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The stochastic approximation method for recursive kernel

estimation of the conditional extreme value index

Fatma Ben Khadher1∗ and Yousri Slaoui2†
1Univ. Monastir, Laboratoire analyse, géométrie et applications, FSM, Tunisie

2Univ. Poitiers, Lab. Math. et Appl., Futuroscope Chasseneuil, France

Abstract : In this research paper, our central focus is upon applying the stochastic approxi-
mation method to define a class of recursive kernel estimator of the conditional extreme value
index. We investigate the properties of the proposed recursive estimator and compare them to
those pertaining to Hill’s non-recursive kernel estimator. We attempt to demonstrate that using
some optimal parameters, the proposed recursive estimator defined by the stochastic approxima-
tion algorithm proves to be very competitive to Hill’s non-recursive kernel estimator. Finally, the
theoretical results are explored through simulation experiments and illustrated using real dataset
about Malaria in Senegalese children.

Keywords: Stochastic approximation algorithm; tail index; extreme value; Pareto distribution.

1 Introduction

The extreme value theory is a branch of statistics which studies the asymptotic distributions
of extreme values. It can be a maximum or a minimum of a set of random variables. This
theory was developed by Emil Julius Gumbel (1958). It is widely applied in many research ar-
eas like climate changes, environmental risks, insurance and financial banking (see Beirlant et al.
(2004) for a list of interesting examples). Estimation of the tail index, associated with a random
variable Y , is one of the main problems in the area of extreme value theory. Therefore, a lot of
research, aiming to estimate this parameter, has been performed during last decades (see for exam-
ple Embrechts et al. (1997), Beirlant et al. (2004), De Haan and Fereira (2006), Reiss and Thomas
(2007), Gardes and Girard (2008), Gardes et al. (2010) and Stupfler (2013)). We denote by γ the
tail index which characterizes the distribution tail heaviness of Y . It can be estimated paramet-
rically using the Hill (1975) estimator and nonparametrically using a kernel version of the Hill’s
estimator proposed by Goegebeur et al. (2014). Improved approaches have recently appeared in lit-
erature. Among them, we state Brilhante et al. (2013) to defined a moment of order p; Beran et al.
(2014) who proposed a harmonic moment tail index estimator; Paulauskas and Vaičiulis (2013,
2017) who elaborated parametric families of functions of the order statistics.

Recently, recursive estimation has drawn the attention and whetted the interest of multiple
researchers. Recursivity means that the estimator calculated from the first n observations, say
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θn, is a function of θn−1. More precisely, we can easily update the estimator value with each
additional observation specialy in large sample sizes. The basic objective of the present work
lies in introducing a recursive kernel estimator of the conditional extreme value index defined by
applying a stochastic approximation algorithm. To the best of our knowledge, this tail index
estimator construction was not previously considered in literature and it aims to improve the
estimation accuracy.

The application of the stochastic approximation algorithm was introduced first by Révész (1973,
1977) and then extended by Mokkadem et al. (2009b) to estimate a regression function. Using
this algorithm, Tsybakov (1990) approximated the mode of a probability density, Mokkadem et al.
(2009a) estimated a multivariate probability density and recently Slaoui (2016) estimated a hazard
function. It turns out that this estimator depends on two important parameters, which are the
bandwidth and the stepsize of the stochastic algorithm. By making an adequate choice of the
two parameters, the proposed recursive estimator can be very competitive to Hill’s non-recursive
kernel estimator in terms of estimation error and much better in terms of computational costs.

The structure of this paper is organized as follows. In Section 2, we identify our estimator
and we set forward its asymptotic properties. Simulation experiments and investigation of real
dataset are depided in Section 3. Finally, the last section wraps up the conclusion and provides
new perspectives for future works.

2 Construction of the estimator and asymptotic properties

2.1 The proposed estimator

Let (Xi, Yi), i = 1, · · · , n, be independent realizations of the random vectors (X, Y ) ∈ R
d × R

+
0 ,

where X is a d-dimensional covariate with joint density function g, d > 1. The probability density
function of Y given X = x is defined as f(y|x) = P(Y = y|X = x) and the conditional survival
function of Y given X = x is denoted by F (y|x) = P(Y > y|X = x). In this paper, we are basically
interested in heavy tails. More precisely, we assume that the conditional survival function of Y
given X = x satisfies

(C1): F (y|x) = y−
1

γ(x) l(y|x),
where γ(·) is an unknown positive function of the covariate x called the tail function and for a
fixed x, l(·|x) is a function that varies slowly at infinity, i.e for all λ > 0,

lim
y→∞

l(λy|x)
l(y|x) = 1.

Condition (C1) means that the conditional distribution of Y given X = x is in the Frechet
maximum domain of attraction. The tail function γ(x) is the conditional extreme value index
function which needs to be adequately estimated from the available data.

(C2): l(·|x) is normalized.
The Karamata representation (Theorem 1.3.1 given in Bingham et al. (1987)) of the slowly-varying
function, l(·|x), can be written as

l(y|x) = c(x) exp

(∫ y

1

ε(z|x)
z

dz

)
,

where c(·) is a positive function and ε(z|x) −→ 0 as z −→ ∞. Thus, l(·|x) is differentiable and
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the function ε(·|x) is given by ε(z|x) = z
l′(z|x)
l(z|x) .

(C3): There exists a strictly negative function ρ(·), a strictly positive function γ(·) and a rate
function b(·|x), b(y|x) −→ 0 as y −→ ∞, of constant sign for large values of y such that for all
υ > 0

lim
y→∞

F (υy|x)

F (y|x)
− υ− 1

γ(x)

b(y|x) = υ− 1
γ(x)

υ
ρ(x)
γ(x) − 1

ρ(x)γ(x)
.

Additional conditions are needed for ensuring the asymptotic properties of the estimators. Let
d(x, y) denote the Euclidean distance between x and y, for all x, y ∈ R

d.
(C4): There exists cg ∈ R such that for all x, y ∈ R

d,

g (x)− g(y) = cgd(x, y).

(C5): There exists cF ∈ R such that for all x, y, z ∈ R
d,

lnF (y|x)
lnF (y|z) − 1 = cFd(x, z)

and γ(x)cF < 0.
Moreover, we impose a condition on the kernel function K.

(C6): K is a bounded density function on R
d, with support Ω included in the unit hypersphere

of Rd and satisfying

∫

Rd

K(z)dz = 1.

Our idea rests upon to construct a recursive estimator for the conditional tail index γ(x). It will
be presented as a ratio of two estimators an(x) and bn(x). The denominator bn(x) is an estimator
of the function b(x) = g (x)F (tn|x), where (tn) is a nonrandom threshold sequence tending to ∞
as n −→ ∞. The nominator an(x) is an estimator of the function a(x) = γ(x)F (tn|x)Cxg (x),
where

Cx = 1 +
b(tn|x)
γ(x)ρ(x)

[
1

1− ρ(x)
− 1 + rn,x

]

and (rn,x) is a non-random sequence, tending to 0 as n −→ ∞, defined as

rn,x =
ρ(x)

γ2(x)

∫ ∞

1

z−
1

γ(x)
−1


γ2(x)

z
1

γ(x) F (tnz|x)

F (tn|x)
− 1

b(tn|x)
− z

ρ(x)
γ(x) − 1

ρ(x)γ(x)


 dz.

