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ABSTRACT

We present a new algorithm for computing the real radical of an
ideal � and, more generally, the (-radical of � , which is based on
convex moment optimization. A truncated positive generic linear
functional f vanishing on the generators of � is computed solv-
ing a Moment Optimization Problem (MOP). We show that, for a
large enough degree of truncation, the annihilator of f generates
the real radical of � . We give an effective, general stopping criterion
on the degree to detect when the prime ideals lying over the anni-
hilator are real and compute the real radical as the intersection of
real prime ideals lying over � .

The method involves several ingredients, that exploit the prop-
erties of generic positive moment sequences. A new efficient algo-
rithm is proposed to compute a graded basis of the annihilator of
a truncated positive linear functional. We propose a new algorithm
to check that an irreducible decomposition of an algebraic variety
is real, using a generic real projection to reduce to the hypersurface
case. There we apply the Sign Changing Criterion, effectively per-
formed with an exact MOP. Finally we illustrate our approach in
some examples.

CCS CONCEPTS

•Theoryof computation→ Semidefiniteprogramming; •Math-

ematics of computing→Grobner bases andother special bases;
•Computingmethodologies→Hybrid symbolic-numericmeth-
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1 INTRODUCTION

In many “real world” problems which can be modeled by polyno-
mial constraints, the solutions with real coordinates are generally
analyzedwith particular attention. Efficient algebraic methods have
been developed over the years to solve such systems of polynomial
constraints, including Grobner basis, border basis, resultants, trian-
gular sets, homotopy continuation. But all these methods involve
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implicitly the complex roots of the polynomial systems and their
complexity depends on the degree (and multiplicity) of the under-
lying complex algebraic varieties.

Finding equations vanishing on the real solutions without com-
puting all the complex roots is a challenging question. This means
computing the vanishing ideal of the real solutions of an ideal � ,
that is, its real radical R

√
� .

Several approaches have been proposed to compute the real rad-
ical. Some of these methods are reducing to univariate problems
[5, 6, 29, 36], or exploiting quantifier elimination techniques [15],
or using infinitesimals [31] or triangular sets and regular chains
[12, 39].

Sums-of-Squares convex optimisation and moment matrices are
used in [20, 21] to compute real radicals, when the set of real solu-
tions is finite. Some properties of ideals associated to semidefinite
programming relaxations are analysed in [33], involving the simple
point criterion. In [25] a stopping criterion is presented to verify
that a Pommaret basis has been computed from the kernels of mo-
ment matrices involved in Sum of Squares relaxation. In [10], a test
based on sum-of-square decomposition is proposed to verify that
polynomials vanishing on a subset of the semi-algebraic set are in
the real radical.

In [32], an algorithm based on rational representations of equidi-
mensional components of algebraic varieties and singular locus re-
cursion is presented and its complexity is analysed.

We present a new algorithm for computing the real radical of
an ideal � and, more generally, the (-radical of � , which is based
on convex moment optimization. An interesting feature of the ap-
proach is that it does not involve the complex solutions, which are
not on a real component of the algebraic varietyV(� ). Section 2 re-
calls the relationship between vanishing ideals and radicals for real
and complex algebraic varieties.

Generators of the real radical of � are computed from a truncated
generic positive linear functional f vanishing on the generators of � .
This truncated linear functional is computed by solving a Moment
Optimization Problem (MOP), as summarized in Section 3.

We show that, for a large enough degree of truncation, the anni-
hilator of f generates the real radical of � , suggesting an algorithm
whichwill compute the annihilator of a generic positive linear func-
tional for increasing degrees. Our approach differs from the works
in [20, 21], which apply for zero-dimensional real ideals using the
flat extension property (see e.g. [14, 22]) as a stopping criterion: if
the flat extension property holds then the annihilator off generates
the real radical of � , and this criterion is satisfied for a degree big
enough. But the question remained open for positive-dimensional
real varieties (see e.g. [23, § 4.3]). In this work, we handle more
specifically the positive-dimensional case. This case has been anal-
ysed in [25], where a stopping criterion is proposed to detect when
a Pommaret basis has been computed. This test is generically satis-
fied for a large enough degree of truncation, but it does not certify
that the basis generates the real radical.
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In this work, we give a new effective stopping criterion to detect
when the prime ideals associated to the annihilator are real and
compute equations for the minimal real prime ideals lying over � .
This criterion is always satisfied for a large enough degree of trun-
cation, and it certifies that the annihilator generates the real radical
if the generated ideal has no embedded components.

The method involves several ingredients, that exploit the prop-
erties of generic non-negative moment sequences.

A new efficient algorithm is proposed in Section 4 to compute a
graded basis of the annihilator of a truncated non-negative linear
functional. A new algorithm is presented in Section 5 to check that
an irreducible decomposition of an algebraic variety is real, using a
generic real projection to reduce to the hypersurface case and the
Sign Changing Criterion, effectively performed with an exact MOP.

The complete algorithm for computing the real radical of an ideal
� as the intersection of real prime ideals is presented in Section 6.

In Section 7, we illustrate the algorithm by some effective numer-
ical computation on examples, where the real radical differs signif-
icantly from the ideal � .

2 VARIETIES AND RADICALS

Let 51, . . . , 5B ∈ C[G1, . . . , G=] = C[x] and let � = (f) ⊂ C[x] be the
ideal generated by f = {51, . . . , 5B }. The algebraic variety defined
by f is denoted + = VC (� ) = {b ∈ C= | 58 (b) = 0, 8 = 1, . . . , B}. It
decomposes into an union of irreducible components + = ∪;8=1+8
where +8 = VC (p8) with p8 a prime ideal of C[x]. An irreducible
variety + is an algebraic variety which cannot be decomposed into
an union of algebraic varieties distinct from + .

TheHilbertNullstellensatz states that the vanishing idealI(+ ) =
{? ∈ C[x] | ∀b ∈ + , ? (b) = 0} of an algebraic variety+ ⊂ C= is the
radical √

� = {? ∈ C[x] | ∃< ∈ N, ?< ∈ � }
(see e.g. [13]). This implies that

√
� = ∩;8=1p8 . We say that � is radical

if � =
√
� .

