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ABSTRACT
A key aspect in the determination of stellar properties is the comparison of observational
constraints with predictions from stellar models. Asteroseismic Inference on a Massive Scale
(AIMS) is an open source code that uses Bayesian statistics and a Markov Chain Monte Carlo
approach to find a representative set of models that reproduce a given set of classical and
asteroseismic constraints. These models are obtained by interpolation on a pre-calculated grid,
thereby increasing computational efficiency. We test the accuracy of the different operational
modes within AIMS for grids of stellar models computed with the Liège stellar evolution code
(main sequence and red giants) and compare the results to those from another asteroseismic
analysis pipeline, PARAM. Moreover, using artificial inputs generated from models within
the grid (assuming the models to be correct), we focus on the impact on the precision of
the code when considering different combinations of observational constraints (individual
mode frequencies, period spacings, parallaxes, photospheric constraints,...). Our tests show
the absolute limitations of precision on parameter inferences using synthetic data with AIMS,
and the consistency of the code with expected parameter uncertainty distributions. Interpolation
testing highlights the significance of the underlying physics to the analysis performance of
AIMS and provides caution as to the upper limits in parameter step size. All tests demonstrate
the flexibility and capability of AIMS as an analysis tool and its potential to perform accurate
ensemble analysis with current and future asteroseismic data yields.

Key words: stars: fundamental parameters – stars: oscillations.

1 IN T RO D U C T I O N

At present, asteroseismic supporting space missions in operation
and ground-based networks (SONG, Andersen et al. 2014; TESS,

� E-mail: BMR135@student.bham.ac.uk (BMR); G.Buldgen@bham.ac.uk
(GB)

Ricker et al. 2015; Grundahl et al. 2017) or retired missions (CoRoT,
Baglin et al. 2006; CoRot Team 2016; Kepler, Borucki et al.
2010; K2, Howell et al. 2014) have generated high-quality data for
large ensembles of stars. Further missions are also in preparation
(PLATO, Rauer et al. 2014). In order to model these stars, we need
pipelines that can efficiently compare observations and models.
They must be stable, robust, and fast to deal with the current volume
of data and the subsequent increases expected in the future.
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Often, inferred pipeline properties rely on simple scaling relations
of the large frequency separation (�ν) and the frequency of
maximum oscillation power (νmax) (Kjeldsen & Bedding 1995).
Though quick and simple to use, more robust estimations can be
made when, for example, the average large frequency separations
from model predicted radial mode frequencies and the use of
gravity mode period spacings are considered in the parameter
determinations (see Rodrigues et al. 2017; Serenelli et al. 2017).
Though an improvement, these still do not exploit all of the
information the individual modes contain, e.g. presence of acoustic
glitches (Vorontsov 1988; Gough 1990; Miglio et al. 2010; Pérez
Hernández et al. 2016; Verma et al. 2017) and long-term internal
structure changes from curvature of the large frequency separation
(Mosser et al. 2012; Hekker & Christensen-Dalsgaard 2017)

Multiple asteroseismic modelling techniques have been de-
veloped with the objective to fully exploit seismic information
(Guenther & Brown 2004; Miglio & Montalbán 2005; Bazot,
Bourguignon & Christensen-Dalsgaard 2008; Metcalfe, Creevey &
Christensen-Dalsgaard 2009; Gruberbauer, Guenther & Kallinger
2012, PARAM (da Silva et al. 2006; Rodrigues et al. 2014, 2017);
see the KAGES (Silva Aguirre et al. 2015; Davies et al. 2016) and
LEGACY (Lund et al. 2017; Silva Aguirre et al. 2017) projects for
further pipelines).

The use of individual mode frequencies as constraints to the
analysis, increases significantly both the precision and accuracy of
the inferred masses, radii, and age for both main-sequence (e.g.
Lebreton & Goupil 2014 for a recent review, Reese et al. 2016 for
tests using artificial data, or results based on Kepler’s best data sets
by Silva Aguirre et al. 2017) and red giant stars (Huber et al. 2013;
Lillo-Box et al. 2014; Pérez Hernández et al. 2016; Li et al. 2018).
Improving the use of seismic information will lead to more precise
global stellar properties and allow for testing aspects of the micro-
and macro-physics which are currently poorly constrained.

We present here the stellar modelling pipeline, AIMS (Asteroseis-
mic Inference on a Massive Scale; Reese 2016; Lund & Reese 2018).
AIMS is a pipeline designed to process the measured individual
acoustic oscillation frequencies of stars coupled with classical,
spectroscopic, or interferometric constraints to provide a powerful
diagnostic tool for the determination of stellar properties. Much like
Bazot et al. (2008), Gruberbauer et al. (2012), and BASTA (Silva
Aguirre et al. 2015), AIMS uses a Bayesian approach. Bazot et al.
(2008) implements an on-the fly model calculation with a Markov
Chain Monte Carlo (MCMC) algorithm to produce a representative
sample of model parameters. This leads to a higher accuracy but
at a significant computational cost, whereas the remaining codes
use pre-computed grids (faster calculation time). Gruberbauer et al.
(2012) and BASTA then evaluate probability distribution functions
by scanning the grid. Like Bazot et al. (2008), AIMS also uses an
MCMC algorithm, but what is unique is that it is combined with
model interpolation. This provides a compromise between accuracy
and efficiency.

This paper details the capabilities and potential of AIMS and its
applicability within the scientific community. The paper is set out
as follows: Section 2 describes the functionality of the code and
Section 3 describes the input grids containing the models used in
the analysis. Sections 4 and 5 discuss the results of the various
interpolation tests on the grids and the performance of the program
in analysing artificial and real data. Finally, a comparison of the
performance of AIMS using different combinations of asteroseismic
and classical constraints is given in Section 6. The results of these
tests are discussed with a summary of the work in Section 7.

2 A I M S

AIMS uses Bayesian statistics and an MCMC algorithm (EMCEE,
Foreman-Mackey et al. 2013) to select models representative of the
input data by interpolating in a pre-defined grid. The combination of
these techniques allows for an efficient, comprehensive search of the
parameter space defined by the grid parameters. User-defined priors
and the likelihood function resulting from the input constraints
shape the exploration of the parameter space. AIMS initializes the
grid search in the region of a set of models with the highest posterior
probability. This increases the efficiency of the parameter space
exploration, which in turn helps the MCMC algorithm converge
faster.

The program itself has three modes of functionality: binary grid
generation, interpolation testing, and stellar parameter characteriza-
tion. The performance and capabilities of interpolation mechanism
and stellar parameter determination are tested here. Information on
the other functions can be found in the supporting documentation.1

To determine stellar parameters in a Bayesian manner, an affine
invariant ensemble MCMC sampler (Goodman & Weare 2010)
is implemented via the PYTHON package EMCEE developed by
Foreman-Mackey et al. (2013). For a given data file, the user
can employ so-called walkers that are initiated in a tightball
configuration (optional), uniformly distributing the walkers within
a sphere centred on an initial estimation of the most probable grid
model. If tightball is not selected, the walkers are initiated through
the sampling of model parameter priors. The step number for the
walkers can be user defined. Parallel tempering is available with the
option to define the number of temperatures, and the MCMC chains
can be thinned.