Construction of a recursive estimator of the function a (x):
Let us introduce the stochastic algorithm to estimate the function a(·) at a point x. It is based on
searching the zero of the function f1 : y 7−→ a(x)− y. Following Robbins-Monro’s procedure, this
algorithm is defined as below

(i) a0(x) ∈ R,

(ii) ∀n > 1, we set an(x) = an−1(x) + γnZn(x), where the stepsize (γn) is a sequence of positive
real numbers that goes to zero and Zn(x) is an observation of the function f1 at the point
an−1(x).
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To construct Zn(x), we follow the approach of Révész (1973, 1977), Tsybakov (1990) and Slaoui
(2013, 2014a,b, 2018) which are based on the classical property of stochastic algorithms (which
is E [Zn(x)|Fn−1] = 0, where Fn−1 stands for the σ-algebra of the events occurring at the time

n− 1). In addition, we introduce a kernel K (which is a function satisfying

∫

Rd

K(z)dz = 1), and

a bandwidth (hn) (which is a sequence of positive real numbers that goes to zero when n −→ ∞),
and set Zn(x) = Khn

(x−Xn) [lnYn − ln tn]1{Yn>tn} − an−1(x), with Kh (x) := h−dK
(
h−1x

)
.

The stochastic approximation algorithm introduced in Mokkadem et al. (2009a) which estimates
recursively the function a at the point x is defined as follows:

an(x) = (1− γn)an−1(x) + γnKhn
(x−Xn) [lnYn − ln tn]1{Yn>tn}. (2.1)

Considering a0(x) = 0, the estimator an defined in (2.1) can be rewritten as

an(x) = Πn

n∑

k=1

Π−1
k γkKhk

(x−Xk) [lnYk − ln tn]1{Yk>tn}, (2.2)

with

Πn =
n∏

k=1

(1− γk). (2.3)

Construction of a recursive estimator of the function b (x):
We apply the stochastic algorithm to estimate the function b(·) at a point x. It is based on
searching the zero of the function f2 : y 7−→ b(x)− y. Following Robbins-Monro’s procedure, this
algorithm is defined as below

(i) b0(x) ∈ R,

(ii) ∀n > 1, we set bn(x) = bn−1(x) + βnTn(x), where the stepsize (βn) is a sequence of positive
real numbers that goes to zero and Tn(x) is an observation of the function f2 at the point
bn−1(x).

Based on the same previously used approach, we consider Tn(x) = Khn
(x−Xn)1{Yn>tn}−bn−1(x),

with the same bandwidth (hn) and kernel function Kh previously defined. Then, the stochastic
approximation algorithm to estimate recursively the function b at the point x is defined as follows:

bn(x) = (1− βn)bn−1(x) + βnKhn
(x−Xn)1{Yn>tn}. (2.4)

Considering b0(x) = 0, the estimator bn defined by (2.4) can be rewritten as

bn(x) = Qn

n∑

k=1

Q−1
k βkKhk

(x−Xk)1{Yk>tn}, (2.5)

with

Qn =

n∏

k=1

(1− βk). (2.6)
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Then, our proposed recursive estimator for the conditional tail index γ(x) is defined as:

γ̂H
n (x) :=

an(x)

bn(x)
=

Πn

∑n
k=1Π

−1
k γkKhk

(x−Xk) [lnYk − ln tn]1{Yk>tn}

Qn

∑n
k=1Q

−1
k βkKhk

(x−Xk)1{Yk>tn}

. (2.7)

The second objective of our paper is to study the properties of the recursive estimator defined by
(2.7) and to compare them with the kernel version of Hill’s estimator of the conditional extreme
value index proposed by Goegebeur et al. (2014), which is defined as

γ̃H
n (x) =

1
n

∑n
i=1Khi

(x−Xi) [lnYi − ln tn]1{Yi>tn}

1
n

∑n
i=1Khi

(x−Xi)1{Yi>tn}

. (2.8)

The asymptotic properties of γ̂H
n are investigated in the next subsection.

2.2 Asymptotic results

In order to obtain the bias and the variance of the recursive estimator γ̂H
n defined by (2.7), we

first calculate those of the recursive estimator an defined by (2.2). Then, we calculate those of the
recursive estimator bn defined by (2.5).

Throughout this paper, stepsizes and bandwidths are considered to belong to the following
regularly varying sequences class.
Definition 1 Let u ∈ R and (un)n>1 be a nonrandom positive sequence. We say that un ∈ GS(u)
if

lim
n→∞

n

[
1− un−1

un

]
= u.

This condition was introduced by Galambos and Seneta (1973). The acronym GS stands for
(Galambos and Seneta). Typical sequences in GS(u) are, for b ∈ R, nu(log n)b, nu(log logn)b and
so on.
Finally, we impose the following additional conditions:

(C7):

i) γn ∈ GS(−α) with α ∈ (1/2, 1].

ii) hn ∈ GS(−p) with p ∈ (0, α/d).

iii) lim
n→∞

nγn ∈ (min (p, (α− pd) /2) ,∞].

iv) βn ∈ GS(−b) with b ∈ (1/2, 1].

v) lim
n→∞

nβn ∈ (min (p, (b− pd) /2) ,∞].

vi) nhd+2
n ln2 tn −→

n→∞
∞.

The following notations will be often used in this paper:

ε = lim
n→∞

(nγn)
−1. (2.9)

ε1 = lim
n→∞

(nβn)
−1. (2.10)

c′
F

= cF‖z‖2 such as z ∈ B∗
Rd(0, 1) = {x ∈ R

d ; 0 < ‖x‖2 ≤ 1}.
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C =

(
− 1

γ(x)
+ o(1)

)
cF‖u‖2 for all u ∈ Ω.

m̃n(x) = E
[
Khn

(x−Xn)(lnYn − ln tn)1{Yn>tn}

]
.

mn(x) = E
[
(lnYn − ln tn)1{Yn>tn}|Xn = x

]
.

Since we are interested in the asymptotic behavior of the estimator γ̂H
n , we shall start by giving

the asymptotic behavior of the estimator an.
Theorem 1 (Bias and variance of the estimator an)
Let Assumptions (C1)− (C7) hold.

1. If p ∈ (0, α/ (d+ 2)], then

E(an(x)) = a(x)− C

(1− pε)Cx
a(x)hn ln tn + o(hn ln tn). (2.11)

If p ∈ (α/ (d+ 2) , 1/d), then

E(an(x)) = o(
√

γnh−d
n ). (2.12)

2. If p ∈ (0, α/ (d+ 2)), then

Var(an(x)) = o(h2
n ln

2 tn). (2.13)

If p ∈ [α/ (d+ 2) , 1/d), then

Var(an(x)) =
1

Cx

6

2− (α− pd)ε
‖K2‖1mn(x)g (x) γ(x)γnh

−d
n + o(γnh

−d
n ). (2.14)

Departing from the above, we infer that the bias and the variance of the estimator an heavily
depend on the choice of the stepsize (γn). We consider two classical choices of (γn). The first
one rests on the minimization of the variance, while the second one relies on the Mean Integrated
Squared Error (MISE).

Choices of (γn) minimizing the variance of the estimator an:
As mentioned in Mokkadem et al. (2009a), by considering the point of view of estimation by
confidence intervals, it is recommended to minimize the variance of the proposed estimator for
confidence interval estimation (see also Hall (1992)).
Corollary 1 Let the assumptions of Theorem 1 hold. To minimize the asymptotic variance of the
estimator an, α must be chosen equal to 1, (γn) must satisfy lim

n→∞
nγn = 1− pd, and we then have

Var(an(x)) =
6

Cx

(1− pd)

nhd
n

‖K2‖1mn(x)g (x) + o

(
1

nhd
n

)
.

The proof of Corollary 1 follows immediately from (2.14).