Considering now equations f = {51, . . . , 5B } ⊂ R[x] with real
coefficients, the real variety defined by f is +R = VC (� ) ∩ R= =

VR (� ) = {b ∈ R= | 58 (b) = 0, 8 = 1, . . . , B}. The vanishing ideal
of +R is I(+R) = {? ∈ R[x] | ∀b ∈ +R, ? (b) = 0}. Let Σ2 =

{∑9 ?
2
9 , ? 9 ∈ R[x]} be the sums of squares of polynomials of R[x].

The real Nullstellensatz states that I(VR (� )) is the real radical of � ,
defined as:

R
√
� = {? ∈ R[x] | ∃< ∈ N, B ∈ Σ

2 s.t. ?2< + B ∈ � }
(see e.g. [26, p. 26], [8, p. 85]). If � =

R
√
� then we say that � is a

real or real radical ideal. The real radical of � contains
√
� and is

the intersection of real prime ideals p8 in R[x] containing � , corre-
sponding to the real irreducible components ofVR (� ). The example
5 = G21 + G22 such that � = ( 5 ) =

√
� and R

√
� = (G1, G2) shows that

the radical and real radical ideals can define algebraic varieties of
different dimensions.

Sets ( = {b ∈ R= | 51 (b) = 0, . . . , 5B (b) = 0, 61 (b) ≥ 0, . . . ,
6A (b) ≥ 0} with 58 , 6 9 ∈ R[x] are called basic semi-algebraic sets.
The real Nullstellensatz for ( states that the vanishing ideal I(() is
the (-radical of � = (f):
(
√
� = {? ∈ R[x] | ∃< ∈ N, (BU ) ∈ (Σ2) {0,1}A s.t. ?2<+

∑

U

BUg
U ∈ � }

(see e.g. [26, th. 2.2.1], [8, cor. 4.4.3], [17], [37]). The (-radical (
√
� is

related to the real radical of an extended ideal �( defined by intro-
ducing slack variables B1, . . . , BA for each non-negativity constraint

defining ( : �( = ( 51, . . . , 5B , 61 − B21, . . . , 6A − B2A ) ⊂ R[G1, . . . , G=, B1,
. . . , BA ] . Namely, we have (

√
� = R

√
�( ∩ R[x] (by the Real Nullstel-

lensatz, see e.g. [8, p. 91]). Therefore, in the following we will focus
on the computation of the real radical of � = (f) and apply this
transformation for the computation of (-radicals.

To describe the irreducible components of a varietyVC ( 51, . . . , 5B )
defined by equations 51, . . . , 5B ∈ R[x], we use tools from Numer-
ical Algebraic Geometry, namely a description of irreducible com-
ponents by witness sets. A witness set of an irreducible algebraic
variety + ⊂ C= is a triple, = (f, !, () where f ⊂ I(+ ), ! is a
generic linear space of dimension = − dim(+ ) given by dim(+ ) lin-
ear equations and ( = ! ∩ + ⊂ C= is a finite set of deg(+ ) points.
Given equations f = {51, . . . , 5B } ⊂ R[x], a numerical irreducible de-
composition of VC (f) can be computed as a collection of witness
sets ,8 = (h8 , !8 , (8) such that each irreducible component +8 of
+ is described by one and only one witness set,8 and all sample
sets (8 are pairewise disjoint. Several methods, based on homotopy
techniques, have been developed over the past to compute such de-
composition. See e.g. [4, 16, 35].

The witness set, of an (irreducible) algebraic variety + , can be
used to compute defining equations h = {ℎ1, . . . , ℎ=} ⊂ C[x] such
that VC (h) = + . Homotopy techniques are employed to generate
enough sample points on+ . The equationsℎ8 are then computed by
projection of the sample points onto ≤ = + 1 generic linear spaces
of dimension (dim(+ ) + 1) and by interpolation. See e.g. [35], for
more details.

The numerical irreducible decomposition of VC (f) as a collec-
tion of witness sets provides a description of all the irreducible
components +8 associated to the isolated primary components &8

of � = (f) [2]. To check that these primary components are reduced
and thus prime (i.e.

√
&8 = &8 ), it is enough to check that the Ja-

cobian of f is of rank = − dim+8 (Jacobian criterion) at one of the
sample points of the witness set,8 , describing the irreducible com-
ponent +8 = V(%8).

Checking that � = (f) has no embedded component can also be
done by numerical irreducible decomposition of deflated ideals, as
described in [18]. We are not going to use this deflation technique
to check non-embedded components.

3 MOMENT RELAXATIONS

3.1 Linear functionals

We describe the dual of polynomial rings (see for instance [28] for
more details). For f ∈ (R[x])∗ = homR (R[x],R) = { f : R[x] →
R | f is R-linear }, we denote 〈f, 5 〉 = f ( 5 ) the application of f to
5 ∈ R[x]. Recall that (R[x])∗ � R[[y]] ≔ R[[~1, . . . , ~=]], with
the isomorphism given by: f ↦→ ∑

U ∈N= 〈f, xU 〉
yU

U ! , where { y
U

U ! } is
the dual basis to {xU }, i.e. 〈yU , xV〉 = U! XU,V . With this basis we can
also identify f ∈ (R[x])∗ with its sequence of coefficients (fU )U ,
where fU ≔ 〈f, xU 〉.

If f ∈ (R[x])∗ and 6 ∈ R[x], we define the convolution of 6

and f as 6 ★ f ≔ f ◦<6 ∈ (R[x])∗ where <6 is the operator of
multiplication by 6 on the polynomials (i.e. 〈6★ f, 5 〉 = 〈f, 65 〉 ∀5 ).
The operation ★ defines an R[x]-module structure on R[[y]]. We
define theHankel operator �f : R[x] → (R[x])∗, 6 ↦→ 6★f and the
annihilator Ann(f) = ker�f : 6 ∈ Ann(f) ⇐⇒ �f (6) = 0 ⇐⇒
6 ★ f = 0.



We describe these operations in coordinates. If f = (fU )U and
6 =

∑

U 6Ux
U then 6 ★ f = (∑V 6VfU+V )U ; the matrix �f in the

basis {xU } and { y
U

U ! } is �f = (fU+V )U,V .