To determine the properties of targets falling between grid
points defined by the evolutionary tracks, AIMS uses a two step
interpolation procedure of the model parameters:

(i) Linear interpolation in the chosen evolutionary parameter
along a track.

(ii) Interpolation between tracks.

This method allows for greater control over the evolutionary
parameter (prevention of exceeding the boundaries of evolutionary
tracks) and attempts to achieve greater accuracy as consecutive
models on an evolutionary sequence are not expected to change
significantly. AIMS includes an accuracy test of the interpolation
procedure and an additional program is joined to AIMS to visualize
these results as a function of the global grid parameters.

The linear interpolation along a track can be modified to use
various evolutionary parameters. However, only a parameter vary-
ing monotonically as a star evolves should be used to prevent
any spurious results or unexpected errors within the interpolation.
Examples of such variables include the Helium core mass in red
giant branch (RGB) stars or the central hydrogen content for main-
sequence stars (MS).

3 TH E G R I D – C L ÉS WITH LOSC

The analysis performed by AIMS is based upon the exploration of a
pre-defined grid of models. In this work, the grid is parametrized by
mass (0.75–2.25 M�, in 0.02 M� increments), initial metallicity
(Zinit), and initial hydrogen content (Xinit). The range of Xinit and Zinit

1AIMS overview:http://bison.ph.bham.ac.uk/spaceinn/aims/version1.3/
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Table 1. The values of Xinit, Zinit, and [Fe/H] attributed to the CLÉS grid
of models.

Xinit Zinit [Fe/H]

0.691 0.0300 0.25
0.716 0.0175 0.00
0.731 0.0100 − 0.25
0.740 0.0057 − 0.50
0.745 0.0032 − 0.75

Figure 1. HRD displaying the evolutionary tracks found within the CLÉS
grid (Xinit = 0.731, Zinit = 0.0100). The gap between the end of the MS and
beginning of the subgiant branch is due to the Helium core mass fraction
selection criterion for the MS and RGB grids.

values ([Fe/H] values also included for completeness) used can be
found in Table 1. Fig. 1 is a Hertzsprung–Russell diagram (HRD)
showing the evolutionary tracks calculated for this grid for a given
chemical composition. A gap between the MS and subgiant branch
can be observed due to the selection criteria used to split the nominal
grid into specific MS and red giant subgrids, which is described in
detail later.

The grid contains the evolutionary tracks of theoretical stellar
models and their frequencies. Here, we considered ∼38 000 models,
but larger grids of up to ∼1.5 million models have been used
in the past. The models were computed using the CLÉS (Code
Liégeois d’Évolution Stellaire; Scuflaire et al. 2008a) stellar evo-
lution code and the frequencies were generated using the LOSC
(Liège Oscillation Code; Scuflaire et al. 2008b) pulsation code.
We use the Grevesse & Noels (1993) abundances, nuclear reaction
rates of Adelberger et al. (2011), opacities of Iglesias & Rogers
(1996), and the FreeEOS equation of state (Irwin 2012). The
mixing-length parameter was kept to a Solar calibrated value of
1.67 and a convective overshoot of 0.05 times the local pressure
scale height was used, assuming instantaneous chemical mixing
and the radiative temperature gradient in the overshooting region.
Microscopic diffusion was not included in the grid. The border of
the convective zones was calculated following the guidelines of
Gabriel et al. (2014) to avoid spurious solutions for the evolution of
convective cores.

In this work, we used two subgrids: one for MS and another
for RGB stars. We based our criteria on the changes in chemical
composition (variations of central hydrogen for the MS, helium
core mass for the RGB), effective temperature, and νmax values.
While AIMS is very versatile in the grids it can use, it should be

noted that the tracks must contain a sufficient number of models to
ensure an accurate interpolation. On the MS, we included modes
with angular degree (�) values of 0, 1, and 2 whereas the RGB grid
only used radial modes (� = 0). This difference stems from intrinsic
limitations of AIMS in processing non-radial modes of RGB stars
which are highly non-linear. Both grids included radial orders of the
frequencies in the range n = 0–30. It should be noted that the grids
were built to test the functionality of the code that we will describe
in Sections 4 and 5.

4 INTERPOLATI ON TESTI NG

The objective of AIMS is to carry out precise asteroseismic analyses.
Hence, it is paramount to ensure an accurate interpolation of the de-
termined stellar properties to ensure the reliability of the modelling
results. Here, we briefly present the interpolation procedure used in
AIMS and the tests that can be made to certify accurate and reliable
results.

4.1 Interpolation procedure

AIMS uses a two step interpolation process to explore the regions
between models, namely

(i) interpolation between evolutionary tracks
(ii) interpolation along an evolutionary track

Interpolation between the tracks relies on a multidimensional De-
launay tessellation (see Field 1991 and references therein) of the grid
parameters excluding age. The tessellation and subsequent interpo-
lation are carried out by python’s scipy.spatial.Delaunay
module which is based on the QHULL2 package (Barber et al.
1996). Using a tessellation approach offers two advantages: the
grid does not need to be structured, and fewer tracks (namely
ndim + 1 as opposed to 2ndim , where ndim ≥ 2 is the number of
dimensions excluding age) are used when interpolating at a given
point, accelerating the calculations. During the tessellation, the
parameter space is divided into simplices (i.e. triangles in the 2D
case, tetrahedra in the 3D case, etc.). For a given point in this
space, AIMS searches for the simplex containing it and carries out
a linear combination of its vertices (or nodes). The interpolation
coefficients correspond to barycentric coordinates provided by
scipy.spatial.Delaunay. These coefficients are simply the
ratios between the volumes of the reduced simplices where one of
the vertices has been replaced by the point where the interpolation
is carried out and the volume of the original simplex.

Interpolation along the tracks consists of a linear interpolation in
age between the two closest models. Points outside the tracks are
rejected, i.e. AIMS does not perform extrapolation. AIMS can either
interpolate according to the physical age, or according to an age
parameter which has been scaled to go from 0 to 1 along the track
(e.g. helium core mass in red giants). This latter option is more
robust as it is less likely to lead to extrapolation (and hence model
rejection) when the two interpolation steps are combined. Indeed,
the point where the interpolation is being carried out only needs to
be within the age span of the interpolated track rather than having
to lie within the age span of all tracks involved in the interpolation,
as illustrated in Fig. 2.

