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Lyapunov-based approach for finite time stability and stabilization

Emmanuel Moulay and Wilfrid Perruquetti

Abstract— Finite time stability is investigated for continuous Notation 1: Let £ and.F be two vector spaces amd> 1,
system & = f(x) which satisfies uniqueness of solutions in we denote b)(j/j) (&,F) (respectiverCLk (€,F)) the set
forward time. A necessary and sufficient condition is given of continuous functions o, locally Lipschitz on& \ {0}

for this class of systems using Lyapunov functions. Then, a ith value inF tivelv th t of fi functi
necessary and sufficient condition is developed for finite time With value inF (respectively the set of continuous functions

stabilization of class C£*—affine systems involving a class ©N <&, C* on £\ {0} with value in F).
C£°—settling time for the closed-loop system. Finally an explicit Throughout this paped/ will be a non empty neighbor-

feedback control is given using a control Lyapunov function hood of the origin inR™, B" the open unit ball inR™. As
verifying a certain inequality. usually, a function” : V — R is proper if for every compact
set K C R, V71(K) is compact. System (1) possesses
unique solutions in forward time oty C R™ if for all
This paper deals with the finite time stability of systems;, ¢ ¢/ and two right maximally defined solutions of (1):
with the uniqueness of solutions in forward time and theyo . [0, T4 — R™ andy™ : [0,T,[ — R", there exists
finite time stabilization problem of affine systems. Theg) < Ty, < min {T},T,} such thatp®™ (t) = ¢*o(t) for all
aim is to provide a necessary and sufficient condition fof ¢ [0, T, [. We may assume that for eaely € U, T, is
finite time stability and finite time stabilization. Lyapunov-chosen to be the largest ﬁzo- In the following, ¢ (t)
like techniques have been successfully used to solve thegenotes a solution of system (1) starting fram € R™ at
problems. Finite time stability and stabilization have often = (. Various sufficient conditions for forward uniqueness
been a subject of research. Thus, Haimo gives a sufficiegén be found in [1], [6, Chapter 10] or [10].
condition for finite time stability of continuous systems Now, let us recall some concepts of non-smooth analysis.
Let [a,b] C R, the upper Dini derivativeof a function f :

I. INTRODUCTION

= fx), v R @) [a,5) c R - R s the functionD™ f : [a,t] — R defined
in [8]. Bhat and Bernstein provided an important contributior?: b
in [4] by proving that there is a necessary and sufficient DT f (x) = limsup flath) - f('r).
condition for finite time stability involving the continuity of h—0+ h

the settling-time function at the origin. A part of our resultsigf 1/ . y —, R is a continuous function}’ is the upper-
based on [4] (the reader can find some additional and usefyyht Dini derivative ofV along the solutions of (1), that is

results in this paper). In general (without the continuity of7(;) = D+ (V 0 ¢7) (0). If V is locally Lipschitz atz € V,
the settling-time function at the origin) such necessary angen
V(g +hf(z)) - V(z)

sufficient conditions have not been discussed in the literature. V(x) — lim sup
The paper is organized as follows. After some notations h—0+ h

in section I, section Ill states a general necessary angq if v is continuously differentiable at € V, then
sufficient condition for the finite time stability using the V(z) = (VV(z), f(z)). As itis customary in control theory
properties of the settling-time function. Then a necessary Lyapunov function? for the system (1) is a continuous

and sufficient condition of finite time stabilization using thepositive definite function such that is negative definite.
control Lyapunov function is addressed in section IV. Base§e ie derivativeof V : R* — R along f : R* — R” is

on this result, an explicit feedback control is given undegefined by:
some less restrictive sufficient conditions.

LV :R" =R, LiV(x)=(VV(x), f(x)).

