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Abstract

Recent technological advances in the field of sensors, signal processing and image processing favor
the development of new techniques for vital parameters monitoring such as imaging photoplethys-
mography (iPPG). iPPG is a simple and noninvasive measurement technique. It has been employed
to remotely estimate heart and respiratory rates, oxygen saturation and blood pressure through
the measurement of blood volume pulse using a camera. In the recent decades, researchers used
the morphology of contact photoplethysmographic (cPPG) signal for the assessment of arterial
stiffness, blood pressure, arteriosclerosis, cardiac output, and vascular aging. We propose to study,
in this article, the similarities between iPPG and cPPG waveform features that are associated to
cardiovascular diseases. A fast camera and contact probes were respectively employed to record
iPPG and cPPG signals. Their waveform features such as time, areas, amplitude and second
derivative features were then extracted and analyzed. Results show a high correlation between
the two measurement techniques. This research opens several perspectives in the remote assess-
ment of blood pressure and arterial stiffness, and therefore for non-contact diagnosis of several
cardiovascular diseases.

Keywords: Imaging Photoplethysmography, Blood Volume Pulse, Waveform, Camera, Arterial
Stiffness, Blood Pressure

1. Introduction

The continuous monitoring of vital parameters is an emerging concept in healthcare where the
competition to seek a non-invasive, more effective, comfortable and less expensive technique has
led to the wide use of photoplethysmography [1]. Using only a simple LED and a photoreceptor, it
allows the measurement of the blood volume pulse (BVP) [2]. The contact photoplethysmographic
(cPPG) signal is rich in information. Its periodicity reflects the heart rate while its waveform shape
provides more information on cardiac hemodynamics, age and condition of blood vessels [1, 3, 4].
Despite its advantages, cPPG remains slightly uncomfortable due to the use of contact probes.
Furthermore, its use is almost impossible in the case of trauma, skin ulcer, burns, congenital and
contagious diseases [5, 6, 7, 8]. For example, very young children (before 27 weeks after birth) may
suffer from skin lesions when using these sensors [9]. Also, the excessive pressure of the sensors
on the skin can create a temporary occlusion of the subcutaneous capillaries and thus interfering
with the measurement [10]. These limits have led the researchers to develop a new contactless
technique [11, 5, 6, 7, 9, 5, 8].

Recently, imaging photoplethysmography (iPPG) has attracted a particular attention: its var-
ious qualities tend to overcome the drawbacks mentioned above while reducing the wiring and
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increasing the patient’s safety. iPPG is a technique based on the same principle as cPPG while it
uses a camera and a dedicated light source, ambient light or daylight. It allows remote detection
of BVP from human face images by tracking subtle changes in skin color that are not perceptible
to the human eye. iPPG can be recorded using cameras embedded in daily use devices like smart-
phones or laptops. These technologies are low-cost and ubiquitous. Researchers focused on iPPG
especially for the assessment of cardiac activity and respiratory monitoring [12, 13, 14, 15, 16].
It was also used for blood pressure measurement [17, 18, 19], oxygen saturation [20, 21, 22], skin
detection [23] and mental stress assessment [24].
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Figure 1: Proposed approach: image processing operations are applied on the video stream to detect the forehead
as Region Of Interest (ROI). The signal is computed using a spatial averaging operation over the ROI before
being processed by temporal filters. Finally, (a) temporal, (b) areas and (c) derivatives and amplitude features are
estimated from this signal. These features are related to blood pressure, heart rate and arterial stiffness.

In this paper, we analyze iPPG waveforms extracted from a facial video in order to extract fea-
tures associated with cardiac activity and hemodynamics (Figure 1). To the best of our knowledge,
no articles have studied the similarity between features extracted from iPPG and cPPG signals.
The proposed method is the first attempt to compute a set of parameters extracted from iPPG
waveform measured by camera. The results of this research allow a knowledge deepening in the
field of iPPG and particularly towards non-contact estimation of blood pressure, arterial stiffness
and cardiac activity.

The rest of the paper is organized as follows: an overview of cPPG signal waveform features
and their medical significance is presented in section 2. We describe, in a third section, the
proposed method by giving details about the recording of iPPG signals and about the extraction
of their relevant waveform features. Finally, the obtained results are discussed before presenting
the conclusion and perspectives of this study.