The determined coefficients are then used to interpolate the mod-
els by linearly combining the global parameters M, X0 (the initial

2http://www.qhull.org/
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Figure 2. Comparison of physical and scaled age interpolation. In the right-
hand panel, only scaled age interpolation works.

hydrogen content), Z0 (the original metallicity), Teff, and ρ (the
mean density). The radius and luminosity are then determined self-
consistently from these interpolated parameters using the relations

R =
(

3M

4πρ

)1/3

, L = 4πσR2T 4
eff . (1)

We note that even the constant σ is interpolated linearly in case there
were any departures from the Stefan–Boltzmann law. Any supple-
mentary user-provided global parameters are interpolated linearly.
The mean density is interpolated linearly rather than the radius in or-
der to be consistent with the results from InterpolateModel.3

Non-dimensional frequencies, ω/
√

GM/R3, with the same n and �

identification are interpolated linearly rather than their dimensional
counterparts, as they vary much more slowly as a function of stellar
parameters, as illustrated in Fig. 3. They are subsequently multiplied
by

√
GM/R3, using the interpolated values of M and R, in

order to remain consistent with the interpolated global parameters.
The interested reader is referred to the AIMS documentation for
additional information.

4.2 Interpolation results

In this section, we present the tests included in AIMS to check the
suitability of the interpolation procedure to fit observational data.
We compare the interpolation errors to the typical uncertainties of
observed targets found in the literature. On the MS, we used 16-Cyg
A, which yields a median frequency uncertainty on the l = 0 modes
of 0.08 μHz (−1.097 in log10) and a smallest uncertainty of 0.04
μHz (−1.398 in log10). On the RGB, we use KIC4448777, which
has a median frequency uncertainty on the l = 0 modes of 0.018
μHz (−1.745 in log10) and a smallest uncertainty of 0.014 μHz
(−1.854 in log10).

4.3 Interpolation along evolutionary tracks

The evaluation of the interpolation errors along an evolutionary
track is made by testing how well both frequencies and global
parameters of each model can be recovered from adjacent models at
1 and 2 increments away. Fig. 4 shows the rms average interpolation
errors on the frequencies over the range νmax ± 0.2νmax for the MS
and RGB grids detailed in Section 3. Overall the errors are smaller
than the smallest frequency uncertainty of 16-Cyg A over the
tested frequency range for both single and double increments. The
behaviour of the interpolation error is in line with the expectations
for a simple linear interpolation, as it increases by a factor of ∼4.
Increased errors are seen between 1.2 and 1.8 M� and are linked

3https://bison.ph.bham.ac.uk/spaceinn/interpolatemodel/, a program which
interpolates the acoustic structure of models using outputs from AIMS.

Figure 3. Frequencies as a function of stellar age along an evolutionary
track. The upper panel corresponds to non-dimensional frequencies and
the lower panel to their dimensional counterparts. The symbols correspond
frequencies from the non-interpolated models whereas the continuous lines
represent the interpolated frequencies.

to the onset of a convective core during the evolution. The results
are, however, satisfactory as they are well below the observational
error bars.

On the RGB, the interpolation errors remain below the smallest
and average uncertainties for KIC4448777 apart from a small region
at low masses and high metallicities, which represents 2–3 per cent
of the models, as highlighted in the right-hand panels of Fig. 4 by
the black and magenta contours, respectively. Again, using double
increments in the interpolation leads to an increase in line with
numerical expectations. While the RGB results may seem worse
than for the MS, one must bear in mind the comparatively smaller
error thresholds on the RGB. The RGB interpolation errors remain
actually smaller than the MS, as shown in Fig. 4 and can of course
be reduced by refining the grid.

4.4 Cross-track interpolation

As a result of the multidimensional character of the parameter space
and the use of Delaunay tessellation, the approach used to test cross-
track interpolation in AIMS is quite different. The grid is partitioned
in two subgrids: one to form the simplices for the interpolation and
one containing the tracks to be recovered via interpolation. The
partition is made randomly to avoid biasing the test towards one of

MNRAS 484, 771–786 (2019)
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Figure 4. Average frequency interpolation errors over the range νmax ± 0.2νmax along evolutionary tracks for radial modes from the MS grid (left-hand
panels) and the RGB grid (right-hand panels). The upper panels use increments of 1 along the tracks whereas the lower panel corresponds to increments of 2.
The magenta and black contours correspond to the average and smallest error bars of KIC4448777. The average and lowest uncertainties for 16-Cyg A are not
shown as they are greater than the uncertainty range shown.

the directions. This, however, means that the models are not always
adjacent to the interpolated ones, reducing the representativity with
respect to what is done in practice.

Panel (A) of Fig. 5 displays the recovered subgrid from the MS
interpolation. The rms average interpolation errors are consistent
with the MS and RGB values for along the track interpolation,
but extend to higher values in some regions. These predominately
follow the increased error pattern in Fig. 4. Higher uncertainties
are expected though, as a greater range of parameter space than
normally used is interpolated across. The maximum interpolation
errors are the order of the average frequency uncertainty of 16-Cyg
A. The errors are acceptable as the values are consistent with average
observation uncertainties for interpolations over greater ranges than
will be executed during real parameter determination.

Selecting a model from the recovered subgrid, one can see how
well the interpolation has reconstructed the original track. Panel (B)
of Fig. 5 shows the recovered 1.47 M�, Xinit = 0.740, Zinit = 0.0057
track and panel (C) an Echelle diagram for the original and interpo-
lated frequencies for a single model. The interpolated temperatures,
luminosities, and frequencies vary fractionally about the original
values, illustrating further the accuracy of the interpolation method.

Appendix A1 shows an example of the RGB grid. The variation in
the residuals is minimal, confirming the proper behaviour of the in-
terpolation. In additional tests, some instances show variations from
the expected values along sections of the track. These features are
largest when interpolating between grid points separated widely in
mass (> 0.05 M�) or metallicity, consistent with the regions of in-
creased uncertainty in Fig. 5 outside of the convective onset region.

4.5 Other parameters

These tests can also be performed for parameters such as mass,
radius, luminosity, effective temperature, and surface metallicity
ratios. The results are not presented here to avoid redundancy but
details can be found in Appendix A2. Again, these tests validated
the quality of the grid at both the single and double increment level.

5 O BSERVATI ONA L O UTPUTS AND
C O N S T R A I N T S

In this section, we present the robustness and accuracy of AIMS in
reproducing accurately and precisely stellar parameters. The results
presented here illustrate the absolute precision AIMS could achieve
for the specific grid used in this study. It should be noted that
the performance will depend on the grid and the free parameters
included.

5.1 Artificial data

At first, tests were performed using models from the underlying
CLÉS grids. An observation file for a single, randomly selected
model containing the artificial frequencies, Teff, νmax, luminosity
(L), and [Fe/H] values for the track was generated. This track was
then removed from the grid. The input file was perturbed 100 times
to simulate noise in the data signal. This artificial target was fitted
using 100 AIMS runs and the average values from these consecutive
fits and their uncertainties were used to determine the degree of
success of the procedure.

