 (σ, τ )| 2 ≥ e -16π √ τ |1 -a 11 (τ, σ)|, where the last inequality above holds true (thanks to (5.2.21)) whenever 2e -π 2 τ e 4πσ < e -16π √ τ √ σ

5. 4 .

 4 Numerics. Definition 5.27. Let σ ≥ 0 be given. With the 2 × 2 Hermitian matrix M σ given by (5.2.31), we define for τ ∈ R, λ + (τ, σ) = 1 2 a 11 (τ, σ)+ a 2 11 (τ, σ) + 4|a 12 (τ, σ)| 2 , (5.4.1) λ -(τ, σ) = 1 2 a 11 (τ, σ)-a 2 11 (τ, σ) + 4|a 12 (τ, σ)| 2 . (5.4.2) Remark 5.28. According to (5.2.53), we have λ + (τ, σ) = 1 2 a 11 (τ, σ)+ a 2 11 (τ, σ) 1 + e -4π 2 τ + 4(Re a 12 (τ, σ)) 2 , (5.4.3) λ -(τ, σ) = 1 2 a 11 (τ, σ) -a 2 11 (τ, σ) 1 + e -4π 2 τ + 4(Re a 12 (τ, σ)) 2 , (5.4.4) so that the knowledge of a 11 and Re a 12 suffices for expressing λ ± . An immediate consequence of Theorem 5.20 is Theorem 5.29. Let σ ≥ 0 be given and let A σ be the self-adjoint operator bounded in L 2 (R) defined in Theorem 5.20. With the notations of Definition 5.27, we have M σ := sup{spectrum(A σ )} = sup τ ∈R λ + (τ, σ), (5.4.5)

Figure 6 .Figure 7 .

 67 Figure 6. The function τ → λ + (τ, 0) near its maximum, well above 1.

Proposition 5 . 31 . 14 ) 2 π/ 2 0ecos 2 (

 53114222 Let σ ≥ 0 be given. Then for any τ ∈ R, using the notations, ω = 2πτ , κ = 2πσ, we have, for any ρ ∈ (0, 1),(5.4.13) a 11 (τ, σ) Re a 21 (τ, σ) = e -πω 2π (sω-κ tan s) sinh(sω -κ tan s) sω -κ tanh s) sinh s ds ,Im a 12 (τ, σ) = e -πω 2 a 11 (τ, σ).(5.4.15) 

2 . 31 )

 231 (5.4.16) a 11 (τ, σ)

Figure 8 .

 8 Figure 8. Functions λ + (τ, κ/2π) with κ = 1, 2, 3: their maxima are strictly greater than 1.

  |W(v 0 , v 0 )(x, ξ)|dxdξ = +∞. Proposition 6.4. Let a, b, ω be real numbers with a < b and let us define u a,b,ω by (6.1.4). Then we have (6.1.7) |W(u a,b,ω , u a,b,ω )(x, ξ)| dxdξ = +∞. N.B. Since u a,b,ω is a normalized L 2 (R) function, we also have from (1.1.8), (1.1.12) that the real-valued W (u a,b,ω , u a,b,ω ) does satisfy

8. 1 .

 1 Anisotropic Ellipsoids & Paraboloids. Conjecture 8.1. Let E be an ellipsoid in R 2n equipped with its canonical symplectic structure. Then the operator Op w (1 E ) is bounded on L 2 (R n ) (which is obvious from (1.2.8)) and we have (8.1.1) Op w (1 E ) ≤ Id .

Question 8 . 3 .

 83 Let p ∈ [1, +∞], p = 2 and let B 2n

8. 4 .

 4 On convex bodies. Conjecture 8.5. For N ≥ 2, we define (8.4.1) µ + N = sup P convex bounded polygon with N sides Spectrum (Op w (1 P )) .

( 9 . 4 e -iπν - 2 = e iπ 4

 9424 1.10) e -iπn/4 F e iπ Bx,x = i -index B | det B| -1/2 e -iπ B -1 ξ,ξ , since ν + + ν -= n (as B is non-singular), e iπn (ν + +ν --2ν -) = e iπ 4 sign(B) .

Proposition 9 . 2 .

 92 Let ρ > 0 and let f be an holomorphic function on a neighborhood of {z ∈ C, | Im z| ≤ ρ} such that ∀y ∈ [-ρ, ρ], |f (x + iy)|dx < +∞, (9.1.14) lim R→+∞ |y|≤ρ |f (±R + iy)|dy = 0. (9.1.15)

Proof.

  If f is holomorphic near {z ∈ C, | Im z| ≤ ρ}, satisfies (9.1.14) and (9.1.15), then Cauchy's formula shows that for |y| ≤ ρ, R e -2iπ(x+iy)ξf (x + iy)dx = e 2πyξ lim R→+∞ R -R e -2iπxξ f (x + iy)dx = lim R→+∞ [-R+iy,R+iy] e -2iπzξ f (z)dz = lim R→+∞ [-R+iy,-R]∪[-R,R]∪[R,R+iy] e -2iπzξ f (z)dz = f (ξ) + lim R→+∞ y 0 e -2iπ(R+it)ξ f (R + it)idt -y 0 e -2iπ(-R+it)ξ f (-R + it)idt .We have for |y| ≤ ρ,y 0 e -2iπ(±R+it)ξ f (±R + it)idt ≤ |t|≤ρ |f (±R + it)|dt e 2πρ|ξ| ,which goes to 0 when R goes to +∞, thanks to (9.1.15), so that for all y ∈ [-ρ, ρ], we have R e -2iπ(x+iy)ξ f (x + iy)dx = f (ξ), which implies for y = -ρ sign ξ (taken as 0, if ξ = 0)| f (ξ)| ≤ R |f (x ∓ iρ)|dx e -2πρ|ξ| ≤ from (9.1.14) Ce -2πρ|ξ| ,proving the first part of the proposition. Let us consider now a function f inL ∞ (R) such that f (ξ) is O(e -2πr|ξ|) for some r > 0, and let ρ ∈ (0, r). We have f (x) = e 2iπxξ f (ξ)dξ and for |y| ≤ ρ, we haveR e 2π|y||ξ| | f (ξ)|dξ < +∞, so that f is holomorphic on {z ∈ C, | Im z| < r} with f (x + iy) = R e 2iπ(x+iy)ξ f (ξ)dξ,concluding the proof. 9.1.2. Weyl quantization. Let a ∈ S (R 2n ). We define the operator Op w (a), continuous from S (R n ) into S (R n ), given by the formula (9.1.17)(Op w (a)u)(x) = e 2iπ(x-y)•ξ a( x + y 2 , ξ)u(y)dydξ, to be understood weakly as (9.1.18) Op w

Lemma 9 . 3 .

 93 Let a be a tempered distribution on R 2n and let b be a polynomial of degree d on R 2n . Then we have a b = 0≤k≤d ω k (a, b), with (9.1.20)

  ξ),(9.1.21)ω k (b, a) = (-1) k ω k (a, b). (9.1.22)The Weyl symbol of the commutator[Op w (a), Op w (b)] is (9.1.23) c(a, b) = 2 0≤k≤d k odd ω k (a, b).If the degree of b is smaller than 2, we have(9.1.24) c(a, b) = 2ω 1 (a, b) = 1 2πi {a, b} ,and if a is a function of b, the commutator [Op w (a), Op w (b)] = 0.

Remark 9 . 5 .