2. Background

In this section a review of previous works on cPPG signal waveform features and their applica-
tions is presented since as far as our research literature in the domain showed no systematic study
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on iPPG signal waveform analysis .
Several factors can affect the PPG signal waveform: the heart rate mainly depends on total

pulse width while the physiological modifications of hemodynamic and arterioles properties are
manifested as distortion in the waveform profiles [25]. Its analysis is also interesting especially for
blood circulation assessment [26] and respiratory monitoring [27]. Usually waveform profile varia-
tions are very weak and difficult to handle. For this reason, researchers employed the derivatives
of cPPG signal waveform to facilitate its analysis [28].

All the PPG features computed from the pulse waveform are shown in Figure 2. They are
presented in three separate categories: temporal, areas, amplitude and derivative features.
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Figure 2: PPG waveform features presented in three categories: (a) temporal features, (b) area features and (c)
second derivative and amplitude features. The derivatives are used to facilitate some features calculation.

2.1. Temporal features

Temporal features are represented in Figure 2a. Crest time (CT) is the time from the PPG
wave foot to the systolic peak (main peak) [29, 30, 31]. Alty et al. [29] proved that CT can
be a useful feature for cardiovascular diseases classification. CT increases with arteriosclerosis in
particular for aged persons [31].
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Pulse Interval (PI) is the time from the beginning to the end (foot to foot interval, see Figure
2a). It can replace peak to peak interval for pulse rate measurement [32]. The ratio between PI
and pulse amplitude provides a good understanding of cardiovascular system properties [33]. Pulse
interval is similar to R-R interval of ECG used for heart rate variability assessment [34].

∆T is the time delay between the main systolic peak and the diastolic (secondary) peak. The
inflection points are employed in the absence of a second peak or when the main peak is unclear
[25, 35]. Millasseau et al. show that ∆T decreases with age as a consequence of increased large
artery stiffness [36].

Pulse Width at the Half Height (PWHH) is the pulse width of PPG pulse at the half amplitude
of the systolic peak (main peak) as shown in Figure 2a. Awad et al. suggested that PWHH is
correlated with the systemic vascular resistance better than the systolic amplitude [37]. It is also
correlated with blood pressure [38, 39].

Dicrotic Notch Time (Tn) is the time span between the starting point and dicrotic notch
[30, 35, 40]. Wang et al. showed that Tn decreases with heavier exercise loads [30].

A2 Times (A2T) is the time span between notch point and the ending point of PPG waveform
[35, 40]. Li et al. employed the time ratio of Tn to A2T to estimate blood pressure [40].

Diastolic Time (DT) corresponds to the time span from the PPG waveform main peak to its
end [38]. Teng and Zhang found that DT is strongly correlated to blood pressure better than other
features (CT, PI and PWHH) [38] .

First derivative peak time (FDPT) is the time span between the starting point and the peak
of its first derivative [35]. It was used by Tanveer and Hasan with 12 PPG waveform features to
propose a waveform-based hierarchical Long Short Term Memory model for BP estimation [35].

2.2. Areas

Features based on the pulse wave areas are presented in Figure 2b. Pulse Area (PA) corresponds
to the total area under the PPG waveform curve [25, 30, 35]. The peripheral resistance, blood
vessel elasticity and physiological changes in ejection function modify the total pulse area [30]. It
also decreases with physical exercise [41]. Area 1 (A1) is the measured area from the beginning
point to the dicrotic notch [30, 35]. It reflects the systolic characteristics of the pulse wave which
are mainly influenced by cardiac ejection function [42]. Area 2 (A2) is the measured area from the
dicrotic notch to the ending point [30, 35]. It reflects the diastolic characteristics of pulse wave
which are affected by arterial compliance and peripheral resistance [43].

