
HAL Id: hal-03144922
https://hal.science/hal-03144922

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multitype branching process with nonhomogeneous
Poisson and contagious Poisson immigration

Landy Rabehasaina, Jae-Kyung Woo

To cite this version:
Landy Rabehasaina, Jae-Kyung Woo. Multitype branching process with nonhomogeneous Poisson
and contagious Poisson immigration. Journal of Applied Probability, In press. �hal-03144922�

https://hal.science/hal-03144922
https://hal.archives-ouvertes.fr


Multitype branching process with nonhomogeneous

Poisson and contagious Poisson immigration

Landy Rabehasaina and Jae-Kyung Woo

Laboratory of Mathematics of Besançon,
University Bourgogne Franche Comté,

16 route de Gray, 25030 Besançon cedex, France.

e-mail: lrabehas@univ-fcomte.fr

School of Risk and Actuarial Studies,
Australian School of Business,

University of New South Wales Sydney, Australia.

e-mail: j.k.woo@unsw.edu.au

Abstract: In a multitype branching process, it is assumed that immigrants arrive ac-
cording to a nonhomogeneous Poisson or a contagious Poisson process (both processes
are formulated as a nonhomogeneous birth process with an appropriate choice of transi-
tion intensities). We show that the normalized numbers of objects of the various types
alive at time t for supercritical, critical, and subcritical cases jointly converge in distribu-
tion under those two di�erent arrival processes. Furthermore, some transient expectation
results when there are only two types of particles are provided.
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1. Introduction

Single or multitype branching processes with di�erent stochastic assumptions on the immi-
gration process have been applied in diverse �elds in applied probability such as biology,
epidemiology, and demography. For example, [27] utilized the theory of multitype branching
processes in discrete time with immigration to study the joint queue length process in the
di�erent queues of a polling system in queueing theory. More generally, a network of in�nite
server queues may be seen as multitype Galton Watson processes with immigration, see e.g.
[2]. Some actuarial applications of branching processes such as a reinsurance chain were dis-
cussed in [28, Section 7.5]. Regarding applications in biology, the recent paper [14] considered
multitype branching processes with homogeneous Poisson immigration to study stress erythro-
poiesis, although the authors pointed out that a nonhomogeneous Poisson process (NHPP)
might be more realistic in that situation. The reader is referred to [24] for a detailed discussion
about the relevant literature on various types of branching processes.

In this paper, we consider a multitype branching process in which there are di�erent types of
particles, and new particles that arrive according to a NHPP or a contagious Poisson process
(CPP). For immigration processes, an alternative to homogeneous Poisson process, NHPP
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and CPP are chosen for the following reasons. NHPP and CPP are within the class of non-
homogeneous birth processes, which means the intensity of event occurrence possibly varies
with time (e.g. seasonality of catastrophe incidence) (NHPP) or the past state of the process
(e.g. the number of previous shocks or the number of accidents incurred in the past) (CPP).
As a result, these non-Poissonian processes have been widely used in various areas such as
engineering, applied probability, biological science, and actuarial science. In particular, a CPP
is an immigration process with a linear birth rate and is basically a homogeneous case of
generalized Polya processes (GPP) studied in [35, 9, 10] for example. This process is also
regarded as a contagious model which is suitable to describe the spread of an infection as
proposed in [25] and the accident proneness as considered by [17], [7], and [8, Section 2.2].
Since a branching process can be used to study the dynamic network of the spread of infectious
diseases, a CPP is naturally a suitable choice for the immigration arrival process to model
the occurrence of contagious events due to the explanation given previously. In addition, we
refer to some papers which considered GPP in other �elds. For example, see [19] for a more
detailed discussion on the use of GPP in the framework of a non-stationary type master
equation approach in mathematical physics. As a GPP models the decreasing sequence of
interarrival times depending on the number of the events in the past (of which their positive
dependence is proved in [11]), it becomes a more realistic choice in modeling mortality as well
as the increasingly damaging impact on an aging system as studied in [11].

