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Abstract. In the video surveillance context, a perimeter intrusion de-
tection system (PIDS) aims to detect the presence of an intrusion in
a secured perimeter. Existing camera based approaches relies on hand
crafted rules, image based classification and supervised learning. In a
real world intrusion detection system, we need to learn spatio-temporal
features unsupervisely (as annotated data are very difficult to obtain)
and use these features to detect intrusions. To tackle this problem, we
propose to use a 3D convolutional autoencoder. It is inspired from the
DeepFall paper where they use it for an unsupervised fall detection task.
In this paper, we reproduce their results on the fall detection task and
further extend this model to detect intrusions in a perimeter intrusion
dataset. We also provide an extended evaluation scheme which helps to
draw essential insights from the results. Our results1 show that we cor-
rectly reproduce the results of fall detection task and furthermore our
model shows competitive performance in perimeter intrusion detection
task. To our knowledge, it is the first time when a PIDS is made in a fully
unsupervised manner while jointly learning the spatio-temporal features
from a video-stream.

Keywords: Perimeter intrusion detection · Spatio-temporal data · 3D
convolutions · Convolutional autoencoder · Unsupervised learning.

1 Introduction

High security installations may contain a large boundary with the need to be pro-
tected from unwanted elements entering in the boundary. A perimeter intrusion
detection system (PIDS) is used to serve this purpose and it aims at detecting
the presence of an intrusion in a secured perimeter. An intrusion can be defined
as a moving object belonging to a category of items like human, car, truck, mo-
torcycle, etc., which is defined as unauthorized for a particular perimeter or area
at a given time. The same object might not be categorized as an intruder if it is
outside the perimeter or if it is being allowed at a different time, e.g. moving cars
1 The source code is available at https://gitlab.liris.cnrs.fr/dlohani/stcae_pids.

https://gitlab.liris.cnrs.fr/dlohani/stcae_pids
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or people that are outside the boundary are not intruders. Similarly, intrusion
objects like people/cars might be allowed to move in an area around daytime
for example but unauthorized for the rest of the day, hence the importance of
temporality. Stationary objects, even if belonging to an unauthorized category
should not be classified as an intrusion, e.g. cars parked inside the perimeter
must not be detected as an intrusion while a moving car entering or leaving the
perimeter must be classified as an intrusion. So, we can understand how difficult
is to detect intrusion as it is a rare event which is both time and space dependent
and further the definition of an intrusion varies according to the installation to
protect and cannot be generalized.

There exists PIDS with various highly sensitive sensors like microwave sen-
sors, electric field sensors, active infrared sensors, etc., to detect changes at dif-
ferent wavelengths to detect intrusions [8]. However, these PIDS produce a large
number of false alarms and cannot differentiate between intrusion and other
objects and thus requires a lot of human resources [7].

In order to overcome the disadvantages of these sensor based PIDS, many
camera based PIDS have been proposed [14,16,20,10]. A set of cameras are as-
signed with user-defined field-of-view of the area to be surveyed and activity is
monitored by intrusion detection algorithms. These algorithms detect the move-
ments of an intruder attempting to breach a security wall or region and alert
security. The key problem with video analytics based solution is false alarm [14]
which is due to inherent complications of understanding of the object detected
in the video especially if the object is far from the camera. The object may ap-
pear very small in the image that makes recognition of the object more difficult.
Existing PIDS algorithms detect intrusion in a supervised manner by annotating
small set of intrusion classes [16,20], using hand crafted features [15,16], treating
video stream as an image based data (loosing the spatio-temporal features) and
thus employing image based object classification [20,10]. Thus, existing models
do not learn the real nature of video, which is a spatio-temporal data. They
rely on handcrafted features and treat intrusion detection as a supervised learn-
ing problem which is not generalizable in reality as intrusions occur rarely and
therefore, we cannot have a large annotated database. Furthermore, we cannot
train on few object classes as intrusion classes can practically be very high in
number.

