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We present a new algorithm for computing the real radical of an ideal and, more generally, the -radical of , which is based on convex moment optimization. A truncated positive generic linear functional vanishing on the generators of is computed solving a Moment Optimization Problem (MOP). We show that, for a large enough degree of truncation, the annihilator of generates the real radical of . We give an effective, general stopping criterion on the degree to detect when the prime ideals lying over the annihilator are real and compute the real radical as the intersection of real prime ideals lying over .

The method involves several ingredients, that exploit the properties of generic positive moment sequences. A new efficient algorithm is proposed to compute a graded basis of the annihilator of a truncated positive linear functional. We propose a new algorithm to check that an irreducible decomposition of an algebraic variety is real, using a generic real projection to reduce to the hypersurface case. There we apply the Sign Changing Criterion, effectively performed with an exact MOP. Finally we illustrate our approach in some examples.

CCS CONCEPTS

• Theory of computation → Semidefinite programming; • Mathematics of computing → Grobner bases and other special bases;

• Computing methodologies → Hybrid symbolic-numeric methods.

INTRODUCTION

In many "real world" problems which can be modeled by polynomial constraints, the solutions with real coordinates are generally analyzed with particular attention. Efficient algebraic methods have been developed over the years to solve such systems of polynomial constraints, including Grobner basis, border basis, resultants, triangular sets, homotopy continuation. But all these methods involve implicitly the complex roots of the polynomial systems and their complexity depends on the degree (and multiplicity) of the underlying complex algebraic varieties.

Finding equations vanishing on the real solutions without computing all the complex roots is a challenging question. This means computing the vanishing ideal of the real solutions of an ideal , that is, its real radical R √ . Several approaches have been proposed to compute the real radical. Some of these methods are reducing to univariate problems [START_REF] Becker | Computation of Real Radicals of Polynomial Ideals[END_REF][START_REF] Becker | On the Real Nullstellensatz[END_REF][START_REF] Neuhaus | Computation of Real Radicals of Polynomial Ideals -II[END_REF][START_REF] Silke | A Zero-Dimensional Approach to Compute Real Radicals[END_REF], or exploiting quantifier elimination techniques [START_REF] Galligo | Complexity of Finding Irreducible Components of a Semialgebraic Set[END_REF], or using infinitesimals [START_REF] Roy | The Complexification and Degree of a Semi-Algebraic Set[END_REF] or triangular sets and regular chains [START_REF] Chen | Triangular Decomposition of Semi-Algebraic Systems[END_REF][START_REF] Xia | An Algorithm for Isolating the Real Solutions of Semi-Algebraic Systems[END_REF].

Sums-of-Squares convex optimisation and moment matrices are used in [START_REF] Lasserre | Moment matrices, border bases and real radical computation[END_REF][START_REF] Bernard Lasserre | Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals[END_REF] to compute real radicals, when the set of real solutions is finite. Some properties of ideals associated to semidefinite programming relaxations are analysed in [START_REF] Sekiguchi | Real Ideal and the Duality of Semidefinite Programming for Polynomial Optimization[END_REF], involving the simple point criterion. In [START_REF] Ma | A Certificate for Semidefinite Relaxations in Computing Positive-Dimensional Real Radical Ideals[END_REF] a stopping criterion is presented to verify that a Pommaret basis has been computed from the kernels of moment matrices involved in Sum of Squares relaxation. In [START_REF] Brake | Validating the Completeness of the Real Solution Set of a System of Polynomial Equations[END_REF], a test based on sum-of-square decomposition is proposed to verify that polynomials vanishing on a subset of the semi-algebraic set are in the real radical.

In [START_REF] Safey El Din | Computing Real Radicals and S-Radicals of Polynomial Systems[END_REF], an algorithm based on rational representations of equidimensional components of algebraic varieties and singular locus recursion is presented and its complexity is analysed.

We present a new algorithm for computing the real radical of an ideal and, more generally, the -radical of , which is based on convex moment optimization. An interesting feature of the approach is that it does not involve the complex solutions, which are not on a real component of the algebraic variety V ( ). Section 2 recalls the relationship between vanishing ideals and radicals for real and complex algebraic varieties.

Generators of the real radical of are computed from a truncated generic positive linear functional vanishing on the generators of . This truncated linear functional is computed by solving a Moment Optimization Problem (MOP), as summarized in Section 3.

We show that, for a large enough degree of truncation, the annihilator of generates the real radical of , suggesting an algorithm which will compute the annihilator of a generic positive linear functional for increasing degrees. Our approach differs from the works in [START_REF] Lasserre | Moment matrices, border bases and real radical computation[END_REF][START_REF] Bernard Lasserre | Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals[END_REF], which apply for zero-dimensional real ideals using the flat extension property (see e.g. [START_REF] Curto | Flat Extensions of Positive Moment Matrices: Recursively Generated Relations[END_REF][START_REF] Laurent | A Generalized Flat Extension Theorem for Moment Matrices[END_REF]) as a stopping criterion: if the flat extension property holds then the annihilator of generates the real radical of , and this criterion is satisfied for a degree big enough. But the question remained open for positive-dimensional real varieties (see e.g. [23, § 4.3]). In this work, we handle more specifically the positive-dimensional case. This case has been analysed in [START_REF] Ma | A Certificate for Semidefinite Relaxations in Computing Positive-Dimensional Real Radical Ideals[END_REF], where a stopping criterion is proposed to detect when a Pommaret basis has been computed. This test is generically satisfied for a large enough degree of truncation, but it does not certify that the basis generates the real radical.