The focus of our paper is to study the joint asymptotic behavior of a process representing
the numbers of di�erent types of particles alive at time t when the immigration process is
described by a NHPP or a CPP. These models may be interpreted di�erently depending on
whether we are in an epidemic, actuarial, queueing or reliability setting. In an epidemic setting,
the particles represent contaminated cells, the types represent their locations, and those cells
can move to other locations where they can possibly contaminate other cells. In an actuarial
setting, a particle may represent a certain type of claims or tasks that needs to be processed
in di�erent branches of an insurance company before being settled, or are in di�erent stages
of a reinsurance contract as explained in [28, Section 7.5]. In a queueing setting, a particle is
a customer who arrives and gets served immediately in the setting of in�nite server queues
and after leaving the queue, is replicated into several new customers who are sent to other
queues for their subsequent service. In a reliability setting, particles are interconnected parts
in a system which can be damaged upon external shock arrivals and need to be repaired or
are dependent line outages in a power network which may cause cascading blackouts, see [26].

Most papers in the literature consider the critical case of underlying branching mechanisms,
see for e.g. [33, 12, 34, 24]. In this paper, we consider all three underlying branching mecha-
nisms, including supercritical, critical and subcritical cases. Indeed, it is well known that in
the subcritical and critical cases for a continuous time multitype Galton-Watson process, i.e.
when the eigenvalue of the mean matrix of o�spring does not exceed 1, extinction is certain,
whereas the survival probability in an in�nite horizon is positive in the supercritical case.
Depending on the modeling context, either a critical, subcritical or supercritical case may be
more appropriate for modeling the dynamics of the quantity of interest. In particular, in a
queueing or actuarial context where the clients or tasks will eventually exit the system, it
may be more plausible to use a critical or subcritical case. For example, in the case of polling
systems, the stable case corresponds to the subcritical branching process and the heavy tra�c
limit is studied using the near critical branching process in [30]. On the other hand, in the
context of epidemiology, a supercritical case may be more appropriate to model the rapid
expansion of a particular disease in the beginning of the outbreak.
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The three cases of underlying branching mechanisms exhibit di�erent behaviors of the
branching process with immigration. Concerning the immigration arrival process, particular
attention in the forthcoming results is given to the case where the immigration rate increases
very fast. This is a property of the GPP, as the (stochastic) arrival rate is linear with respect
to the number of arrivals at the current time, so that the interarrival time decreases with
respect to the failure rate order, as explained in [11, 6]. In the NHPP, assumptions on the
intensity function are such that an exponential behaviour for the latter is studied, yielding
di�erent kinds of asymptotic results. For a single type branching process with general lifetime
distribution of the particles, the reader is referred to [15] and [16] which proved asymptotic
results and functional central limit theorems respectively in the supercritical and subcritical
cases.

In this paper, we also investigate the transient moment of the process for two types of
particles branching mechanism when the renewal function associated with the arrival process
is explicit. See e.g. [14] for a similar study when the particular lifetime particles have a general
distribution.

The rest of the paper is organized as follows. In Section 2, a multitype branching process
without/with immigration and relevant assumptions are described. Some convergence results
for the distribution of a number of di�erent types of particles at time t (denoted in vector form
as N(t)) under di�erent immigration processes (NHPP, CPP) are obtained from its charac-
teristic function (CF). In Section 3, NHPP is assumed for the arrival process of immigrants
and convergence results for N(t) are given in Theorems 3 and 4, with a particular emphasis
in the case when the intensity of the arrival process increases exponentially. A result in the
critical case is given in Theorem 5, which agrees with the previous results in the same context
in [34, 31, 24]. For the critical case, some remarks for homogeneous Poisson immigration and
one dimensional branching process with immigration are provided in Remark 6. In subsec-
tions 3.1, 3.2, and 3.3, detailed proofs of Theorems 3, 4 and 5 are given. Section 4 considers
a CPP for the immigration process. Asymptotic behaviors of N(t) are studied in Theorem
10 in the function of the parameters of the arrival process with detailed proofs included in
subsections 4.1, 4.2 and 4.3. In the proofs of Theorems 3, 4, 5 and 10, we show that, for a
conveniently chosen normalizing function g(t), the process N(t)/g(t) converges in distribution
to an identi�able limit as t→ +∞ by proving that the corresponding CF converges. Finally,
some transient results in scenarios when there are two types of particles in the branching
process are presented in Section 5.