6



Choices of (γn) minimizing the MISE of the estimator an:
First, we have

MISE(an(x)) =

∫

Rd

MSE(an(x))dx =

∫

Rd

[
(E(an(x))− a(x))2 + Var(an(x))

]
dx.

The following proposition provides the MISE of the estimator an.
Proposition 1 Let Assumptions (C1)-(C7) hold.

1. If p ∈ (0, α/ (d+ 2)),

MISE(an(x)) =
C2

(1− pε)2
h2
n ln

2 tn

∫

Rd

F
2
(tn|x)g2(x)γ2(x)dx+ o(h2

n ln
2 tn).

2. If p = α/ (d+ 2),

MISE(an(x)) =
C2

(1− pε)2
h2
n ln

2 tn

∫

Rd

F
2
(tn|x)g2(x)γ2(x)dx

+
6

2− (α− pd)ε

‖K2‖1mn(x)g (x) γ(x)

Cx
γnh

−d
n + o

(
h2
n ln

2 tn + γnh
−d
n

)
.

3. If p ∈ (α/ (d+ 2) , 1/d),

MISE(an(x)) =
6

2− (α− pd)ε

‖K2‖1mn(x)g (x) γ(x)

Cx

γnh
−d
n + o(γnh

−d
n ).

The following corollary is an immediate consequence of the second part of Proposition 1.
Corollary 2 Let Assumptions (C1)-(C7) hold. To minimize the MISE of the estimator an, the
stepsize (γn) must be chosen in GS(−1) such that lim

n→∞
nγn = 1 and the bandwidth (hn) must equal

hn =



[
3d(d+ 1)

2(d+ 2)

‖K2‖1
C2 ln2(tn)

∫
Rd F (tn|x)g (x) γ2(x)dx
∫
Rd F

2
(tn|x)g2(x)γ2(x)dx

] 1
d+2

γ
1

d+2
n


 .

Now, we treat the asymptotic behavior of the estimator bn, in order to deduce the one of the
estimator γ̂H

n .
Theorem 2 (Bias and variance of the estimator bn)
Let Assumptions (C1)-(C7) hold.

1. If p ∈ (0, b/ (d+ 2)], then

E(bn(x)) = b(x) +
C

1− pε1
b(x)hn ln tn + o(hn ln tn). (2.15)

If p ∈ (b/ (d+ 2) , 1/d), then

E(bn(x)) = b(x)− o(
√

βnh−d
n ). (2.16)
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2. If p ∈ (0, b/ (d+ 2)), then

Var(bn(x)) = o(h2
n ln

2 tn). (2.17)

If p ∈ [b/ (d+ 2) , 1/d), then

Var(bn(x)) =
βn

hd
n

1

2− (b− pd)ε1
‖K‖22g (x)F (tn|x) + o

(
βn

hd
n

)
. (2.18)

The bias and the variance of the estimator bn defined by the stochastic approximation algorithm
(2.4), then heavily depend on the choice of the stepsize (βn). For an adequate choice, we consider
two possible choices of (βn). The first one is based on the minimization of the variance, while the
second one is grounded on the minimization of MISE.

Choices of (βn) minimizing the variance of the estimator bn:
As mentioned in Mokkadem et al. (2009a), it is recommended to minimize the variance of the
proposed estimator for confidence interval estimation.
Corollary 3 Let the assumptions of Theorem 2 hold. To minimize the asymptotic variance of the
estimator bn, b must be chosen equal to 1, (βn) must satisfy lim

n→∞
nβn = 1− pd, and we then have

Var(bn(x)) = (1− pd)‖K‖22g (x)F (tn|x)
1

nhd
n

+ o

(
1

nhd
n

)
.

The proof of Corollary 3 follows immediately from (2.18).

Choices of (βn) minimizing the MISE of the estimator bn:
The following proposition provides the MISE of the estimator bn.
Proposition 2 Let Assumptions (C1)-(C7) hold.

1. If p ∈ (0, b/ (d+ 2)),

MISE(bn(x)) =
C2

(1− pε1)2
h2
n ln

2 tn

∫

Rd

F
2
(tn|x)g2(x)dx+ o(h2

n ln
2 tn).

2. If p = b/ (d+ 2),

MISE(bn(x)) =
C2

(1− pε1)2
h2
n ln

2 tn

∫

Rd

F
2
(tn|x)g2(x)dx

+
1

2− (b− pd)ε1
‖K‖22

βn

hd
n

∫

Rd

g (x)F (tn|x)dx+ o

(
h2
n ln

2 tn +
βn

hd
n

)
.

3. If p ∈ (b/ (d+ 2) , 1/d),

MISE(bn(x)) =
1

2− (b− pd)ε1
‖K‖22

βn

hd
n

∫

Rd

g (x)F (tn|x)dx+ o

(
βn

hd
n

)
.

The following corollary is an immediate consequence of the second part of Proposition 2.
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Corollary 4 Let Assumptions (C1)-(C7) hold. To minimize the MISE of the estimator bn, the
stepsize (βn) must be chosen in GS(−1) such that lim

n→∞
nβn = 1 and the bandwidth (hn) must equal

hn =



[
d

4

(d+ 1)

(d+ 2)

‖K‖22
C2 ln2(tn)

∫
Rd F (tn|x)g (x) dx∫
Rd F

2
(tn|x)g2(x)dx

] 1
d+2

β
1

d+2
n


 .

Now we present the bias and the variance of γ̂H
n .

Theorem 3 (Bias and variance of γ̂H
n )

Let Assumptions (C1)-(C7) hold, and suppose that the stepsize (βn) =
(
n−1
)
.

1. If p ∈ (0, α/ (d+ 2)], then

E
(
γ̂H
n (x)

)
− γ (x) = −

(
C

1− pε
+

C

1− p

)
γ (x) hn ln tn

+o (hn ln tn) . (2.19)

If p ∈ (α/ (d+ 2)), 1/d), then

E
(
γ̂H
n (x)

)
− γ (x) = o

(√
γn
hd
n

)
. (2.20)

2. If p ∈ (0, α/ (d+ 2)), then

Var
(
γ̂H
n (x)

)
= o

(
h2
n ln

2 tn
)
. (2.21)

If p ∈ [α/ (d+ 2) , 1/d), then

Var
(
γ̂H
n (x)

)
=

1

b2(x)

1

Cx

6

2− (α− pd)ε
‖K2‖1mn(x)g (x) γ(x)

γn
hd
n

+ o

(
γn
hd
n

)
. (2.22)

Clearly, the bias and the variance of the estimator γ̂H
n depend on the choice of the two stepsizes

(γn) and (βn).
Let us state now the following Theorem, which gives the weak convergence rate of the proposed

recursive estimator γ̂H
n defined in 2.7 in the special case of (βn) =

(
n−1
)
.

Theorem 4 Let Assumptions (C1)-(C7) hold, and suppose that (βn) =
(
n−1
)
.

1. If there exists r > 0 such that γ−1
n hd+2

n ln2 tn −→
n→∞

r then

√
γ−1
n hd

n

(
γ̂H
n (x)− γ(x)

) D−→ N
(√

rB(x),Var(x)
)
,

where

B(x) = −
(

C

1− pε
+

C

1− p

)
γ (x) ,

Var(x) =
1

b2(x)

1

Cx

6

2− (α− pd)ε
‖K2‖1mn(x)g (x) γ(x).
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2. If γ−1
n hd+2

n ln2 tn −→
n→∞

∞, then

1

hn ln tn

(
γ̂H
n (x)− γ(x)

) P−→ B(x),

where
D−→ denotes the convergence in distribution, N the gaussian-distribution and

P−→ the
convergence in probability.