To learn the spatio-temporal data unsupervisely from a video stream and
then detect intrusion, we propose to use a 3D convolutional autoencoder model.
The model is inspired from the work of Nogas et al. [13] where they use it for
an unsupervised fall detection problem [19]. In this paper, we reproduce their
results and further extend their model to do perimeter intrusion detection in a
challenging dataset. Our model detects intrusions such as moving car, people,
motorcycle, truck, etc, in a secure perimeter, after training in a fully unsupervised
setting.

This paper is organized as follows. Section 2 presents some related works
found in recent literature about camera based PIDS. Section 3 introduces the
3D convolutional autoencoder with different architectures that we tested. It also
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details the training and evaluation. Section 4 presents the datasets used for both
tasks. Section 5 presents the results and discussion. It provides the reproduced
results for fall detection task with a new evaluation scheme which provides some
key insights. This section also shows competitive results on the intrusion detec-
tion task. Finally, Section 6 reports the general conclusions drawn, and suggests
future research directions.

2 Related Work

Intelligent video surveillance is a well-established commercial technology that
allows the users to monitor and secure areas with the security cameras. It uses
computer vision algorithms to detect moving objects in an image and filter non-
relevant movements. A Gaussian mixture model for RGB background modeling
is proposed in [15], allowing to detect moving objects using background sub-
traction. A surveillance system is introduced in [16], using closed-circuit tele-
vision (CCTV) to detect and classify vehicles. They applied real-time vehicle
detection and classification algorithms. Object detection is performed with a
background subtraction method where the background is modeled by using a
Gaussian mixture model. In order to classify the detected vehicles, a method
combining histogram of oriented gradients and artificial neural networks (ANN)
was used. However, both these works extract features using hand-crafted meth-
ods and more importantly they tackle object detection/classification/tracking
in open areas where there is no concept of a perimeter and thus no intrusion
detection.

An on-line intrusion event detection system is proposed in [20], using a model
for training an event detection system based on object tracking. They modeled
the training as a multiple instance learning problem, which allowed to train the
classifier from annotated events despite temporal ambiguities. But their model
uses many handcrafted features and further they try to model intrusion detection
with supervised learning, while in reality it is an unsupervised learning problem
due to the lack of annotated data as intrusions occur rarely.

Recently, an intelligent intrusion detection system with detection, classifi-
cation, tracking, and action recognition of an intruder is introduced [10]. They
proposed an integrated acquisition device combining optical and thermal cam-
eras, a virtual fence to set the boundary between surveillance and external areas
in a graphical user interface, a background model designed to detect moving
objects and a convolutional neural network (CNN) to classify moving objects as
either intruders or wild animals. Their model also relies on the fact that we have
annotated data.

All the above models learn spatial and temporal features of a video stream
independent of each other. They treat video frames as still images and learn spa-
tial features, then they treat the temporal succession of spatial features. Overall,
none of the existing PIDS learns spatio-temporal features from a video jointly
and furthermore, they try to solve perimeter intrusion detection with a super-
vised learning approach.
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Our work draws inspiration from the DeepFall paper [13]. This work is fo-
cused on detecting human falls from a video stream in an unsupervised manner
(without any annotated data). They formulate the fall detection problem as an
anomaly detection problem. They present a novel use of deep spatio-temporal
convolutional autoencoders to learn spatial and temporal features from normal
activities during training, i.e., they first learn “what is normal”. Then during
testing, they detect the events which have a high reconstruction error, that is to
say the falls. They also present a new anomaly scoring method that combines
the reconstruction scores of frames across video sequences to detect falls. Fur-
thermore, they show superior results in comparison to traditional autoencoder
and convolutional autoencoder methods to identify falls.

In this work, we reproduce the results of the DeepFall paper [13] and draw
key insights from them. We further tackle the problem of intrusion detection as
an anomaly detection problem. We train a spatio-temporal convolutional autoen-
coder to understand “what is not an intrusion” and detect intrusions in testing
videos by marking frames with high reconstruction error.

3 3D Convolutional Autoencoders

While 2D-CNN learns appropriate representations for image classification, de-
tection and segmentation tasks [11], they are incapable of capturing the tempo-
ral information encoded in consecutive frames for video analysis problems [23].
One widely used solution to this is to add convolutional long short-term memory
(ConvLSTM) [17] layers on top of 2D-CNN layers [3]. However, these approaches
make the implicit hypothesis that spatial and temporal dimensions are indepen-
dent and can be processed sequentially, missing the existing correlations between
these dimensions.