 95 We can note that Formula (1.2.100) is non-local in the sense that for a, b ∈ S (R 2n ) with disjoint supports, although all ω k (a, b) (given by (9.1.21)) are identically 0, the function a b (which belongs to S (R 2n )) is different from 0; let us give an example. Let χ 0 ∈ C ∞ c (R; [0, 1]) with support [-1+ 0 , 1-0 ] with 0 ∈ (0, 1) and let us consider in R 2 , a(x, ξ) = χ 0 (x)e -πξ 2 , b(x, ξ) = χ 0 (x -2)e -πξ 2 , so that a, b both belong to S (R 2 ) and

Lemma 9 . 7 .

 97 Let f be a function in L 1 loc (R) such that |τ |≥1 |f (τ )| |τ | dτ < +∞ and ∃a ∈ C so that |τ |≤1 |f (τ ) -a| |τ | dτ < +∞. dτ = a. N.B. In particular if f is an Hölderian function such that f (τ )/τ ∈ L 1 ({|τ | ≥ 1})we get that the left-hand-side of (9.1.40) equals f (0).

3 . 5 )Lemma 9 . 28 .

 35928 (cos s) n exp 2iπsOp w (|x| 2 + |ξ| 2 ) = Op w e 2iπ tan s(|x| 2 +|ξ| 2 ) . For any z ∈ C, Re z ≥ 0, we have in n dimensions (9.3.6) Op w exp -2zπ(|ξ| 2 + |x| 2 n , where P k;n is defined in Section 9.1.4 and the equality holds between L 2 (R n )-bounded operators.

9. 4 . 1 .

 41 Classical Laguerre polynomials. The Laguerre polynomials {L k } k∈N are defined by (9.4.1) L k

Lemma 9 . 33 .

 933 We have for τ > 0, σ ≥ 0, ρ σ given in (5.2.14), (9.6.7)|ρ σ (τ )| ≤ 6e -π 2 τ e 4πσ .

4 +m π 2 G+ m π 2 ,R π Re π 0 e2R π π/ 2 0

 42202 ω e iθ -κ tanh( e iθ )) 2π sinh( e iθ ) i e iθ dθ = i 2π 0 -π e 2iω e iθ e iθ sinh( e iθ ) exp (-2iκ tanh( e iθ ))dθ, and since the function z → ze 2iωz sinh z e -2iκ tanh z is holomorphic near 0 with value 1 at 0, we get the result of the claim. Lemma 9.38. We have lim N m→+∞ Im γ + π (z)dz = 0. Proof. Indeed we have with R = π 4 Im π 0 exp 2i(ωRe iθ -κ tanh(Re iθ )) 2π sinh(Re iθ ) iRe iθ dθ = 2iωR cos θ e -2Rω sin θ e iθ 1 -e -2Re iθ e -Re iθ exp (-2iκ tanh(Re iθ ))dθ = Re e 2iωR cos θ e -2Rω sin θ e iθ 1 -e -2Re iθ e -Re iθ exp (-2iκ tanh(Re iθ )) dθ, cos θ e -2Rω sin θ Re e 2iωR cos θ e iθ 1 -e -2Re iθ e -iR sin θ exp (-2iκ tanh(Re iθ )) dθ. We have also tanh(Re iθ ) = 1 -e -2Re iθ 1 + e -2Re iθ . (9.6.28) Claim 9.39. Defining for m ∈ N, θ ∈ [0, π], g m (θ) = 1 -e -( π 2 +mπ)e iθ , we find that (9.6.29) inf θ∈[0,π] m∈N |g m (θ)| = β 0 > 0, inf θ∈[0,π] m∈N |2 -g m (θ)| = β 1 > 0.Proof of the claim. If it were not the case, we could find sequences θ l ∈ [0, π], m l ∈ N such that (9.6.30) lim l→+∞ e -( π 2 +m l π)e iθ l = 1.

( 9 .Claim 9 . 44 . 2 = e - 2 2 =Claim 9 . 45 .+ π 4 +m π 2 G 0 - 0 = e πω 1 2 e 43 )

 9944222945200243 6.40) G(z) = ie πω 2 G(z + iπ 2 ) = exp 2i(ωz -κ coth z) 4π cosh z , an holomorphic function with simple poles at iπ( 1 2 + Z) and essential singularities at iπZ. Following now for G the track of G in Claim 9.37, Lemmas 9.38, 9.40 and Proposition 9.41, we get (9.6.41) Im a 12 (τ, σ) We have lim →0 γ + G(z)dz = 0.Proof. Indeed, we have -2iκ coth e iθ = -2iκ 1+e -2 e iθ 1-e -2 e iθ and for θ ∈ (0, π),Im 1 + e -2 e iθ 1 -e -2 e iθ = Im (1 + e -2 e iθ )(1 -e -2 e -iθ ) |1 -e -2 e iθ | 2 = Im e -2 e iθ -e -2 e -iθ |1 -e -2 e iθ | cos θ Im e -2 i sin θ -e 2 i sin θ |1 -e -2 e iθ | 2 = e -2 cos θ Im -2i sin(2 sin θ) |1 -e -2 e iθ | -2e -2 cos θ sin(2 sin θ) |1 -e -2 e iθ | 2 ≤ 0, if ≤ π/4, so that |e -2iκ coth e iθ | ≤ 1, implying 4π γ + G(z)dz ≤ π 0 |e iω e iθ | | cosh e iθ | |ie iθ |dθ = π 0 e -ω sin θ | cosh e iθ | dθ,which goes to zero when → 0 + , concluding the proof of Claim 9.44. We have lim N m→+∞ γ (z)dz = 0.Proof. Indeed, we have, using Claim 9.39,| coth(R m e iθ )| = 1 + e -2Rme iθ 1 -e -2Rme iθ ≤ 2Rme iθ ≤ 2 β 0 , for θ ∈ [ π 2 , π], so that | G(R m e iθ )iR m e iθ | ≤ R m e 4κ/β 0 e -2ωRm sin θ    2e -Rme iθ 1+e -2Rme iθ ≤ 2e -Rm cos θ β 1 for θ ∈ [0, π 2 ], 2e Rme iθ 1+e 2Rme iθ ≤ 2e Rm cos θ β 1 for θ ∈ [ π 2 , π],≤ 2R m β 1 e 4κ/β 0 e -2ωRm sin θ-Rm| cos θ| , which goes to 0 when m goes to +∞, proving the claim.-2πω + e -πω i(1 + e -2πω ) Res e 2iωz-2iκ coth z cosh z , 2π Res (G, iπ/2) + Res (G, 0) = 1 1 + e -2πω + e -πω i(1 + e -2πω ) Res e 2iωz-2iκ coth z cosh z , 0 + ie -πω Res e 2iωz-2iκ coth z cosh z , 0 -1 = -e -2πω 1 + e -2πω -i e -πω 1 + e -2πω -e -πω Res e 2iωz-2iκ coth z cosh z , 0 = -e -2πω 1 + e -2πω + ie -πω e -2πω1 + e -2πω Res e 2iωz-2iκ coth z cosh z , 0 , so that from (9.6.41), (9.6.42), Claims 9.44 & 9.45, we obtain Im a 12 (τ, σ) = -πe πω 1 2π -e -2πω 1 + e -2πω -e -πω e -2πω 1 + e -2πω Im Res e 2iωz-2iκ coth z cosh z , -2πω 1 + e -2πω + e -πω e -2πω 1 + e -2πω Im Res e 2iωz-2iκ coth z Im a 12 (τ, σ) = e -πω 2(1 + e -2πω ) + e -2πω 2(1 + e -2πω )

Definition 9 . 46 . 3 (

 9463 The Airy function Ai is defined as the inverse Fourier transform of ξ → e i(2πξ) 3 /3 . Proposition 9.47. For any h > 0 and all x ∈ C, we have ξ+ih) 3 e ix(ξ+ih) dξ = e -xh e h 3 3

i 3 ( 3 (

 33 ξ+ih)3 belongs to the Schwartz space for any h > 0 sincei 3 (ξ + ih) 3 = -hξ 2 + ξ+ih) 3 = e -hξ 2 e i( ξ 3 3 -ξh 2 ) e h 3 /3 .Theorem 9.48. The Airy function Ai is an entire function on C, real-valued on the real line, which is the unique solution of the initial value problem for the Airy equation(9.7.2) Ai (x) -x Ai(x) = 0, Ai(0) = 3 -1/6 Γ(1/3) 2π, Ai (0) = -3 1/6 Γ(2/3) 2π .