The asteroseismic constraints selected for use in the analysis were
the individual mode frequencies. There are multiple options that can
be selected for the seismic constraints, with each having a slightly
different effect on the output parameters. Other constraints such as
the average �ν and various frequency separation ratios (r0, 1, r0, 2,
r1, 0) could have been used. Using individual mode frequencies gives
the smallest uncertainties on the derived parameters, but the final
parameter values remain consistent throughout.

One should be cautious though as individual frequencies are not
individually unique constraints and can lead to an underestimation
of uncertainties. They are also significantly affected by surface
effects (this is true of other parameters, e.g. mass, but the changes
are more obvious in such cases), at a level such that the precision
of the fit is determined by the uncertainties in the surface correction
rather than the frequencies (see Buldgen et al. 2018a for examples).

MNRAS 484, 771–786 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/484/1/771/5281287 by guest on 18 February 2021



776 B. M. Rendle et al.

Figure 5. An example of results achieved recovering a 1.47 M�, Xinit = 0.740, Zinit = 0.0057 track during interpolation testing: (A) – Colour map of
the maximum interpolated frequency uncertainty along each track. Points represent the positions re-interpolated tracks; the red circle shows the position of
the track used in part (B). This track has a maximum log10 uncertainty on the interpolated frequencies of −1.990. The red circle highlights the location of
the track. Grey points and lines show the triangulation simplices for the interpolation. Red diamonds denote tracks not interpolated due to no triangulation
being possible. (B) – HRD showing the original track (blue line), interpolated track (red markers), and the models the track was interpolated from. Models
used for interpolation are connected to the respective interpolated models by grey dashed lines and are shifted by 0.5 L� for additional clarity. The fractional
difference residuals in luminosity and Teff between the original and interpolated models are shown. The Teff residuals have been inflated by a factor of 100.
The red circle marks the model used in (C). (C) – An Echelle diagram showing the original (blue, closed) and interpolated (orange, open) frequencies for the
highlighted model in (B). Full frequency range is shown with diagram modulated by the original model �ν value. All frequencies have been shifted by 5μHz
in the x-direction for clarity.

5.1.1 Main sequence

A 1.27 M�, Zinit = 0.01, and Xinit = 0.731 MS model with 21 mode
frequencies (7 of each of l = 0, 1, 2) was selected (see Fig. 6).
We used the uncertainty distribution of 16-CygA (Davies et al.
2015) for our artificial target. The magnitude of the uncertainties
are of the same order as those used in the ‘Sun-as-a-star’ tests
in Section 5.2. Uncertainties in [Fe/H] and Teff were of order 0.1
dex and 80 K, respectively. The uncertainty on the luminosity was
selected to be of order 3 per cent based on Gaia (Gaia Collaboration
2018) parallaxes, with a large proportion of the uncertainty due to
the applied bolometric corrections (Torres 2010; Casagrande &
VandenBerg 2014, 2018). No surface effects were used for both the
artificial target and the seismic modelling.

The values and uncertainties of the unperturbed model, the 100
realizations (combined runs) and the best models determined by the
MCMC process for each of the perturbed runs were compared to the
real values of the model. Examples of the probability distribution
functions (PDF) for the mass and radius for each of the three trials
are shown in Fig. 7.

The evidence from Fig. 7 indicates that the three different
statistics agree reasonably well about a common value. The peaks
of the distributions are not centred precisely about the expected
values (black vertical lines) though. The weightings applied to each
model to be combined greatly influences the final results. In this
instance, models with a mass of 1.29 M� of the same Xinit as the
input model were preferentially selected compared to 1.25 M�
models with the same Xinit and 1.27 M� models of different Xinit

values. All models and weightings used during the analysis process
are exported from the program and can be accessed to understand
further which models and combinations are preferred for different
stars. This can be used to understand and improve the construction
of future grids.

The widths of the distributions are related to the uncertainties
determined from each run. The uncertainties related to the single
run are representative of the formal uncertainties output by AIMS,
those of the best MCMC models are expected to be similar to
results of the single (unperturbed) run. The test shows that both sets
of uncertainties are very similar. Finally, the combined runs have
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AIMS – Asteroseismic Inference on a Massive Scale 777

Figure 6. HRD showing the evolution of the 1.27 M�, Zinit = 0.0100,
Xinit = 0.731 track. The red stars indicate the positions of the models selected
for the artificial data analysis on the MS and RGB. Models prior to the zero-
age main sequence have been removed for clarity and final grid selection
criteria have been applied.

uncertainties equal to the approximate summation of those of the
previous two sets in quadrature, as the concatenation of the runs
represents both the formal and random uncertainties.

The magnitude of the uncertainties also depends on the under-
lying grid. An incomplete grid, with insufficient models and/or
frequencies will lead to systematic errors in the model selection.
Indeed, AIMS rejects models which do not match the entire observed
spectrum. The final output parameters are based upon the selection
procedure. Hence, anything affecting the accuracy of the selection
will affect the final results. As the performance relies upon the input
criteria being accepted by a large number of models, an incomplete
grid will increase the number of rejections, reducing the accuracy of
AIMS. A simple solution (performed here) is to reduce the number
of input frequencies in the data file (e.g. limit range of ν to νmax ±
0.5 νmax), increasing the probability for models to match the input
criteria.

To further examine the quality of the results, the number of
standard deviations (Nσ ) the output parameter (xcalc) lay from the
true value (xtrue) was determined using

Nσ = xcalc − xtrue

σ
. (2)

These tests are shown in Fig. 8. It is clear that the best MCMC
models outperform both combined and single models. The higher
performance of the combined run stems from the increased abun-
dance of data, providing a better convergence on the real value than
a single run. As the results always lay within 1.5σ of the result, we
can conclude that the fits were successful.

5.1.2 Red giants

Using the same track and set of classical constraint parameters for
consistency, a model from the RGB grid was selected and subjected
to the same tests as the MS model. Frequency uncertainties were
constructed as for the MS observational file. Uncertainties on the
classical constraints were again consistent with the literature. The
period spacing, �
, was included as a grid parameter (σ�
 =
1 per cent, Vrard, Mosser & Samadi 2016) and consequently as one
of the outputs in the results.

As before, PDFs of the mass and radius, in addition to an
Nσ plot for all parameters, have been included. Fig. 9 shows a
tight relationship between each of the three model runs, sharing
common peak values. The widths of the distributions of the RGB
PDFs are broader than their MS counterparts. This is reflected
in the increased uncertainties of the output values. Using fewer
frequencies compared to the MS runs (9 RGB, 21 MS) and only
l = 0 modes may contribute to this factor, but it is inherent from
broader studies that larger RGB compared to MS uncertainties are
to be expected. A larger number of models are also rejected when
searching the RGB grid, indicating fewer models are likely to be
selected around the desired solution.