2.3. Amplitude and Derivatives

Features based on the pulse wave amplitude and its second derivative are presented in Figure
2c. Pulse Height (PH) is the amplitude of the main peak [30, 40, 44]. Von et al. [44] pointed
out that the pulse amplitude is related to the left ventricular ejection performance, cardiac stroke
volume and large artery distensibility, though the PPG pulse amplitude is associated with blood
flow in small finger arteries. A high PH can indicate a high blood pressure, hyperthyroidism,
fever, anemia, excessive blood volume, atherosclerosis, anxiety, and exercise. A low PH can indi-
cate peripheral vasoconstriction, low blood pressure, hypovolemia, dehydration, hypothyroidism
or increased peripheral resistance [44].

b/a is the ratio of b peak to a peak of the second derivative. Takazawa et al. demonstrated
that the b/a ratio reflects increased arterial stiffness, hence the b/a ratio increases with age [28] .
Imanaga et al. provided a direct evidence that magnitude of b/a is related to the peripheral artery
distensibility, and suggest that the magnitude of b/a is a useful non-invasive index of atherosclerosis
and altered arterial distensibility [45]. The ratio has also been employed to estimate the risk of a
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cardiovascular disease [46]. e/a is the ratio of e peak to a peak of the second derivative. Takazawa
et al. demonstrated that an increase of the e/a ratio reflects decreased arterial stiffness, and that
the e/a ratio decreases with age [28]. Baek et al. confirmed that the e/a ratios decreases with age
[47].

3. Materials and Methods

3.1. Experimental setup

12 voluntaries of both gender with different skin color, aged between 20 and 35 years old par-
ticipated in this study. All procedures performed in this study were in accordance with ethical
standards on human experimentation and with the 1964 Helsinki Declaration and its later amend-
ments. Informed consent was obtained from all individual participants included in the study. None
of them had any known cardiovascular disease.
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Light 
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Figure 3: Experimental setup. The subject is seated in front of the camera at a distance of approximately 1m,
two contact probes are placed on his/her ear and finger. The two LED panels are used as a controlled illumination
source.

In the beginning of the experiments, the participants were asked to sit on a chair in front of
the camera at approximately a distance of 1 m (Figure 3). Two contact PPG probes were placed
; one on the right earlobe and the other on the right index in order to record cPPG the ground
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truth signals. The index finger has been chosen because most of literature studies have analyzed
cPPG waveform from this particular area [25, 44]. Furthermore, earlobe has been chosen as a
second reference because of its adjacency to the forehead (used as ROI for camera measurements).
This way, we avoid placing the contact sensor on the forehead where it will partially occlude this
area in the video stream. The two sensors were placed in two different sites to observe the effect
of measurement site. During the recording, the participants were asked to keep Normal Breathing
(NB) for 60 seconds and then asked to perform a Breath Hold (BH) as long as they can. Breath
hold induces significant physiological variations.
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Figure 4: Overview of the proposed method. (a) Camera settings adjustment. (b) Forehead pixels are isolated for
each frame by facial landmarks tracking. (c) Green Channel is selected from RGB color space. (d) Raw signal is
extracted using a spatial averaging operation. Signal processing is performed by the following steps: (e) trends
are removed and the signal is upsampled to a frequency of 256 Hz. (f) The signal is filtered and the valleys are
detected. (g) The signal is processed wave by wave. Averaging of successive waves is proposed to ensure a better
stability of the computed features. (h) Trends are removed to (i) precisely compute the features.

3.2. Materials

In this study, a fast camera (16mm C Series Lens mounted on a EO-2223C Color camera from
Edmund Optics) has been used. The images were recorded using a C++ based software with
a resolution of 640 × 480 pixels at a frame rate of 125 frames per second. The three channels
composing the image (red, green and blue) are encoded with 8 bits per pixel. Images were saved in
bmp format without any compression. The experiments were conducted in a dark room where the
only source of light was two Neewer LED panels (NL480) as shown in Figure 3. LED illumination
has been employed because it provides a stable and homogeneous lighting for iPPG measurement.
The light intensity has been set to 80 % from a maximum of 3360 lux / m and the color temperature
to 3750 K (neutral white light). Autoexposure and white balance have been disabled because
they cause continuous regulation of image colors which generates artifacts in the extracted iPPG
signals [14]. The raw extracted signals are processed offline using MATLAB (The MathWorks,
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Inc.). For the results validation, two approved commercial PPG contact sensors (BVP-Flex / Pro.
By Thought Technologies Ltd.) were employed. They use infrared light to record the ground-truth
signal from the earlobe and the index at a sampling frequency of 256 Hz.

Figure 5: Forehead detection and tracking. (a) Forehead detection. The yellow and red rectangles respectively
demarcate the detected face and forehead. The red dots correspond to the 68 facial landmarks. (b) The subset of
landmarks used to track the forehead are indicated with red arrows.