Lemma 9 . 49 .2π e - 2 3 x 3/ 2 ReTheorem 9 . 50 .( 9 . 7 . 6 )|x| 3 / 2 +π cos π 4 + 2 3 |x| 3 / 2 +

 9492295097632432 For x ∈ C\R -, we have(9.7.5) Ai(x) = 1 -x 1/2 ξ 2 e iξ 3 /3 dξ.Proof. Using Proposition 9.47, we get (9.7.5) for x > 0 (choosing h = x 1/2 ), and then we may use an analytic continuation argument. For all M ∈ N, for all x ∈ C\R -, we have Ai(x) O(|x| -3/2 ) , (9.7.7)Ai (x) = -|x| 1/4 √ O(|x| -3/2) . (9.7.8) Lemma 9.51. With j = e 2iπ/3 we have for all x ∈ C, (9.7.9)

Lemma 9 . 52 .

 952 The zeroes of the Airy function are simple and located on (-∞, 0). We shall use the notation(9.7.11) Ai -1 ({0}) = {η k } k≥0 , η k+1 < η k < 0, lim k→+∞ η k = -∞.

|R 0 1 π 1 π 2 3 λ 3 2 3 λ 3/ 2 ,R 1 ( 2 3 r 3

 0112322123 (9.7.14) N.B. The simplicity of the zeroes of the Airy function holds true for any non-zero solution of the Airy differential equation y = xy. The solutions of this ODE are analytic functions and if a is a double zero, we have y(a) = y (a) = 0 and thus from the Airy equation, we get y (a) = 0; we may then prove by induction on k ≥ 1 that y (l) (a) = 0 for 0 ≤ l ≤ k + 1: it is proven for k = 1, and if true for some k ≥ 1, we gety (k+2) (x) = xy(x) (k) =⇒ y (k+2) (a) = 0,proving the final step in the induction; as a consequence, the function has a zero of infinite order, which is impossible for a non-zero analytic function. Assertion (9.7.14) follows from the Airy differential equation (9.7.2), from (9.7.13) and η 2k < 0.Remark 9.53. For M = 0, | arg x| ≤ π/3, we have|R 0 (x)| ≤ Γ (x)| ≤ 0.305455|x| -3/2 if | arg x| ≤ π/3, (9.7.15) and for |x| ≥ 12, | arg x| ≤ π/3 we have |R 0 (x)| ≤ 0.007349. (9.7.16)We get then for λ > 0, using (9.7.10) Ai(-λ) = Re e iπ/3 λ -1/4 e -i 2 3 λ 3/2 √ πe -iπ/12 + R 0 (λe iπ/3 ) Re λ -1/4 R 0 (re iπ/3 )e iπ/4 e -i Re R 0 (λe iπ/3 )e iπ/4 e -i 2 ) + R0 (λ) , (9.7.17) with | R0 (λ)| ≤ λ -3/2 × 0.172335, (9.7.18) and for λ ≥ 12, | R0 (λ)| ≤ 0.004146. (9.7.19) Remark 9.54. For M = 1, | arg x| ≤ π/3, we have (9.7.20) |R 1 (x)| ≤ Γ 2 × 3 37/4 × 5 ≤ |x| -3 × 0.377203, and (9.7.21) for |x| ≥ 12, |R 1 (x)| ≤ 0.000219, re iπ/3 )e iπ/4 e -i 0, | R1 (r)| ≤ r -3 × 0.377203, (9.7.22) for r ≥ 12, | R1 (r)| ≤ 0.000219. (9.7.23) We find for λ > 0, (9.7.24) G(-λ)

9 . 7 . 3 . 2 3 λ 3/ 2 s - 3 / 2

 9732232 )e xh dxe -h 3 /3 = limh→0 + R ψ h (-ξ)dξ = ψ h (0) =1, and Proposition 9.56 provides the result of the lemma. Asymptotic expansion for the function G defined in (4.2.8). Lemma 9.59. With G defined in (4.2.8), we have (9.7.39)G(-λ) = λ -3/4 π -1/2 sin( 2 ) + O(λ -9/4 ), λ → +∞.Proof. Property (9.7.38) and (9.7.7) give for η = -λ < 0, dr (we have used (9.7.10)); we use now (9.7.6) for M = 1, x ∈ e iπ/3 R + ) sin s -π 4 ds + O(λ -9/4 ).

+∞ 2 3 λ 3/ 2 s - 1 /2 sin π 4 + 2 3 λ 3/ 2 s - 1

 2214221 s ds = -+∞

1 η η 4 =Gη 9 =GLemma 9 .

 1499 G(η 2k+2 ) G(η 2k+1 ) G(η 2k ) . . . G(η 1 )G(η 0 ) -7.944133589 η 3 = -6.786708100 η 2 = -5.520559828 η 1 = -4.087949444 η 0 = -2.338107410 -12.82877675 η 8 = -11.93601556 η 7 = -11.00852430 η 6 = -10.04017434, η 5 = -9.022650854 60. The zeroes of the function G on the real line are simple and make a decreasing sequence of negative numbers (ξ l ) l≤0 such that(9.7.40) . . . η 2k+2 < ξ 2k+2 < η 2k+1 < ξ 2k+1 < η 2k < ξ 2k . . . , ξ 0 ≈ -1.38418.

( 9 .

 9 7.43) ∀η > η 0 , 1 > G(η) > G(η 0 ). Also, the first ten zeroes of G are simple and satisfy (9.7.40), (9.7.41) and (9.7.42). Moreover, using Lemma 9.55, we obtain that for λ ≥ 12, As a result, if -λ is a double zero of G we must have both inequalities above, which is impossible. As a result all zeroes of G are simple39 and located on (-∞, 0). Let us consider the interval [η 2k+1 , η 2k ]: we haveAi(η 2k+1 ) = Ai(η 2k ) = 0, Ai (η 2k+1 ) < 0 < Ai (η 2k ), Ai > 0 on (η 2k+1 , η 2k ).As a result, we obtain that G has a local minimum at η 2k and a local maximum at η 2k+1 . Moreover we find from (9.7.31) in Lemma 9.55 and k ≥ 5 that max | sin( 2k+1 | 3/2 )| ≥ 0.99999.

t 2 , 1 + τ 2 ( 1 +

 2121 and we note that arctan τ ∈ (-π/2, π/2),∀τ ∈ R, tan(arctan τ ) = τ, ∀θ ∈ (-π/2, π/2), arctan(tan θ) = θ.Moreover we have for τ ∈ R, (9.8.2)e i arctan τ = 1 √ iτ ),since for θ ∈ (-π/2, π/2), τ = tan θ, we have 1 + τ 2 = 1 cos 2 θ and thus

λ 3 / 2 +

 32 a 0 (λ)λ -3/2 , (9.7.44)a 0 (λ) = λ 3/2 π e i( π 3 -2 3 λ 3/2 ) R e -ξ 2 λ 1/2 e iπ/6cos(ξ 3 /3) -1 dξ.(9.7.45) 

Figure 9 . 9 . 8 . 2 .