We can consider the case when the stepsize (βn) is chosen to minimise the variance of the estimator
bn. Similarly, we can obtain the weak convergence rate of the estimator γ̂H

n defined in 2.7.

3 Simulation study

The target of our applications is to compare the performance of the proposed recursive kernel
estimator of the conditional extreme value index given in (2.7) to that of Hill’s non-recursive
estimator defined in (2.8) using the ”Leave One Out” cross-validation bandwidth selection.

3.1 The study design

We use the following simulation design: we consider the unidimensional case d = 1 and we simulate
N = 500 samples of size n (n = 50, 250) of independent replicates (Xi, Yi) where X is uniformly
distributed on [0, 1] and the conditional distribution of Yi given Xi = x is Pareto with param-
eter γ(x) = 0.5(0.1 + sin(πx) × (1.1 − 0.5 exp(−64(x − 0.5)2))) (this function was proposed by
Daouia et al. (2011)), it was also used in Goegebeur et al. (2014) and in Ndao et al. (2016). The
pattern of γ is given in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
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20
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40
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50

x

Figure 1: Pattern of γ(·) on [0, 1]

For each of the N simulated samples, we estimate γ(·) at x = (0.1, 0.2, 0.3, · · · , 0.8, 0.9) using
the estimator (2.7) with a biquadratic kernel K(x) =

15

16
(1−x2)21[−1,1]. As mentioned in previous

papers (see Slaoui (2014a,b)), there is no big influence on the choice of the kernel K in our setup
when the observations are not contamined. However, investigating deconvolution problem of such
estimator is out of the scope of our area of research (see Slaoui (2019b)).
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In order to calculate our estimator, we need to choose the bandwidth h and the threshold tn.
We take tn to be the (n− k) th order statistic Y(n−k) as is usual in extreme value statistics.
Moreover, we propose an algorithm for choosing (h, k). This algorithm adapted fromGoegebeur et al.
(2014), was considered recently by Ndao et al. (2016). The purpose is then to select the bandwidth
h using the following cross-validation criterion

hcv = argmin
h∈H

n∑

i=1

n∑

j=1

(
1{Yi6Yj} − F̂n,−i(Yj|Xi)

)2
,

where H=
{
hn = cn−1;n > 1 and (c, v) ∈ {0.1, 0.2, · · · , 0.9}

}
is a grid of values for h and

F̂n,−i(y|x) :=
∑n

j=1,j 6=iKh(x−Xj)1{Yj6y}∑n
j=1,j 6=iKh(x−Xj)

.

This criterion was introduced in Yao (1999), implemented by Gannoun et al. (2002), and estab-
lished in an extreme value context by Daouia et al. (2011, 2013), Goegebeur et al. (2014) and
Ndao et al. (2016). Using this bandwidth selection, we consider the following procedure to deter-
mine the number of threshold excesses k. This procedure rests on considering for each point x,
the following steps:

Step 1: we compute the estimates for γ̂H
n,Y(n−k)

(x) with k = 1, · · · , n− 1.

Step 2: we constitute several successive ”blocks” of the estimates γ̂H
n,Y(n−k)

(x) (one block for

k ∈ {1, · · · , 15}, a second block for k ∈ {16, · · · , 30} and so on).

Step 3: we calculate the standard deviation of the estimate in each block.

Step 4: we determine the k-value (denoted by k1) from the block with minimal standard deviation
(in particular, we take the median of the k-values in that block).

Finally, we estimate γ(x) by using the estimator γ̂H
n (2.7) by taking (h, k) = (hcv, k1)

3.2 Results

For each configuration of the simulation design parameters (sample size n, stepsize parameters
(γn, βn) and covariate value x), we calculate the average IAE (Integrated Absolute Error), the
average ISE (Integrated Squared Error) and L∞ of the estimators over N = 500 trials; IAE =

1

N

N∑

i=1

∫

R

∣∣ĝ[i](x)− γ(x)
∣∣ dx, ISE =

1

N

N∑

i=1

∫

R

(
ĝ[k](x)− γ(x)

)2
dx and L∞ = max

i=1,··· ,N

∫

R

∣∣ĝ[i](x)− γ(x)
∣∣ dx,

where ĝ[i] corresponds to the estimator computed from the ith sample. In order to investigate the
comparison estimators, we consider the stepsizes (γn, βn) equal to

(
n−1, n−1

)
,
(
(2/3)n−1, n−1

)
,(

n−1, (2/3)n−1
)
and

(
(2/3)n−1, (2/3)n−1

)
respectively. These four choices of parameters of the

recursive estimator are referred to as R1, R2, R3 and R4 respectively. Results are highlighted
in Table 1. We point out that the major merit of our proposed estimator lies in its update
aspect. Indeed, when new sample points are available, it requires less computational cost than
non-recursive estimator. Moreover, Table 1 reveals that our proposed recursive estimator can pro-
vide better results in some specific situations that are very close in general to the reference values,
which proves the effectiveness of our proposed recursive estimator in terms of the estimation error.
Figure 2 discloses that all the considered estimators yield good results since the values of γ at each
point x ∈ {0.1, 0.2, . . . 0.9} are very close to the median.
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n γ(0.1) = 0.225 γ(0.2) = 0.3777 γ(0.3) = 0.4824

50

NR R1 R2 R3 R4
0.2095 0.1829 0.1589 0.2089 0.1814
0.0224 0.0238 0.0335 0.023 0.0227
0.0977 0.1003 0.1087 0.1012 0.0994
0.4173 0.4028 0.6902 0.3668 0.4225

NR R1 R2 R3 R4
0.4012 0.3901 0.3446 0.4057 0.3583
0.023 0.0239 0.0326 0.0301 0.0249
0.0995 0.1006 0.1083 0.1083 0.1015
0.41 0.3877 0.5269 0.5114 0.4687

NR R1 R2 R3 R4
0.3566 0.3647 0.3324 0.3843 0.3503
0.0223 0.0241 0.0344 0.0306 0.0259
0.0982 0.1015 0.1082 0.1105 0.1036
0.3381 0.4909 0.7606 0.6507 0.46

250

NR R1 R2 R3 R4
0.3189 0.3166 0.2971 0.3312 0.3108
0.0036 0.0036 0.0042 0.0042 0.0038
0.0422 0.0425 0.0457 0.0453 0.0438
0.088 0.0883 0.1025 0.1016 0.0957

NR R1 R2 R3 R4
0.3355 0.3115 0.3391 0.3 0.3253
0.0037 0.0038 0.0043 0.0042 0.004
0.0427 0.0435 0.0465 0.0457 0.0447
0.0995 0.1039 0.0926 0.1069 0.1237

NR R1 R2 R3 R4
0.4204 0.3709 0.3857 0.3744 0.3893
0.0038 0.0039 0.0044 0.0044 0.004
0.0433 0.0436 0.0466 0.0466 0.045
0.1265 0.1253 0.1156 0.1352 0.1177

n γ(0.4) = 0.4395 γ(0.5) = 0.33 γ(0.6) = 0.4395

50

NR R1 R2 R3 R4
0.3936 0.3723 0.357 0.3983 0.3819
0.0248 0.0259 0.0352 0.0335 0.0282
0.1011 0.1029 0.1102 0.1124 0.1057
0.4756 0.4909 0.7606 0.6464 0.5454

NR R1 R2 R3 R4
0.4181 0.4306 0.3539 0.5089 0.4183
0.0245 0.0239 0.0314 0.031 0.026
0.1021 0.1011 0.1071 0.1095 0.1029
0.3842 0.3877 0.5269 0.5114 0.4114