3.2 Truncation

We introduce the same operations in a finite dimensional setting,
considering only polynomials of bounded degree. If� ⊂ R[x],�3 ≔

{ 5 ∈ � | deg 5 ≤ 3 }. In particularR[x]3 is the vector space of poly-
nomials of degree ≤ 3 . If f ∈ (R[x])∗ (resp. f ∈ (R[x]A )∗, A ≥ C )
then f [C ] ∈ (R[x]C )∗ denotes its restriction to R[x]C ; moreover if
� ⊂ (R[x])∗ (resp. � ⊂ (R[x]A )∗, A ≥ C ) then � [C ]

≔ { f [C ] ∈
(R[x]C )∗ | f ∈ � } .

Iff ∈ (R[x]C )∗ and6 ∈ R[x]C , then6★f ≔ f◦<6 ∈ (R[x]C−deg6)∗ .
Iff ∈ (R[x])∗ (orf ∈ (R[x]A )∗ , A ≥ 2C ), thenwe define� C

f : R[x]C →
(R[x]C )∗, 6 ↦→ (6★f) [C ] . We have (6★f) [2C ] = 0 ⇐⇒ � C

6★f = 0:

in analogy to the infinite dimensional setting we define Ann3 (f) ≔
ker�3

f .
For h = ℎ1, . . . , ℎA ⊂ R[x] we define 〈h〉C ≔

{
∑A
8=1 58ℎ8 ∈

R[X]C | 58 ∈ R[X]C−degℎ8
}

, the elements of (h)C generated in de-
gree ≤ C .

3.3 Positive linear functionals and generic

elements

Let � ⊂ R[x] (resp. � ⊂ R[x]C ). We define �⊥
≔

{

f ∈ (R[x])∗ |
〈f, 5 〉 = 0 ∀5 ∈ �

}

(resp. �⊥
≔

{

f ∈ (R[x]C )∗ | 〈f, 5 〉 =

0 ∀5 ∈ �
}

). Notice that f ∈ 〈h〉⊥C (resp. (h)⊥) if and only if (ℎ ★

f) [C−degℎ] = 0 ∀ℎ ∈ h (resp. ℎ ★ f = 0 ∀ℎ ∈ h).
We say thatf ∈ (R[x]2C )∗ is positive semidefinite (psd) ⇐⇒ � C

f

is psd, i.e. 〈� C
f ( 5 ), 5 〉 = 〈f, 5 2〉 ≥ 0 ∀5 ∈ R[x]C . If f is pds then

〈f, 5 2〉 = 0 ⇒ 5 ∈ AnnC (f) [20, 3.12]
For� ⊂ R[x]C we finally define the closed convex cone:

LC (�) ≔ { f ∈ (R[x]C )∗ | f is psd and ∀6 ∈ (� · Σ2)C 〈f, 6〉 ≥ 0 },
see [3] for more details. In particular LC (±h) = { f ∈ 〈h〉⊥C |
f is psd }. We use L(�) for the infinite dimensional case. Notice
that L(�) [C ] ⊂ LC (�) ∀C .

Linear functionals of special importance are evaluations eb de-
fined as 〈eb , 5 〉 = 5 (b). For b ∈ VR (h) we have eb ∈ L(±h).

Definition 3.1. We say that f∗ ∈ LC (±h) is generic if rank� C
f∗ =

max{rank� C
[ | [ ∈ LC (±h)}.

Genericity is characterized as follows, see e.g. [20, prop. 4.7]:

Proposition 3.2. Let f ∈ L2C (±h). The following are equivalent:
(i) f is generic;

(ii) AnnC (f) ⊂ AnnC ([) ∀[ ∈ L2C (g);
(iii) ∀3 ≤ C , we have: rank�3

f = max{rank�3
[ | [ ∈ L2C (±h)}.

Generic elements can be used to compute the real radical of ideals,
see [30, th. 7.39]. We give in Theorem 3.3 a proof of this result. See
also [3, th. 3.16] for a generalisation to quadratic modules.

Theorem 3.3. Let f∗ ∈ L23 (±h) be generic and � = (h). Then for
every 3 ≥ deg h we have � ⊂ (Ann3 (f∗)) ⊂

R
√
� . Moreover for 3 big

enough (Ann3 (f∗)) = R
√
� .

Proof. The inclusion � ⊂ (Ann3 (f∗)) is clear since h ⊂ Ann3 (f∗)
by definition. Now let � = R

√
� . Notice that, for b ∈ R= , Ann3 (eb ) =

I(b)3 = (G1 − b1, . . . , G= − b=)3 . Moreover, if b ∈ VR (� ), then

e
[23 ]
b

∈ L23 (±h). Then, since f∗ is generic:

Ann3 (f∗) ⊂
⋂

b ∈VR (� )
Ann3 (eb ) =

⋂

b ∈VR (� )
I(b)3 = �3 ,

and thus (Ann3 (f∗)) ⊂ � .
For the second part, let 61, . . . , 6: be generators of � . By the Real

Nullstellensatz,∀8 there exists<8 ∈ N, B8 ∈ Σ
2 such that62

<8

8 +B8 ∈ � .

Then for3 big enough andf ∈ L23 (±h)wehave 〈f [23 ] , 62
<8

8 + B8 〉 =
0, thus 〈f [23 ] , 62

<8

8 〉 = 0 and 68 ∈ Ann3 (f). This implies � ⊂
(Ann3 (f)) for all f ∈ L23 (±h), and in particular for f = f∗

generic. �

The goal of the paper is to find an effective algorithm, based on
Theorem 3.3, to compute R

√
� . In the case of a finite real variety, the

flat extension criterion [20, 21] certifies that (Ann3 (f∗)) = R
√
� for

some 3 ∈ N. We will focus in the positive dimensional case, when
such a criterion cannot apply.

3.4 Polynomial Optimization and Exactness

Let 5 , g ∈ R[x]. The goal of Polynomial Optimization is to find:
5 ∗ ≔ inf

{

5 (G) ∈ R | G ∈ R=, 68 (G) ≥ 0 for 8 = 1, . . . , B
}

. (1)
that is the infimum 5 ∗ of the objective function 5 on the basic semial-

gebraic set ( ≔ { G ∈ R= | 68 (G) ≥ 0 for 8 = 1, . . . , B }. In particular
we will consider the case of equalities ℎ8 = 0, obtained as ±ℎ8 ≥ 0.
To solve problem (1) Lasserre [19] proposed to use two hierarchies
of finite dimensional convex cones depending on an order 3 ∈ N.
We describe the Moment Matrix hierarchy and the property of ex-
actness, see [3] for more details.