 9982 Figure 9. The function G and its derivative the Airy function, on R -.

F(- 1 )

 1 l τ 2l (1 + τ 2 ) k+1 dτ = 1 π R (cos aτ ) Re (1 + iτ ) k (1 -iτ ) k+1 dτ,with absolutely converging integrals. For a > 0, we have(9.8.4)F k (a) = 1 π R (cos aτ ) (1 + iτ ) k (1 -iτ ) k+1 dτ, since (

2 L 2 (

 22 3), 1{2π(x 2 + ξ 2 ) ≤ a} w u, u = 2π(x 2 +ξ 2 )≤a W(u, u)(x, ξ)dxdξ, so that implies k≥0 F k (a) P k u, u L 2 (R n ) = 2π(x 2 +ξ 2 )≤aW(u, u)(x, ξ)dxdξ.Choosing now u = u k as a normalized eigenfunction of the Harmonic Oscillator with eigenvalue k + 1/2, we obtainF k (a) = 2π(x 2 +ξ 2 )≤a W(u k , u k )(x, ξ)dxdξ.Since the function (x, ξ) → W(u k , u k )(x, ξ) belongs to the Schwartz class of R 2n , we find thatlim a→+∞ F k (a) = R 2n H(u k , u k )(x, ξ)dxdξ = u k R n ) = 1, qed.9.8.4. A different normalization for the Wigner function. The paper [39] is using a different normalization for the Wigner distribution in n dimensions with (9.8.6) W(u, v)(x, ξ) = (2π) iz•ξ dz. The relationship with our definition (1.1.6) is (9.8.7) W(u, v)(x, ξ) = W(u, v)(x, ξ 2π )(2π) -n .

is equal to sup u L 2 ( 1 |x| 2 +|ξ| 2 ≤ a 2π = R 2 2πW

 212 R n ) =1 |x| 2 +4π 2 |ξ| 2 ≤R 2 W(u, u)(x, ξ)dxdξ = sup u L 2 (R n ) =1 2π(|x| 2 +|ξ| 2 )≤R 2 W(u, u)(x, ξ)dxdξ,and we have proven here that for u∈ L 2 (R n ) with norm (u, u)(x, ξ)dxdξ ≤ 1 -1 (n -1)! +∞ a e -t t n-1 dt = 1 -Γ(n, R 2 ) Γ(n) ,where the upper incomplete Gamma function Γ(z, x) is given by (9.8.8) Γ(z, x) = +∞ x t z-1 e -t dt.

  N.B. Let x > 0 be given and let z ∈ C with Re z > 0. Then we haveΓ(z, x) = +∞ 0 (s + x) z-1 e -s-x ds = e -x +∞ 0 (s + x) z-1 e -s ds, so that if z = n + 1, n ∈ N, we find Γ(n + 1, x) = e -x +∞ 0 (s + x) n e -s ds = e -x (n + 1 -k) = n!e -x 0≤k≤n

  Proposition 1.15. Let A, B, C be as in Theorem 1.10, and let S be the generating function of Ξ A,B,C (cf. (1.2.31)). We define the operator M A,B,C on S (R n ) by

	(1.2.48)

1.2.3. The metaplectic group.

  Proof. We check for C symmetric n × n matrix,

	(1.2.66)	. (1.2.54), (1.2.51),
	(1.2.67)	e -iπn 4 F, where F is the Fourier transformation.
		M {0}

  Remark 1.20. According to (9.1.6) in our Appendix and to Footnote 7 on page 15,

	we find
	(1.2.68)

0,I,C , so that the group generated by (1.2.65), (1.2.66), (1.2.67) contains (1.2.62), (1.2.63), (1.2.64) and thus contains M p(n). Moreover (1.2.60) shows that (1.2.67) is included in M p(n) so that the group generated by (1.2.65), (1.2.66), (1.2.67) is included in M p(n), proving the proposition.

  a)P k;n , with P k;n = α∈N n ,|α|=k P α , where P α is the orthogonal projection onto Ψ α (defined in (9.1.33)), with |α| = 1≤j≤n α

j = k and (3.2.3)

  The other statements are proven in Section 9.7 of the Appendix. 4.3. The main result. Collecting the results of Lemmas 4.5, 4.6, 4.7, 4.8 and of Section 9.7 in the Appendix, we have proven the following theorem.

The first statements follow from Lemma 4.7 and (4.2.10) is implied by (4.2.8) and (9.7.34),

(9.7.38)

. The strict inequality in (4.2.11) follows for η ≥ 0 from (4.2.7) since Ai is positive on [0, +∞) so that G is strictly increasing there from G(0) = 2/3 to G(+∞) = 1.

  -e s u + (e t )ū + (e s )e s+t dsdt

		s -e t e s +e t ) 1 2iπ e t = pv 1 2 u + 2 L 2 (R + ) + R 2 e 4iπσ tanh( s-t 2 ) 1 2iπ pv	1 e (s+t)/2 e t -e s φ 1 (t) φ1 (s)dsdt,
	with		
	(5.2.10)	φ 1 (t) = u + (e t )e t/2 ,	so that φ 1 L 2

  We shall need a more explicit quantitative expression for a 21 to obtain a precise asymptotic result which could be compared to the estimate (5.2.21). The next lemma is proven in[START_REF] Wood | Bounds on integrals of the Wigner function: the hyperbolic case[END_REF]; we provide a proof here for the convenience of the reader.

	Lemma 5.22. Let τ > 0, σ ≥ 0 be given and let a 21 (τ, σ) be given by (5.2.32). We
	have							
	(5.2.34)							
	Re a 21 (τ, σ) =	e -2π 2 τ 4π		0	π	e 2π(tτ -2σ tan(t/2)) -1 sin(t/2)	+	sinh(t/2) -sin(t/2) sinh(t/2) sin(t/2)	dt
									+	0	π	1 -cos 2π(tτ -2σ tanh(t/2)) sinh(t/2)	dt
									-	π	+∞	cos 2π(tτ -2σ tanh(t/2)) sinh(t/2)	dt .
	(5.2.31)							
									
		1 2 + 1 2π 1 4iπ	+∞ 0 +∞ 0	sin(2πtτ -4πσ tanh(t/2)) sinh(t/2) e 2iπ(tτ -2σ tanh(t/2) ) cosh(t/2) dt	dt • i 4π •	+∞ 0	e -2iπ(tτ -cosh(t/2) 2σ tanh(t/2) 0	)	dt     
					=	a 11 (τ, σ) a 12 (τ, σ) a 21 (τ, σ) a 22 (τ, σ)	.
	On the other hand we have				
	(5.2.32)	a 12 = a 21 =	1 4iπ	0	+∞	tanh(t/2) ) e 2iπ(tτ -2σ cosh(t/2)	dt,
	so that							
	(5.2.33)	Re a 12 (τ, σ) =	1 4π	0	+∞	sin[2π(tτ -2σ tanh( t 2 ) )] cosh( t 2 )	dt.
	We note that the function	t →	e 2iπ(tτ -2σ tanh(t/2) )

cosh(t/2)

, is holomorphic on C\iπZ, with simple poles at (2Z + 1)iπ (zeroes of cosh(t/2)) and essential singularities at 2Ziπ (zeroes of sinh(t/2)).

  by the Fourier transformation and partial Fourier transformations, by the rescaling (1.2.51), by the transformations (1.2.50), (1.2.52) and also by the phase translations (1.2.76) and phase symmetries (1.2.9).