A 3D kernel can be used to extract both spatial and temporal features from a
video by convolving it with the volume formed by stacking temporally contiguous
frames of the video [1]. This 3D convolution operation captures spatio-temporal
information encoded in the video as information from these contiguous frames
is cohesively used to form feature maps [9]. 3D-CNN is better suited for spatio-
temporal feature learning than 2D-CNN [18] and it has been also used in the
form of an autoencoder [23,21]. Such a 3D autoencoder learns representations
that are locally invariant to spatio-temporal deformations of the video encoded
by the 3D convolutional feature maps. It is sometimes referred as deep spatio-
temporal convolutional autoencoder (DSTCAE) [13].

The idea is to learn the regular/normal visual information from video se-
quences. The intuition is that the trained autoencoder is able to reconstruct
the motion features presented in regular videos with low error but unable to
accurately reconstruct motions in irregular videos. In other words, the autoen-
coder can model the complex distribution of the regular dynamics of appearance
changes.
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Fig. 1: Network architecture of DSTCAE-Deconvolution. The encoder is com-
posed of layers with 3D convolution (red) followed by 3D max-pooling (yellow)
and decoder is composed of 3D deconvolution (blue) layers. Each layer has di-
mensions: time window length × height × width × number of feature maps.

3.1 Input Window Construction

A 3D convolutional autoencoder takes a volume formed by stacking temporally
contiguous frames of the video as input and reconstructs it. We refer to these
volumes as windows and generate them by applying a temporal sliding window
to video frames.

For a video with V frames, window length T , no padding and stride B (in
temporal axis), the number of windows (D) generated [13] is given by:

D =

⌊
V − T
B

⌋
+ 1 . (1)

These windows are fed into the network as follows. For an input video, we select
first T frames and feed this window to the network. Then we shift by B frames
temporally and select next T frames and so on until we cover all the V video
frames.

3.2 Architecture Design

We evaluate three variants of the model. In Fig. 1, we illustrate the overall
network outline with deconvolution model. Input video is fed as windows to
the network where it is encoded by 3D convolution [9] and 3D max-pooling
and decoded with a deconvolution operation [5] to obtain the reconstructed
window. Encoding and decoding for the three models are illustrated in Fig. 2
and described in detail below.

Encoder: We set the window length T = 8, stride B = 1 in Eq. (1), resize
input video frames to 64×64 and use grayscale image with 1 channel, thus the
shape of input hyper-cuboid is 8×64×64×1. This input is encoded with a series
of 3D convolution and 3D max-pooling layers. 3D convolutions operate with
kernel of 5×3×3, 1×1×1 stride and same padding. The max-pooling layers have
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Fig. 2: Encoding and decoding configurations of DSTCAE-UpSampling,
DSTCAE-Deconvolution and DSTCAE-C3D networks.

stride and kernel dimensions of 2×2×2 with same padding. This signify that
each max-pooling layer reduce all input dimensions (time window length, height
and width) by a factor of 2. Fig. 2 shows specifications of encoding and decoding
for the three models.

Decoder: We can decode either via upsampling or deconvolution. The upsam-
pling method (DSTCAE-UpSampling) uses a 3D convolution with same param-
eters as in encoding, followed by a fixed upsampling operation to upscale the
input. The upsampling operation uses upsampling factors of 2x2x2, meaning
matrix elements are repeated across each dimension such that the extent of all
dimensions is doubled. The DSTCAE-Deconvolution architecture uses 3D de-
convolutions [22] with kernel of 5×3×3, 2×2×2 stride and same padding [23].
Like upsampling, this results in doubling each dimension of the input. In both
methods, the final reconstructed window has exactly the same dimensions as
that of the input window.