Lastly, the following matrix notations will be used throughout the paper. For any matrix
M ∈ Rm×n, M ′ ∈ Rn×m denotes its transpose. By < u, v >=

∑k
i=1 uivi we denote the usual

inner product between two vectors u = (u1, ..., uk)
′ and v = (v1, ..., vk)

′, associated with the

corresponding Euclidean norm ||u|| =
√∑k

i=1 u
2
i . We let 1 = (1, ..., 1)′, a vector with 1's of

an appropriate dimension, Rk+ = [0,+∞)k and R∗k+ = (0,+∞)k. We also let L1(R+) be the
set of integrable measurable functions from R+ to R. Finally, we denote N∗ = {1, 2, ...} and
N = N∗ ∪ {0}.

2. The model

The baseline model, a classical multitype branching process (without immigration), is de-
scribed as follows. We consider a set of particles of k possible types, with a type i particle
having exponential lifetime with mean 1/µi for i = 1, ..., k, denoted by E(µi) for µi > 0. Upon
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its death, a type i particle produces Y
(i)
j copies of type j particles for all j = 1, ..., k, where

(Y
(i)

1 , ..., Y
(i)
k ) is a random vector with corresponding probabilities pi(n) = pi(n1, ..., nk) =

P(Y
(i)
j = nj , j = 1, ..., k) for n = (n1, ..., nk) ∈ Nk, and generating functions de�ned by

hi(z) = hi(z1, ..., zk) =
∑
n∈Nk

pi(n)zn1
1 · · · z

nk
k , i = 1, ..., k, z ∈ [0, 1]k. (1)

In other words, pi(n) is the probability that type i particle produces n1, ..., nk copies of type
1, ..., k particles respectively. Then all copies evolve independently and have the same dynam-
ics. Note that pj(0, ..., 0) is the probability that no replica is made, i.e. the probability that the
particle does not produce any copies at the end of its lifetime. The mean numbers of copies

from type i particle are denoted by (mi,1, ...,mi,k) = (E[Y
(i)

1 ], ...,E[Y
(i)
k ]). We suppose that

(Y
(i)

1 , ..., Y
(i)
k ) is not a.s. a zero vector, which guarantees that the base process does not die out

immediately. We let the vector process No(t) = (No
1 (t), ..., No

k (t))′ where No
j (t) represents the

number of j type particles at time t. Also it is assumed that at time 0 the number of particles
No(0) is a random vector I = (I(1), . . . , I(k))′ with distribution

I ∼
∑
n∈Nk

pnδn, (2)

for some probability vector (pn)n∈Nk , and where δn is the Dirac distribution concentrated at
n ∈ Nk, and the second order moment holds

Assumption (A) : E(||I||2) =
k∑
j=1

E(I(j)2) < +∞.

A central remark is that, given No(0) = n0 = (n0(1), ...,n0(k))′ ∈ Nk, No(t) has the same
distribution as the independent sum

k∑
j=1

n0(j)∑
l=1

N j,l(t), (3)

where, for each j = 1, ..., k,
(
{N j,l(t), t ≥ 0}

)
l∈N∗ are independent identically distributed (iid)

copies of a generic multitype branching process {N j(t) = (N j
1 (t), ..., N j

k(t)), t ≥ 0} with the

branching mechanism given by (1) and N j
i (t) represents the number of type i particles at time

t produced from a type j particle generated at time 0, i.e. N j(0) is a vector of which jth
entry is 1 and 0 elsewhere. The CF of No(t) is denoted by ϕot (s) := E[e<is,N

o(t)>] for s ∈ Rk.
According to [5, Chapter V], {No(t), t ≥ 0} is a continuous time multitype branching process
(without immigration). Note that, in view of the representation (3), one has the following
expression

ϕot (s) = E
( k∏
j=1

ϕjt (s)
I(j)