In this work, we give a new effective stopping criterion to detect when the prime ideals associated to the annihilator are real and compute equations for the minimal real prime ideals lying over . This criterion is always satisfied for a large enough degree of truncation, and it certifies that the annihilator generates the real radical if the generated ideal has no embedded components.

The method involves several ingredients, that exploit the properties of generic non-negative moment sequences.

A new efficient algorithm is proposed in Section 4 to compute a graded basis of the annihilator of a truncated non-negative linear functional. A new algorithm is presented in Section 5 to check that an irreducible decomposition of an algebraic variety is real, using a generic real projection to reduce to the hypersurface case and the Sign Changing Criterion, effectively performed with an exact MOP.

The complete algorithm for computing the real radical of an ideal as the intersection of real prime ideals is presented in Section 6.

In Section 7, we illustrate the algorithm by some effective numerical computation on examples, where the real radical differs significantly from the ideal .

VARIETIES AND RADICALS

Let 1 , . . . , ∈ C[ 1 , . . . , ] = C[x] and let = (f) ⊂ C[x] be the ideal generated by f = { 1 , . . . , }. The algebraic variety defined by f is denoted = V C ( ) = { ∈ C | ( ) = 0, = 1, . . . , }. It decomposes into an union of irreducible components = ∪ =1 where = V C ( ) with a prime ideal of C[x].
An irreducible variety is an algebraic variety which cannot be decomposed into an union of algebraic varieties distinct from .

The Hilbert Nullstellensatz states that the vanishing ideal

I( ) = { ∈ C[x] | ∀ ∈ , ( ) = 0} of an algebraic variety ⊂ C is the radical √ = { ∈ C[x] | ∃ ∈ N,
∈ } (see e.g. [START_REF] Cox | Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra[END_REF]). This implies that √ = ∩ =1 . We say that is radical if = √ . Considering now equations f = { 1 , . . . , } ⊂ R[x] with real coefficients, the real variety defined by

f is R = V C ( ) ∩ R = V R ( ) = { ∈ R | ( ) = 0, = 1, . . . , }. The vanishing ideal of R is I ( R ) = { ∈ R[x] | ∀ ∈ R , ( ) = 0}. Let Σ 2 = { 2 , ∈ R[x]
} be the sums of squares of polynomials of R[x]. The real Nullstellensatz states that I (V R ( )) is the real radical of , defined as: [26, p. 26], [8, p. 85]). If = R √ then we say that is a real or real radical ideal. The real radical of contains √ and is the intersection of real prime ideals in R[x] containing , corresponding to the real irreducible components of V R ( ). The example

R √ = { ∈ R[x] | ∃ ∈ N, ∈ Σ 2 s.t. 2 + ∈ } (see e.g.
= 2 1 + 2 2 such that = ( ) = √ and R √ = ( 1 , 2 )
shows that the radical and real radical ideals can define algebraic varieties of different dimensions.

Sets = { ∈ R | 1 ( ) = 0, . . . , ( ) = 0, 1 ( ) ≥ 0, . . . , ( ) ≥ 0} with , ∈ R[x] are called basic semi-algebraic sets. The real Nullstellensatz for states that the vanishing ideal I ( ) is the -radical of = (f): [START_REF] Krivine | Anneaux préordonnés[END_REF], [START_REF] Stengle | A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry[END_REF]). The -radical √ is related to the real radical of an extended ideal defined by introducing slack variables 1 , . . . , for each non-negativity constraint

√ = { ∈ R[x] | ∃ ∈ N, ( ) ∈ (Σ 2 ) {0,1}
defining : = ( 1 , . . . , , 1 -2 1 , . . . , -2 ) ⊂ R[ 1 , . . . , , 1 , . . . , ]. Namely, we have √ = R √ ∩ R[x]
(by the Real Nullstellensatz, see e.g. [8, p. 91]). Therefore, in the following we will focus on the computation of the real radical of = (f) and apply this transformation for the computation of -radicals.

To describe the irreducible components of a variety V C ( 1 , . . . , ) defined by equations 1 , . . . , ∈ R[x], we use tools from Numerical Algebraic Geometry, namely a description of irreducible components by witness sets. A witness set of an irreducible algebraic variety ⊂ C is a triple = (f, , ) where f ⊂ I( ), is a generic linear space of dimensiondim( ) given by dim( ) linear equations and = ∩ ⊂ C is a finite set of deg( ) points. Given equations f = { 1 , . . . , } ⊂ R[x], a numerical irreducible decomposition of V C (f) can be computed as a collection of witness sets = (h , , ) such that each irreducible component of is described by one and only one witness set and all sample sets are pairewise disjoint. Several methods, based on homotopy techniques, have been developed over the past to compute such decomposition. See e.g. [START_REF] Daniel | Numerically Solving Polynomial Systems with Bertini[END_REF][START_REF] Hauenstein | Regenerative Cascade Homotopies for Solving Polynomial Systems[END_REF][START_REF] Sommese | Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components[END_REF].