NR R1 R2 R3 R4
0.3578 0.3581 0.3029 0.4345 0.3676
0.0243 0.0249 0.0336 0.031 0.0265
0.1017 0.1018 0.1088 0.1091 0.1035
0.4756 0.4909 0.7606 0.5158 0.5454

250

NR R1 R2 R3 R4
0.4269 0.5024 0.4624 0.523 0.4814
0.0036 0.0037 0.0043 0.0043 0.004
0.0425 0.0428 0.0462 0.0458 0.0449
0.0952 0.0895 0.0941 0.1173 0.1039

NR R1 R2 R3 R4
0.382 0.359 0.346 0.3736 0.3605
0.0038 0.0039 0.0045 0.0043 0.004
0.0432 0.0435 0.0472 0.046 0.0448
0.0925 0.1099 0.1283 0.1006 0.1125

NR R1 R2 R3 R4
0.3848 0.3862 0.4339 0.382 0.4292
0.0037 0.0038 0.0044 0.0044 0.004
0.0425 0.0431 0.0463 0.046 0.0444
0.098 0.0894 0.1218 0.1216 0.0968

n γ(0.7) = 0.4824 γ(0.8) = 0.3777 γ(0.9) = 0.2250

50

NR R1 R2 R3 R4
0.4085 0.4032 0.3457 0.4837 0.4147
0.0239 0.0257 0.0348 0.0291 0.0255
0.0999 0.1024 0.1097 0.1081 0.1032
0.4801 0.4909 0.7606 0.5158 0.5192

NR R1 R2 R3 R4
0.3496 0.3495 0.3223 0.3680 0.3394
0.0217 0.0225 0.0305 0.0285 0.0257
0.0982 0.0995 0.1062 0.1079 0.1034
0.3284 0.3396 0.5352 0.3997 0.39

NR R1 R2 R3 R4
0.5872 0.5987 0.4448 0.3635 0.4021
0.0205 0.0231 0.0318 0.027 0.0234
0.0964 0.0987 0.1078 0.105 0.1005
0.3037 0.4909 0.7606 0.5114 0.3913

250

NR R1 R2 R3 R4
0.4431 0.4751 0.5599 0.4351 0.5128
0.0038 0.0039 0.0045 0.0044 0.004
0.0433 0.0436 0.0469 0.0462 0.0449
0.092 0.1177 0.1152 0.12 0.0994

NR R1 R2 R3 R4
0.3708 0.3571 0.405 0.3071 0.3483
0.0037 0.0037 0.0043 0.0041 0.0039
0.0426 0.043 0.0464 0.0453 0.0441
0.0994 0.0959 0.1482 0.0986 0.1484

NR R1 R2 R3 R4
0.2428 0.2439 0.2223 0.2372 0.2162
0.0034 0.0036 0.0041 0.0041 0.0037
0.0414 0.0421 0.0455 0.0447 0.0433
0.0925 0.0825 0.0888 0.0922 0.0899

Table 1: Simulation results for γ(x). N = 500 trials are considered. For each configuration of the simulated parameters (n, γn, βn, x),
the first line indicates the value of each estimator in different points x. Lines two, three and four provide the averages IAEs, ISEs
and L∞ respectively of the five different kernel density estimators. NR corresponds to the non-recursive estimator and R1, R2,
R3 and R4 correspond to the proposed recursive estimators when (γn, βn) takes

(
n−1, n−1

)
,
(
(2/3)n−1, n−1

)
,
(
n−1, (2/3)n−1

)
and(

(2/3)n−1, (2/3)n−1
)
respectively.
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Figure 2: Boxplots of the N = 500 estimates of our five considered estimators (NR, R1, R2, R3, R4) in points x = 0.1, 0.2, 0.3 (1st
line), x = 0.4, 0.5, 0.6 (2nd line) and x = 0.7, 0.8, 0.9 (3rd line), and dashed lines represent the values of reference estimator γ(·) in
each point x as mentioned above.
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ISE IAE
Recursive estimator 0.00639654 0.0599912

Non-recursive estimator 0.009305902 0.07006466

Table 2: The comparaison between errors of the non-recursive estimator (2.8) and the proposed
recursive estimator (2.7).

3.3 Real dataset

We considered a Malaria dataset of 176 families in Senegal, totalizing 505 children between 2 and 19
years old, living in two villages of Niakhar (Toucar and Diohine). The number of observations was
6986. We measured Plasmodium falciparum Parasite Load (PL) from thick blood smears obtained
by finger-prick during two different seasons and regularly over a three-year observation period
(2001-2003). The number of measurements per child ranged from 1 to 15. We refer readers to con-
sult Milet et al. (2010) for more details about data. These data were used also in Slaoui and Nuel
(2014c) in a parametric context and more recently in Slaoui (2019a) in a non-parametric context.
In the real example, the proposed recursive estimator (2.7) was compared to Hill’s non-recursive
kernel estimator (2.8) proposed by Goegebeur et al. (2014). Therefore, for any considered estima-
tor γ̂ of the index function γ, we propose to compute IAE and ISE defined as:

IAE(γ̂) =

∫

R

|γ̂(x)− γ(x)| dx

and

ISE(γ̂) =

∫

R

(γ̂(x)− γ(x))2 dx.

Departing from Table 2 and Figure 3, we infer that the IAE and the ISE of the proposed recursive
estimator are smaller than those of the non-recursive estimator set forward by Goegebeur et al.
(2014). Thus, demonstrating the effectiveness of our considered estimator.

0.2 0.4 0.6 0.8

0.
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0.
2

0.
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Observation

recursive estimator

non−recursive estimator

Figure 3: Qualitative comparaison between the non-recursive estimator (2.8) and the proposed
recursive one (2.7).
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4 Conclusion

In this research paper, we tackled the estimation of the conditional extreme value index γ(x) of
a heavy-tailed distribution when some random covariate information is available. We elaborate
recursive kernel estimator of the extreme value index function based on the stochastic approxi-
mation algorithm. The proposed estimator asymptotically follows normal distribution. We sub-
sequently compared the proposed estimator to Hill’s non-recursive extreme value index estimator.
We demonstrated that using some particular stepsizes and a specific bandwidth selection through
a cross-validation procedure, the proposed recursive estimator could be very competitive to the
non-recursive version. Moreover, we highlighted that the proposed estimator is much better in
terms of computational costs. Numerical results illustrate the effectiveness of our recursive ap-
proach. To this extent, we would state that although our work is an extension to a wealthy
historical background, it may be taken further, extended and built upon since it offers different
perspectives and opens new horizons for future research. We can extend our recursive extreme
value index estimator to the case of censored data. We can also propose a new estimator of the
conditional extreme quantile using our recursive estimator defined by (2.7) and compare it to the
classical Weissman estimator. Another direction is to investigate the almost sure convergence and
the large and moderate deviation principles of the proposed estimator, which requires non trivial
mathematics. This would go well beyond the scope of the present paper.
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A Proofs

We introduce the following Lemmas that will enable us to obtain the asymptotic expansion of an.

Lemma 1 Let assumption (C3) holds. Then, for tn −→ ∞ as n → ∞ we have

mn(x) = γ(x)F (tn|x)Cx.

The proof of Lemma 1 is presented in Goegebeur et al. (2014).
Lemma 2 Let assumptions (C1)-(C6) hold. Then, for all x ∈ R

d such that g (x) > 0 we have
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for tn −→
n→∞

∞ and hn −→
n→∞

0 with hn ln tn −→
n→∞

0

m̃n(x) = mn(x)g (x)

{
1 +

C

Cx

hn ln tn + o(hn ln tn)

}
. (A.1)

Proof of Lemma 2

m̃n(x) = E
[
Khn

(x−Xn)(lnYn − ln tn)1{Y >tn}

]

= E
[
Khn

(x−Xn)E((lnYn − ln tn)1{Y >tn}|Xn)
]

= E [Khn
(x−Xn)mn(Xn)]

=

∫

Rd

K(z)mn(x− hnz)g(x− hnz)dz.