The trend in Fig. 10 closely resembles that observed in Fig. 8,
but little should be read into this. Repeating the trials on multiple
MS and RGB models from tracks in different regions of the grid
resulted in different Nσ parameter distributions with each track.
Each set of parameters returned is subject to different over/under
estimations from models resulting from their grid location and the
boundary conditions imposed on them. This variation in model
determined variables and their associated likelihoods means con-
sistency between Nσ patterns should not be expected from model
to model. The focus should therefore be on the distribution of Nσ

values which are all satisfactorily <1.5σ in each case.

5.2 The Sun

Besides artificial data, we used AIMS to reproduce Solar data from
the BiSON network of telescopes (Broomhall et al. 2009; Davies
et al. 2014; Hale et al. 2016), using the l = 0, 1, 2 and n = 18–
23 modes. The frequency uncertainties were increased by a factor
of

√
21/4 (Libbrecht 1992; Toutain & Appourchaux 1994; Ballot

et al. 2008) to perform a Sun-as-a-star analysis. We recall that a
Solar calibrated value of the mixing length was used in the grid.

When working with real data, it is necessary to account for surface
effects, which are not present in tests performed with artificial
data. We used the two-term Ball and Gizon surface correction
(Ball & Gizon 2014), although other corrections are also included
in AIMS: Ball and Gizon single-term (Ball & Gizon 2014); Kjeldsen
(Kjeldsen, Bedding & Christensen-Dalsgaard 2008); Sonoi (single-
term, scaling, two-term – Sonoi et al. 2015).

The fits were performed using two grids: the nominal CLÉS MS
grid and an identical grid, but with microscopic diffusion included
in the modelling (re-calibrated mixing length: 1.81). From Table 2,
we can see that models without diffusion can reproduce quite well
both the Solar mass and radii, although not at the 1σ level, but
that they present inaccuracies in age of about ∼1Gyr. This is in
agreement with helioseismic results which reject Solar models
without microscopic diffusion (Christensen-Dalsgaard, Proffitt &
Thompson 1993). However, models with microscopic diffusion
show excellent agreement with Solar values (Thoul, Bahcall &
Loeb 1994). Fig. 11 confirms this, displaying Nσ results for multiple
parameters of the Sun for grids with (blue stars) and without (red
crosses) microscopic diffusion.

Fig. 12 shows the difference between the observed frequencies
(νobs) and the theoretical (surface corrected – s.c., νtheo s.c.) frequen-
cies returned by AIMS for the grids with (left) and without (right)
diffusion, respectively. All available Solar frequencies are shown.
Residuals are shown to illustrate the quality of the interpolation
process, hence the robustness of the parameter determinations. A
periodic trend is seen in both cases, with a much higher emphasis
for the non-diffusive grid. This trend is the result of the large
mismatch of helium abundance between the theoretical model and
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778 B. M. Rendle et al.

Figure 7. The mass (left) and radius (right) PDF distributions for RGB: the single model (green), 100 realizations (red), and best models from the MCMC
runs (blue). The model mass and radii are 1.27 M� and 1.414 R�, respectively, indicated by the vertical black, dotted line.

Figure 8. Nσ steps from the true value of each calculated parameter for the
unperturbed (green), combined (blue), and best MCMC (red) models for the
MS tests.

the Sun. Larger disparities are also observed above 3700 μHz as
a consequence of the surface effects. This clearly illustrates the
difficulties and weaknesses of using individual frequencies as direct
constraints as the surface effects could bias the modelling results.
Using constraints such as frequency ratios for MS stars can help
mitigate such effects.

Looking at the reduced χ2 values of the frequencies, it seems
sensible to favour the values of the Solar parameters determined
using the grid including diffusion:

χ2 =
∑

i

(νtheo s.c.,i − νobs,i)2

σ 2
i

(3)

χ2
red = χ2

d.o.f.
(4)

where d.o.f. (degrees of freedom) is the number of input parame-
ters minus the number of free parameters, and σ the compound
uncertainty on the frequencies. Indeed, χ2

red,diff = 11.4 whereas
χ2

red,non−diff = 52.5. Testing the hypothesis that the model values are
true, p values of 0.88 (χ2

red,diff ) and 0.07 (χ2
red,non−diff ) were returned.

The order of magnitude difference between the reduced χ2 values

clearly indicates that the grid including diffusion is superior for the
Solar analysis. As mass, radius, and age are all within 1σ of the
Solar values for this grid, we can conclude that the processes within
AIMS perform well enough to produce the results to a high degree of
accuracy. All of the uncertainties are lower than one would expect
to find in the literature (see Silva Aguirre et al. 2017 for recent Solar
values from multiple grids and codes) as they are of the same order
of magnitude as in tests using artificial data.

To determine whether the small uncertainties resulted from the
model or the use of individual mode frequencies, the Solar data
was also tested using the r0, 1, r0, 2, and r1, 0 frequency separation
ratios (Roxburgh & Vorontsov 2003; grid including microscopic
diffusion used). An improvement in the returned parameters can be
expected, as the ratios focus more on the stellar interior (Roxburgh &
Vorontsov 2003; Otı́ Floranes, Christensen-Dalsgaard & Thompson
2005). Additionally, their reduced sensitivity to surface effects
should also lead to an improvement. This is confirmed by the
results in Table 3. The frequency ratios give values consistent
with the ν ind results and the expected Solar values, but with larger
uncertainties. When using solely the frequency ratios,4 one filters
out additional information (e.g. on the mean density of the star)
and thus naturally the uncertainties are increased. While this leads
to larger uncertainties on the stellar parameters, this degree of
precision can also be seen as more robust with respect to systematic
effects which can be underestimated when directly fitting the
individual frequencies.

6 IMPAC T O F U SI NG DI FFERENT
COMBI NATI ONS OF SEI SMI C AND
NON-SEI SMI C C ONSTRAI NTS

In addition to testing the main functionalities of AIMS, the effect
of the inclusion of certain combinations of constraints within the
input observation file were explored. For all tests presented so far,
the classical constraints used have been νmax, Teff, L, and [Fe/H]. In
addition to these constraints, equal weighting has been given to the
asteroseismic (input frequencies, ν i) and classical constraints.

4AIMS allows the use of other constraints along frequency ratios, such as
the large frequency separation, while self-consistently keeping track of the
correlations between seismic indicators.
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AIMS – Asteroseismic Inference on a Massive Scale 779

Figure 9. The mass (left) and radius (right) PDF distributions for RGB: the single model (green), 100 realizations (red), and best models from the MCMC
runs (blue). The model mass and radii are 1.27 M� and 4.403 R�, respectively, indicated by the vertical black, dotted line.

Figure 10. Nσ steps from the true value of each calculated parameter for
the unperturbed (green), combined (blue), and best MCMC (red) models for
the RGB tests.