	Proof. Formula (6.2.11) follows readily from (1.2.74) and if u belongs to M 1 (R n ),
	we find that
	W(Mu, Mψ 0

  .1.3). There is a diagonalization of the quantization of the indicator function of Ellipsoids, Paraboloids and Hyperbolic regions. Is there a non-quadratic example of diagonalization? Question 8.8. The value of µ + 2 is known explicitly, but for µ + 3 , we have only the upperbound μ3 as given by Theorem 7.6. Is it possible to determine explicitly the value of µ + 3 , either by answering Question 8.7, or via another argument? Conjecture 8.9. Let C be a proper closed convex subset of R 2 with positive Lebesgue measure such that Op w (1 C ) is bounded self-adjoint on L 2 (R) (that assumption is useless if Conjecture 8.6 is proven) with a spectrum included in [0, 1]. Then C is the strip [0, 1] × R, up to an affine symplectic map.

	Question 8.7.

  B ,0 (cf. Lemma 9.20 below in the next subsection),

	proving the Proposition.	
	9.2.2. On some subgroups of the metaplectic group. We have seen in (1.2.36), (1.2.34)
	some equivalent conditions for a matrix
	(9.2.35)	Ξ =	P Q R S	where P, Q, R, S are n × n real matrices,
	to be symplectic. We note here that when Ξ ∈ Sp(n, R), we have
	(9.2.36) S as it is easily checked from (1.2.36), (1.2.34). When det P = 0, we proved that Ξ -1 =
	Ξ = Ξ A,B,C as defined in (1.2.30). Also from (9.2.36), we get that if det S = 0 we
	have			
				Ξ -1 = Ξ A,B,C ,
	so that			
	(9.2.37)			

* -Q * -R * P * ,

  . For Re t ≥ 0, t / ∈ iπ(2Z + 1), we have in n dimensions, exp -tπOp w (|x| 2 + |ξ| 2 ) = Op w e -2 tanh( t 2 )π(x 2 +ξ 2 ) . (cos s) n exp 2iπsOp w (|x| 2 + |ξ| 2 ) = Op w e 2iπ tan s(|x| 2 +|ξ| 2 ) .

	(9.3.1)	cosh(t/2)
	In particular, for t = -2is, s ∈ R, s / ∈ π 2 (1 + 2Z), we have in n dimensions
	(9.3.2)	

n Lemma 9.26. For any z ∈ C, Re z ≥ 0, we have in n dimensions (9.3.3) Op w exp -2zπ |ξ| 2 + |x| 2

  .

	Lemma 9.27. For Re t ≥ 0, t / ∈ iπ(2Z + 1), we have in n dimensions,
	(9.3.4)	cosh(t/2)

n exp -tπOp w (|x| 2 + |ξ| 2 ) = Op w e -2 tanh( t 2 )π(x 2 +ξ 2 ) .

  proving the first part of the proposition. To obtain[START_REF] Askey | Positive Jacobi polynomial sums[END_REF], we observe with the notations φ(t) = u(e t )e t/2 , ψ(s) = v(e s )e s/2 that we have to check Study of the function ρ σ . We study in this section the real-valued Schwartz function ρ σ given in(5.2.14). Using the notations

	H(x -y) are bounded on L t/2 , and H(x)H(y) π(x + y) , H(y -x) H(x)H(y) π(x + y) , we have to check the kernel e t/2 e s/2 π(e t + e s ) = 1 π(e (t-s)/2 + e -(t-s)/2 ) = 1 2π sech t -s 2 , which is a convolution kernel. Using now the classical formula (9.5.1) e -2iπxξ sech xdx = π sech(π 2 ξ), we get that 1 2π sech( t 2 )e -2iπtτ dt = sech(π 2 2τ ), a smooth function whose range is (0, 1], H(s -t) e t/2 e s/2 ω = 2πτ, κ = 2πσ, ν = κ/ω, we have π(e (9.6.2) (9.6.3) ρ σ (τ ) = R s sinh s e 2iω(s-ν 2 tanh s) ds = R s sinh s cos 2ω(s -ν 2 tanh s) ds.

2 

(R) with norm 1/2.

Proof. Let us prove

[START_REF] Amour | Lower bounds for pseudodifferential operators with a radial symbol[END_REF]

: for φ ∈ L 2 (R + ), we define for t ∈ R, φ(t) = φ(e t )e t + e s ) φ(t) ψ(s)dtds = H(s -t) π(e (t-s)/2 + e -(t-s)/2 ) φ(t) ψ(s)dtds = R * φ, ψ L 2 (R) , 9.6.2.

  the sought result (9.6.14).

	Remark 9.35. Considering now the function ϕ 0 defined by
	(9.6.17)			ϕ 0 (ω) =	e -πω 2π	0	π/2	e 2ωs -1 sin s	ds,
	we find that, for ω ≥ 0, using Lemma 9.34,				
	ϕ 0 (ω) ≥	e -πω 2π	0	π/2	e 2ωs -1 s	ds =	e -πω 2π	0	πω	e σ -1 σ	dσ =	1 2π	J(πω),
	so that												
	(9.6.18)				ϕ 0								

  1) m l ∈ {±i}, proving the first inequality of the claim. The second inequality follows from the same reductio ad absurdum, starting with where, for ω > 0, the right-hand-side goes to zero when R goes to +∞, completing the proof of Lemma 9.38.

	(9.6.31)			lim l→+∞	e -( π 2 +m l π)e iθ l = -1,
	ending-up with an impossibility since -1 / ∈ {±i}.
	As a consequence of Claim 9.39 and (9.6.28), we obtain for R = π 4 +m π 2 , θ ∈ (0, π),
	(9.6.32)				| tanh(Re iθ )| ≤	2 β 1	.
	Formula (9.6.27) gives then						
	(9.6.33) Im	 	γ + π 4 +m π 2	G(z)dz	  ≤	2R π	0	π/2	e -R cos θ e -2Rω sin θ 1 β 0	exp (4κ/β 1 )dθ,
	Lemma 9.40. With G defined in (9.6.25), we have
	(9.6.34) 2π									
	k∈N								

  Remark 9.43. The equation(5.2.53) gives also Im a 12 (τ, σ) = e -2π 2 τ 2 a 11 (τ, σ), where (5.2.31) gives, using the notations (9.6.2),