An integration by parts then yields

m̃n(x) =

∫

Ω

K(z)

∫ ∞

tn

F (y|x− hnz)

y
dy g(x− hnz)dz,

and consequently,

m̃n(x)−mn(x)g (x) =

∫

Ω

K(z)

∫ ∞

tn

F (y|x− hnz)

y
dyg(x− hnz)dz − g (x)

∫ ∞

tn

F (y|x)
y

dy

(C6)
=

∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

F (y|x− hnz)

F (y|x) dy(g(x− hnz)− g (x) + g (x))dz

−
∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

dy(g (x)− g(x− hnz) + g(x− hnz))dz

=

∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

(
F (y|x− hnz)

F (y|x) − 1

)
dyg (x) dz

+

∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

dy (g(x− hnz)− g (x)) dz

+

∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

(
F (y|x− hnz)

F (y|x) − 1

)
dy (g(x− hnz)− g (x)) dz

=: I4 + I5 + I6. (A.2)

The expression of I4 can be written as follows

I4 =

∫

Ω

K(z)Ĩ4g (x) dz,

with

Ĩ4 =

∫ ∞

tn

F (y|x)
y

(
F (y|x− hnz)

F (y|x) − 1

)
dy,

and grounded on the fact that

F (y|x− hnz)

F (y|x) = exp

[
lnF (y|x)

(
lnF (y|x− hnz)

lnF (y|x) − 1

)]
, (A.3)
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under (C5), we readily obtain

lnF (y|x− hnz)

lnF (y|x) − 1 = cF

√√√√
d∑

i=1

(hnzi)2 = c′
F
hn.

Moreover, using the following property:
ln l(y|x)
ln y

−→ 0 as y −→ ∞, ensures that

lnF (y|x)
(
lnF (y|x− hnz)

lnF (y|x) − 1

)
= lnF (y|x)c′

F
hn

=

(
− 1

γ(x)
ln y + ln l(y|x)

)
c′
F
hn

=

(
− 1

γ(x)
+ o(1)

)
c′
F
hn ln y

= Chn ln y,

for some positive constant C =

(
− 1

γ(x)
+ o(1)

)
c′
F
. Using the following Taylor’s formula, exp(x)−

1 = x+
x2

2
+ o(1), we readily obtain:

Ĩ4 =

∫ ∞

tn

F (y|x)
y

(
exp

[
lnF (y|x)

(
lnF (y|x− hnz)

lnF (y|x) − 1

)]
− 1

)
dy

=

∫ ∞

tn

F (y|x)
y

(exp(Chn ln y)− 1) dy

= Chn

∫ ∞

tn

F (y|x)
y

ln y dy +
C2h2

n

2

∫ ∞

tn

F (y|x)
y

ln2 y dy + o(1)

=: Ĩ4,1 + Ĩ4,2 + Ĩ4,3.

Concerning Ĩ4,1, by integration by parts and using (C1) and (C2), we get

Ĩ4,1 = −ChnF (tn|x)(ln tn − 1)− Chn

∫ ∞

tn

∂F (y|x)
∂y

(ln y − 1)dy + Chn

∫ ∞

tn

F (y|x)
y

(ln y − 1)dy

= −ChnF (tn|x)(ln tn − 1) +

(
1 +

1

γ(x)
+ o(1)

)(
Chn

∫ ∞

tn

F (y|x)
y

ln ydy

)

−
(
Chn

(
1 +

1

γ(x)

)
+ o(hn)

)∫ ∞

tn

F (y|x)
y

dy

= −ChnF (tn|x)(ln tn − 1) +

(
1 +

1

γ(x)
+ o(1)

)
Ĩ4,1 −

(
Chn

(
1 +

1

γ(x)

)
+ o(hn)

)
mn(x).

Hence, it follows that

Ĩ4,1 =
ChnF (tn|x)(ln tn − 1)(

1
γ(x)

+ o(1)
) +

Chn

(
1 + 1

γ(x)
+ o(1)

)
mn(x)

(
1

γ(x)
+ o(1)

)
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=
ChnF (tn|x)γ(x) ln tnCx

(1 + o(1))Cx
− ChnF (tn|x)γ(x)Cx

(1 + o(1))Cx
+

Chn (1 + γ(x)) (1 + o(1))mn(x)

1 + o(1)
,

with

Cx = 1 +
b(tn|x)
γ(x)ρ(x)

[
1

1− ρ(x)
− 1

]
(1 + o(1));

which can be written as

Ĩ4,1 =
C

Cx

hn ln tnmn(x) (1 + o(1))− C

Cx

hnmn(x) (1 + o(1))

+C (1 + γ(x)) hnmn(x) (1 + o(1))

=
C

Cx

hn ln tnmn(x) (1 + o(1)) . (A.4)

Concerning Ĩ4,2, integration by parts and using (C1) and (C2), we get

Ĩ4,2 = −C2h2
n

2
F (tn|x)

(
ln2 tn − 2 ln tn + 2

)
− C2h2

n

2

∫ ∞

tn

∂F (y|x)
∂y

(
ln2 y − 2 ln y + 2

)
dy

+
C2h2

n

2

∫ ∞

tn

F (y|x)
y

(
ln2 y − 2 ln y + 2

)
dy

= −C2h2
n

2
F (tn|x)

(
ln2 tn − 2 ln tn + 2

)

+
C2h2

n

2

(
1

γ(x)
+ o(1)

)∫ ∞

tn

F (y|x)
y

(
ln2 tn − 2 ln tn + 2

)
dy

+
C2h2

n

2

∫ ∞

tn

F (y|x)
y

ln2 y dy − C2h2
n

∫ ∞

tn

F (y|x)
y

ln y dy + C2h2
n

∫ ∞

tn

F (y|x)
y

dy

= −C2h2
n

2
F (tn|x) ln2 tn + C2h2

nF (y|x) ln tn − C2h2F (y|x) +
(
1 +

1

γ(x)
+ o(1)

)
Ĩ4,2

−Chn

(
1 +

1

γ(x)
+ o(1)

)
Ĩ4,1 + C2h2

n

(
1 +

1

γ(x)
+ o(1)

)
mn(x).