)
=
∑

n0∈Nk

k∏
j=1

ϕjt (s)
n0(j)pn0 , (4)

where ϕjt (s) := E(exp(< is,N j(t) >)).
We recall some useful results which will be used often in the subsequent study. First, it is

convenient to introduce a k × k matrix A = (aij)i,j=1,...,k where the aij 's are de�ned by

aij = µj(mij − 1[i=j]), i, j = 1, ..., k. (5)
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We suppose that A is regular i.e. all entries of the matrix exp(t0A) are positive for some
t0 > 0 (see [5, De�nition (10) p.202]). This entails that the largest eigenvalue ρ of A is with
multiplicity 1. It is commonly known that we are in the subcritical case if ρ < 0, in the critical
case if ρ = 0, and in the supercritical case if ρ > 0. We let u and v be the k × 1 right and
left eigenvectors respectively, i.e. such that Au = ρu and v′A = ρv′, with positive entries,
and normalized in such a way that < u,1 >= 1 and < u, v >= 1. Then, in [5, Theorem 1
p.209] it was shown that {< u,No(t)e−ρt >, t ≥ 0} is a martingale when No(0) is a constant
n0 ∈ Nk. In the case when No(0) = I given by (2), it is clear that this property still holds
because Assumption (A) in particular implies that I is integrable. Finally, we will suppose
that the process is non singular, i.e. that for all i = 1, ..., k, pi(n) in (1) is not in the form
pi(n) = 1[ni=1, nj=0, j 6=i] for all i, j = 1, ..., k, meaning that each particle does not produce
exactly one o�spring.

From [5, Theorem 2 p.206] the a.s. asymptotic behavior of No(t) as t→ +∞ is given in the
following lemma under the assumptions described previously.

Lemma 1. There exists a non-negative random variable (rv) W such that

lim
t→+∞

No(t)e−ρt = Wv, a.s.

Note that the CF of W is given by

ϕW (x) = E[eixW ] =
∑

n0∈Nk
E[eixW |No(0) = n0] pn0 , x ∈ R.

Because of (3), one has

E[eixW |No(0) = n0] = E[eix
∑k
j=1

∑n0(j)
l=1 W j,l

] =
k∏
j=1

ϕj(x)n0(j),

where W j,l is the a.s. limit of N j,l(t)e−ρt as t→ +∞. For each j = 1, ..., k, (W j,l)l∈N is an iid

sequence having a CF denoted by ϕj(x) = E(eixW
j,l

), and theW j,l, j = 1, ..., k, l = 1, ...,n0(j)
are independent. The vector ϕ(x) := (ϕ1(x), ..., ϕk(x)) is in general not explicit but satis�es
a particular integral equation (see [5, Eq.(28) p.206] for details). Finally, the CF of W is then
given as a function of this vector ϕ(x)

ϕW (x) =
∑

n0∈Nk

k∏
j=1

ϕj(x)n0(j)pn0 = E
( k∏
j=1

ϕj(x)I(j)
)
, x ∈ R. (6)

We then move on to a multitype branching process with immigration which is the central
stochastic process studied in this paper. Let us consider that new particles (immigrants)
arrive at time Ti, i ≥ 1 according to a random vector Ii = (Ii(1), ..., Ii(k))′ having the same
distribution (2) as I. Then it evolves according to the branching mechanism described at the
beginning of this section. We assume that the immigration sequence (Ii)i∈N is iid. The vector
process N(t) = (N1(t), ..., Nk(t))

′ represents the number of each type of particles at time t
de�ned as:

N(t) =

S(t)∑
i=1

No,i(t− Ti), t ≥ 0, (7)
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where {No,i(t), t ≥ 0}i∈N are iid copies of {No(t), t ≥ 0} with No,i(0) = Ii. The process
{S(t), t ≥ 0} with S(0) = 0 is the arrival process for new particles associated with a non-
decreasing sequence (Ti)i∈N with T0 = 0 which represents the arrival time of the ith particle,
and interarrival times (Ti − Ti−1)i∈N∗ . In other words, No,i(t− Ti) is a vector of the number
of particles in each system at time t generated from the Ii(j) particles of type j, j = 1, ..., k,
arrived at Ti. Also, an underlying assumption is that No,i

j (t) = 0 when t < 0 for j = 1, ..., k,

{S(t), t ≥ 0} and {No,i(t), t ≥ 0}, i ∈ N, are processes independent of each other. Hence,
N(t) is a continuous time multitype branching process with immigration given by the process
{S(t), t ≥ 0}.

3. Immigration modelled by a nonhomogeneous Poisson process (NHPP)

We assume in this section that {S(t), t ≥ 0} is a NHPP with intensity λ(t) > 0 for t ≥ 0 being
locally integrable, and set Λ(t) :=

∫ t
0 λ(y)dy for t ≥ 0.