The witness set of an (irreducible) algebraic variety , can be used to compute defining equations

h = {ℎ 1 , . . . , ℎ } ⊂ C[x] such that V C (h) = .
Homotopy techniques are employed to generate enough sample points on . The equations ℎ are then computed by projection of the sample points onto ≤ + 1 generic linear spaces of dimension (dim( ) + 1) and by interpolation. See e.g. [START_REF] Sommese | Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components[END_REF], for more details.

The numerical irreducible decomposition of V C (f) as a collection of witness sets provides a description of all the irreducible components associated to the isolated primary components of = (f) [START_REF] Atiyah | Introduction To Commutative Algebra[END_REF]. To check that these primary components are reduced and thus prime (i.e. √ = ), it is enough to check that the Jacobian of f is of rankdim (Jacobian criterion) at one of the sample points of the witness set , describing the irreducible component = V ( ).

Checking that = (f) has no embedded component can also be done by numerical irreducible decomposition of deflated ideals, as described in [START_REF] Krone | Numerical Algorithms for Detecting Embedded Components[END_REF]. We are not going to use this deflation technique to check non-embedded components.

MOMENT RELAXATIONS 3.1 Linear functionals

We describe the dual of polynomial rings (see for instance [START_REF] Mourrain | Polynomial-Exponential Decomposition From Moments[END_REF] for more details). For ∈

(R[x]) * = hom R (R[x], R) = { : R[x] → R | is R-linear }, we denote , = ( ) the application of to ∈ R[x]. Recall that (R[x]) * R[[y]] ≔ R[[ 1 , . . . , ]]
, with the isomorphism given by: ↦ → We describe these operations in coordinates. If = ( ) and =

x then ★ = ( + ) ; the matrix in the basis {x } and {

y ! } is = ( + ) , .

Truncation

We introduce the same operations in a finite dimensional setting, considering only polynomials of bounded degree.

If ⊂ R[x], ≔ { ∈ | deg ≤ }. In particular R[x] is the vector space of poly- nomials of degree ≤ . If ∈ (R[x]) * (resp. ∈ (R[x] ) * , ≥ ) then [ ] ∈ (R[x] ) * denotes its restriction to R[x] ; moreover if ⊂ (R[x]) * (resp. ⊂ (R[x] ) * , ≥ ) then [ ] ≔ { [ ] ∈ (R[x] ) * | ∈ } . If ∈ (R[x] ) * and ∈ R[x] , then ★ ≔ • ∈ (R[x] -deg ) * . If ∈ (R[x]) * (or ∈ (R[x] ) * , ≥ 2 ), then we define : R[x] → (R[x] ) * , ↦ → ( ★ ) [ ] .
We have ( ★ ) [2 ] = 0 ⇐⇒ ★ = 0: in analogy to the infinite dimensional setting we define Ann ( ) ≔ ker .

For

h = ℎ 1 , . . . , ℎ ⊂ R[x] we define h ≔ =1 ℎ ∈ R[X] | ∈ R[X] -deg ℎ ,
the elements of (h) generated in degree ≤ . [20, 3.12] For ⊂ R[x] we finally define the closed convex cone:

Positive linear functionals and generic elements

Let ⊂ R[x] (resp. ⊂ R[x] ). We define ⊥ ≔ ∈ (R[x]) * | , = 0 ∀ ∈ (resp. ⊥ ≔ ∈ (R[x] ) * | , = 0 ∀ ∈ ). Notice that ∈ h ⊥ (resp. (h) ⊥ ) if and only if (ℎ ★ ) [ -deg ℎ] = 0 ∀ℎ ∈ h (resp. ℎ ★ = 0 ∀ℎ ∈ h). We say that ∈ (R[x] 2 ) * is positive semidefinite (psd) ⇐⇒ is psd, i.e. ( ), = , 2 ≥ 0 ∀ ∈ R[x] . If is pds then , 2 = 0 ⇒ ∈ Ann ( )
L ( ) ≔ { ∈ (R[x] ) * | is psd and ∀ ∈ ( • Σ 2 )
, ≥ 0 }, see [START_REF] Baldi | Exact Moment Representation in Polynomial Optimization[END_REF] for more details. In particular L (±h) = { ∈ h ⊥ | is psd }. We use L( ) for the infinite dimensional case. Notice that L( ) [ ] ⊂ L ( ) ∀ .

Linear functionals of special importance are evaluations e defined as e , = ( ). For ∈ V R (h) we have e ∈ L(±h).