	38)							1 -a 11 (τ, 0) =	e -4π 2 τ 1 + e -4π 2 τ ,
	and since (5.2.33) implies that
	2π Re a 12 (τ, 0) =	0	+∞	sin(4πtτ ) cosh t	dt = Im e i4πτ t H(t), sech t S (Rt),S (Rt)
	= Im	1 4iπτ	d dt	e i4πτ t H(t), sech t
	= Im	1 4iπτ		d dt	e i4πτ t H(t) , sech t -δ 0 , sech
	=	1 4πτ	-Im	1 4iπτ	e i4πτ t H(t), sech (t) =	1 4πτ	+ O(τ -3 ), τ → +∞,
	we readily find that					
					Re a 12 (τ, 0)	1 -a 11 (τ, 0), τ → +∞,
	providing another proof of Theorem 5.20 in the case σ = 0.
	(9.6.39)	Im a 12 (τ, σ) =	1 4π	0	+∞	cos(tω -2κcoth(t/2)) cosh(t/2)	dt
								=	1 2π	0	+∞	cos 2(tω -κcoth t) cosh t	dt
								=	1 4π R	cos 2(tω -κcoth t) cosh t	dt.

  proving that the limit in the left-hand-side of (9.7.38) is existing.(h -it 1/2 ) -1 t -1/4 dt = e -h+i 2 3 (h -i) -1 (h -it 1/2 ) -2 i 2 t -3/4 -(h -it 1/2 ) -1 1 4 t -5/4 dt, and since the absolute value of the integrand in the last integral is bounded above by 3 4 t -7/4 , we get the result of the Claim. With (9.7.35), (9.7.36), this gives

	so that															
	(9.7.25) Claim 9.58. lim h→0 + +∞ λ 1 r 1/4 √ π sin + 3 4 √ π sin π 4 Proof of the Claim. We have π 4 + 2 3 r 3/2 dr = cos 0 -∞ Ai(x)e xh dx = + 2 3 λ 3/2 λ -9/4 -3 0 π 4 -∞ Ai(x)dx. + 2 3 λ 3/2 4 √ π 9 4 +∞ λ r -13/4 sin 1 λ 3/4 √ π 0 -1 0 Ai(x)e xh dx = Ai(x)e xh dx + Ai(x)e xh dx π 4 + 2 3	r 3/2 dr.
												-∞			-∞	-1
	We have also															with limit 0 -1 Ai(x)dx
	(9.7.26) +∞ λ and using (9.7.7), we have only to check 1 r 1/4 Γ(7/2) 18π r -3/2 sin 2 3 r 3/2 -π 4 dr = Γ(7/2) 18π -1 |x| -1/4 e xh+i 2 3 |x| 3/2 dx = +∞ t -1/4 e -th+i 2 3 t 3/2 dt +∞ λ	r -7/4 sin	2 3	r 3/2 -	π 4	dr
	= --∞ Γ(7/2) 18π so that (9.7.25), (9.7.26) and (9.7.24) entail cos 2 3 λ 3/2 -π 4 λ -9/4 + Γ(7/2) 18π 1 G(-λ) = cos π 4 + 2 3 λ 3/2 1 λ 3/4 √ π + 3 4 √ π sin π 4 + 1 = -+∞ 1 d dt e -th+i 2 3 t 3/2 + +∞ e -th+i 2 3 t 3/2	9 4 2 3	+∞ λ 3/2 λ -9/4 λ cos	2 3	r 3/2 -	π 4	r -13/4 dr,
	-	3 √ 4	π	9 4			λ	+∞	r -13/4 sin	π 4	+	2 3	r 3/2 dr
	-	Γ(7/2) 18π		cos	2 3	λ 3/2 -	π 4	λ -9/4 +	Γ(7/2) 18π	9 4	λ	+∞	cos	2 3	r 3/2 -	π 4	r -13/4 dr
	+	1 π		λ	+∞	r -1/4	R1 (r).
	We get then															
	G(-λ) =	λ -3/4 √ π		cos	π 4	+	2 3	λ 3/2 +	3 4	sin	π 4	+	2 3	λ 3/2 λ -6/4
																	-	3 4	×	9 4	λ 3/4	λ	+∞	r -13/4 sin	π 4	+	2 3	r 3/2 dr
								4 √	π	sin	π 4 -+ Γ(7/2) 2 3 r 3/2 + 18 √ π cos	Γ(7/2) 18 √ π 2 3 λ 3/2 -r -3/2 sin π 4 λ -6/4 2 3	r 3/2 -	π 4	+	1 √ π	R1 (r) dr,
	and we have +∞ λ 1 r 3/4 √ so that	π	r 1/2 sin = cos π 4	+ + π 4	Γ(7/2) 18 √ π 2 3 r 3/2 dr 9 4 + 2 3 λ 3/2 + λ 3/4 √ π λ λ 3/4 1 λ 3/4 √ λ π +∞ -+∞ r -1/4 R1 (r) , cos 2 3 r 3/2 -3 4 +∞ λ 1 r 7/4 √ π 4 π r -13/4 dr cos π 4 +	2 3	r 3/2 dr,
	as well as -3 4 +∞ λ (9.7.27) with	1 r 7/4 √ G(-λ) = π cos λ -3/4 π 4 + √ π	2 3 cos r 3/2 dr = -π 4 + 2 λ 3/2 + λ -3/2 S 1 (λ) , 3 4 +∞ λ 1 r 9/4 √ π r 1/2 cos 3	π 4	+	2 3	r 3/2 dr
	(9.7.28)	= |S 1 (λ)| ≤	3 √ 4 π 3 4 +		sin 3 4 +	π 4 Γ(7/2) + 2 3 λ 3/2 λ -9/4 -18 √ π + Γ(7/2) 18 √ π + 4 √ 3 4 π 9 √ π 9 4	+∞ × 0.377203 ≤ 1.80293 λ r -13/4 sin π 4 + 2 3	r 3/2 dr,

  The largest ten zeroes of G are given by the following table -8.5022 -10.5366-11.4826 -12.3913 -13.2679 For all k ∈ N, we have(9.7.41) G(η 2k ) < 0 < G(η 2k+1 ),and G(η 2k ) (resp. G(η 2k+1 )) is a local minimum (resp. maximum) of G near η 2k (resp. η 2k+1 ). Moreover, G(η 0 ) is an absolute minimum of the function G on the real line.N.B. We claim also that(9.7.42) |G(η 2k )| > G(η 2k+1 ) > |G(η 2k+2 )|,but shall not provide a complete proof for that statement, which is anyway not needed is our Section 4.3.

	ξ 0	ξ 1	ξ 2	ξ 3	ξ 4
	-1.38418 -3.33004 -4.86074 -6.18885 -7.39024
	ξ 5	ξ 6	ξ 7	ξ 8	ξ 9

  to (9.7.8) |η 2k+1 | 3/2 ≥ 0.99999, and Lemma 9.55 implies that G(η 2k ) < 0 < G(η 2k+1 ), which is(9.7.41). Since the function G is strictly monotone decreasing on the interval [η 2k+1 , η 2k ], it has a unique simple zero ξ 2k+1 on the interior of this interval. Analogously, we can prove that on the interval [η 2k+2 , η 2k+1 ], it has a unique simple zero ξ 2k+2 on the interior of this interval, proving that the sequence of zeroes of the function G is decreasing strictly withη 2k+2 < ξ 2k+2 < η 2k+1 < ξ 2k+1 < η 2k < ξ 2k , k ≥ 0.We shall prove a weaker statement than (9.7.42): we know that |G(η l )| < |G(η 0 )|) for 1 ≤ l ≤ 9 from the numerical values obtained above. Moreover if λ ≥ 12 we find |G(-λ)| ≤ λ -3/4 π -1/2 (1 + 0.0433716) ≤ 0.0913016 < |G(η 0 )| = 0.2743520591,

	cos	π 4	+	2 3	|η 2k | 3/2 ≤ -0.99999,	cos	π 4	+	2 3
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We use the standard notation: for p ∈ [1, +∞] we define p by the equality 1 p + 1 p = 1.