To study the asymptotic behavior of N(t) in (7) when t → +∞, we �rst need the CF of
N(t). The following result is an easy extension of [12, Equation (2)]; see also [24, Theorem 1]
for a similar result that concerns the probability generating function of N(t).

Lemma 2. The CF of N(t) in (7) admits the following expression

ϕt(s) = E[e<is,N(t)>] = exp

{∫ t

0
[ϕot−x(s)−1]λ(x)dx

}
= exp

{∫ t

0
[ϕox(s)−1]λ(t−x)dx

}
, (8)

for all s ∈ Rk.

Proof. Given S(t) = n, (T1, ..., Tn) are distributed as the ordered statistics (U(1), ..., U(n)) with

(U1, ..., Un) being independent with density λ(y)
Λ(t)1[0,t](y), one �nds

ϕt(s) =

∞∑
n=0

E
[

exp

{
< is,

n∑
l=1

No,l(t− U(l)) >

}]
e−Λ(t) (Λ(t))n

n!
.

Since
∑n

l=1N
o,l(t − U(l)) =

∑n
l=1N

o,l(t − Ul) and by independence of (U1, ..., Un) and the

process {No,l(t), t ≥ 0}, one obtains

ϕt(s) =
∞∑
n=0

{
1

Λ(t)

∫ t

0
E[exp(< is,No(t− y) >)]λ(y)dy

}n
e−Λ(t) (Λ(t))n

n!
.

A change of variable x := t− y concludes the proof.

The following results show that the normalized process converges towards di�erent limits
depending on the assumptions regarding the intensity of the arrival process.

Theorem 3. Suppose that the intensity λ(t) of the NHPP {S(t), t ≥ 0} satis�es that e−ρtλ(t)
is integrable. Then

e−ρtN(t)
D−→
∫ ∞

0
e−ρzdYWz , t→ +∞, (9)

where {YWt , t ≥ 0} is a nonhomogeneous compound Poisson process with intensity λ(y) and
jumps distributed as Wv.
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Proof. The proof is given in Section 3.1

Although Theorem 3 is valid when the eigenvalue ρ has any sign, it is especially interesting
in the supercritical case ρ > 0, as e−ρtλ(t) ∈ L1(R+) implies that the intensity λ(t) can, for
example, grow exponentially as eδt for 0 ≤ δ < ρ. However Theorem 3 becomes less interesting
in the critical case ρ = 0 or subcritical case ρ < 0, as the condition e−ρtλ(t) ∈ L1(R+) roughly
means that the intensity tends to 0 potentially very fast. Hence, the following supplementary
results show how the renormalized process N(t) converges in distribution or in probability

• when the intensity grows exponentially in the critical or subcritical case,
• when the intensity grows exponentially as eδt with δ ≥ ρ in the supercritical case,
complementing Theorem 3.

Theorem 4. Let us suppose that the intensity λ(t) of the NHPP {S(t), t ≥ 0} satis�es
λ(t) ∼ λ∞e

δt as t → +∞ for some δ ≥ 0 and λ∞ > 0. Then the following convergences hold
as t→ +∞:

N(t)
D−→ ν if ρ < 0 and δ = 0, (10)

e−δtN(t)
P−→ λ∞(δId−A)−1E(I) if [ρ ≤ 0 and δ > 0] or [ρ > 0 and δ > ρ], (11)

e−δt
N(t)

t

P−→ λ∞uv
′ E(I) if ρ = δ > 0, (12)

where Id is the identity matrix and ν is a distribution on Rk+ with CF given by∫
Rk+
e<is,x>ν(dx) = exp

{
λ∞

∫ +∞

0
[ϕoy(s)− 1] dy

}
, s ∈ Rk.

Proof. The proof is presented in Section 3.2.