Definition 3.1. We say that * ∈ L (±h) is generic if rank * = max{rank | ∈ L (±h)}.
Genericity is characterized as follows, see e.g. [20, prop. 4.7]:

P 3.2. Let ∈ L 2 (±h).
The following are equivalent:

(i) is generic; (ii) Ann ( ) ⊂ Ann ( ) ∀ ∈ L 2 (g); (iii) ∀ ≤ , we have: rank = max{rank | ∈ L 2 (±h)}.
Generic elements can be used to compute the real radical of ideals, see [30, th. 7.39]. We give in Theorem 3.3 a proof of this result. See also [3, th. 3.16] for a generalisation to quadratic modules. For the second part, let 1 , . . . , be generators of . By the Real Nullstellensatz, ∀ there exists ∈ N, ∈ Σ 2 such that 2 + ∈ . Then for big enough and ∈ L 2 (±h) we have [2 ] , 2 + = 0, thus [2 ] , 2 = 0 and ∈ Ann ( ). This implies ⊂ (Ann ( )) for all ∈ L 2 (±h), and in particular for = * generic.

The goal of the paper is to find an effective algorithm, based on Theorem 3.3, to compute R √ . In the case of a finite real variety, the flat extension criterion [START_REF] Lasserre | Moment matrices, border bases and real radical computation[END_REF][START_REF] Bernard Lasserre | Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals[END_REF] certifies that (Ann ( * )) = R √ for some ∈ N. We will focus in the positive dimensional case, when such a criterion cannot apply.

Polynomial Optimization and Exactness

Let , g ∈ R[x]. The goal of Polynomial Optimization is to find:

* ≔ inf ( ) ∈ R | ∈ R , ( ) ≥ 0 for = 1, . . . , . (1 
) that is the infimum * of the objective function on the basic semialgebraic set ≔ { ∈ R | ( ) ≥ 0 for = 1, . . . , }. In particular we will consider the case of equalities ℎ = 0, obtained as ±ℎ ≥ 0. To solve problem (1) Lasserre [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF] proposed to use two hierarchies of finite dimensional convex cones depending on an order ∈ N. We describe the Moment Matrix hierarchy and the property of exactness, see [START_REF] Baldi | Exact Moment Representation in Polynomial Optimization[END_REF] for more details. Definition 3.4. We define the MoM relaxation of order of problem (1) as L 2 (g) and the infimum:

* MoM, ≔ inf , ∈ R | ∈ L 2 (g), , 1 = 1 . (2) 
We will call Problem (2) a Moment Optimization Problem (MOP). It can be efficiently solved by semidefinite programming, using interior point methods. Taking = 1, these methods yield an interior point of L 2 (g), that is a generic element * in L 2 (g).

Usually we are interested in minimizers of with bounded norm, i.e. minimizers in some closed ball defined byx 2 ≥ 0 (Archimedean condition). If the Archimedean condition and some regularity conditions at the minimizers of hold (known as Boundary Hessian Conditions or BHC), the MoM relaxation is exact: for some ∈ N the minimum is reached, i.e. * = * MoM, , and we can effectively recover the minimizers (see [3, th. 4.8]). Using the flat extention criterion for the Hankel matrix (associated to a minimizing moment sequence ) we can effectively test exactness. As BHC hold generically, exactness is also generic (see [3, cor. 4.9]).

ORTHOGONAL POLYNOMIALS AND ANNIHILATOR

To compute the real radical, we need to compute a basis of the annihilator of a truncated positive linear functional

∈ (R[x] 2 ) * such that , 2 ≥ 0 for ∈ R[x]
. In this section, we describe an efficient algorithm to compute a basis of Ann ( )

= { ∈ R[x] | ★ = 0} = { ∈ R[x] | , 2 = 0}.
It is a Gram-Schmidt orthogonalization process, using the inner product •, • defined, for , ∈ R[x] , by , := , .

By ordering the monomials basis of R[x] and projecting successively a monomial x onto the space spanned by the previous monomials, we construct monomial basis b = {x } of R[x] /Ann ( ), a corresponding basis of orthogonal polynomials p = ( ) and a basis k = ( ) of Ann ( ). The orthogonal polynomials are such that

, ′ = > 0 if = ′ 0
otherwise, and for all , , we have , = , = 0. To compute these polynomials, we use a projection defined on the orthogonal of the space spanned by orthogonal polynomials p = [ 1 , . . . , ] such that , > 0 and

, = 0 if ≠ , as follows: for ∈ R[x] , proj( , p) = - =1 , ,
.

By construction, we have proj( , p), = 0 for = 1, . . . , . In practice, the implementation of this projection is done by the socalled Modified Gram-Schmidt projection algorithm, which is known to have a better numerical behavior than the direct Gram-Schmidt orthogonalization process [START_REF] Trefethen | Numerical Linear Algebra[END_REF][ Lecture 8].