3.3. iPPG signal extraction

The developed system, divided into two main parts, is presented in Figure 4. Camera param-
eters like zoom, brightness, contrast, exposure and color saturation were set in order to record a
sequence of facial images suitable for iPPG signal extraction during the 60 seconds experiments.
Dlib 1 and OpenCV 2 libraries were used for facial landmarks tracking (Figure 5) in order to iso-
late forehead pixels [48]. The forehead and cheeks areas are rarely covered by clothing or hair and
correspond to ROIs with significant signal to noise ratio [49, 50]. Detecting facial landmarks in
the images sequence was carried in two steps: first, the face detection was ensured by histogram
of oriented gradients features combined with a linear classifier and a sliding window detection
scheme [49]. Then a shape predictor is applied to localize 68 key points from the face region (eyes,
eyebrows, nose, mouth, jawline) [48, 51]. For more stability, landmarks (68 coordinates per frame)
of every 30 successive frames were averaged to get a single ensemble that can be applied on the
current 30 successive facial images. Eyebrows landmarks are used to detect the forehead (Figure
5), which is used as the only region of interest [49].

No specific color transformation is used in this method: we employed the green channel (Figure
4c) of forehead area for iPPG signal extraction [11, 52].The raw iPPG signal is extracted from the
pixels using a spatial averaging operation that transforms the pixels in the region of interest into
a scalar [11]. This process is applied on a set of n frames to generate n scalars represented as a
raw iPPG signal (Figure 4d).

The raw signal is firstly detrended using a smoothness priors approach (Figure 4e). We em-
ployed a time-varying finite impulse response high-pass filter [53, 52]. The signal is then resampled

1http://dlib.net/
2https://opencv.org/
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at a frequency of 256 Hz by piecewise cubic hermite interpolating polynomial method [54] to ac-
curately refine valleys. The resulting iPPG signal is then filtered using its continuous wavelet
transform representation to retain the original waveform shape (Figure 4f) [14, 55]. We selected
the bump wavelet and defined the bandwidth of the filter to [0.5–4.0] Hz. This step ensures proper
determination of the iPPG signal waveform features. The contact PPG probes employed in this
study (see section 3.2) deliver filtered PPG signals considered as ground truth.

3.4. Waveform features extraction

Both iPPG and cPPG filtered signals undergo the same processing. First and according to the
signals valleys, we cut each wave alone in order to process the signals wave by wave [52]. Each
wave was then independently re-interpolated to 256 points. In order to improve stability, every 10
successive pulse waves were averaged using a moving window (Figure 4g) and detrended (Figure
4h). Area, amplitude, second derivative and temporal features were then computed for each iPPG
and cPPG pulse wave (Figure 4i) [52]. The extraction details of each feature has been described
in section 2.

As shown in Figure 6a, natural discrepancies in the waveforms of each measurement site can
be observed. These variations are produced by the differences in blood vessels density, by the
interactions between probe and skin (e.g. local pressure) as well as by the inherent properties
of skin [56]. Thus and in order to properly compare the results, each participant feature was
normalized by considering the cPPG ear features as references. Equation 1 shows how the mean
and standard deviation of each iPPG and cPPG finger features that are brought to a similar
quantity as cPPG ear given feature:

3.5. Evaluation Metrics and Methods

The assessment of the proposed method is performed by a statistical analysis that relies on
Pearson correlation coefficient as well as two types of errors: the Root Mean Square Error (RMSE,
see equation 2) and the Mean Absolute Percentage Error (MAPE, see equation 3). The MAPE
gives the accuracy of an estimation in regards to a reference value.
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Figure 6: Raw pulse waves to normalized traces. (a) PPG excerpts extracted from the right earlobe and the right
finger using contact probes and from the forehead using the camera frames. (b) Raw Crest Time (CT) feature
traces extracted from the three measurement sites for several continuous PPG pulse waves. (c) CT traces brought
to the same mean as CT of cPPG ear. (d) Normalized traces (same mean and standard deviation as cPPG ear).
The evolution in the traces are very similar, showing that the two measurement techniques (contact probes and
camera) can effectively assess this physiological parameter.