Finally, the DSTCAE-C3D network is inspired by the work of Tran et al. [18],
having the same encoding and decoding as DSTCAE-UpSampling, but with
an extra 3D convolution + 3D max-pooling layer in encoding, and an extra
3D convolution + 3D upsampling layer in decoding (Fig. 2). These extra max-
pooling and upsampling layers have 1×2×2 kernel dimensions, meaning they
result in only spatial dimension change. Thus, it allows to train a deeper network
without collapsing the temporal dimension.
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A dropout layer with dropout probability of 0.25 is applied after second layer
in all three models. We use the ReLU activation function for all hidden layers
and tanh activation function at the output layer to constrain the reconstructed
pixel values in the range [-1, 1], in order to be comparable to the input. The
total training parameters for UpSampling, Deconvolution and C3D models are
15,889, 15,889 and 21,665 respectively.

3.3 Training

All three variants of 3D convolutional autoencoder are trained2 only on videos
with normal behaviour, i.e. without any falls or intrusion. All the frames in the
videos are resized to 64 × 64, and pixels are rescaled by dividing values by 255
to keep them in the range [0, 1], and then subtracting the per-frame mean from
each frame, resulting in pixel values to be in the range [-1, 1].

The training loss of this network is the mean squared error, given by:

L(θ) = 1

N

N∑
i=1

‖flat(Ii)− flat(Oi(θ))‖22 , (2)

where Ii ∈ R64×64×T is the ith window of the input batch of size N , Oi ∈
R64×64×T is the corresponding reconstructed output window, θ denotes the net-
work parameters, flat(.) is the flattening operator, which flattens the input array
into a one dimensional vector and ‖ · ‖2 denotes the Euclidean norm.

The training batch size is set to N = 32 for all experiments, where each
element Ii of the batch consists of a stack of T = 8 frames. The training is
performed with Adadelta optimizer for 500 epochs. These parameters were cho-
sen to reproduce the exact results for the fall detection task, and we found no
significant reduction in loss after further training.

3.4 Detection of Abnormal Events

Since we train our models only on videos without anomalous events by mini-
mizing the reconstruction error (RE), during testing phase the anomalous (falls
or intrusions) frames generally have a higher reconstruction error. We use this
reconstruction error for anomaly detection. Given a test video sequence, we ap-
ply a sliding window as described in Section 3.1. For the ith window Ii, the
network outputs a reconstruction of this window Oi. The reconstruction error
ri,j between the jth frame of Ii and Oi is calculated as:

ri,j = ‖flat(Ii,j)− flat(Oi,j)‖22 . (3)

Fig. 3 (a) shows the sliding windows and associated reconstruction errors of
frames. Since a single frame can be a part of upto T = 8 windows, therefore
it can have different reconstruction error scores corresponding to each window.
For example, the frame Fr3 has three reconstruction errors r1,3, r2,3 and r3,3, in
2 All experiments were done on NVIDIA GeForce GTX 1080, with 12GB of RAM.
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Fig. 3: Illustration of errors: sliding windows on video with j frames (a), and
different reconstruction error scores per frame (b).

reference to first, second and third window respectively. Since we focus on frame
level evaluation, we need one single reconstruction error value for each frame.
We propose two ways to obtain the per-frame reconstruction error scores, which
are described below.

Reconstruction Error r: A simple way to obtain a per frame reconstruction
error is to get the reconstruction error of a frame from the first window it appears
in. Since we use a temporal sliding window with window length T and stride
B = 1, this means that a frame can appear on a maximum of T windows. The
reconstruction error r for video frames is obtained as follows. r scores for the
first T frames are obtained from the first window, then we slide our window
temporally by 1 frame (B = 1) and r for the (T + 1)th frame is obtained from
the second window and we similarly obtain r scores for next N frames from next
N windows.

In Fig. 3 (b), the reconstruction error r is marked with green color. We can
observe that for the first 8 frames, r is taken from first window, then from 9th

frame onwards, r is taken from last frame of each new window. For the jth frame
with m = max(1, j − T + 1), we obtain rj as:

rj = rm,j . (4)
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Cross-Window Reconstruction Errors rµ and rσ: Another way to obtain
a per frame reconstruction error can be to evaluate the statistics of a frame from
the different temporal windows it appears in. Since each window that a frame
appears in provides a different temporal context within which this frame can be
viewed, we need to consider all the reconstruction errors obtained for a frame
across different windows [12].