Proposition 4.1.1 in[START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] is useful to compute the Fourier transform of Gaussian functions and is a notable asset of the Fourier normalization given in Footnote 1 page 4.

,[START_REF] Amour | Lower bounds for pseudodifferential operators with a radial symbol[END_REF] 2 ] (t) sign t,

Even a wave-front-set approach, which would allow the product H(x)pv(1/(y -x)), does not offer a meaning for the product H(x)H(y)pv(1/(y -x)) since the wave-front-set of pv(1/(y -x)) is located on the conormal of the first diagonal (i.e. {(x, x; ξ, -ξ)} x∈R,ξ∈R * ), whereas the wave-front set at (0, 0) of H(x)H(y) contains all directions and in particular is antipodal to the conormal of the diagonal at (0, 0).

Such a sequence is easy to find: a first step is to find a sequence ( φk ) k≥1 in the Schwartz space converging in L 2 (R) towards u, then consider with a given ω ∈ C ∞ (R; [0, 1]) such that ω(t) = 0 for |t| ≤ 1 and ω(t) = 1 for |t| ≥ 2, φ k (x) = ω(kx) φk (x).

We shall say that the set K has a corner.

Note that W(u, u) is real-valued.

Thanks to Theorem 1.26, the function W(u, u) is a continuous function, so it makes sense to consider its pointwise values.

We define a triangle as the intersection of three half-planes, which includes of course the convex envelope of three points, but also the set with infinite area {(x, ξ) ∈ R 2 , x ≥ 0, ξ ≥ 0, x + ξ ≥ λ} for some λ > 0.

In this induction proof, we may assume that all the linear forms L j , 1 ≤ j ≤ N are different from 0, otherwise we may use the induction hypothesis.

≤ μ3 < 1.2137 < 1.2247 ≈ 3/2.

In the integrand, we must have,x 1 + z1 2 ≤ -0 < 0, x 1 -z1 2 ≤ -1 < 0 and thus x 1 ≤ -( 0 + 1 )/2

We mean by anisotropic ellipsoid a set of type (3.3.2) where 0 < a 1 < a 2 < • • • < a n .

According to our Definition 7.8 of the set P N of polygons with N sides is increasing with respect to N .

L 2 = πa,

ds arctan(sinh s) = sech s.

We know that ω(π -2 ν ) ≥ ω(π -4ν) ≥ ω(π -2) so that to ensure ω(π -2 ν ) ≥ 4, it suffices to assume ω ≥ 4/(π -2).

and thus

, ξ)e 2iπ(x 1 -x 2 )ξ φ 0 (x 2 )dξdx 2 = W(u, φ 0 )(y, ξ)e 4iπ(x 1 -y)ξ φ 0 (2y -x 1 )dξdy2 n , so that the latter equality, the fact that φ 0 belongs to S (R n ) imply (i) by differentiation under the integral sign, concluding the proof of the lemma.

Lemma 6.6. Let φ 0 , φ 1 be non-zero functions in L 2 (R n ). Let u ∈ L 2 (R n ) such that W(u, φ 0 ) belongs to L 1 (R 2n ). Then W(u, φ 1 ) belongs as well to L 1 (R 2n ).

Proof. According to Lemma 1.30 applied to u 0 = u, u 1 = u 2 = φ 0 , u 3 = φ 1 , we have

), since W(u, φ 0 ) belongs to L 1 (R 2n ) as well as W( φ0 , φ 1 ). Lemma 6.7. Let u ∈ L 2 (R n ). The following properties are equivalent.

(i) For all φ ∈ S (R n ), we have W(u, φ) ∈ L 1 (R 2n ).

(ii) For a non-zero φ ∈ S (R n ), we have W(u, φ) ∈ L 1 (R 2n ). (iii) W(u, u) belongs to L 1 (R 2n ).

Proof. We have obviously (i) =⇒ (ii) and, conversely, Lemma 6.6 yields (ii) =⇒ (i). Assuming (i) and using Lemma 1.30 with u 0 = u 3 = u, u 1 = u 2 = φ ∈ S (R n ), we get φ 2 L 2 |W(u, u)(X)| ≤ 2 n |W(u, φ)| * |W( φ, u)| (X), so that choosing a non-zero φ in the Schwartz space, we obtain (iii). Conversely, assuming (iii) and using again Lemma 1.30 with u 0 = u 2 = u, u 3 = φ ∈ S (R n ), u 1 = ψ ∈ S (R n ), we find (6.2.1)

| (X).

Assuming as we may u = 0, we can choose ψ ∈ S (R n ) such that ψ, u L 2 = 0, so that (6.2.1) implies (i).

Lemma 6.8. Let u 1 , u 2 , u 3 ∈ L 2 (R n ). Then we have the inversion formula, (6.2.2)

Proof. It is an immediate consequence of Lemma 1.29.

6.2.2.

The space M 1 (R n ).

Definition 6.9. The space M 1 (R n ) is defined as the set of u ∈ L 2 (R n ) such that, for all φ ∈ S (R n ), W(u, φ) belongs to L 1 (R 2n ). According to Lemma 6.7,

Note in particular that we will show that (6.4.7) holds true regardless of the area of the triangle (which could be infinite according to our definition of a triangle in our footnote 23). Although that type of result may look pretty weak, it gets enhanced by Theorem 6.21 which proves that no triangle in the plane could be a set E + (u) (cf. (6.4.5)) for a generic u in L 2 (R). 

00767997007003. This result is true as well for the characteristic function of any convex cone (which is not a half-plane nor the full plane) in the plane since we can map it to the quarter plane by a transformation in Sl(2, R) = Sp(1, R). On the other hand a concave cone is the complement of a convex cone and the diagonalization offered by Theorem 5.19 proves that the spectrum of the Weyl quantization of the indicatrix of a concave cone is 1 -Spectrum (Op w (H(x)H(ξ))) .

We may sum-up the situation by the following theorem.

Theorem 7.1. Let Σ θ be a convex cone in R 2 with aperture θ ∈ [0, 2π] (cf. (5.3.9)) and let A θ be the self-adjoint bounded operator with the indicator function of Σ θ as a Weyl symbol.

(

is a half-space and A π is a proper orthogonal projection, thus with spectrum {0, 1}. (4) If θ ∈ (π, 2π), Σ θ is a concave cone and the operator A θ is unitarily equivalent to Id -Op w (H(x)H(ξ)), thus with spectrum

Remark 7.2. It is only in the trivial cases θ ∈ {0, π, 2π} that A θ is an orthogonal projection. These cases are also characterized (among cones) by the fact that the spectrum of A θ is included in [0, 1]. 24 So that we have in particular, from (2), the inequalities

Proposition 9.8. The operator M P,L,Q given in Definition 9.1 is an automorphism of S (R n ) and of S (R n ) which is a unitary operator on L 2 (R n ) belonging to the metaplectic group (cf. Definition 1.17 

Proof. Indeed, from the second formula in (9.2.3), (1.2.60), (1.2.46) and (1.2.72) we get that

providing the sought result. 31 We note that m(B) + n ∈ {m(-B), m(-B) + 2} modulo 4: indeed we have modulo 4

.