Table 2. Comparison of Solar parameters using grids with and without
microscopic diffusion. Mass and radius are given in Solar units, density
in g cm−3, and age in Myr. Literature density and age are from Reese et al.
(2012) and Bahcall, Pinsonneault & Wasserburg (1995).

Parameter With diffusion
Without
diffusion

Literature

Mass 0.997 ± 0.005 0.994 ± 0.003 1.0
Radius 0.999 ± 0.002 0.996 ± 0.001 1.0
<ρ > 1.412 ± 0.001 1.4183 ± 0.0005 1.4104 ± 0.0012
Age 4578 ± 31 5264 ± 31 4570 ± 20

6.1 Main-sequence fits

Four tests were performed on a single main-sequence model (the
same model used in Section 5.1.1) from within the grid, with the
effect on the PDF distributions and uncertainties of the mass, radius,
and age of the artificial star recorded. The constraint variations were
as follows:

Figure 11. Nσ steps from the true value of the mass, radius, density, age
(taken to be 4.57 ± 0.02 Gyr, Bahcall et al. 1995), Z/X ratio, log10(g), Teff,
and luminosity for the Sun for the grids with (blue stars) and without (red
crosses) diffusion.

(i) Teff, L(σ Gaia), [Fe/H], no acoustic oscillation frequencies
(ii) Teff, [Fe/H], acoustic oscillation frequencies, no L
(iii) Teff, L(σ Gaia), [Fe/H], r0, 2

(iv) Teff, L(σ Gaia), [Fe/H], acoustic oscillation frequencies

Fig. 13 displays the PDFs for mass, radius, and age determina-
tions. The inclusion or exclusion of luminosity from the constraints
appears to have a minimal impact on the precision between cases
(ii) and (iv). The increase in precision on each parameter may not
be as significant as the inclusion of asteroseismology (narrowing
of distributions observed in both cases), but an improvement is still
observed when luminosity is included. Should other parameters (e.g.
initial He abundance) be free to vary, an independent constraint on
luminosity is important to lift any existing degeneracies present
when using only seismology.

Table 4 shows the uncertainties for each set of constraints. Test
(i) returns uncertainties of order of the typical literature values for
age, mass, and radii, respectively, but tests (ii) and (iv) return values
at least an order of magnitude smaller. The addition of more free
parameters to the grid and the intrinsic differences they would cause
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780 B. M. Rendle et al.

Figure 12. Frequency residuals (νobs − νtheo) comparison between the observed and theoretical frequencies output by AIMS for the grid with (left) and without
(right) microscopic diffusion. The residuals subplot for the results with diffusion shows the residuals for frequencies >3750 μHz. These residuals are much
larger and therefore shown in a separate subplot to allow the underlying trend in the residuals to be observed.

Table 3. Solar parameters and uncertainties determined by AIMS using the
frequency separation ratios r0, 1, r0, 2, and r1, 0 as asteroseismic constraints.
Mass and radius are given in Solar units, density in g cm−3, and age in Myr.
The diffusive grid was used.

Parameter r0, 1 r1, 0 r2, 0

Mass 1.01 ± 0.02 1.00 ± 0.02 0.99 ± 0.03
Radius 1.01 ± 0.03 1.00 ± 0.03 0.99 ± 0.03
ρ 1.40 ± 0.10 1.42 ± 0.10 1.44 ± 0.10
Age 4614 ± 258 4549 ± 204 4603 ± 139

between models would increase these uncertainties to be closer
to those expected. However, the trend between constraint sets is
clear. The decision to include or exclude the acoustic oscillation
frequencies has a significant impact on all parameters, reducing the
percentage errors by an order of magnitude.

Though reduced compared to case (i), case (iii) uncertainties
are of the same order of magnitude despite the inclusion of
asteroseismology and are in line with the best literature values. This
illustrates the difference in precision achievable with the inclusion
of global asteroseismic parameters compared to the use of individual
mode frequencies when the same classical constraints are available.
The potential improvement in precision to be gained underlines the
importance of the development of analysis codes, such as AIMS,
capable of using individual acoustic oscillation frequencies for the
furthering of asteroseismic studies.

6.2 Red giant fits

The process was repeated for an RGB model from the grid to
illustrate that, despite less convincing interpolation results than
on the MS, it also performs well in this regime. Consequently, a
more comprehensive approach was taken. We compare the results
of AIMS for red giant stars to an extensively used, pre-existing stellar
parameter determination code to prove the capability of AIMS as an
analysis tool. We chose the PARAM software (da Silva et al. 2006;
Rodrigues et al. 2014, 2017), which is quite similar to AIMS in its
philosophy, with the only significant difference being that AIMS uses
asteroseismic data as an input. We run AIMS without using the input
mode frequencies to make a more informed comparison between
the capabilities of both codes.

A recent work by Rodrigues et al. (2017, hereafter R17) inves-
tigates the effects of various combinations of constraints on the
accuracy of stellar parameter determinations for a series of artificial
red giant and red clump stars using PARAM. We repeated these
tests using the same sets of classical and global seismic constraints

in AIMS and our own RGB model. 10 different combinations of
constraints were used:

(i) �ν

(ii) �ν, νmax

(iii) �ν, �


(iv) �ν, νmax, �


(v) �ν, �
, L
(vi) �ν, νmax, �
, L
(vii) νmax, L
(viii) log10(g), L
(ix) �ν, log10(g)
(x) �ν, L

From the above list, it is clear that asteroseismic parameters
are still to be used as initial constraints with the large fre-
quency separation (�ν, σ�ν = 0.05 μHz), frequency of maximum
power (νmax, σνmax = 2 per cent), and period spacing (�
, σ�
 =
1 per cent) featuring heavily. These parameters are all global seis-
mic properties and are not necessarily reliant upon determination
of individual frequencies. Hence, they can be input as classical
constraints. In addition to the listed constraints, the effective
temperature (σTeff = 80 K) and metallicity (σ[Fe/H] = 0.1 dex) were
included for each case as in R17. The uncertainties used on L and
log10(g) were 3 per cent and 0.1 dex, respectively. It should be noted
that case (iii) of R17 was ignored here, with a value of �ν calculated
from the frequencies used throughout.

Fig. 14 displays the results of these tests as the distributions of
the determined values normalized to the true parameter values. In
addition to the above sets of constraints, the model was tested using
the standard constraints used throughout this work and with a direct
fit of the individual mode frequencies. This is labelled ‘ν i’.

To further analyse the distributions, table 3 from R17 has been
recreated. Table 5 contains the relative uncertainties for the mass
and age of the tested model for each combination of constraints. The
majority of the results follow typically Gaussian distributions, but
cases (i), (viii), and (ix) show asymmetry in their mass distributions.
The sampling of the mass in these cases has reached the lower
end of the grid, introducing a sampling bias as a build-up of low
mass samples occurs. This causes the asymmetry observed, which
propagates to other parameters.