For the jth frame of the ith window, an anomaly score can be computed
based on the mean rµj or standard deviation rσj of the reconstruction errors
across temporal contexts with window length T . With k = min(j, T ), we obtain
rµj and rσj as follows3:

rµj = 1
k

∑j
i=j−k+1 ri,j

rσj =
√

1
k

∑j
i=j−k+1

(
ri,j − rµj

)2
.

(5)

In Fig. 3 (b), the cross-window RE score calculation is depicted with red rectan-
gle. Frame 3 appears in 1st, 2st and 3st window, therefore rµ3 and rσ3 are calculated
using Eq. (5) with r1,3, r2,3 and r3,3 respectively.

A high value of rµj or rσj means that the jth frame, when appearing at different
positions in different windows, is reconstructed with a high average error. For a
normal activity or non-intrusion case, the reconstruction error of a frame should
not vary a lot with its position in subsequent windows and if it does, then this
may indicate anomalous behaviour, such as a fall or an intrusion. Similarly, a
high value of rj for a frame may indicate anomalous behaviour.

3.5 Evaluation Metrics

To check whether these frame level reconstruction error scores are sufficiently
high to raise an alarm, we need to choose a threshold. But by choosing a fixed
threshold, our evaluation will be biased to this particular dataset and threshold
choice. Thus, to be independent from a fixed threshold, we vary the threshold
from lowest to highest value of the reconstruction error score and obtain a re-
ceiver operating characteristic (ROC) curve [6] and the precision-recall (PR)
curve [4]. The area under the curve (AUC) is computed for the ROC and PR
curves, i.e. AUROC and AUPR respectively with fall or intrusion as the class of
interest and this is used as a performance indicator. Higher the value of AUROC
or AUPR, better is our model at classifying between anomalous frames and nor-
mal activity frames. However, AUPR must be used in case of highly imbalanced
classes in the dataset [2,4], that is the case of anomaly detection tasks where
normal activity frames (i.e. true negatives) are over-represented in the dataset.

For each test video, the RE scores (r, rµ or rσ) obtained for each frame are
used to calculate AUC of the ROC and PR curve. Following [13], a first metric
called “AUROC per video” is computed on each test video, and the average
and standard deviation across all test videos are reported. In this metric, the
3 In this paper, rµj and rσj correspond to Cjµ and Cjσ defined in [13].
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Fig. 4: Some frames drawn from Fall dataset [19]: non-fall frames, like an empty
scene (a), a person entering (b), a person in the scene (c); and a fall frame (d).

succession of thresholds to separate classes and to estimate the ROC curve is
not common to all test videos. Since the succession of thresholds is adapted to
each test video, the ROC curve is in risk to be over-fitted, providing an overly
optimistic AUROC score. Consequently, a second metric called “AUC all videos”
is computed on ROC and PR curves, but on the whole test set with a threshold
common to all test videos, which is the standard way to compute AUC [6]. Using
this metric, we obtain AUROC and AUPR scores and they actually measure the
generalization power of the detection models.

4 Datasets

Two datasets are used to train and test models: the first one for fall detection,
and the second one, which is a private dataset, for perimeter intrusion detection.

4.1 Fall Dataset

This dataset is used for the fall detection task. In this task, we have a video
camera which monitors the activity of a person in an area and the aim is to
detect and alert as soon as a person falls. The problem here is quite similar
to the intrusion detection as it is also an unsupervised task on a video stream
[13]. We evaluate the model for detecting falls on the Thermal Fall Detection
Activity Recognition dataset [19]. This dataset consists of videos captured by
a FLIR ONE thermal camera mounted on an Android phone in a room setting
with a single view with either 25 or 15 frames per second (FPS). The dataset
contains a total of 44 videos. The training set has 9 videos without any fall
event and the testing set contains 35 videos with fall events (828 fall frames
out of 36,391 frames). The resolution of the thermal images is 640× 480. Fig. 4
shows some raw frames of the thermal dataset. We pre-process the dataset using
Eq. (1) and obtain 22,053 windows to train the studied models.