To compute a basis of Ann ( ), we choose a monomial ordering ≺ compatible with the degree (e.g. the graded reverse lexicographic ordering) and build the list of monomials s of degree ≤ in increasing order for this ordering ≺. Algorithm 4.1 chooses incrementally a new monomial in the list s and projects it on the space spanned by the previous orthogonal polynomials. The new monomials computed by the function next(s, b, l) are the monomials with the lowest degree in s, ordered w.r.t. ≺, not in b and not divisible by a monomial of l. By construction, the vector space spanned by b and p are equal at each loop of the algorithm. As the function next(s, b, l) outputs monomials in s greater than b then the monomials in n are greater than the monomials in b. Thus, the leading term of ∈ k is x . Let k, l, p, b denote the output of Algorithm 4.1. For ∈ N , let (k) be the vector space spanned by the elements of the form x with + . Similarly, p is the set of ∈ p such that . We prove that k is a Grobner basis of Ann ( ), that is any element of Ann ( ) reduces to 0 by k:

P 4.1. Let ∈ R[x] * 2 +2
, k, p be the output of Algorithm 4.1. For x ∈ (l) , i.e. divisible by a monomial in l and of degree

| | ≤ , = proj(x , p ) is in (k) ⊂ Ann ( ).

P

. Let us prove it by induction on the ordering of . The lowest element in (l) is a monomial x of l. As = proj(x , p ) is such that , = , 2 = 0, = proj(x , p ) ∈ (k) ⊂ Ann ( ). Then the induction hypothesis is true for the lowest monomial of (l) .

Assume that it is true for x ′ ∈ (l) and for all the smaller monomials w.r.t. ≺. Let x be the next monomial in (l) for the monomial ordering ≺. Then, there exists x ′′ ∈ (l) ′ and 0 ∈ 1, . . . , such that 0 x ′′ = x . As -0 ′′ has a leading term smaller that x , it can be written as a linear combination of

′ = proj(x ′ , p ≺ ′ )
with ′ ≺ . More precisely, we have

= 0 ′′ + ≺ ,x ∈(l) + ≺ ,x ∈b , for some , ∈ R. By induction hypothesis, ′′, ∈ (k) ′ ⊂ (k) ⊂ Ann ( ). Moreover, as ′′ ∈ Ann ( ) ⊂ Ann +1 ( ), for any ∈ R[x] we have 0 ′′, = ′′, 0 = 0. This shows that 0 ′′ ∈ (k) ∩ Ann ( ). By definition of = proj(x , p ≺ ), , = 0 for x ∈ b ≺ so that = , , = 0 and ∈ (k) ∩ Ann ( ). As (k) = (k) ′ +
, we have (k) ⊂ Ann ( ), which proves the induction hypothesis for and concludes the proof. This proposition explains why the function next(s, b, l) only outputs the monomials with the lowest degree in s, ordered w.r.t. ≺, not in b and not divisible by a monomial of l.

This algorithm is an optimization of Algorithm 4.1 in [START_REF] Mourrain | Polynomial-Exponential Decomposition From Moments[END_REF] or Algorithm 3.2 in [START_REF] Mourrain | Fast algorithm for border bases of Artinian Gorenstein algebras[END_REF]. It strongly exploits the positivity of the linear functional and improves significantly the performance. We will illustrate its behavior in Section 7. R 4.2. When the real variety V R (f) is finite, the flat extension test on the rank of can be replaced by testing that the set l of initial terms contains a power of each variable . This is equivalent to the fact that R[x]/(k) is finite dimensional or equivalently that the rank of is constant for ≫ 0.

REAL IRREDUCIBLE COMPONENTS

We introduce an effective algorithm for testing real radicality in the irreducible case.

Genericity

Let C be the -dimensional affine space and C[ 1 , . . . , ] = C[t] be its coordinate (polynomial) ring. We say that a property holds generically in C if there exists finitely many nonzero polynomials 1 , . . . , ∈ C[t] such that, for ∈ C , when 1 ( ) ≠ 0, . . . , ( ) ≠ 0 the property holds for .

In particular we will consider linear maps ∈ hom C (C , C +1 ) as elements in C ( +1) in the natural way, and thus talk about generic linear maps.

Smooth Complex and Real Zeros

We recall the definition of smooth zero. We refer to [START_REF] Shafarevich | Basic Algebraic Geometry 1: Varieties in Projective Space[END_REF] for the complex case and to [START_REF] Marshall | Positive Polynomials and Sums of Squares[END_REF] for the real case.

We say that a variety ⊂ C is defined over R, if I ( ) is generated by a family of polynomials with coefficient in R. For ⊂ C we denote by cl ( ) its Zariski closure.

Hereafter K denotes a field of characteristic 0 and K its algebraic closure.

Definition 5.1. Let = ( 1 , . . . , ) ⊂ K[x] be a prime ideal and = V K ( ). We say that ∈ V K ( ) is a smooth zero of if rank Jac( 1 , . . . , )( ) = -dim .

For K = C the mapping ↦ → I C ( ) is a bijection between irreducible varieties in C and prime ideals. Moreover, for a prime ideal , smooth zeros of and smooth points of V C ( ) coincide, and they are dense. On the other hand for K = R the mapping ↦ → I R ( ) is a bijection between irreducible varieties in R and prime ideals which are real radical. For prime ideals which are not real radical, smooth zeros of are not dense in V R ( ).

Example 5.2.

Here are examples of reducible and irreducible algebraic varieties with dense complex smooth points but with no real smooth point.