A direct comparison between the two sets of results is not
appropriate due to the different models used, but a comparison
of the overall trends is meaningful. The attained values vary, but in
general the distributions follow those of R17. This is reassuring and
confirms that AIMS reacts to certain combinations of constraints in
an expected manner.
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AIMS – Asteroseismic Inference on a Massive Scale 781

Figure 13. Comparison of input classical and seismic constraints for mass (left), radius (centre), and age (right) determination. The normalized distributions
represent the different classical constraint criteria: (i) green, dot–dashed; (ii) blue, dashed; (iii) magenta, dotted; (iv) red, solid.

Table 4. Percentage uncertainties for the determined values of mass, radius,
and age for the MS model used in the observational tests, subject to the tested
combinations of classical and asteroseismic constraints.

Constraint Age (%) Mass (%) Radius (%)

(i) 34.64 3.69 3.12
(ii) 1.69 0.18 0.22
(iii) 12.65 2.48 1.98
(iv) 1.41 0.16 0.18

Considering previous statements regarding AIMS uncertainties,
the fractional uncertainties shown in Table 5 are comparable to
those of PARAM. Removing the use of individual mode frequencies
causes the inflation of the uncertainties due to the smaller number of
constraints. Consistency between codes here is important to show
that when global asteroseismic parameters are used as constraints,
AIMS performs as well as a pre-established and trusted software.
Some variation of the fractional uncertainties compared to R17 is
present but likely stems from the differences in model parameters
and grid properties, as well as modelling codes used in these
tests.

Using all of the available information from the mode frequencies
improved the fractional uncertainties with values of 0.002 and 0.029
in mass and age, respectively. This test case also produces the
best PDFs in Fig. 14, showing the potential of using constraints
determined from individual frequencies.

In order to demonstrate the difference in performance between
using all the available modes and only the global asteroseismic
parameters on an MS star, the model used in Section 5.1.1 was re-run
using the same constraints and configuration as test (ii). Though it
was not possible to perform such a comparison with PARAM results,
the consistency of the AIMS results without the use of individual
frequencies with PARAM allows meaningful comparisons.

Fig. 15 shows the result comparison of two separate runs for
mass and radius as before, as well as the relations for the luminosity,
surface gravity, and evolutionary parameter – age. An offset between
the peaks of the distributions is present for various parameters,
caused by the known helium-mass degeneracy (see Baudin et al.
2012 and references therein). As tighter constraints are placed
on the luminosity of the star when asteroseismology is used,

these degeneracies become lifted, allowing for tighter distributions
around the expected solutions.

Table 6 shows the statistical trends observed in the related figures,
giving the percentage uncertainty on each of the relevant parameters
for the cases where the individual frequencies were used and when
only global asteroseismic constraints were applied. It should be
stressed that the uncertainties displayed in Table 6 are purely
statistical and do not account for any systematics within the code.
Despite this, the effect of including the individual frequencies in the
analysis is clear from Table 6. A reduction in uncertainty is seen for
all parameters when using the individual frequencies, displaying the
benefits of using this additional information. However, as discussed
before, the direct use of individual frequencies as constraints can
lead to underestimated uncertainties. This is particularly true for
MS stars, which often have very rich oscillation spectra. In that
sense, being able to use frequency ratios in AIMS allows us to obtain
a more realistic precision on stellar parameters and should generally
be preferred.

The reduction between the RGB and MS uncertainties is not of
the same order for case (vi) for mass and age (case vi contains
the initial artificial RGB test classical constraints and therefore is
most appropriate to compare). The uncertainties in mass and age
on the RGB decrease by factors of 18 and 4, while on the MS the
reduction is by a factor of 20 and 15, respectively. The reduction in
mass is quite similar for each evolutionary state, but the reduction
in age is an order of magnitude greater for the MS. This is mainly
due to the observed frequencies and the additional information they
carry on the internal stellar structure. Indeed, the RGB fit used 9
frequencies while 21 frequencies were used on the MS. Besides
the number differences, the MS fit used modes of l = 0, 1, and 2,
containing a lot of information on the evolutionary stage on the MS,
whereas the RGB fit only used radial modes. The � = 1 and � =
2 modes can of course be included within the RGB grid. However,
their highly non-linear behaviour and the decreased sensitivity of
the small separations to age in evolved stars (see e.g. Montalban
et al. 2010), currently precludes their direct use in AIMS.

To further illustrate the impact of the inclusion of the � = 1 and
� = 2 modes, an additional test on the MS using only the � = 0
modes from the previous tests (seven in total) was performed. The
reduction in uncertainty in this instance was only a factor of ∼5 in
age, much more in line with the RGB results. This demonstrates
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Figure 14. Comparison of the posterior probability distributions for multiple combinations of constraints used as inputs to AIMS without the use of the
individual mode frequencies. The distribution marked ‘AIMS inputs’ shows the result obtained if the individual mode frequencies are used.

Table 5. Fractional uncertainties for each combination of input constraints
for AIMS run as PARAM. The RGB results from table 3 of R17 are displayed
for direct comparison.

Constraints
σM/M σAge/Age

AIMS R17 AIMS R17

νi 0.002 – 0.029 –
�ν 0.184 0.173 0.735 0.734
�ν, νmax 0.061 0.078 0.230 0.284
�ν, �
 0.119 0.109 0.475 0.336
�ν, νmax, �
 0.047 0.054 0.190 0.192
�ν, �
, L 0.048 0.043 0.131 0.122
�ν, νmax, �
, L 0.037 0.034 0.110 0.097
νmax, L 0.041 0.039 0.108 0.107
log10(g), L 0.138 0.124 0.544 0.427
�ν, log10(g) 0.166 0.173 0.590 0.727
�ν, L 0.055 0.052 0.146 0.143

the reliability with which stellar parameters can be derived and
also points towards the potential improvement to make with RGB
grids and data sets containing more than just the � = 0 mod
e frequencies.

7 D I SCUSSION AND CONCLUSION

We have presented a new, open source, code for the determination of
stellar parameters. It is unique as it is currently the sole code using
a Bayesian and MCMC algorithm approach with grid interpolation
to carry out asteroseismic inferences. The code’s flexible, multidi-
mensional approach to the analysis allows the user to analyse data
as a function of two or more fixed grid parameters, affording more
control over the analysis dimensions. We executed a comprehensive

testing phase and presented the results. All aspects of the program
were analysed, with the results proving satisfactory.

A test of the interpolation procedures revealed the accuracy to
which the interpolation function within the program returns known
values from within the grid. Primarily, the tests focused on the
interpolation of the radial mode frequencies of the MS and RGB
grids, showing that AIMS provides accurate interpolations well above
the threshold values set from the literature. Additional inputs (e.g.
mass, age, radius...) were then also tested and again found to be
returned at a level matching or exceeding the desired threshold.