In section IV, we need some concept on set-valued functions.
Let us introduce some notations and definitions that wilh set-valued functio® from X to ) is a function that maps

II. NOTATIONS

be useful later. z € X to aset®(z) C V. Let X¥ and) be two vector
y ) . :
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whereBY is the unit ball in). Let us recall the fundamental theorem of Kurzweil which
is in [11, Theorem 7].
[Il. FINITE TIME STABILITY OF SYSTEMS WITH THE Theorem 1 (of Kurzweil)iet us consider the system (1)
UNIQUENESS OF SOLUTIONS IN FORWARD TIME such thatf is continuous, the system (1) is asymptotically
Let us consider the system (1) whefe € C° (R™), stable if and only if there exists a smooth Lyapunov function

£(0) = 0 and whenf possesses the property of uniquenes®" the system (1). o
of solutions in forward time. Let us recall the asymptotic sta- H€re, the theorem 1 of Kurzweil is of importance because
bility which is a local property. The origin iasymptotically W& cannot have the Lipschitz continuity at the origin of the
stablefor the system (1) if: nght-'hand §|de of t'he §ystem (2). Let us give the main rg;ult
of this section which is a general necessary and sufficient
condition for finite time stability.

Theorem 2:Let us consider the system (1) with unique-
ness of solutions in forward time outside the origin, the
following properties are equivalent:

1) the origin is stable for the system (1),

2) the origin of the system (1) is attractive: for alt> 0,
there exists) (¢) > 0 such that each solution starting
from zy € d (¢) B™ tends to the origin as tends to

infinity.
. L . 1) the origin of the system (1) is finite time stable bn
Now, we may recall the notion of finite time stability (EZ; there exists a smooth Lyapunov functibin: 1 — R
involving the e =
e . I for the system (1) satisfying for aft
settling-time function (see [4, Definition 2.2]) y (1) satisfying €V
Definition 1: The origin isfinite time stabldor the system 0 ds 3
(2) if there exists a non empty neighborhood of the origin V() V(® (6, (s),x)) < too ®)

in R™ such that:

1) there exists a functioff’ : V\ {0} — R>( such that if whered, is the inverse ot o V(@ (),
2o € V\ {0} then ¢® (¢) is defined (and particularly (#44) all smooth Lyapunov function¥” : V — Rx, for the

unique) on[0, T (zo)[, ¢*(t) € V\ {0} for all ¢t € system (1) satisfy for alk: €V
[0,T (x0)[ and lim ¢ (¢t) = 0. T is called the 0 ds

) ) t—T (xo) / < 4+
settling-time of the systefd). vie) V(P (05 (s),x))

2) for all ¢ > 0, there existsé (¢) > 0, for every

v € (5()B"\{0}) NV, ¢7(t) € B for all Moreover, if V' is such a Lyapunov function then
Remark 1:First, note that if the origin of system (1) Vi) V(@ (0, (s), 7))

is finite time stable, therf cannot possess uniqueness in  prgof: (i) = (i) If the system (1) is finite time
backward time at the origin, in particulgrcannot be locally = staple with the settling-time functio# : V — R, then,
Lipschitz at the origin. there exists a smooth Lyapunov functiéh: V — R™ for
Then, if system (1) is finite time stable, Lyapunov asympthe system (1) given by the theorem 1 of Kurzweil. So,
totic stability implies that¢’ = 0 is the unique solution the well defined applicatiod0, T (z)[ — 0,V (z)], t —
starting fromzy = 0. So, the settling-time functio may v (& (¢,2)) is strictly decreasing and differentiable, so its
be extended at the origin by (0) = 0. We will also call inversel0, V (z)] — [0,T (z)], s — 0, (s) is differentiable

this extension theettling-time of the systei). and satisfies for alk € )0,V (z)],
The following result is given in [4, Proposition 2.3]. ]
Lemma 1:Suppose that the origin is finite time stable for ' (s) =

the system (1) with the settling-time functidh: V — R, V(®(0a(s), 7))

then for allz € V' the flow ®(t,z) = ¢” (1) of the system g yse of the change of variables= V (@ (¢, z)) leads to
(1) is defined and continuous d&>g x V and®(t,z) =0 e following equalities

for all t > T'(x).