• = ( 2 + 2 ) ⊂ R[ , ] is a prime, non real radical ideal, as V R ( ) = {(0, 0)} and R √ = ( , ). does not have smooth real zeros. Notice that ( 2 + 2 ) ⊂ C[ , ] is not prime, since 2 + 2 = ( + )( -). • = ( 2 + 2 + 2 ) ⊂ R[ , , ] is a prime, non real radical ideal, as V R ( ) = {(0, 0, 0)} and R √ = ( , ,
). does not have smooth real zeros. In this case

( 2 + 2 + 2 ) ⊂ C[ , , ] is prime, since 2 + 2 + 2 is irreducible over C.
We recall criterions for testing whether a prime ideal ⊂ R[x] is real radical or not. • is a real radical ideal;

• = I (V R ( )); • cl (V R ( )) = V C ( ); • has a smooth real zero. Definition 5.4. If ⊂ C then R denotes the real points of , i.e. R = ∩ = ∩ R .
Let ⊂ C be an irreducible variety defined over R and ⊂ R[x] the ideal defined by its real generators. If follows from Theorem 5.3 that R = V R ( ) is Zariski dense in if and only if is a real radical ideal. In this case we say that is real.

For hypersurfaces there exists another criterion based on the change of sign of the defining polynomial. • ( ) is a real radical ideal;

• ( ) has a smooth real point (i.e. there exists ∈ V R ( ) such that ∇ ( ) ≠ 0); • the polynomial changes sign in R (i.e. there exists , ∈ R such that ( ) ( ) < 0).

Test for Real Radicality

We reduce the problem of testing real radicality to the hypersurface case, and then use the Simple Point Criterion. For that prupose we project ⊂ C , irreducible variety of dimension , on a linear subspace C +1 ⊂ C , in such a way and cl ( ( )) are birational. (see [34, p. 38] for the definition).

It is classical that every irreducible (affine) variety is birational to an hypersurface. We recall briefly this result to show that we can choose a generic projection as birational morphism, as done for the geometric resolution or rational representation, see for instance [START_REF] Lecerf | Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers[END_REF] or [START_REF] Bostan | Algorithmes Efficaces en Calcul Formel[END_REF]. L 5.6. Let ⊂ C be an irreducible varierty of dimension and : C → C +1 be a generic projection. Then is birational to ( ), i.e. cl ( ( )).

P . (sketch)

The birational morphism in [34, p. 39] can be given as a generic projection. Indeed we can choose algebraically independent elements 1 , . . . , generic linear forms in the indeterminates x (see for instance [9, p. 488]). The choice of the primitive element +1 is generic (see for instance [1, th. 15.8.1]: one can choose +1 as a generic linear form). Then 1 , . . . , +1 define the projection : C → C +1 , ↦ → ( 1 ( ), . . . , +1 ( )) and is birational to cl ( ( )).

We choose a generic projection defined over R. In this case we show that has a smooth real point if and only if cl ( ( )) has a smooth real point, using the following propositions. P 5.7. Let ⊂ C be an irreducible varierty defined over R of dimension , and let : C → C +1 be a generic projection defined over R. Then cl ( ( )) is defined over R and if has a smooth real point then cl ( ( )) has a smooth real point.

P

. Let : C → C +1 be a generic projection defined over R. As is defined over R, cl ( ( )) is also defined over R since I ( ( )) is the elimination ideal (I( ) + ( (x)y))∩R [y], where y = 1 , . . . , +1 are coordinates of C +1 (see [START_REF] Cox | Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra[END_REF]).

If has a smooth real point then R is Zariski dense in by Theorem 5.3. Then ( R ) is Zariski dense in ( ). Since is defined over R we have that ( R ) ⊂ ( ( )) R and ( ( )) R is Zariski dense in ( ). Then cl (( ( )) R ) = cl ( ( )) and by Theorem 5.3 cl ( ( )) has a smooth real point. P 5.8. Let ⊂ C be an irreducible variety defined over R of dimension without smooth real points. Then, for a generic projection : C → C +1 defined over R, cl ( ( )) is defined over R and has no smooth real points.

P

. By Proposition 5.7, cl ( ( )) is defined over R. Assume now that cl ( ( )) has a smooth real point. Since is generically birational to ( ) (Lemma 5.6), the preimage of a generic smooth point in ( ) is a single point in , which is smooth. If is defined over R then this smooth point ∈ is real since ( ) = ( ) = ( ) implies that = , showing that has a smooth real point. P 5.9. Let ⊂ C be an irreducible variety not defined over R of dimension . If : C → C +1 is a generic projection defined over R then cl ( ( )) is not defined over R.

  the dual basis to {x }, i.e. y , x = ! , . With this basis we can also identify ∈ (R[x]) * with its sequence of coefficients ( ) , where ≔ , x . If ∈ (R[x]) * and ∈ R[x], we define the convolution of and as ★ ≔ • ∈ (R[x]) * where is the operator of multiplication by on the polynomials (i.e. ★ , = , ∀ ). The operation ★ defines an R[x]-module structure on R[[y]]. We define the Hankel operator : R[x] → (R[x]) * , ↦ → ★ and the annihilator Ann( ) = ker : ∈ Ann( ) ⇐⇒ ( ) = 0 ⇐⇒ ★ = 0.