4.2 Perimeter Intrusion Dataset

This private dataset consists of videos taken from a single thermal camera
mounted at a fixed position with a single view in the outdoor uncontrolled set-
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Fig. 5: Some frames drawn from Perimeter Intrusion dataset without intrusion.

Fig. 6: Some frames drawn from Perimeter Intrusion dataset with intrusions, and
intruders like persons or vehicles are labeled in red boxes.
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ting. The videos are taken at 25 FPS with 400 × 296 frame size resolution and
are then down-sampled at 5 FPS. These videos are intended to monitor the
movement of any intruder designated object in the field of view of the camera.
A total of 180 videos was collected with 80 videos for training containing only
non-intrusion activities and 100 videos for testing. Out of these 100 test videos,
70 test videos contain intrusion and non-intrusion frames and 30 videos contain
only non-intrusion frames. This 30% of only non-intrusion videos for testing is
important in order to verify if the model is capable to distinguish between intru-
sion and non-intrusion activities. Each training video is converted into windows
using Eq. (1) and we had a total of 47,998 windows for training.

The complexity of the dataset can be seen in Fig. 5 and 6 with some sample
snapshots of the videos. Since video is taken outside, we have different daylight
timing of the day/night and different weather conditions. Very often the strong
wind wobbles the camera, or an electric wire in front of it and herbs nearby. The
camera covers an intersection of the road with a long deep view of one road.
Unlike the Fall dataset, here abnormality can be of any type like some person,
a bike, car, truck, other vehicle or even a group of them. As discussed in the
Introduction, an object belonging to an intruder class (like car, person, other
vehicles) is considered an intrusion only if it shows movement in the monitored
area, regardless of time of the day. They can come and go to any of the three
entry/exit points of roads. Sometimes human intruder appears or disappears
into the herbs seen on the right side of the video frames. Multiple intrusions are
often present at some given instant. This makes intrusion detection very difficult.
Furthermore, some cars are frequently parked and should not be detected as an
intrusion. Since the camera captures a long view of one road, objects appear very
small as they go far away, and their detection becomes even more complicated.

5 Results and Discussion

We evaluate the models on two different tasks, namely fall detection [19] and
intrusion detection. With fall detection, we try to reproduce the results of the
paper [13]. All three variants of 3D convolutional autoencoder were trained and
tested on both tasks.

5.1 Reproducibility on the Fall Detection task

The results of all three models are presented in Table 1. The training time is
the total time taken in minutes to train a particular model with all the training
set. Similarly, testing time is the total time taken to test all the test set with
a particular model. In column “AUROC per video”, we evaluate AUROC score
for each test video separately and report average value with associated standard
deviation (in brackets) for all the test videos in order to compare our reproduced
results with the paper [13].

We can observe that we were able to reproduce the paper results correctly,
some slight differences are possibly due to different model weight initialization.
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Table 1: Reproducibility of results of DeepFall [13] for different models with
different reconstruction errors (RE) to evaluate: (i) computational times, (ii)
AUROC per video, average +/- standard deviation across all videos of the test
set, and (iii) AUC (ROC and PR) for all test videos.

Models RE Time AUROC per video AUC all videos
Training Testing [13] Ours ROC PR

DSTCAE
UpSampling

rσ

309.52 min
49.88s 0.96(0.03) 0.96(0.02) 0.96 0.29

rµ 48.61s 0.95(0.04) 0.94(0.04) 0.88 0.23
r 47.11s − 0.94(0.04) 0.89 0.24

DSTCAE
Deconvolution

rσ

311.01 min
56.31s 0.96(0.02) 0.96(0.02) 0.96 0.27

rµ 55.94s 0.94(0.04) 0.94(0.04) 0.88 0.23
r 54.92s − 0.94(0.04) 0.89 0.21

DSTCAE
C3D

rσ

310.50 min
55.98s 0.97(0.02) 0.96(0.03) 0.95 0.25

rµ 54.52s 0.93(0.07) 0.90(0.07) 0.85 0.19
r 54.23s − 0.91(0.06) 0.87 0.21

We can also observe that all three models perform equivalently well with r and
rµ. Even though we do not observe a high difference in testing times for models
with r, rµ and rσ but still models with r takes the least time. This is because
calculating cross-window RE score induces latency in the system (need to wait
for scores of next 7 frames to calculate score for current frame) while for r we can
get the frame score at current window without any delay. In our experiments,
C3D model did not outperform the other two models contrary to the claim
in DeepFall [13]. We can observe that all models have similar performance for
rσ, however for rµ and r, DSTCAE-UpSampling and DSTCAE-Deconvolution
have performed slightly better than C3D model. The training time is observed
as approximately the same for all models. UpSampling models are the fastest
during testing and with the best performance.