We have also m(L) -n ∈ {m(-L), m(-L) + 2} since we know already (from the above in that footnote) that m(L)-n ∈ {m(-L), m(-L)+2}-2n, which gives m(L)-n ∈ {m(-L), m(-L)+2} for n even; for n = 2l + 1 odd we get the same result since

Lemma 9.11. Let P j , L j , Q j , j = 1, 2 be as in Definition 9.1 and let us assume that (9.2.9)

Then we have (9.2.10)

Proof. The assumption (9.2.9) implies that both sides of the equality belong to M p(n) and

where the last equality follows from the fact that e iφ Id L 2 (R n ) commutes with every operator Op w (L Y ) given in Lemma 1.21. We have thus

second line × first column:

second line × second column:

providing the sought formulas in (9.2.10), except for the last one. Let κ j be the kernel of M P j ,L j ,Q j and let κ = κ 1 • κ 2 be the kernel of the composition (in the lhs of (9.2.9)). We have consequently

proving that e iφ = e iπm(L 1 ) ∈ {±1}. The proof of the lemma is complete.

Claim 9.12. Let P, L, Q be as in Definition 9.1. Then we have

) and since M P,L,Q is unitary, this proves (9.2.11). The last assertion is equivalent to m(L) ∈ {n -m(-L * ), n -m(-L * ) -2}. Since the latter set is equal to {-m(L), -m(L) -2} and the mapping

leaves invariant the sets {0, 2}, {1, 3}, we obtain the sought result, concluding the proof of the claim. Proposition 9.13. Let P j , L j , Q j , j = 1, 2 be as in Definition 9.1 and let us assume that (9.2.12)

Then there exist P, L, Q, as in Definition 9.1 such that (9.2.13)

.

More precisely, we have

Moreover we have

Proof. The kernel κ of

according to Formula (9.1.8) (see also (9.1.10)), noting that the matrix Q 1 + P 2 is real symmetric and non-singular. As a result, we have

We note that, with E 12 standing for the eigenvalues of

implying that the kernel κ is given by (9.2.17)

Checking the unit factor in front of the rhs of (9.2.17), we note that ν + + ν -= n since Q 1 + P 2 is non-singular and we get

We have also, since index (Q

entailing that κ(x, y) = e -iπn 4 (det L) 1/2 e iπ{P x 2 -2Lx•y+Qy 2 } , concluding the proof of the proposition.

Lemma 9.14. Let P j , L j , Q j , j = 1, 2, 3 be as in Definition 9.1. Then there exist (P , L , Q ), (P , L , Q ) as in Definition 9.1 such that (9.2.20)

) is satisfied with (P , L , Q ) = (P 3 , L 3 , Q 3 ). We may thus assume in the sequel that det(Q 1 + P 2 ) = 0. Then the kernel of Q 1 + P 2 is of dimension r ∈ 1, n ; let us define J r as the orthogonal projection onto ker(Q 1 + P 2 ).

Claim 9.15. The matrix J r + (Q 1 + P 2 ) 2 is positive definite (thus invertible).

Indeed, if J r x + (Q 1 + P 2 ) 2 x = 0, we obtain by taking the dot-product with x that

This matrix is also non-negative, proving the claim.

Let us define the real n × n symmetric matrix (9.2.21)

where µ is a positive parameter to be chosen later; we note that P + Q 2 is invertible. Also we have (9.2.22)

which is invertible if µ (is different from 0 and) does not meet the spectrum of Q 1 + P 2 . 32 We have also

which is invertible for µ large enough. 33 Eventually, defining (9.2.23)

λ 2 0 , implies that, with P given by (9.2.21), we obtain that (9.2.25) the matrices

Using now Lemma 9.13 and the first property in (9.2.25), we get that we can find P , L, Q as in Definition 9.1 such that (9.2.26)

with (thanks to (9.2.18)), (9.2.27)

We check now (9.2.28)

and we note that

invertible, thanks to the second property in (9.2.25) so that, from Lemma 9.13, we can find P , L , Q as in Definition 9.1 such that (9.2.29)

and this yields (9.2.30)

32 The symmetric matrices Q 1 + P 2 and J r can be diagonalized simultaneously so that the invertibility of µ

where the λ j are the non-zero eigenvalues of Q 1 + P 2 .

33 Indeed the eigenvalues of J r + (Q 1 + P 2 ) 2 -1 are 1 and λ -2

where the λ j are the non-zero eigenvalues of Q 1 + P 2 . To secure the invertibility of P -P 3 , it is thus enough to have

where the λ j are the non-zero eigenvalues of

Finally, we check M -1 P,In,0 =M 0,-In,-P cf. Claim 9.12

and since -P + P 3 is invertible (thanks to the third property in (9.2.25)), we obtain, using once again Lemma 9.13, that we can find P , L , Q as in Definition 9.1 such that (9.2.31) M -1 P,In,0 M P 3 ,L 3 ,Q 3 = M P ,L ,Q . Gathering the information above, we find that (9.2.32)

, which ends the proof of the lemma.

Proposition 9.16. The metaplectic group M p(n) is equal to the set (9.2.33)

In other words, every metaplectic operator of M p(n) is the product of two operators of type M P,L,Q as given by Definition 9.1.

Proof. From Proposition 9.8, the metaplectic group is generated by the M P,L,Q and since the inverse of M P,L,Q is M -Q,-L * ,-P , thanks to Claim 9.12, it is enough to check the products

14 is tackling the case N = 3 and a trivial recurrence on N provides the result of the proposition.

Theorem 9.17. Let M be an element of M p(n) such that M = e iφ Id L 2 (R n ) , φ ∈ R. Then e iφ belongs to the set {-1, 1}. In other words, the intersection of the metaplectic group with the unit circle (identified to the unitary operators in L 2 (R n ) defined by the mappings v → zv where z ∈ S 1 ⊂ C) is reduced to the set {-1, 1}.

Proof. Using Proposition 9.16, the result follows from Lemma 9.11.

We may go back to the description given by Proposition 1.15 and Definition 1.17.

Proposition 9.18. The metaplectic group M p(n) is equal to the set

, where the operators M A,B,C are defined in Proposition 1.15.

Proof. Let M be in M p(n). We have

belongs to Sp(2, R) although all the block 2 × 2 matrices P, Q, R, S, are singular (with rank 1). Lemma 9.20. With M A,B,C defined in Proposition 1.15, the sets

, are subgroups of the metaplectic group (cf. Definition 1.17).

Proof. Indeed L contains the identity of L 2 (R n ) and we have for v ∈ L 2 (R n ),

A 2 ,B 2 ,0 belongs to the set L in (9.2.41), proving that L is indeed a subgroup of the metaplectic group. We note also that the bijective mapping 

Moreover the mapping (9.2.42) is obviously one-to-one and is also onto since, given B 1 ∈ Gl(n, R) and C 1 a symmetric n × n matrix, we see from (9.2.43) that

The mapping (9.2.42) also extends to a group isomorphism of M p(n), proving the lemma.

Remark 9.21. We may note that

, so that the internal binary operation can be defined on the set {(A, B)} A=A * det B =0 as (9.2.44) We note at this point that, according to (4.2.9), the right-hand-side of the above equality is for h = 0 equal to 

We have ) dr, 38 The boundary term is easy to handle and for the derivative falling on ξ -3 , we use that | cos(ξh 2 )e -hξ 2 -1| ≤ 2; if the derivative falls on the other term we get +∞ 1 cos( ξ 3 3 ) ξ 3 2hξ cos(ξh 2 )e -hξ 2 + e -hξ 2 sin(ξh 2 )h 2 dξ, which goes trivially to 0 with h.