The parameter determination tests were very informative. Pri-
mary tests with artificial data shed light on some potential limita-
tions of both the analysis code and underlying grid. We showed that
the parameter uncertainties determined by AIMS are approximately
an order of magnitude smaller than typically reported in the liter-
ature. Further investigations confirmed that the statistical analysis
and propagation of observational uncertainties were robust. The
uncertainties stated by AIMS are thus statistical and do not account
for biases in the input physics or model selection.

The artificial data tests were satisfactory, with parameters lying
within a few σ of the true results. The input parameters of the
model were not returned, but the results were sufficiently close to
the input values for this not to be of great concern. Data for the
Sun were analysed to test AIMS on real data with clearly defined
parameters for comparison. As expected, the precision achieved
when including individual oscillation modes leads to a comparable
accuracy with the known values only if one has flawless models.
As shown here, this objective is yet to be achieved. One can use the
evidence from comparisons of a diffusive and non-diffusive grid to
highlight the limitations of certain models and the need to improve
upon model selection. As AIMS is strongly coupled to the input
grid, its performance depends on the standard of the grid used and
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Figure 15. Comparison of the normalized posterior probability distributions for the MS model both with (red, solid) and without (green, dashed) the use of
the individual mode frequencies.

Table 6. Percentage uncertainty of calculated variables with and without
the use of individual frequencies as a constraint for an MS artificial model.
‘With ν’ indicates that the individual frequencies were used in the analysis.
<�ν > indicates the runs without the use of the individual frequencies,
but inclusion of the average large frequency separation as a constraint. The
l = 0, 1, 2 modes were used.

Model
σMass

(%)
σRadius

(%)
σLum

(%)
σ g (%) σAge (%)

MS (with ν) 0.14 0.06 0.48 0.01 1.18
MS (<�ν >) 2.96 1.12 2.71 0.10 15.48

the final model selection and returned parameters are ultimately a
reflection of this.

The AIMS code is highly flexible in terms of the parameter
constraints one can use in the analysis. The code can be operated
using individual mode frequencies, frequency ratios, or large fre-
quency separations as asteroseismic constraints. It is also possible
to operate the code without these options, simply using classical
constraints instead. Full posteriors are returned for determined
parameters in each case, meaning any correlations are taken care
of in the analysis process. The effect of altering the classical and
asteroseismic constraints associated with the input observational
file was explored, with the impact of including or excluding
any asteroseismic constraints extremely clear. The inclusion of
asteroseismic constraints improved the internal precision by a
factor 2–20 for both the RGB and MS stars, respectively, for all
of the tested parameters (M, R, ρ, age, Z/X, log10(g), Teff, L),
underlining how important asteroseismology is to AIMS for accurate
inferences and the improvement in measurements this technique
allows for.

A comparison with an established stellar parameter code, PARAM,
gave a valuable insight into the performance of AIMS. For red giant

stars, a set of artificial data similar to those used in R17 was analysed
using a variety of constraint combinations, including multiple global
asteroseismic parameters. Some variation from the expected values
for different combinations was observed, but upon comparison with
the work in R17, the distributions and relative uncertainties show
comparable trends. The similarity in results to an established code
brings confidence to those being output by AIMS, showing that it
performs to the standard expected by the field, even without the use
of the individual mode frequencies it is designed to use.

The primary focus of constraint testing was on the precision to
which the code can operate, but pushing it to the challenging limits
of using the best constraints – i.e. individual oscillation frequencies
with uncertainties of the order of 10−2 μHz. The robustness shown
here by the results achieved give confidence to explore more
possibilities with the code.

Our tests show that, when using individual mode frequencies
as constraints, one is in principle able to infer properties with
exceedingly high precision. The latter, however, should not be
taken as realistic expectations concerning accuracy. Individual mode
frequencies are affected by systematic effects that will dominate
the uncertainties on the inferred properties. We do not explore
such effects in this work, except from the enlightening case of the
Sun, where fitting individual mode frequencies results in very high-
precision estimates of its global properties, which are, however,
highly inaccurate if one uses inaccurate models (see Section 5.2).
This strong model dependence is attenuated when one uses fre-
quency ratios, as shown in the literature, at the cost of a reduced
precision. Explorations of the systematic uncertainties in the models
and the inclusion of additional free parameters (e.g. Yinit, mixing
length, surface effects) provide additional challenges to progress the
code and maintain a high-quality analysis tool for the community,
and will be presented in a forthcoming work (see e.g. Nsamba
et al. 2018). On a positive note, and as demonstrated by the tests
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using Solar data, AIMS can be used for the comparison of competing
models which can be selected using Bayesian inference, as derived
from the full posterior distributions of various estimated properties.
These tests will be instrumental to promote the development of
next generation stellar models, and will improve our ability to
determine stellar ages and chemical yields, with wide impact e.g.
on the characterization and ensemble studies of exoplanets, on
evolutionary population synthesis, integrated colours, and thus ages
of galaxies.

The overall outcome of this work has proven AIMS to be a
flexible, high-precision stellar parameter determination program,
fit for use to bring tighter constraints to the determinations of stellar
parameters through robust asteroseismic analysis and grid mod-
elling for both dwarf and giant stars. Its flexibility and open source
nature makes AIMS a suitable starting point for the development
of the pipelines of future missions such as PLATO (Rauer et al.
2014). Moreover, its output can also be used for additional seismic
investigations with for example non-linear inversion techniques as
developed by Roxburgh (2002) or linear inversions of structural
indicators (Reese et al. 2012; Buldgen, Reese & Dupret 2015,
2018b).
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APPENDI X A

A1 Track interpolation

Fig. A1 is as Fig. 5, but for a track/model selected from the
interpolation tests of the RGB grid. A 1.19 M�, Xinit = 0.731,
Zinit = 0.0100 track is recovered here from models 0.02M� either
side of the original track and of the same Xinit and Zinit values. The
frequency replication is slightly more uncertain than for the MS
example (max. log10 error of −2.088), but again excellent parameter
residuals and minimal shifts in frequencies show that the process is
working well.

A2 Parameter interpolation

Examples of the interpolation plots for radius and luminosity for
the artificial MS star analysed in the main text are shown in Fig. A2.
The maximum uncertainty for each evolutionary track is shown as
per the main text.
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Figure A1. Results as for Fig. 5. A 1.19 M�, Xinit = 0.731, Zinit = 0.0100 track is tested here, but with a model from the RGB grid. A maximum interpolated
frequency error of −2.088 is returned for this track and the mass of the Helium core is used as the interpolation parameter. The values of �T/T have been
increased by a factor of 100 for ease of plotting. The frequencies in (C) have been increased by 5μHz to centre the frequency pattern.

Figure A2. Left: Magnitude of the radius errors for the MS grid. Right: Magnitude of the luminosity errors for the MS grid. Interpolation from grid points a
single increment from the original solution. The black circles show the grid node points. Uncertainties in Solar units.
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