Definition 3.4. We define the MoM relaxation of order 3 of prob-
lem (1) as L23 (g) and the infimum:

5 ∗MoM,3 ≔ inf
{

〈f, 5 〉 ∈ R | f ∈ L23 (g), 〈f, 1〉 = 1
}

. (2)

We will call Problem (2) a Moment Optimization Problem (MOP).
It can be efficiently solved by semidefinite programming, using in-
terior point methods. Taking 5 = 1, these methods yield an interior
point of L23 (g), that is a generic element f∗ in L23 (g).

Usually we are interested in minimizers of 5 with bounded norm,
i.e. minimizers in some closed ball defined by A−‖x‖2 ≥ 0 (Archimedean

condition). If the Archimedean condition and some regularity con-
ditions at the minimizers of 5 hold (known as Boundary Hessian

Conditions or BHC), the MoM relaxation is exact: for some 3 ∈ N
the minimum is reached, i.e. 5 ∗ = 5 ∗MoM,3

, and we can effectively

recover the minimizers (see [3, th. 4.8]). Using the flat extention
criterion for the Hankel matrix �3

f (associated to a minimizing mo-
ment sequence f) we can effectively test exactness. As BHC hold
generically, exactness is also generic (see [3, cor. 4.9]).

4 ORTHOGONAL POLYNOMIALS AND

ANNIHILATOR

To compute the real radical, we need to compute a basis of the an-
nihilator of a truncated positive linear functional f ∈ (R[x]23 )∗
such that 〈f, ?2〉 ≥ 0 for ? ∈ R[x]3 . In this section, we describe an
efficient algorithm to compute a basis of Ann3 (f) = {? ∈ R[x]3 |
? ★ f = 0} = {? ∈ R[x]3 | 〈f, ?2〉 = 0}. It is a Gram-Schmidt or-
thogonalization process, using the inner product 〈·, ·〉f defined, for
?, @ ∈ R[x]3 , by

〈?, @〉f := 〈f, ? @〉.



By ordering the monomials basis ofR[x]3 and projecting succes-
sively a monomial xU onto the space spanned by the previous mono-
mials, we construct monomial basis b = {xV } of R[x]3 /Ann3 (f),
a corresponding basis of orthogonal polynomials p = (?V) and a
basis k = (:W ) of Ann3 (f). The orthogonal polynomials are such
that

〈?V , ?V′〉f =

{

> 0 if V = V ′

0 otherwise,
and for all V,W , we have 〈?V , :W 〉f = 〈:W , :W 〉f = 0.

To compute these polynomials, we use a projection defined on
the orthogonal of the space spanned by orthogonal polynomials p =

[?1, . . . , ?; ] such that 〈?8 , ?8〉f > 0 and 〈?8 , ? 9 〉f = 0 if 8 ≠ 9 , as
follows: for 5 ∈ R[x]3 ,

proj( 5 , p) = 5 −
;
∑

8=1

〈5 , ?8〉f
〈?8 , ?8〉f

?8 .

By construction, we have 〈proj( 5 , p), ?8〉f = 0 for 8 = 1, . . . , ; . In
practice, the implementation of this projection is done by the so-
calledModifiedGram-Schmidt projection algorithm,which is known
to have a better numerical behavior than the direct Gram-Schmidt
orthogonalization process [38][Lecture 8].

To compute a basis of Ann3 (f), we choose a monomial order-
ing ≺ compatible with the degree (e.g. the graded reverse lexico-
graphic ordering) and build the list of monomials s of degree ≤ 3 in
increasing order for this ordering ≺. Algorithm 4.1 chooses incre-
mentally a new monomial in the list s and projects it on the space
spanned by the previous orthogonal polynomials. The new mono-
mials computed by the function next(s, b, l) are themonomials with
the lowest degree in s, ordered w.r.t. ≺, not in b and not divisible by
a monomial of l.

Algorithm 4.1:Orthogonal polynomials and annihilator of
f

Input: a positive linear functional f ∈ R[x]∗
23+2.

• Let b := []; p := []; k := []; l = []; n := [1];
s := [xU , |U | ≤ 3];

• while n ≠ ∅ do
– for each xU ∈ n,
(i) ?U := proj(xU , p);
(ii) compute EU = 〈?U , ?U 〉f ;
(iii) if EU ≠ 0 then

add xU to b; add ?U to p;
else
add :U := ?U to k; add xU to l;

end;
– n := next(s, b, l);

Output:

• a basis k = [:W ]xW ∈l of the annihilator Ann3 (f) and their
leading monomials l = [xW ];

• a basis of orthogonal polynomials p = [?V8 ];
• a monomial set b = [xV1 , . . . , xVA ].

By construction, the vector space spanned by b and p are equal
at each loop of the algorithm. As the function next(s, b, l) outputs
monomials in s greater than b then the monomials in n are greater
than the monomials in b. Thus, the leading term of :W ∈ k is xW .

Let k, l, p, b denote the output of Algorithm 4.1. For U ∈ N= ,
let (k)�U be the vector space spanned by the elements of the form

xX:W with X + W � U . Similarly, p�U is the set of ?V ∈ p such that
V � U . We prove that k is a Grobner basis of Ann3 (f), that is any
element of Ann3 (f) reduces to 0 by k:

Proposition 4.1. Let f ∈ R[x]∗23+2, k, p be the output of Algo-

rithm 4.1. For xU ∈ (l)3 , i.e. divisible by a monomial in l and of degree

|U | ≤ 3 , ?U = proj(xU , p�U ) is in (k)�U ⊂ Ann3 (f).

Proof. Let us prove it by induction on the ordering of U . The
lowest element in (l)3 is a monomial xW of l. As :W = proj(xW , p�W )
is such that 〈:W , :W 〉f = 〈f, :2W 〉 = 0, :W = proj(xW , p�W ) ∈ (k)�W ⊂
Ann3 (f). Then the induction hypothesis is true for the lowest mono-
mial of (l)3 .