. . . - T(z) 0
T_h|s resglt shows that the finite time stability of system T(z) = / g — / 0 (s)ds
(1) implies: 0 Vi)
« the uniqueness in forward time of solutions starting Vi(z) ds
from V, —/0 V@0, (5).2)) < +oo 4)
« the asymptotic stability, T
« the existence of a continuous flow. (#4) = (i4i) The set of smooth Lyapunov function for the

Finally, T(z) is the time for the solutions® to reach System (1)Sy is non empty. LetV" < Sy, then by using
the origin, and as the system is autonomous, the Lyapund}e Same argument as before, we deduce thaatisfies
stability ensures that the solution stays at the origin for arkg)- (ii7) = (i) As there exists a Lyapunov function for the
time longer thari(z). Then, the equality is as follows ~ System (1), the theorem of Lyapunov (see [7]) ensures that

it is asymptotically stable. The equalities (4) imply the finite
T (x) = inf {t € R>o : ®(t,2) = 0}. (2) time convergence. -



Remark 2:If the Lyapunov functionV is defined orR™, Lyapunov function. This is important for the problem of
proper, and if the conditioriii) is globally held, then, the stabilization in section IV when using the control Lyapunov

origin of the system (1) is globally finite time stable. functions. For this, we might need the following lemma
Even if theorem 2 is a theoretical result, we may give avhich is similar to a result given in [5, Lemma 5.1], and
simple example. [14, Lemma 186].
Example 1:Let us consider the Cauchy problem Lemma 2:Let O be a non empty open subset®¥, and
PR G6:0 — R, p,v: O — Ryq three continuous functions.
{ 2(0) =1 Supposel : O — R is locally Lipschitz onO, if
and the smooth Lyapunov functiolf (z) = “"—22 Then, Ve (’),(VV(x),f(a:)iSﬂ(a:)
V(p(t) = e, 0(s) = —1In(s) and ¢ (A (s)) = /s then there exists a smooth functioh: O — R such that,
lead toV (¢ (6 (s))) = —s wheres > 0. We have for all z € O,
. / as_ V(@) = V()| < ua)
0’ YV (@), f(2)) < Blx) + v(x).
Theorem (2) ensures that the systém= —z is not finite | et ys recall a result which can be found in [4, Theorem
time stable. 4.2] for the sufficient condition of finite time stability and

In general, the settling-time function is not continuous a4 Theorem 4.3] for the necessary one.
the origin. A fundamental example is given in [4, Example proposition 1: Consider the system (1) with the unique-

2.2] which shows that the settling-time function of a finiteness of solutions in forward time outside the origin, the
time stable system is generally non continuous at the origifg|lowing properties are equivalent;

Now, we may give a corollary to theorem 2 which gives a
sufficient condition for a continuous (or clag<’) settling-
time function.

Corollary 1: Let us consider the system (1) with the
uniqueness of solutions in forward time outside the ori- _
gin. Let us assume that there exists a smooth Lyapunov Viz) < —c(V(z))” (5)
function V' : V — Ry for the system (1) angy €
L* ([0,sup,cy, V (x)]) such that for allz € V \ {0}, and

1) the origin of the system (1) is finite time stable with a
continuous settling-time function at the origin,

2) there exists a real number > 0, o € ]0,1] and a
Lyapunov functionV : ¥V — R satisfying

for all x € V.
The construction of the Lyapunov function, in the proof

all s € [0,V ()] given in [4, Theorem 4.3], involved thelsettling-time function
_ —1 < g(s) in the following sense¥ (z) = T (z) ™= with a € ]0,1]
V(®(0,(s),z)) — (+= > 1). As a Lyapunov function is at least continuous,

it involves the continuity of the settling-time function at the
origin which is equivalent to the continuity of the settling-
time function on its domain of definition (see [4, Proposition

then the system (1) is finite time stable with a continuou
settling-time function.

Proof: If there exists a smooth Lyapunov func-
ton V. : ¥V — Ry, for the system and a function 2.4.]).

g € L'([0,sup,c, V (x)]) such that for allz € V \ Now, we ]Enay give a variarlt of this result dedicated to

(0}, and allt € [0,V (z)], -~ < g(s) then the ClassC_L —systems by using the _fact _that the cla_ss qf

Vi) s V(o) V(®(0=(s),)) systems with the uniqueness of solutions in forward time is
vao oo < Jo g(s)ds < +oo for all 2 € jncluded in the clas€ £k —systems for alk > 0.