Xnorm = σcPPGear

(
X − µX

σX

)
+ µcPPGear (1)
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Where Xnorm is a feature trace computed from iPPG or finger cPPG. µ and σ respectively
correspond to the mean and standard deviation of a feature trace. X corresponds to either a iPPG
or a finger cPPG feature trace.

RMSE =
√
MSE =

√∑N
i=1 (Yi −Xi)

2

N
(2)

MAPE =
100

N

N∑
i=1

∣∣∣∣Yi −Xi

Yi

∣∣∣∣ (3)

N corresponds to the number of samples. X, the estimation, is either a finger cPPG or a iPPG
normalized feature (equation 1). Y , the reference, is the corresponding cPPG normalized feature
trace.

4. Results and Discussion

Previous studies [1, 25] show that cPPG waveform features are strongly related to several
physiological parameters such as heart rate, respiratory rate, arterial stiffness, vessels aging and
blood pressure (see section 2). We propose to compare contactless PPG signal waveform recorded
using a camera with contact PPG probes.

NB

BH

Time (sec)

Time (sec)

s
e

c
s

e
c

0 20 40 60

0.2

0.25

0.3

0.35
𝛥T

cPPG finger
cPPG ear
iPPG

0 5 10 15 20
0.16

0.2

0.24

0.28
𝛥T

0 5 10 15 20
0.12

0.16

0.2

0.24

0.28

0.32
e/a

0 20 40 60

0.8

1

1.2

1.4

1.6

1.8
e/a

0 20 40 60

5

6

7

8
PA

0 20 40 60

12.2

13

13.8

PH

0 5 10 15 20

2.6

3.2

3.8

4.4

PA

0 5 10 15 20

7

8

9

10

PH

cPPG finger
cPPG ear
iPPG

cPPG finger
cPPG ear
iPPG

cPPG finger
cPPG ear
iPPG

cPPG finger
cPPG ear
iPPG

cPPG finger
cPPG ear
iPPG

cPPG finger
cPPG ear
iPPG

cPPG finger
cPPG ear
iPPG

Time (sec)

a
.u

Time (sec)

a
.u

Time (sec)

a
.u

Time (sec)

a
.u

Time (sec)

a
.u

Time (sec)

a
.u

Figure 7: Each presented feature belongs to a specific category: ∆T (time delay between systolic and diastolic
peaks) belongs to temporal features, PA (pulse area) belongs to area features, e/a corresponds to the ratio of
the second derivative amplitudes of e and a points, PH (pulse height) is associated to the amplitudes. Each row
represents the feature traces for a particular experiment: Normal Breathing (NB, top row) and Breath Hold (BH,
bottom row). The traces were computed from the PPG signals of participant #1. Good agreement can be observed
between the contact and non-contact series.
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The features extracted from these waveforms were assessed and the obtained results are pre-
sented in Figure 7 and tables 1, 2 and 3. The features are divided into three categories: temporal,
area, second derivative and amplitude (see figure 2). They are extracted from 3 different mea-
surement sites, namely the forehead, using the camera, the right ear and the right index, using
approved contact sensors. Furthermore, we compare the results from the two contact sensors mea-
surements in order to observe the impact of the measurement sites [57] and to ensure that the
errors are not due to the processing of the iPPG signals. To sum up, the analysis is done on 3
comparisons of features: iPPG forehead vs cPPG ear, iPPG forehead vs cPPG finger and cPPG
ear vs cPPG finger.

Figure 7 presents an example of a feature per category. We note that the three traces evolve
in the same way and that breath hold induces significant physiological variations.

4.1. Temporal features

The 8 temporal features are frequently employed in the literature for the assessment of several
physiological parameters [25]. Table 1 shows the comparison between the camera and the contact
probes. We also present, in Figure 8, scatterplots of 3 features were selected according to their
degree of correlation where one can notice that compared signals show a high correlation in the
DT feature (0.92 for NB and 0.90 for BH), a good correlation in the A2T feature (0.88 for NB and
0.81 for BH) and an acceptable correlation in the PWHH feature (0.81 for NB and 0.73 for BH).