Assume that it is true for xU
′ ∈ (l)3 and for all the smaller mono-

mials w.r.t. ≺. Let xU be the next monomial in (l)3 for the monomial
ordering ≺. Then, there exists xU ′′ ∈ (l)�U ′ and 80 ∈ 1, . . . , = such
that G80x

U ′′
= xU . As ?U −G80?U ′′ has a leading term smaller that xU ,

it can be written as a linear combination of ?U ′ = proj(xU ′
, p≺U ′)

with U ′ ≺ U . More precisely, we have

?U = G80?U ′′ +
∑

X≺U,xX ∈(l)3

_X ?X +
∑

V≺U,xV ∈b
`V ?V ,

for some _X , `V ∈ R.
By induction hypothesis, ?U ′′, ?X ∈ (k)�U ′ ⊂ (k)�U ⊂ Ann3 (f).

Moreover, as ?U ′′ ∈ Ann3 (f) ⊂ Ann3+1 (f), for any ? ∈ R[x]3
we have 〈G80?U ′′, ?〉f = 〈?U ′′, G80 ?〉f = 0. This shows that G80?U ′′ ∈
(k)�U ∩ Ann3 (f).

By definition of ?U = proj(xU , p≺U ), 〈?U , ?V〉f = 0 for xV ∈ b≺U

so that `V =
〈?U ,?V 〉f
〈?V ,?V 〉f = 0 and ?U ∈ (k)�U ∩ Ann3 (f).

As (k)�U = (k)�U ′ + 〈?U 〉, we have (k)�U ⊂ Ann3 (f), which
proves the induction hypothesis for U and concludes the proof. �

This proposition explains why the function next(s, b, l) only out-
puts the monomials with the lowest degree in s, ordered w.r.t. ≺,
not in b and not divisible by a monomial of l.

This algorithm is an optimization of Algorithm 4.1 in [28] or Al-
gorithm 3.2 in [27]. It strongly exploits the positivity of the linear
functional f and improves significantly the performance. We will
illustrate its behavior in Section 7.

Remark 4.2. When the real varietyVR (f) is finite, the flat exten-
sion test on the rank of �:

f can be replaced by testing that the set l of

initial terms contains a power of each variable G8 . This is equivalent

to the fact that R[x]/(k) is finite dimensional or equivalently that the

rank of �3
f is constant for 3 ≫ 0.

5 REAL IRREDUCIBLE COMPONENTS

We introduce an effective algorithm for testing real radicality in the
irreducible case.

5.1 Genericity

Let C# be the # -dimensional affine space and C[C1, . . . , C# ] = C[t]
be its coordinate (polynomial) ring. We say that a property holds
generically in C# if there exists finitely many nonzero polynomials
q1, . . . , q; ∈ C[t] such that, for b ∈ C# , whenq1 (b) ≠ 0, . . . , q; (b) ≠
0 the property holds for b .

In particular we will consider linear maps � ∈ homC (C=,C:+1)
as elements inC= (:+1) in the naturalway, and thus talk about generic
linear maps.



5.2 Smooth Complex and Real Zeros

We recall the definition of smooth zero. We refer to [34] for the com-
plex case and to [26] for the real case.

We say that a variety + ⊂ C= is defined over R, if I(+ ) is gener-
ated by a family of polynomials with coefficient in R. For � ⊂ C=
we denote by cl (�) its Zariski closure.

Hereafter K denotes a field of characteristic 0 and K its algebraic
closure.

Definition 5.1. Let � = ( 51, . . . , 5<) ⊂ K[x] be a prime ideal
and + = V

K
(� ). We say that b ∈ VK (� ) is a smooth zero of � if

rank Jac( 51, . . . , 5<)(b) = = − dim+ .

For K = C the mapping + ↦→ IC (+ ) is a bijection between irre-
ducible varieties inC= and prime ideals. Moreover, for a prime ideal
� , smooth zeros of � and smooth points ofVC (� ) coincide, and they
are dense. On the other hand for K = R the mapping + ↦→ IR (+ )
is a bijection between irreducible varieties in R= and prime ideals
which are real radical. For prime ideals � which are not real radical,
smooth zeros of � are not dense in VR (� ).

Example 5.2. Here are examples of reducible and irreducible al-
gebraic varieties with dense complex smooth points but with no
real smooth point.

• � = (G2 + ~2) ⊂ R[G,~] is a prime, non real radical ideal, as
VR (� ) = {(0, 0)} and R

√
� = (G,~). � does not have smooth

real zeros. Notice that (G2 +~2) ⊂ C[G, ~] is not prime, since
G2 + ~2 = (G + 8~)(G − 8~).

• � = (G2 + ~2 + I2) ⊂ R[G,~, I] is a prime, non real radical
ideal, as VR (� ) = {(0, 0, 0)} and R

√
� = (G,~, I). � does not

have smooth real zeros. In this case (G2+~2+I2) ⊂ C[G, ~, I]
is prime, since G2 + ~2 + I2 is irreducible over C.

We recall criterions for testing whether a prime ideal � ⊂ R[x]
is real radical or not.

Theorem 5.3 (Simple Point Criterion [26, th. 12.6.1]). Let � be

a prime ideal of R[x]. The following are equivalent:
• � is a real radical ideal;

• � = I(VR (� ));
• cl (VR (� )) = VC (� );
• � has a smooth real zero.

Definition 5.4. If + ⊂ C= then +R denotes the real points of + ,
i.e. +R = + ∩+ = + ∩ R= .

Let+ ⊂ C= be an irreducible variety defined overR and � ⊂ R[x]
the ideal defined by its real generators. If follows from Theorem 5.3
that+R = VR (� ) is Zariski dense in+ if and only if � is a real radical
ideal. In this case we say that + is real.

For hypersurfaces there exists another criterion based on the
change of sign of the defining polynomial.

Theorem 5.5 (Sign Changing Criterion [26, th. 12.7.1]). Let

5 ∈ R[x] be an irreducible polynomial. The following are equivalent:

• ( 5 ) is a real radical ideal;
• ( 5 ) has a smooth real point (i.e. there exists b ∈ VR (� ) such
that ∇5 (b) ≠ 0);

• the polynomial 5 changes sign in R= (i.e. there exists G, ~ ∈ R=
such that 5 (G) 5 (~) < 0).