To qualitatively understand the difference between ROC and PR curves com-
puted on the whole test set, as explained in Section 3.5, Fig. 7 plots these two
curves for the different models and RE scores. The ROC curve shows overall
good performance for all the models, but we can remark that models with rσ

perform superior to others. However, all models have very poor performances in
the PR curve, showing that the fall class is not well separated from the non-fall
class.

In order to quantitatively assess these results, we can refer to the column
“AUC all videos” of Table 1. The AUROC values show that the models with rσ
do not degrade their performance in comparison to AUROC per video, indicating
that this RE score is able to capture inter-video variabilities well. The models
with rµ and r show an approximately 6% degradation in performance. But AU-
ROC score is not preferred for a highly imbalanced dataset because ROC curves
may provide an excessively optimistic view of the performance [2]. Instead, when
dealing with highly skewed datasets, PR curves give a more informative picture
of an algorithm’s performance [4]. This is the case in fall detection because
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Fig. 7: ROC (top) and PR (bottom) curves (of type “all videos”) for the fall
detection task, for different models and RE scores.

fall frames are rare in the videos, hence the fall test set has highly imbalanced
class proportion. In other words, AUPR is more sensitive to misclassification of
fall classes. Contrary to the AUROC scores, we can observe that we have poor
AUPR scores for all the models. This indicates that these models are not able
to correctly detect falls in videos.

5.2 Application to the Perimeter Intrusion Detection task

Fig. 8 shows the evolution of reconstruction error r for a test video from Perime-
ter Intrusion dataset when tested with DSTCAE-UpSampling. The normal ac-
tivity (no intrusion) has a low r score. When an intrusion enters the video, the
r score starts increasing and reaches a peak when the intruder is closest to the
camera. This r score decreases as the intrusion goes far away from the camera
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and gradually disappears. We can also observe that there are three peaks and
they correspond to intrusion activities.

Fig. 8: Evolution of reconstruction error r for a test video from Perimeter Intru-
sion dataset. The original (64× 64 resized), reconstructed and error frames are
shown for an intrusion (top) and a normal activity (bottom). The three peaks
correspond to intrusion activities with high r score.

The three images below the curve show the original frame at the point, its
reconstructed frame, and the associated error map. We can observe that for
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Fig. 9: ROC (top) and PR (bottom) curves for the perimeter intrusion detection
task, for different models and RE scores.

normal activity, the error map correctly reveals no movement activity of the
parked cars and thus no intrusion. In the images above the curve, we can see
the image associated with a high reconstruction error score. We can observe
that the reconstructed frame and error map shows the movement information of
two intruders (two cars), thus correctly detecting an intrusion frame with high
reconstruction error score.

Fig. 9 shows the ROC and PR curves for the perimeter intrusion detection
task tested over all the videos of the test set, for different models and RE scores.
We can observe that in ROC curve, it is difficult to assess which model has better
performance. The PR curve however highlights the differences among models.
We observe that UpSampling rσ (in blue) and C3D rσ (in pink) have similar
ROC curves but their PR curves clearly show that UpSampling rσ has better
performance (larger area).
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Table 2: Results on perimeter intrusion detection task for different models with
different reconstruction errors (RE) to evaluate: (i) computational times, and
(ii) AUC (ROC and PR) for all test videos of the Perimeter Intrusion dataset.