0 V(®(0(s),r))
V\ {0}. As T'(0) = 0, we may deduce that the sys- Proposition 2: Let k > 0, if f belongs to the clas§£*
tem (1) is finite time stable. Moreoverlim T (z) < then the following properties are equivalent:

[lz][—0 . e .
lim fOV(:v)g(t) dt = 0, so the settling-time function is 1) the origin of the system (1) is finite time stable with a

llzf—0 classC L’ settling-time function,

continuous at the origin. To conclude, we may invoke the 2) there exists a real number> 0, a € 10,1[ and a class
following result [4, Proposition 2.4.] which shows thAtis CL>—Lyapunov functionV : V — R~ satisfying the
continuous at the origin if and only if is continuous on its condition (5).

domain of definition). ]

k ' ) = Moreover, if V is a Lyapunov function satisfying the
Theorem 2 is quite general. Nevertheless, its applicatiofhngition (5) then for all: € V

is not easy because the flow is generally unknown. In order -

to study the stabilization problem, we prefer to restrict the T(z) < V (z) _

problem to the case of a continuous settling-time function ~(l1-a)

at the origin. We could refer to a result given in [4] in  Proof: Suppose tha?) is verified. We can find in [4,
order to use a necessary and sufficient condition involving Bheorem 4.2] that the existence of the clégs™—Lyapunov
Lyapunov function only. We may be inclined to use a mordunctionV’ satisfying condition (5) implies the finite time sta-

. PR Et=T .
regular settling-time function in order to find a more regulability. Moreover, asz — Vcﬁfla) is a classCL> —function,




we deduce thaf’ belongs to the clas§£’. Conversely, let V. FINITE TIME STABILIZATION OF THE CLASS
us suppose that the origin of the system (1) is finite time CL"—AFFINE SYSTEMS

stable with a clas€ £°—settling-time function. By using the Let k > 0, and consider the following affine system
proof of proposition 1 which can be found in [4, Theorem N

4.3], we know thatV (z) = T(x)ﬁ with 0 < o < 1 . S , _ n

belongs to the clasd£’ (V) and is a Lyapunov function for = Jol@) + ; fi@hu, weR"anductd  (6)
the system (1) satisfying condition (5). Lét < k£ < ¢,
we apply the lemma 2 with the open s¥t\ {0}, and
B(z) = —cV(z)*, p(z) = LV (x), v(z) = kV (2)* to obtain
a classCL£>—Lyapunov functionV such that,

wherel{ is a hon empty open set & containing the origin,
fi e cLF (R™ R) for all 0 < i < m and f3(0) = 0 and the
closed-loop system

m

Y < V) < 2v), cev = fo@)+ Y filz)ui(z), weR™ (7)
2 - -2 ’ ’ i=1
<Vf/(x),f(x)> < —dV(x)®, zeV\{o}, Let us recall the definitions of the stabilization and the
finite time stabilization. We will restrict our study to the
with ¢ =¢c—k > 0. m Ccase of a clasg £’ —settling-time function for the finite

As it is shown in the next two examples, the LyapunoJime stabilization. The control system (6) &abilizable
function satisfying condition (5) may be smooth eVerywher(:_('respectw'elyﬂn|te time StabI|IZ.aF)|)3'If there exists a non
Example 2 (scalar systemket o € 0,1[ and & > 0, it empty nelghborhoood of the origiw in R”.and a feedback
is easy to see that the basic system control laww € C° (V\ {0}, 4) such that:
1) «(0) =0,
2) the origin of the system (7) is asymptotically stable (re-
spectively finite time stable with a clag«’—settling-

is finite time stable using the smooth Lyapunov function  time function).