T 3 . 3 .

 33 Let * ∈ L 2 (±h) be generic and = (h). Then for every ≥ deg h we have ⊂ (Ann ( * )) ⊂ R √ . Moreover for big enough (Ann ( * )) = R √ . P . The inclusion ⊂ (Ann ( * )) is clear since h ⊂ Ann ( * ) by definition. Now let = R √ . Notice that, for ∈ R , Ann (e ) = I ( ) = ( 1 -1 , . . . , -) . Moreover, if ∈ V R ( ), then e [2 ] ∈ L 2 (±h). Then, since * is generic: Ann ( * ) ⊂ ∈V R ( ) Ann (e ) = ∈V R ( ) I ( ) = , and thus (Ann ( * )) ⊂ .

Algorithm 4 . 1 :

 41 Orthogonal polynomials and annihilator of Input: a positive linear functional ∈ R[x] * 2 +2 . • Let b := []; p := []; k := []; l = []; n := [1]; s := [x , | | ≤ ]; • while n ≠ ∅ do for each x ∈ n, (i) := proj(x , p); (ii) compute = , ; (iii) if ≠ 0 then add x to b; add to p; else add := to k; add x to l; end; n := next(s, b, l); Output: • a basis k = [ ] x ∈l of the annihilator Ann ( ) and their leading monomials l = [x ]; • a basis of orthogonal polynomials p = [ ]; • a monomial set b = [x 1 , . . . , x ].

  . 12.6.1]). Let be a prime ideal of R[x]. The following are equivalent:

  . 12.7.1]). Let ∈ R[x] be an irreducible polynomial. The following are equivalent:
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P

. is not defined over R if and only if ≠ . Thus there exists ∈ such that ∉ . Then for : C → C +1 a generic projection, we have ( ) ∉ cl ( ( )) (see e.g. [7, sec. 3]). As is defined over R, we have ( ) ∈ cl ( ( )) and ( ) = ( ) ∉ cl ( ( )). Therefore, cl ( ( )) ≠ cl ( ( )) and cl ( ( )) is not defined over R. T 5.10. Let ⊂ C be an irreducible variety of dimension . Then is defined over R and has a smooth real point if and only if, for : C → C +1 generic projection defined over R, cl ( ( )) is defined over R and has a smooth real point.

P

. If has a smooth real point then we apply Proposition 5.7 to conclude that cl ( ( )) has a smooth real point. If is defined over R but has no smooth real point, we apply Proposition 5.8 and deduce that cl ( ( )) has no smooth real points. Finally, if is not defined over R we apply Proposition 5.9 to show that cl ( ( )) is not defined over R. We finally describe the algorithm for testing real radicality. In step (i) we fix a generic real projection such that is birational to cl ( ( )) (Lemma 5.6).

In steps (ii) and (iii) we compute a minimal degree polynomial ℎ of the hypersurface cl ( ( )), scaled so that one of its coefficients is 1 and stop if it has non real coefficients.

In steps (iv), (v) and (vi) we check if the real polynomial ℎ defines a real radical ideal, using Theorem 5.5. We find ∈ R +1 where ℎ is not vanishing, and then search another point where ℎ has opposite sign, by Moment Optimization.

If ℎ does not change sign then V R (ℎ + ) = ∅ and the MOP will not be feasible (see for instance [START_REF] Bernard Lasserre | Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals[END_REF]).

On the other hand if ℎ changes sign there exist ∈ R +1 such that ℎ( )ℎ( ) < 0. If -< and 0 < ≤ ( ) then the MOP has a solution. For generic the minimizer will be a unique smooth Output: False if the MOP is not feasible, true if the MOP is feasible and ℎ( )ℎ( ) < 0. point, the MOP will be exact (since we added the ball constraint 2 -≥ 0, the Archimedean property holds and generecally the MOM relaxation is exact), and we can certify that ℎ changes sign. The constraint 2x -2 ≥ 0 is not necessary if V R (ℎ) is compact, since in this case the Archimedean hypothesis is already satisfied.

The correctness of Algorithm 5.1 follows from Corollary 5.11.

Test

We test Algorithm 5.1 for two simple cases, using the Julia packages MomentTools.jl and MultivariateSeries.jl.

Example 5.12. We check that the irreducible polynomial ℎ = 2 + 2 ∈ R[ , ] defines an ideal = (ℎ) that is not real radical. We randomly choose = (-1.5667884102749219, -0.5028780359864093), where ℎ( ) > 0. We check that ℎ does not change sign, detecting the infeasibility of the optimization problem.

X, 4, optimizer);

The termination status termination_status(M.model):

of the optimization shows the infeasibility of the moment optimization program and that is not real radical.

In the same way we detect the sign change. For ℎ = 2 + 2 -1 and as above, we find = (-0.9473807839956285, -0.30408822493309284) and ℎ( )ℎ( ) < 0.