Then, it comes that

Ĩ4,2 =
C2

2Cx
h2
nγ(x)F (tn|x)Cx ln

2 tn (1 + o(1))− C2

Cx
h2
nγ(x)F (tn|x)Cx ln tn (1 + o(1))

+C2h2
nγ(x)F (tn|x) (1 + o(1)) + Chn (1 + γ(x)) (1 + o(1)) Ĩ4,1

−C2h2
n(1 + γ(x)) (1 + o(1))mn(x)

=
C2

2Cx
h2
n ln

2 tnmn(x) (1 + o(1)) . (A.5)

Moreover, note that

Ĩ4,3 = o(1). (A.6)

Now, the combination of (A.4), (A.5) (A.6), ensures that

Ĩ4 =
C

Cx
hn ln tnmn(x) (1 + o(1)) .
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Furthermore, we have

I4 =

∫

Ω

K(z)Ĩ4 g (x) dz =
C

Cx
hn ln tnmn(x)g (x) (1 + o(1)) . (A.7)

Concerning I5, we have under the assumption (C4) and (C6)

I5 =

∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

dy (g(x− hnz)− g (x)) dz

= cgmn(x)

∫

Ω

K(z)d(x− hnz, x) dz

= o(1). (A.8)

Moreover, under the assumption (C4)-(C6), we have, for tn sufficiently large,

I6 =

∫

Ω

K(z)

∫ ∞

tn

F (y|x)
y

(
F (y|x− hnz)

F (y|x) − 1

)
dy (g(x− hnz)− g (x)) dz

= o(1). (A.9)

The combination of (A.2), (A.7), (A.8) and (A.9), ensures that

m̃n(x)−mn(x)g (x) =
C

Cx
hn ln tnmn(x)g (x) (1 + o(1)) = mn(x)g (x)

{
C

Cx
hn ln tn (1 + o(1))

}
,

which gives (A.1).
Lemma 3 Let assumptions (C1) and (C4)-(C6) hold. Then, for all x ∈ R

d such that g (x) > 0,
we have for tn −→

n→∞
∞ and hn −→

n→∞
0 with hn ln tn −→

n→∞
0

E
[
Khn

(x−Xn)1{Yn>tn}

]
= g (x)F (tn|x) (1 + Chn ln tn + o(hn ln tn)) .

Proof of Lemma 3 Since (Xi, Yi), i = 1, · · · , n are independent and identically distributed, we
have under the assumption (C6)

E
[
Khn

(x−Xn)1{Yn>tn}

]
=

∫

Rd

∫

R

1

hd
n

K

(
x− t

hn

)
1{y>tn}f(y|t)g(t)dtdy

=

∫

Rd

1

hd
n

K

(
x− t

hn

)
F (tn|t)g(t)dt

=

∫

Ω

K(u)F (tn|x− uhn)g(x− uhn)du.

Now, we consider

E
[
Khn

(x−Xn)1{Yn>tn}

]
− F (tn|x)g (x) = F (tn|x)

∫

Ω

K(u)

(
F (tn|x− uhn)

F (tn|x)
− 1

)
g(x− hnu)du

+F (tn|x)
∫

Ω

K(u)(g(x− hnu)− g (x))du

=: J̃1 + J̃2.
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Concerning J̃1, under the assumption (C5) and using the equation (A.3), we have

F (tn|x− uhn)

F (tn|x)
= exp

[
ln
(
F (tn|x)

)
cF‖u‖2hn

]

= exp

[
ln tn

(
− 1

γ(x)
+ o(1)

)
cF‖u‖2hn

]

= exp [ln tnChn] .

Moreover, since g (x) > 0, the application of Taylor’s formula, ensures that

J̃1 = g (x)F (tn|x)
∫

Ω

K(u) [Chn ln tn + o(hn ln tn)]
g(x− hnu)

g (x)
du

= Cg (x)F (tn|x)hn ln tn + o(F (tn|x)hn ln tn).

Under (C5), we have

J̃2 = F (tn|x)cg
∫

Ω

‖u‖2hnK(u)du = o(g (x)F (tn|x)hn ln tn).

Then, we get

E
[
Khn

(x−Xn)1{Yn>tn}

]
= g (x)F (tn|x) + Cg (x)F (tn|x)hn ln tn + o(F (tn|x)hn ln tn).

We state now the following technical lemma, which is proved in Mokkadem et al. (2009a), and
which will be used throughout the demonstrations.
Lemma 4
Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α) and m > 0 such that m− v∗ε > 0 where ε is defined in (2.9),
and Πn in (2.3). Then,

lim
n→∞

vnΠ
m
n

n∑

k=1

Π−m
k

γk
vk

=
1

m− v∗ε
.

Moreover, for all positive sequences (αn) such that lim
n→∞

αn = 0, and all C ∈ R,

lim
n→∞

vnΠ
m
n

[
n∑

k=1

Π−m
k

γk
vk

αk + C

]
= 0.

Proof of Theorem 1

1. The application of Lemma 2, ensures that

E(an(x)) = Πn

n∑

k=1

Π−1
k γkm̃k(x) = Πn

n∑

k=1

Π−1
k γkmn(x)g (x)

{
1− C

Cx
hk ln tn + o(hk ln tn)

}
.

In the case p ∈ (0, α/ (d+ 2)], we have lim
n→∞

nγn > p; the application of lemma 4 ensures that

E(an(x)) = a(x)− C

(1− pε)Cx
a(x)hn ln tn + o(hn ln tn),

and (2.11) follows. In the case p ∈ (α/ (d+ 2) , 1/d), we have hn ln tn = o
(√

γnh−d
n

)
, Lemma

4 ensures E(an(x))− a(x) = o
(√

γnh−d
n

)
, which gives (2.12).
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2. Now, we have

Var(an(x)) = Π2
n

n∑

k=1

Π−2
k γ2

k

[
E

[
h−2d
k K2

(
x−Xk

hk

)
[lnYk − ln tn]

2
1{Yk>tn}

]

− E
2

[
h−d
k K

(
x−Xk

hk

)
[lnYk − ln tn]1{Yk>tn}

]]
.

The application of Theorem 1 in Goegebeur et al. (2014), ensures that

Var(an(x)) = Π2
n

n∑

k=1

Π−2
k γ2

k

[
6
‖K2‖1
hd
k

γ2(x)F (tn|x)g (x) (1 + o(1))

]

= Π2
n

n∑

k=1

Π−2
k γk

γk
hd
k

[
6‖K2‖1γ2(x)F (tn|x)g (x) (1 + o(1))

]
.

In the case when p ∈ [α/ (d+ 2) , 1/d), we have lim
n→∞

nγn >
α− pd

2
, and the application of

Lemma 4 ensures that

Var(an(x)) =
6

2− (α− pd)ε
‖K2‖1F (tn|x)g (x) γ2(x)γnh

−d
n

+
6

2− (α− pd)ε
‖K2‖1F (tn|x)g (x) γ2(x)o(γnh

−d
n ),

which proves (2.14). In the case when p ∈ (0, α/ (d+ 2)), we have γnh
−d
n = o(h2

n ln
2 tn),

Lemma 4 ensures that Var(an(x)) = o(h2
n ln

2 tn), which yields (2.13).

Proof of Theorem 2

1. First, the application of Lemma 3 provides

E(bn(x)) = Qn

n∑

k=1

Q−1
k βkg (x)F (tn|x) (1 + Chk ln tn + o(hk ln tn)) .

Now, in the case when p ∈ (0, b/ (d+ 2)], we have lim
n→∞

nβn > p; the application of Lemma 4

ensures that

E(bn(x)) = b(x) +
C

1− pε1
b(x)hn ln tn + g (x)F (tn|x)o(hn ln tn),

and (2.15) follows. In the case when p ∈ (b/ (d+ 2) , 1/d), we have hn ln tn = o(
√
βnh−d

n ),

Lemma 4 ensures E (bn(x)) = o
(√

βnh−d
n

)
, which gives (2.16).