Table 1: Statistical analysis of temporal features. PI is the pulse interval, PWHH is the pulse width at the half
height, FDPT is the first derivative peak time, A2T is the second area time, TN is the dicrotic notch time, ∆T is
the time delay between the systolic and diastolic peaks, CT is the crest time and DT is the diastolic time. p-values
are < 10−4 for all correlation coefficients. RMSE corresponds to the Root Mean Square Error and MAPE to the
Mean Absolute Percentage Error.

cPPGear vs iPPG cPPGfinger vs iPPG cPPGfinger vs cPPGear

Feat. Exp.
Correlation

µ± σ
RMSE

(sec)
MAPE

(%)
Correlation

µ± σ
RMSE

(sec)
MAPE

(%)
Correlation

µ± σ
RMSE

(sec)
MAPE

(%)

PI NB 0.93 ± 0.05 0.02 1.46 0.89 ± 0.09 0.02 1.58 0.96 ± 0.09 0.01 0.53

BH 0.90 ± 0.07 0.03 2.35 0.84 ± 0.14 0.04 2.68 0.90 ± 0.13 0.03 1.33

PWHH NB 0.81 ± 0.12 0.01 2.46 0.56 ± 0.33 0.02 3.63 0.63 ± 0.36 0.02 3.12

BH 0.73 ± 0.17 0.03 5.16 0.52 ± 0.29 0.04 7.89 0.54 ± 0.46 0.03 6.81

FDPT NB 0.78 ± 0.11 0.00 2.97 0.73 ± 0.13 0.00 3.14 0.74 ± 0.17 0.00 3.29

BH 0.73 ± 0.09 0.00 4.49 0.70 ± 0.33 0.00 4.06 0.73 ± 0.27 0.00 3.68

T2A NB 0.88 ± 0.06 0.02 2.08 0.82 ± 0.14 0.02 2.42 0.91 ± 0.15 0.01 1.13

BH 0.84 ± 0.11 0.03 3.55 0.78 ± 0.13 0.04 3.81 0.90 ± 0.09 0.02 1.81

TN NB 0.85 ± 0.08 0.01 2.24 0.75 ± 0.15 0.01 2.76 0.84 ± 0.18 0.01 1.85

BH 0.81 ± 0.10 0.02 4.09 0.66 ± 0.19 0.02 5.01 0.80 ± 0.18 0.01 3.24

∆T NB 0.80 ± 0.11 0.01 2.85 0.64± 0.17 0.01 3.57 0.80 ± 0.20 0.01 2.31

BH 0.78 ± 0.14 0.02 4.95 0.57 ± 0.19 0.02 6.24 0.66 ± 0.23 0.01 5.03

CT NB 0.79± 0.11 0.00 2.66 0.67 ± 0.26 0.01 3.04 0.76 ± 0.27 0.00 2.29

BH 0.79 ± 0.13 0.02 5.67 0.62 ± 0.35 0.02 7.10 0.78 ± 0.22 0.01 3.57

DT NB 0.92 ± 0.05 0.02 1.55 0.88 ± 0.10 0.02 1.67 0.95 ± 0.10 0.01 0.66

BH 0.90 ± 0.07 0.03 2.39 0.84 ± 0.12 0.04 2.84 0.90 ± 0.12 0.03 1.39

We notice that the temporal features are very well correlated (e.g. ∆T in Figure 7), in particular
for the two comparisons cPPG ear vs cPPG finger and iPPG vs cPPG ear. Also, we notice that
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Figure 8: Scatterplot with representations of three temporal features: DT: Diastolic Time, A2T: time of second
area, PWHH: Pulse Width at the Half Height. Non-contact measurements are in good agreement with contact ones
for DT and A2T. Correlations presented in table 1 reflect this observation. The lines of identity show the line of
best fit.

PI and DT present the best correlations. For the three comparisons the correlation varies between
0.84 and 0.96 for both experiments. PWHH exhibits a lower correlation than the rest of the
features. It remains acceptable if we consider only the comparison iPPG vs cPPG ear where it
reaches 0.73 for BH and 0.81 for NB. Note that in all temporal features the correlation for NB is
higher than for BH while MAPE and RMSE values follow an inverse pattern: they are higher for
BH than for NB.

The parameters extracted from cPPG ear are very well correlated with iPPG ones compared
to those extracted from the finger. It clearly reflects the significant impact of the measurement
site on the correlations since the forehead and the ear are very close in terms of ROI compared to
the finger. The low errors values and slope of the fitting line in the scatterplots as well as a low
p-values (< 10−4)indicate a strong relationship between the two measurement techniques.