In the previous examples we could avoid the ball constraint 2x -2 ≥ 0, since in these cases V R (ℎ) is compact and the Archimedean condition is already satisfied.

COMPUTING THE REAL RADICAL

With the main ingredients, we can now describe the algorithm for computing the real radical of an ideal = (f), presented as the intersection of real prime ideals. The steps, summarised in Algorithm 6.1, are detailed hereafter.

Algorithm 6.1: Real radical

Input:

(described by witness sets) (v) For each component , check that is real (Algorithm 5.1).

If not repeat from step (i). (vi) success := true (vii) For each component compute defining equations h = {ℎ ,1 , . . . , ℎ , +1 } of Output: The polynomials h generating the minimal real prime ideals lying over (f).

In step (ii) we compute a generic element of L 2 +2 (±f) solving a MOP with a constant objective function.

In step (iii) we use Algorithm 4.1 to compute the graded basis k.

In step (iv) we find the irreducible components of the variety V C (k), described by witness sets (see e.g. [START_REF] Daniel | Numerically Solving Polynomial Systems with Bertini[END_REF]). The embedded components of (k) are not recovered by this technique.

In step (v) we control if the irreducible components of V C (k) are real, using Algorithm 5.1.

In step (vii), the equations defining are obtained from + 1 generic projections. In particular, the equation of a generic projection of used in step (ii) of Algorithm 5.1 provides one of the defining equation, say ℎ ,1 .

We prove the correctness of the algorithm. By Theorem 3.

). If step (v) succeeds, all the 's are real radical, and thus

f and the are the real prime ideal lying over (f). The loop stops for some ≫ 0 by Theorem 3.3. Algorithm 6.1 computes the minimal real prime ideals lying over (f), but does not check that the equations k define a real radical ideal. If the ideal (k) has no embedded component and the prime ideals are of multiplicity 1 (checked with the Jacobian criterion for h at a witness point of ), then the success of step (v) implies that k = Ann ( * ) defines the real radical of (f). Algorithm 6.1 can be simplified in the case where V R (f) is finite. We can check that (k) = R √ f, for k = Ann ( * ), using the flat extension criterion. We can also detect this condition with the initial of k, see Remark 4.2. In this case, * extends to a positive linear functional on R[x] and (k) = R √ f. Similarly, when the ideal (k) is prime, one only needs to check that it is real (using Algorithm 5.1 on a generic projection), steps (iv), (vii) can be skipped and we obtain (k) = R √ f. When (k) is real radical, the algorithm can even output directly

EXAMPLES

We illustrate Algorithm 6.1, with the Julia package MomentTools.jl 1 , using the Semi-Definite Programm optimizer Mosek.

The isolated singular locus of a real surface

Example 7.1. Let = -10 4 + 3 -

We want to compute the -radical of = ( ), which is equal to ( -, 2 -). We compute a generic positive linear functional (by optimising the constant function 1 on ), a graded basis K of (Ann ( )), the initial monomials In of K, a basis P of (Ann ( )) . The elements of K are: z -0.999999935776211x -2.027089868945844e-9y + 1.9280308682132505e-9 x² -1.9114608711668615e-8x -0.9999998601127081y -2.6012502193917264e-7

These polynomials define a parametrisation of parabola and thus generate a real radical ideal. They are approximation of the generators of the -radical of within an error 3.e-7.

We can obtain the generators also using a slack variable , and replacying the inequality ≥ 0 by the equation -2 = 0. In this case the elements of K are: 

We compute the -radical of = ( ), which is equal to ( , ). Proceding as above, we obtain for K, the polynomials:

x + 3.1388489268444904e-21, y + 3.6567022687420305e-21

These polynomials are a good approximation of the generators ( , ) of the real radical, defining the singular locus of the Whitney umbrella.

Components of different dimensions

Example 7.3. This example is taken from [30, ex. 9.6]. We want to compute the real radical of = ( 1 , 2 , 3 ) ⊂ R[ , , ], where:

Its variety has three irreducible components, two lines and a point, defined by the real prime ideals 1 = ( -, ), 2 = ( -+ 1, -1) and = ( -1, -1, -1). In the primary decomposition of there is an embedded component ′ , corresponding to the point (1, 0, 1) ∈ V ( 1 ) which has multiplicity two. The real radical of is

We compute R √ as described in the algorithm.

v, M = minimize(one(f1),[f1,f2,f3], [], X, 8, optimizer) sigma = get_series(M) [START_REF] Michael Artin | Algebra[END_REF] L = monomials(X,0:3) K,I,P,B = annihilator(sigma, L)

The elements of K are: approximating (within an error of 5.e-4) the generators of R √ .

Limitations

Algorithm 6.1 is a symbolic-numeric algorithm, which output depends on the quality of the numerical tools that are involved. In particular, the numerical quality of the generic positive linear functional * , produced by a SDP solver, impacts the computation of generators of the real radical. This computation depends on a threshold used to determine when a polynomial is in the annihilator. A detailled analysis of the numerics behind the algorithm as well as an analysis of its complexity are left for futur investigations.