2. Now, we have

Var(bn(x))

= Q2
n

n∑

k=1

Q−2
k β2

k

[
E

[
h−2d
k K2

(
x−Xk

hk

)
1{Yk>tn}

]
− E

2

[
h−d
k K

(
x−Xk

hk

)
1{Yk>tn}

]]
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= Q2
n

n∑

k=1

Q−2
k β2

k

[‖K‖22
hdk

E

[
h−d
k H

(
x−Xk

hk

)
1{Yk>tn}

]
− E

2

[
h−d
k K

(
x−Xk

hk

)
1{Yk>tn}

]]
,

with H(·) =:
K2(·)
‖K‖22

also satisfying assumption (C6). Using Lemma 3, we get

Var(bn(x)) = Q2
n

n∑

k=1

Q−2
k β2

k

[‖K‖22
hdk

[
g (x)F (tn|x) (1 + Chk ln tn + o(hk ln tn))

]

− g2(x)F
2
(tn|x) (1 + 2Chk ln tn + o(hk ln tn))

]
,

then, we have

Var(bn(x)) = ‖K‖22g (x)F (tn|x)Q2
n

n∑

k=1

Q−2
k

β2
k

hdk
+ C ln tn‖K‖22g (x)F (tn|x)Q2

n

n∑

k=1

Q−2
k

β2
k

hd−1
k

+‖K‖22g (x)F (tn|x)Q2
n

n∑

k=1

Q−2
k β2

ko

(
ln tn

hd−1
k

)
− g2(x)F

2
(tn|x)Q2

n

n∑

k=1

Q−2
k β2

k

−2C ln tng
2(x)F

2
(tn|x)Q2

n

n∑

k=1

Q−2
k β2

khk − g2(x)F
2
(tn|x)Q2

n

n∑

k=1

Q−2
k β2

ko(hk ln tn).

In the case when p ∈ [b/ (d+ 2) , 1/d), we have lim
n→∞

nβn > (b − pd)/2, and the application of

Lemma 4 gives

Var(bn(x))

=
1

2− (b− pd)ε1
‖K‖22g (x)F (tn|x)

βn
hdn

+
C

2− (b− p(d− 1))ε1
‖K‖22g (x) ln tnF (tn|x)

βn

hd−1
n

+o

(
βn ln tn

hd−1
n

)
− 1

2− bε1
g2(x)F

2
(tn|x)βn − 2C

2− (b+ p)ε1
g2(x) ln tnF

2
(tn|x)βnhn + o(ln tnβnhn),

which proves (2.18). In the case when p ∈ (0, b/ (d+ 2)), we have βnh
−d
n = o(h2n ln

2 tn), Lemma 4
ensures that Var(bn(x)) = o(h2n ln

2 tn), which gives (2.17).

Proof of Theorem 3 Let us first note that, for x such that bn(x) 6= 0, we have

γ̂H
n (x)− γ(x) = Dn(x)

b(x)

bn(x)
, (A.10)

with

Dn(x) =
1

b(x)
(an(x)− a(x))− γ(x)

b(x)
(bn(x)− b(x)). (A.11)

It follows from (A.10), that the asymptotic behavior of γ̂H
n (x)− γ(x) can be deduced from the one

of Dn(x). Then, (2.19) follows from (2.11), (2.15) and (A.10) whereas (2.20) follows from (2.12),
(2.16) and (A.10). Now it follows from (A.11) that

Var(Dn(x)) =
1

b2(x)
Var(an(x))−

2γ(x)

b2(x)
Cov(an(x), bn(x)) +

γ2(x)

b2(x)
Var(bn(x)). (A.12)
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By using Lemma 4 and choosing the stepsize (γn) = (n−1), computations provide

Cov(an(x), bn(x)) =
1

n
Qn

n∑

k=1

Q−1
k βkh

−2d
k (J1 −J2J3) , (A.13)

with

J1 = E

[
K2

(
x−Xk

hk

)
[lnYk − ln tn]1{Yk>tn}

]
, J2 = m̃n(x) and J3 = E

[
Khk

(x−Xk)1{Yk>tn}

]
.

Following similar steps as Lemma 2 in Goegebeur et al. (2014) and Lemma 2, we infer that

J1 = mn(x)g (x)
‖K‖22
hd
k

(
1− C

Cx

hk ln tn + o(hk ln tn)

)
,

J2 and J3 are already calculated in Lemmas 1 and 2. Then, the combination of (A.11), (A.12),
(2.14), (2.18) and (A.13), gives (2.22), and the combination of (A.11), (A.12), (2.13), (2.17) and
(A.13), gives (2.21).
Proof of Theorem 4 Let us at first assume that, if p > α/(d+ 2), then

√
γ−1
n hd

n

(
γ̂H
n (x)− E

(
γ̂H
n (x)

)) D−→ N (0,Var(x)) . (A.14)

In the case when p > α/(d+ 2), Part 1 of the theorem follows from the combination of (2.20) and
(A.14). In the case when p = α/(d+2), Parts 1 and 2 of the Theorem follow from the combination
of (2.19) and (A.14). In the case p < b/(d+ 2), (2.21) implies that

1

hn ln tn

(
γ̂H
n (x)− E

(
γ̂H
n (x)

)) P−→ 0,

and the application of (2.19) gives Part 2 of Theorem. Now (A.14) is proved. Relying on (A.11),
we have

Dn(x)− E[Dn(x)] =
1

b(x)
Πn

n∑

k=1

(Yk(x)− E[Yk(x)]) ,

where
Yk(x) = Π−1

k

(
γkZk(x)− γ(x)ηnη

−1
k βkWk(x)

)
,

with Zn(x) = Khn
(x−Xn) [lnYn − ln tn]1{Yn>tn}, Wn(x) = Khn

(x−Xn)1{Yn>tn} and ηn =
Π−1

n Qn. Now, in the case when (βn) =
(
n−1
)
, we have ηn = (nΠn)

−1 and η−1
k βk = Πk. Then,

Yk(x) = Π−1
k γkZk(x)− γ(x)(nΠn)

−1Wk(x).

Set

Tk(x) = Yk(x)− E [Yk(x)] . (A.15)

Moreover, we have

s2n =

n∑

k=1

Var (Tk(x))
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=

n∑

k=1

Π−2
k γ2

kVar (Zk(x)) + γ2(x)(nΠn)
−2

n∑

k=1

Var (Wk(x))

−2γ(x)(nΠn)
−1

n∑

k=1

Π−1
k γkCov (Zk(x),Wk(x))

:= Γ1 + Γ2 + Γ3.

In addition, classical computations and applications of Lemma 4 ensure that

Γ1 = Π−2
n γ(x)

[
1

Cx

6

2− (α− pd)ε
‖K2‖1mn(x)g (x)

γn
hd
n

+ o

(
γn
hd
n

)]
,

Γ2 = Π−2
n γ(x)

[
1

Cx

1

1 + pd
‖K‖22mn(x)g (x)

1

nhd
n

+ o

(
1

nhd
n

)]
,

Γ3 = Π−2
n γ(x)

[
2

1 + pdε
‖K‖22mn(x)g (x)

1

nhd
n

+ o

(
1

nhd
n

)]
.

As a matter of fact, we infer that

s2n =
b2(x)

Π2
n

γn
hd
n

[Var(x) + o(1)] .

On the other side, we have, for all q > 0,

E
[
| Yk(x) |2+q

]
= O

(
1

h
(1+q)d
k

)
,

and, since lim
n→∞

(nγn) > (α− pd) /2, there exists q > 0 such that lim
n→∞

nγn >
1 + q

2 + q
(α− pd).

Applying Lemma 4, we get

n∑

k=1

E
[
| Tk(x) |2+q

]
= O

(
n∑

k=1

Π−2−q
k γ2+q

k E
[
| Yk(x) |2+q

]
)

= O

(
γ1+q
n

Π2+q
n h

(q+1)d
n

)
,

and we thus obtain

1

s2+q
n

n∑

k=1

E
[
| Tk(x) |2+q

]
=

1

s
2(1+q/2)
n

O

(
γ1+q
n

Π2+q
n h

(q+1)d
n

)
= O

(
γ

q

2
nh

− dq

2
n

)
= o (1) .

The convergence in (A.14) then follows from the application of Lyapounov’s Theorem.
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