Vi(z) = %2 with the well known clas€ £ —settling-time Here, we give a necessary and sufficient condition for
|zt~ the finite time stabilization of the system (6) involving the
k(1=a)’ continuity of the settling-time function at the origin for the
closed-loop system (7). We add a condition to the concept of
control Lyapunov function first defined in [2], which leads
to the finite time stabilization.

with 142 € 0, 1[. For this basic example, the solutions are e are going to recall some usual definitions. A positive

&= —k|z|"sgn(z), z€R

functionT'(z) = Indeed, we have for alt € R

1ta Ita
2

V(z)=—klz|'"*=-27"k V(2)

explicit definite functionV € CL™ (V,Rs) is a control Lyapunov
nal1- functionfor the system (6) if for all: € V' \ {0},
t,xg) if 0<t¢< 22
gy = S0 T OStS iy inf (@) + (B (2) ) <0,
0 if &> ‘lf(ol‘_a) ueU

wherea (z) = L,V (z), B(z) = (b1 (x),...,by (x)) with

, —o = by () = Ly V(z) for 1 <i<m.

with g(t, zo) = Q”O — k(1 _.a)t) _sgn(wo), SOWe 14 ghtain the finite time stabilization, we have to bring
do not need a Lyapunov function. As it is recalled in thgn the control Lyapunov functioi” the following condition

introduction, the settling-time function is given 8¥(z) =  which holds for allz € V' \ {0} and for a real number
fx -4u_ for finite time stable scalar systems (see [8] and [12}, ¢ 10,1]

for a proof of this basic result).

Example 3 (two dimensional systentet us consider the 7}25 (a(z) +(B(z),u)) < —c(V(2))". (®)
system: As usual, such a control Lyapunov function satisfiessiimall
1 = — |2|* sgn(z1) — 28 + @ control propertyif for eache > 0, there exists)y > 0 such
S R 1 that, if z € 6B, then there exists somee eB™ such that

By = — |z2|” sgn(w2) — 25 — a1

a(z)+ (B (x),u) <0.
|?

. 2
Taking V(z) = *5-, we obtainV (z1,z;) = —Z(a:;‘Jr Remark 3:If &4 C R, the small control property is
=1 equivalent to

lz;]*"") < 0. V is a Lyapunov function for the sys- o)
. @ atl :

tem satisfyingV’ (z1,22) < —2°3°V (z1,22) * . Indeed, llllirulsulg B @) <0.
2 at1 n

4 a+1 2 2\ =2 __ a+1
7;(% + o) = (et +a3) T = |l2™T. Thus the  The jimit may very well be—occ.
origin is finite time stable with a continuous settling-time We setb (z) = || B ()||*>. The theorem 3 of Mickael will
function verifying T'(z) < % help us to show our main result on finite time stabilization.



Theorem 3 (of Mickael)Let X and ) be two metric u(x) = (u1 (2),...,u, (z)) defined by
spaces, for every lower semi-continuous (respectively locally {

—b; ((E) a(z)+ ¥/ a(x)P+b(x)e it e V\ {0}

Lipschitz) set-valued functiod : X — 2Y,  — ®(z) 4, (2) = )

where 2Y will denote the family of non-empty, closed, 0 if z=0

convex subsets o} it is possible to extract a continuous ' . (9)

(respectively locally Lipschitz) functiorf such thatf (z) € ~Wherep,q > 2 are even integers. If furthermoiié satisfies

®(x) for all z € X. the small control property, then the feedback control (9) is
Theorem 4:The system (6) is finite time stabilizable &S0 continuous at the origin.

under a clasx’ £’ —feedback control if and only if there I_:’roof: Suppose there exists a smooth control Lyapunov

exists a control Lyapunov function for the system (6) whicfunctionV.: V. — Rxo. Let

satisfies the condition (8) for a real numhere ]0,1[ and E={(z,y) eR*:z <0o0ry>0}

the small control property.

Proof: If the control system (6) is finite time stabiliz- and¢ a function defined ot by

able, then the closed-loop system (7) is finite time stable with T+ YxP 4+ y4 it 0
a classCL£’—settling-time function. By using proposition o(x,y) = Yy ! 7

2, there exists a classL> —Lyapunov functionV” for the 0 if y=0
closed-loop system (7) satisfying the condition (5) whic

implies that (8) is valid. Moreover, by using the feedback

control u(z) and its continuity, it is easy to see that the R = 2| ¢/1+ &
control Lyapunov function satisfies the small control prop- 51_{% y = ?}ﬁ% y

erty. Conversely, if there exists a control Lyapunov function _q-1

V 1V — Rsq for the system (6) satisfying condition (8), = lim yp,l =0,
then we introduce the set valued functidn defined for . _ M

z € V\ {0} by ¢ is continuous onE. As V is a control Lyapunov

function, then we know thata(z),b(x)) € E for all

x € V\{0}. Thus, we define the feedback control by
u; () = —b; ()¢ (a(x),b(z)). u(x) is continuous on
V\ {0} and we obtain for all: € V\ {0}

Oz)={vel:a(x)+(B(zx),v) <—c(V(x)"}.