4.2. Area features

Area features are generally related to vessel properties such as resistance, elasticity and com-
pliance. They are also exploited to characterize the ventricular ejection properties [30].

Table 2 shows that the two comparisons iPPG vs cPPG ear and cPPG ear vs cPPG finger
exhibit comparable correlation values for all area features. PA evolves in the same way for all
measurement sites. Note that BH introduces a significant change in these features (see Figure 7
for a typical example). In contrast with the temporal features, the correlation in the case of BH
is better than for NB experiment. We suppose that these lower correlation values are associated
with the magnitude of the physiological changes: no significant physiological changes related to the

11



Table 2: Statistical analysis of area features. PA: pulse area, A1: area before the dicrotic notch, A2: area after
dicrotic notch. p-values are < 10−4 for all correlation coefficients.

cPPGear vs iPPG cPPGfinger vs iPPG cPPGfinger vs cPPGear

Feat. Exp.
Correlation

µ± σ RMSE
MAPE

(%)
Correlation

µ± σ RMSE
MAPE

(%)
Correlation

µ± σ RMSE
MAPE

(%)

PA NB 0.75 ± 0.17 0.16 3.57 0.55 ± 0.34 0.21 4.64 0.61 ± 0.28 0.17 4.24

BH 0.87 ± 0.17 0.16 4.23 0.88 ± 0.07 0.17 4.78 0.87 ± 0.11 0.15 4.36

A1 NB 0.68 ± 0.15 0.11 4.30 0.46± 0.39 0.12 5.16 0.51 ± 0.32 0.11 4.90

BH 0.81 ± 0.22 0.10 5.24 0.86 ± 0.09 0.11 5.62 0.85 ± 0.13 0.10 5.34

A2 NB 0.68 ± 0.15 0.10 4.74 0.50 ± 0.34 0.11 5.40 0.67 ± 0.31 0.08 3.97

BH 0.80 ± 0.15 0.12 6.26 0.78 ± 0.15 0.12 6.84 0.85 ± 0.12 0.10 4.97

vessel properties appear at rest. A breath hold, however, produces a global change in physiology
that induces significant variations in the pulse wave areas.

For all area features, the comparison cPPG ear vs iPPG shows a higher correlation than
the other comparisons. We believe that this observation is a consequence of the measurement
sites, the ear being closer to the forehead than the finger. The slope of the fitting line in the
scatterplots (Figure 9) as well as the RMSE and MAPE values show a strong relationship between
the measurement techniques. Note that the areas are particularly sensitive to camera noise and
motions artifacts.
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Figure 9: Scatterplot representations for area features. PA: Pulse Area, A1: area before the dicrotic notch, A2: area
after dicrotic notch, for the two experiments NB (normal breathing) and BH (breath hold). The lines of identity
show the line of best fit.
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4.3. Second derivative and amplitude features
The second derivative reflects the finest variations of the pulse waveform. This parameter is

mainly associated with arterial stiffness and therefore ageing [25].
From table 3 and the scatterplots (Figure 10), we notice that RMSE and MAPE are acceptable,

but correlations are somewhat low. Only the comparison iPPG vs cPPG ear exhibits an average
correlation. Note that this parameter is very sensitive to artifacts where slight perturbations in
the iPPG waveform can drastically affect the features computed from its second derivative. In
practice, this effect tends to produce strong outliers that lead to a drop in correlation. We also
suppose that second derivative features are closely related to blood vessels density and to vascular
properties (e.g. vessels aging) which differ from one measurement site to another [56, 57].

Table 3: Statistical analysis of second derivative and amplitude features. b/a and e/a are the ratios of the second
derivative amplitudes, PH is the Pulse height. p-values are < 10−4 for all correlation coefficients.