5.3 Test for Real Radicality

We reduce the problem of testing real radicality to the hypersurface
case, and then use the Simple Point Criterion. For that prupose we
project + ⊂ C= , irreducible variety of dimension : , on a linear sub-
space C:+1 ⊂ C= , in such a way+ and cl (c (+ )) are birational. (see
[34, p. 38] for the definition).

It is classical that every irreducible (affine) variety is birational
to an hypersurface. We recall briefly this result to show that we
can choose a generic projection as birational morphism, as done for
the geometric resolution or rational representation, see for instance
[24] or [9].

Lemma 5.6. Let + ⊂ C= be an irreducible varierty of dimension :

and c : C= → C
:+1 be a generic projection. Then + is birational to

c (+ ), i.e. + � cl (c (+ )).

Proof. (sketch) The birational morphism in [34, p. 39] can be
given as a generic projection. Indeed we can choose algebraically
independent elements ;1, . . . , ;: generic linear forms in the indeter-
minates x (see for instance [9, p. 488]). The choice of the primi-
tive element ;:+1 is generic (see for instance [1, th. 15.8.1]: one can
choose ;:+1 as a generic linear form). Then ;1, . . . , ;:+1 define the
projection c : C= → C

:+1, b ↦→ (;1(b), . . . , ;:+1 (b)) and + is bira-
tional to cl (c (+ )). �

We choose a generic projection defined over R. In this case we
show that + has a smooth real point if and only if cl (c (+ )) has a
smooth real point, using the following propositions.

Proposition 5.7. Let + ⊂ C= be an irreducible varierty defined

over R of dimension : , and let c : C= → C:+1 be a generic projection
defined over R. Then cl (c (+ )) is defined over R and if+ has a smooth

real point then cl (c (+ )) has a smooth real point.

Proof. Let c : C= → C:+1 be a generic projection defined over
R. As + is defined over R, cl (c (+ )) is also defined over R since
I(c (+ )) is the elimination ideal (I(+ ) + (c (x) − y))∩R[y], where
y = ~1, . . . , ~:+1 are coordinates of C:+1 (see [13]).

If + has a smooth real point then +R is Zariski dense in + by
Theorem 5.3. Then c (+R) is Zariski dense in c (+ ). Since c is de-
fined over Rwe have that c (+R) ⊂ (c (+ ))R and (c (+ ))R is Zariski
dense in c (+ ). Then cl ((c (+ ))R) = cl (c (+ )) and by Theorem 5.3
cl (c (+ )) has a smooth real point. �

Proposition 5.8. Let + ⊂ C= be an irreducible variety defined

over R of dimension : without smooth real points. Then, for a generic

projection c : C= → C:+1 defined over R, cl (c (+ )) is defined over R
and has no smooth real points.

Proof. By Proposition 5.7, cl (c (+ )) is defined over R.
Assume now that cl (c (+ )) has a smooth real point. Since +

is generically birational to c (+ ) (Lemma 5.6), the preimage of a
generic smooth point inc (+ ) is a single point in+ , which is smooth.
If c is defined over R then this smooth point ? ∈ + is real since

c (?) = c (?) = c (?) implies that ? = ?, showing that + has a
smooth real point. �

Proposition 5.9. Let+ ⊂ C= be an irreducible variety not defined
overR of dimension: . Ifc : C= → C:+1 is a generic projection defined
over R then cl (c (+ )) is not defined over R.



Proof. + is not defined over R if and only if + ≠ + . Thus there
exists ? ∈ + such that ? ∉ + . Then for c : C= → C

:+1 a generic
projection, we have c (?) ∉ cl (c (+ )) (see e.g. [7, sec. 3]). As c

is defined over R, we have c (?) ∈ cl (c (+ )) and c (?) = c (?) ∉

cl (c (+ )). Therefore, cl (c (+ )) ≠ cl (c (+ )) and cl (c (+ )) is not de-
fined over R. �

Theorem 5.10. Let+ ⊂ C= be an irreducible variety of dimension

: . Then + is defined over R and has a smooth real point if and only

if, for c : C= → C:+1 generic projection defined over R, cl (c (+ )) is
defined over R and has a smooth real point.

Proof. If+ has a smooth real point thenwe apply Proposition 5.7
to conclude that cl (c (+ )) has a smooth real point. If + is defined
over R but has no smooth real point, we apply Proposition 5.8 and
deduce that cl (c (+ )) has no smooth real points. Finally, if+ is not
defined over R we apply Proposition 5.9 to show that cl (c (+ )) is
not defined over R. �

Corollary 5.11. Let + ⊂ C= be an irreducible variety of dimen-

sion : , and c : C= → C:+1 a generic projection defined over R. Then

the following are equivalent:

(i) + is defined over R and the real generators of I(+ ) define a
real radical ideal in R[x];

(ii) I(c (+ )) is generated by a real polynomial, irreducible over C,

which changes sign in R:+1.

Proof. By Theorem 5.3, real generators of I(+ ) define a real
radical ideal if and only if+ has a smooth real point . Then (8) ⇐⇒
(88) follows from Theorem 5.10 and Theorem 5.5. �

We finally describe the algorithm for testing real radicality.
In step (i) we fix a generic real projection such that+ is birational

to cl (c (+ )) (Lemma 5.6).
In steps (ii) and (iii) we compute a minimal degree polynomial ℎ

of the hypersurface cl (c (+ )), scaled so that one of its coefficients
is 1 and stop if it has non real coefficients.

In steps (iv), (v) and (vi) we check if the real polynomial ℎ defines
a real radical ideal, using Theorem 5.5. We find b ∈ R:+1 where ℎ is
not vanishing, and then search another point where ℎ has opposite
sign, by Moment Optimization.

If ℎ does not change sign thenVR (ℎ + BY) = ∅ and the MOP will
not be feasible (see for instance [21]).

On the other hand if ℎ changes sign there exist [ ∈ R:+1 such
that ℎ(b)ℎ([) < 0. If ‖[ − b ‖ < A and 0 < Y ≤ 5 ([) then the MOP
has a solution. For generic b the minimizer will be a unique smooth

Algorithm 5.1: Test real radicality

Input: An irreducible variety + ⊂ C= of dim. : and Y, A > 0.