Models RE Time AUC all videos
Training Testing ROC PR

DSTCAE
UpSampling

rσ 55.19s 0.93 0.88
rµ 590.25 min 52.05s 0.91 0.81
r 51.24s 0.92 0.83

DSTCAE
Deconvolution

rσ 61.15s 0.93 0.86
rµ 594.95 min 59.57s 0.91 0.80
r 58.55s 0.91 0.82

DSTCAE
C3D

rσ 60.38s 0.90 0.81
rµ 591.10 min 59.46s 0.91 0.80
r 57.98s 0.91 0.82

To quantitatively analyze these curves, AUC are listed in Table 2. We report
the AUROC and AUPR scores over all the videos of the test set. We observe that
the training and testing time is almost similar for all the models. Even though all
models have approximately the same performance in terms of AUROC score, we
observe that DSTCAE-UpSampling rσ has highest performance of 0.88 in terms
of AUPR score. Furthermore, it can be observed that upsampling models have
lowest computational times. Unlike for Fall detection task, C3D models rank
last among other evaluated models. Here, the gap between AUROC and AUPR
scores is smaller than in the case of the fall detection (Table 1). This indicates
that our models perform well regardless of the evaluation measure. The results
without cross-window scores, i.e. with r models, are close to models with rσ and
rµ. Furthermore, since the r score of the current frame is obtained only from the
current window (inducing zero latency), it is compatible to be used in a real-time
setting. Results indicate that the 3D convolutional autoencoder can successfully
model intrusion events unsupervisely.

5.3 Discussion

Since both perimeter intrusion detection and fall detection have highly imbal-
anced classes, thus AUPR is more suitable metric than AUROC. We observe
that evaluated architectures have a better performance in perimeter intrusion
detection as compared to fall detection in terms of AUPR scores. Furthermore,
the gap between AUROC and AUPR scores is lower in intrusion detection in
comparison to fall detection. This can be attributed to the fact that in intrusion
detection we are trying to detect movement of an intruder in a designated space:
the results show that the 3D convolutional autoencoder is able to capture any
movement well with the 3D spatio-temporal convolutions. However, in fall de-
tection, we have a more difficult problem: the model needs to detect a particular
type of movement, i.e. fall of a person, but not the other movements like walk-
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ing, running, gesticulating, etc. As results demonstrate, the 3D convolutional
autoencoder classifies the two classes with lower performances in this case.

In convolutional autoencoders, there are two methods to apply a deconvolu-
tion operation [5]: (i) a convolution (filtering step) followed by an upsampling
(interpolation step), and (ii) a deconvolution, also called a transposed convolu-
tion, which learns the weights in a single step. Concerning 3D networks, there is
no evidence about the best method to deconvoluate 3D data. On both tasks, the
UpSampling based method seems to be faster along with better detection scores
than the Deconvolution one, although these improvements are quite marginal.

6 Conclusion

In this paper, we evaluated different forms of a 3D convolutional autoencoder
for two unsupervised tasks. We also provided an extended evaluation using the
metric “AUROC/AUPR for all videos” which evaluates capability of a model to
capture inter-video variabilities. On the task of reproducibility of fall detection,
we successfully reproduced the results of the Deepfall paper. We conclude that
models with rσ as reconstruction error have highest performance both in terms
of AUROC per video and AUC for all videos. We observe a degradation in
performance of models with r and rµ when evaluated for AUROC all videos. This
shows that rσ captures inter-video variabilities better than other two metrics.
The high gap between AUROC and AUPR values shows the limitation of current
models for the fall detection task.

We further evaluated these models for perimeter intrusion detection in a
challenging thermal video dataset. We can conclude that we have approximately
similar performance for all the models. The models with upsampling were the
fastest during testing and provided best results with rσ. We observe that we
have a smaller gap between AUROC and AUPR scores as compared to the fall
detection results. This shows that these models capture inter-video variabilities
better for the task of perimeter intrusion detection. Our results indicate that
the 3D convolutional autoencoder models intrusion detection very well. To our
knowledge, it is the first time that intrusion detection was carried out in a
completely automatic and unsupervised manner.

For future works on the intrusion detection task, robustness of the model
on different lighting conditions, sudden changes of luminosity and very slow
intruder displacement needs to be further examined. We will also explore ways
on how to choose a fixed threshold for the RE score, in order to allow a practical
implementation of this PIDS.
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