cPPGear vs iPPG cPPGfinger vs iPPG cPPGfinger vs cPPGear

Feat. Exp.
Correlation

µ± σ RMSE
MAPE

(%)
Correlation

µ± σ RMSE
MAPE

(%)
Correlation

µ± σ RMSE
MAPE

(%)

b/a NB 0.55 ± 0.26 0.03 2.40 0.14 ± 0.44 0.04 3.51 0.05 ± 0.42 0.04 3.79

BH 0.72 ± 0.15 0.04 3.55 0.11 ± 0.50 0.08 6.60 0.14 ± 0.65 0.08 6.39

e/a NB 0.60 ± 0.18 0.01 6.46 0.33 ± 0.45 0.02 8.53 0.65 ± 0.36 0.02 5.37

BH 0.67 ± 0.17 0.03 22.90 0.24 ± 0.56 0.04 22.95 0.48 ± 0.57 0.03 18.03

PH NB 0.22 ± 0.50 0.39 3.82 0.24 ± 0.42 0.39 3.99 0.28 ± 0.54 0.31 3.35

BH 0.80 ± 0.20 0.36 3.87 0.83 ± 0.08 0.36 4.23 0.79 ± 0.29 0.33 3.82

The correlations are good for BH experiments (around 0.70) and acceptable (around 0.57) for
NB. According to Figure 7, e/a feature evolves in the same way. The Figure also exhibits the
impact of a breath hold which induces a significant change of this feature.

PH is a rather special feature that depends on local vasodilation and vasoconstriction, two
physiological processes that are induced by thermoregulation or variations in blood pressure [44].
In table 3 and Figure 10, all comparisons exhibit a strong correlation for the BH experiment
(around 0.80) and a very weak correlation for NB (around 0.25). Figure 7 clearly reflects this
observation. It should be noted that PH is almost constant at rest. In contrast, BH experiments
caused significant variations of PH, which result in better correlation values.

The results presented in this study show that employing a camera to remotely measure car-
diovascular parameters based on the PPG pulse waveform is very promising. Nearly all the con-
tactless features are well correlated with those obtained using contact PPG probes even though
both technologies are different. The discrepancies may be due to the difference in properties of
the measurement sites [57]. We emphasize that several sources of noise can affect the iPPG signal
such as camera (quantum efficiency), lighting or subject motions. We assume in this study that
the effects of subtle and involuntary motions induced by heartbeat (ballistocardiographic effect)
on the iPPG signal are very weak or even negligible as proved in [58].

In the light of the recent researches [59, 60], we must note that the physiological origin of the
PPG modulation is still under debate and there is no consensus for a unique definition. According
to the present results and independently of the origin of the phenomenon, it seems that iPPG
(associated to white illumination) can be employed to remotely assess several cardiovascular prop-
erties. Our group recently proposed a method for assessing the peripheral vasomotor activity which
is reflected by the modification of the pulsatile amplitudes in iPPG signals [12]. These changes are
directly related to vessels state, either to vasoconstriction or vasodilation.
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Figure 10: Scatterplot representations for second derivative and amplitude features.The lines of identity show the
line of best fit.

5. Conclusion

Imaging photoplethysmography is a noninvasive, low cost, simple and contactless optical mea-
surement technique employed to measure physiological parameters. We demonstrated, in this
study, the feasibility of assessing iPPG waveform features remotely. The variations of these pa-
rameters are in close relation with several cardiovascular diseases such as arterial stiffness, blood
pressure, and vascular aging. It provides a quantitative information to well understand the un-
derlying mechanisms of waveform shape from different body sites. Contactless PPG features were
compared to contact PPG features from two different sites. Several similarities and a strong correla-
tion for two experiments (normal breathing and breath-holding) has been demonstrated. Therefore
contact ear PPG and iPPG show a high correlation in temporal features, a good correlation in areas
and an acceptable correlation for amplitude and derivative features. The measurement site effects
can be the reason of the slight low correlation of some features. The results show that technologies
employed to remotely measure PPG signals are of particular interest for the assessment of arterial
stiffness, blood pressure and consequently for non-contact diagnosis of several cardiovascular dis-
eases. The main limitations of this study are related to the small and constrained sample size (age
and skin types). Thus, we plan to conduct similar experiments on a large-scale population includ-
ing patients and elderly participants. In order to fully understand the effect of the measurement
site we propose, as future work, to study the similarities between forehead cPPG and forehead
iPPG waveforms by positioning a sensor specifically designed for cPPG forehead measurement.
The effect of the wavelength range will be also analyzed through a comparison between contact
and non-contact signals measured at the same and at different wavelengths (namely IR and green).
This experience could subsequently be replicated in other areas of the body (e.g. hand region).
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