(i) Fix a generic projection c : C= → C:+1;
(ii) Compute the irreducible polynomial ℎ defining cl (c (+ ));
(iii) If ℎ is not real return false;
(iv) Choose a generic point b ∈ R:+1 such that ℎ(b) ≠ 0;
(v) B := sign(ℎ(b));
(vi) Let 5 = ‖x − b ‖2. Solve the MOP:
5 ∗MoM,3

= inf{〈f, 5 〉 | f ∈ L23 (±(ℎ + BY), A2 − 5 ), 〈f, 1〉 = 1};
(vii) Extract a minimizer [ and check that ℎ(b)ℎ([) < 0.

Output: False if the MOP is not feasible, true if the MOP is
feasible and ℎ(b)ℎ([) < 0.

point, the MOPwill be exact (since we added the ball constraint A2−
5 ≥ 0, the Archimedean property holds and generecally the MOM
relaxation is exact), and we can certify that ℎ changes sign. The
constraint A2 − ‖x − b ‖2 ≥ 0 is not necessary if VR (ℎ) is compact,
since in this case the Archimedean hypothesis is already satisfied.

The correctness of Algorithm 5.1 follows from Corollary 5.11.

5.4 Test

We test Algorithm 5.1 for two simple cases, using the Julia packages
MomentTools.jl and MultivariateSeries.jl .

Example 5.12. We check that the irreducible polynomialℎ = G2+
~2 ∈ R[G, ~] defines an ideal � = (ℎ) that is not real radical. We ran-
domly choose b = (−1.5667884102749219,−0.5028780359864093),
where ℎ(b) > 0. We check that ℎ does not change sign, detecting
the infeasibility of the optimization problem.

X = @polyvar x y

h = x^2 + y^2

s = sign(h(X => xi))

dist = sum((xi - vec(X)).^2)

e = 0.01

v, M = minimize(dist, [h+s*e], [9 - dist],

X, 4, optimizer);

The termination status termination_status(M.model):

INFEASIBLE::TerminationStatusCode = 2

of the optimization shows the infeasibility of the moment optimiza-
tion program and that � is not real radical.

In the samewaywe detect the sign change. Forℎ = G2+~2−1 and
b as above, we find[ = (−0.9473807839956285,−0.30408822493309284)
and ℎ(b)ℎ([) < 0.

In the previous examples we could avoid the ball constraint A2 −
‖x − b ‖2 ≥ 0, since in these casesVR (ℎ) is compact and theArchimedean
condition is already satisfied.

6 COMPUTING THE REAL RADICAL

With the main ingredients, we can now describe the algorithm for
computing the real radical of an ideal � = (f), presented as the in-
tersection of real prime ideals. The steps, summarised in Algorithm
6.1, are detailed hereafter.

Algorithm 6.1: Real radical

Input: Polynomials f = ( 51, . . . , 5B ) ⊂ R[x].
3 := max(deg(f8 ), 8 = 1, . . . , B) − 1; success := false;
Repeat until success

(i) 3 := 3 + 1
(ii) Compute a generic element f∗ of L23+2 (±f)
(iii) Compute a graded basis k of Ann3 (f∗) (Algorithm 4.1)
(iv) Compute the numerical irreducible components+8 of+C (k)

(described by witness sets)
(v) For each component +8 , check that +8 is real (Algorithm 5.1).

If not repeat from step (i).
(vi) success := true
(vii) For each component +8 compute defining equations

h8 = {ℎ8,1, . . . , ℎ8,=+1} of+8
Output: The polynomials h8 generating the minimal real
prime ideals p8 lying over (f).

https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
https://github.com/bmourrain/MultivariateSeries.jl


In step (ii) we compute a generic element of L23+2 (±f) solving
a MOP with a constant objective function.

In step (iii) we use Algorithm 4.1 to compute the graded basis k.
In step (iv) we find the irreducible components of the variety

VC (k), described by witness sets (see e.g. [4]). The embedded com-
ponents of (k) are not recovered by this technique.

In step (v) we control if the irreducible components ofVC (k) are
real, using Algorithm 5.1.

In step (vii), the equations defining +8 are obtained from = + 1
generic projections. In particular, the equation of a generic projec-
tion of+8 used in step (ii) of Algorithm 5.1 provides one of the defin-
ing equation, say ℎ8,1.

We prove the correctness of the algorithm. By Theorem 3.3 we
have VR (k) = VR (f) for 3 ≥ max(deg(f)). Let p8 = (h8) in step
(vii). By constructionVR (k) =

⋃

8 (+8)R =
⋃

8 VR (p8) = VR (
⋂

8 p8).
If step (v) succeeds, all the p8 ’s are real radical, and thus

⋂

8 p8 is
real radical. Since VR (f) = VR (

⋂

8 p8), by the Real Nullstellensatz
⋂

8 p8 =
R
√
f and the p8 are the real prime ideal lying over (f). The

loop stops for some 3 ≫ 0 by Theorem 3.3.
Algorithm 6.1 computes the minimal real prime ideals lying over

(f), but does not check that the equations k define a real radical
ideal. If the ideal (k) has no embedded component and the prime
ideals p8 are of multiplicity 1 (checked with the Jacobian criterion
for h at a witness point of p8 ), then the success of step (v) implies
that k = Ann3 (f∗) defines the real radical of (f).

Algorithm 6.1 can be simplified in the case whereVR (f) is finite.
We can check that (k) =

R
√
f , for k = Ann3 (f∗), using the flat ex-

tension criterion. We can also detect this condition with the initial
of k, see Remark 4.2. In this case, f∗ extends to a positive linear

functional on R[x] and (k) = R
√
f .

Similarly, when the ideal (k) is prime, one only needs to check
that it is real (using Algorithm 5.1 on a generic projection), steps
(iv), (vii) can be skipped and we obtain (k) = R

√
f . When (k) is real

radical, the algorithm can even output directly (k) = R
√
f .

7 EXAMPLES

We illustrateAlgorithm6.1, with the Julia package MomentTools.jl1 ,
using the Semi-Definite Programm optimizer Mosek.

7.1 The isolated singular locus of a real surface

Example 7.1. Let 5 = −10I4 + G3 − 3G2I + 3GI2 + 20~I2 − I3 −
10G2 + 20GI − 10~2 − 10I2, 6 = 5 − (G2 + ~2 + I2) and ( = { b ∈ R3 |
5 (b) = 0, 6(b) ≥ 0 }. We want to compute the (-radical of � = ( 5 ),
which is equal to (I − G, G2 − ~).