As v — a(x) + (B (x),v) is affine, it implies that for all
x € V\ {0}, ®(z) belongs to the family of non-empty closed .
convex subsets @f for the subspace topology. AS belongs _ _ _ q
to the clasg£" for all 0 < i < m andV € CL™ (V,Rxy), VV (@), folz) + ;f’(x)ul(x)> n a(z)r +b(x)
a(x) + (B(z),v) + c(V(x))® is locally Lipschitz for all a
x € V\{0}. Thus, we may deduce thdtis locally Lipschitz
onV\ {0}. As V satisfies the small control property, it is So,V is a Lyapunov function for the closed-loop system (7),
shown in [2, Theorem 4.3] that we may exteftdon V by  and by using the Lyapunov theorem we know that the origin
®(0) = {0} such tha® now is lower semi-continuous oi.  of the closed loop system (7) is asymptotically stable. The
We may apply the theorem 3 of Mickael to find a selectiogproof concerning the stabilization under the small control
uecLl (V,U). ThenV is a clas€£L> —Lyapunov function property is similar to the one given in [13, Theorem 1

for the closed loop system (7) satisfying the condition 5. Proposition 3: If there exists a continuously differentiable
Thus, by using proposition 2 we deduce that the system (6pntrol Lyapunov functiont” : V — R, for the control

< 0.

is finite time stabilizable. m system (6) verifying the small control property and for all
Theorem 4 provides a tool for the finite time stabilization” € V.
with a classC£”—settling-time function. a(z)? + b (2)? >V (x)*

In practical terms, the resolution of the finite time Stabi'wherep ¢ > 2 are even integers, and where> 0 and
lization is a delicate task which has generally been studigdl _ "~ | then the system (6) is finite time stabilizable
for homogeneous systems of negative degree with respeflder the continuous feedback control 9)

to a flow of a complete vector field. Indeed, for this kind Proof: The asymptotic stability is proved using Lemma

of systems, finite time stability is equivalent to asymptoticy |1 is shown in [13, Theorem 1] that If satisfies the small

stability (see [3], [9] for more details). Nevertheless, ifoonirol property, the feedback control (9) is continuous at the
we want to use a control Lyapunov function to obtain %rigin. The inequality

constructive feedback control for finite time stabilization, we
can use a modified version of the Sontag feedback contréivv(g;)jo(x) + Zm fi(a;)ui(g;)> = —{/a(x)P +b(zx)?
given in [13]. =1 N

Lemma 3:If there exists a continuously differentiable < —cV(@)
control Lyapunov functiont” : V — R for the control ensures the finite time convergence by using proposition 1.
system (6)then it is stabilizable under the feedback control [ ]
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V. CONCLUDING REMARKS

The problem of finite time stability of systems with the
uniqueness of solutions in forward time is solved for differen-
tial equations by giving a necessary and sufficient condition
for the finite time stability involving a Lyapunov function.
Our results bring an answer to the question asked by Bhat and
Bernstein in the conclusion of their paper [4] concerning a
stronger converse result for finite time stability. Moreover, by
using their results on finite time stability involving continuity
of the settling-time function at the origin, we have succeeded
to solve the problem of the finite time stabilization of class
cLk—affine systems involving a clas€£’—settling-time
function. The universal controller given by Sontag in [13]
is extended to design a feedback control for the finite time
stabilization. Nevertheless, our paper raises certain questions
that are important from the point of view of the stabilization
theory, in particular the construction of a universal finite
time feedback control using a control Lyapunov function
satisfying condition (8).