X = @polyvar x y z

f = -10*z^4 + x^3 - 3*x^2*z + 3*x*z^2 + 20*y*z^2

- z^3 - 10*x^2 + 20*x*z - 10*y^2 - 10*z^2

g = 5 - (x^2+y^2+z^2)

v, M = minimize(one(f),[f], [g], X, 6, optimizer)

sigma = get_series(M)[1]

L = monomials(X,0:3)

K,In,P,B = annihilator(sigma, L)

We compute a generic positive linear functional f (by optimising
the constant function 1 on (), a graded basis K of (Ann3 (f)), the
initial monomials In of K, a basis P of R[x]

(Ann3 (f)) orthogonal with

1https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl

respect to 〈·, ·〉f and a monomial basis B of R[x]
(Ann3 (f)) . The elements

of K are:

z - 0.999999935776211x - 2.027089868945844e-9y

+ 1.9280308682132505e-9

x² - 1.9114608711668615e-8x - 0.9999998601127081y

- 2.6012502193917264e-7

These polynomials define a parametrisation of parabola and thus
generate a real radical ideal. They are approximation of the gener-
ators of the (-radical of � within an error 3.e-7.

We can obtain the generators also using a slack variable B , and
replacying the inequality 6 ≥ 0 by the equation 6 − B2 = 0. In this
case the elements of K are:

z - 0.9999999987418964x - 2.0081938216111927e-9y

+ 1.848080975279204e-9

x² + 5.417748642831503e-10x - 0.9999999813624691y

- 4.507056024417168e-23s - 2.369265117430075e-8

s² + 2.531532655747432e-22ys - 7.729278487211091e-23xs

- 2.0732509876020901e-22s + 0.9999999794170498y²

+ 1.1737503831818984e-8xy + 2.0000000080371674y

- 1.4039307522382754e-8x - 4.999999978855321

and the generators of the (-radical are approximately K∩R[G, ~, I].
Example 7.2. We compute equations for the hold of the Whitney

umbrella. Let 5 = G2 −~2I,6 = 1− (G2 +~2 + (I + 2)2) and ( = { b ∈
R
3 | 5 (b) = 0, 6(b ≥ 0) }. We compute the (-radical of � = ( 5 ),

which is equal to (G,~). Proceding as above, we obtain for K, the
polynomials:

x + 3.1388489268444904e-21, y + 3.6567022687420305e-21

These polynomials are a good approximation of the generators (G,~)
of the real radical, defining the singular locus of the Whitney um-
brella.

7.2 Components of different dimensions

Example 7.3. This example is taken from [30, ex. 9.6]. We want
to compute the real radical of � = ( 51, 52, 53) ⊂ R[G, ~, I], where:

51 = G2 + G ~ − G I − G − ~ + I
52 = G ~ + 2~2 − ~ I − G − 2~ + I
53 = G I + ~ I − I2 − G − ~ + I.

Its variety has three irreducible components, two lines and a point,
defined by the real prime ideals p1 = (G −I,~), p2 = (G −I +1, ~−1)
and m = (G − 1, ~ − 1, I − 1). In the primary decomposition of �
there is an embedded component m′, corresponding to the point
(1, 0, 1) ∈ V(p1) which has multiplicity two. The real radical of � is
R
√
� = p1 ∩p2 ∩m = (~2 −~, G2 − 2GI + I2 + G − I, GI +~I − I2 − G −

~ + I, G~ + GI − I2 − 2G − ~ + 2I).
We compute R

√
� as described in the algorithm.

v, M = minimize(one(f1),[f1,f2,f3], [], X, 8, optimizer)

sigma = get_series(M)[1]

L = monomials(X,0:3)

K,I,P,B = annihilator(sigma, L)

The elements of K are:

xz - 0.9999999985579915x² - 0.9999999940764733xy

+ 0.9999999838152133x + 0.9999999868597321y

- 0.9999999838041349z - 2.550976860304921e-10

y² + 4.386341684978274e-7x² + 3.2135911001749273e-7xy

- 8.511512801700947e-7x - 1.0000008530709377y

+ 9.888494964176088e-7z - 5.851033908621897e-8

yz + 8.763853490689755e-7x² - 0.9999993625797754xy

+ 0.9999983122334805x - 1.6948939787209127e-6y

- 0.9999980367703514z - 1.1680315895740145e-7

https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl


z² - 0.9999991215344914x² - 1.99999935020258xy

+ 2.99999828318184x + 1.9999982828997438y

- 2.999998007995895z - 1.1724998920381591e-7

which are approximately (within an error of 1.e-6) generators
of R

√
� .

Example 7.4. This example is taken from [11, 8.2]. We want to
compute the real radical of � = ( 51, 52, 53) ⊂ R[G,~, I], where:

51 = G~I, 52 = I (G2 + ~2 + I2 + ~), 53 = ~ (~ + I).
The associated complex variety has four irreducible components:
two conjugates lines intersecting in the origin, another line (double
for f ) and a point. The real variety is given by a line p = (~,I) and
a point m = (G, 2~ + 1, 2G − 1). The real radical is R

√
� = p ∩ m =

(~G, I + ~,~2 + ~
2 ). A direct check shows that these polynomials

generate a real radical ideal.
We compute R

√
� as described above and obtain for K:

z - 6.53338688785662e-19x + 0.9995827809845268y

- 0.00020850768649473272

xy - 1.4685109255649737e-19x² + 5.9730164512226755e-6x

+ 2.1320912413237275e-19y + 1.0655056374451632e-19

y² - 2.268705086623265e-6x² + 1.88498770272315e-19x

+ 0.4998194337295852y + 4.384653173789382e-6

approximating (within an error of 5.e-4) the generators of R
√
� .

7.3 Limitations

Algorithm 6.1 is a symbolic-numeric algorithm, which output de-
pends on the quality of the numerical tools that are involved. In
particular, the numerical quality of the generic positive linear func-
tional f∗ , produced by a SDP solver, impacts the computation of
generators of the real radical. This computation depends on a thresh-
old used to determine when a polynomial is in the annihilator. A
detailled analysis of the numerics behind the algorithm as well as
an analysis of its complexity are left for futur investigations.
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