In the following, we are especially interested in the particular critical case ρ = 0. From
Theorems 3 and 4: we have that, if λ(t) is integrable then N(t) converges in distribution to
limt→+∞ YWt in (9), and if λ(t) ∼ λ∞eδt with δ > 0 then one has the convergence in probability
of e−δtN(t) in (11). We note that an intermediary case is worth exploring when λ(t) does not
have an explosive behaviour and roughly speaking, does not converge to 0. This is the case
if the associated Cesaro limit limt→∞ Λ(t)/t = λ∞ exists, hence some additional convergence
result may be obtained. Before detailing this convergence result, we introduce the following
quantities:

Q :=
1

2

k∑
i,`,n=1

∂2hi
∂z`∂zn

(1, ..., 1)u`unvi,

βj :=

( k∑
`=1

µ−1
` u`v`

)
uj
Q
, j = 1, ..., k, (13)

β̄ :=
k∑
j=1

E(I(j))βj , (14)

c :=
(
∑k

`=1 µ
−1
` u`v`)

2

Q
, (15)
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where we recall that hi(z) = hi(z1, ..., zk) is the generating function associated with (pi(n))n∈Nk

given in (1). We note that the assumption that (Y
(i)

1 , ..., Y
(i)
k ) is not zero for some i ∈ {1, ..., k}

entails that Q is positive. The following result holds.

Theorem 5. Let us assume that the moments of all orders of the random vector (Y
(i)

1 , ..., Y
(i)
k )

exist for all i = 1, ..., k and the intensity admits a Cesaro �nite limit λ∞ = limt→∞ Λ(t)/t > 0.
When ρ = 0 (critical case), one has the convergence in distribution as

N(t)

t

D−→ Zv ⊗ µ−1, t→ +∞, (16)

where Z is a rv distributed as Γ(λ∞β̄, c) with v ⊗ µ−1 = (v1µ
−1
1 , ..., vkµ

−1
k ), β̄ and c given

by (14) and (15) respectively. Here, Γ(α, θ) denotes the gamma distribution with a shape
parameter α and a rate parameter θ.

Proof. The proof is presented in Section 3.3.

Thus, it turns out that, in the critical case the support of the limits (9), (11) and (16) are
respectively included in the positive half line spanned by v, (δId− A)−1E(I) and v ⊗ µ−1. It
is worthwhile to point out that all three results concern the critical case, but with di�erent
assumptions on the intensity function.

Remark 6. When the intensity λ(t) is a constant value λ, Theorem 5 is the particular case
of [34, Theorem 2] which considers general interarrival times, with a slight change of notation
(in that reference µi stands for the mean lifetime of a type i particle, as opposed to µ−1

i in
this paper). See also [31, Theorem 1] for a similar result. When λ(t) converges to some limit
λ∞, it converges towards the same limit in the sense of Cesaro and the limit in distribution
(16) corresponds to [24, Theorem 8]. However, in this paper we introduce a di�erent approach
to the proof of Theorem 5 (given in Section 3.3). In contrary to [34] which proved the result
by showing that the joint moments of N(t)/t converge, our approach does not require renewal
arguments and relevant results. In particular, we start directly with the CF (8) which is
expressed handily in Lemma 2 and study its convergence. A similar approach was adopted in
[24] although the authors in [24] started the proof from a uniform estimate from [29] for the
probability generating function of {No(t), t ≥ 0}.

Remark 7. From (52) in the proof of Theorem 5, the limiting distribution of (16) admits a
similar integral form as the right-hand side of (9) which is available by applying Campbell's
formula (the details are given in the beginning of Section 3.1). Indeed, one can check the
equality in distribution of Zv ⊗ µ−1 and

∫ +∞
0 e−tdYct where {Yct , t ≥ 0} is a compound

Poisson process with intensity λ∞β̄ and jumps distributed as χv ⊗ µ−1 with χ ∼ E(c).

We now proceed to the proofs of Theorems 3, 4 and 5.

3.1. Proof of Theorem 3

We start from the CF in (8), which entails that the CF of e−ρtN(t) is given by

ϕt(se
−ρt) = exp

{∫ t

0
[ϕox(se−ρt)− 1]λ(t− x)dx

}
, s ∈ Rk.
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The main di�culty in the proof is to show the following convergence:∫ t

0
[ϕox(se−ρt)− 1]λ(t− x)dx −→

∫ +∞

0
[ϕWv(se

−ρx)− 1]λ(x) dx, t→ +∞, s ∈ Rk, (17)

where ϕWv is the CF ofWv. By Campbell's formula (see [20, Formula (2.9), Theorem 2.7 p.41]
or [18, Exercise 8.6.3.11 p.492]), exp{

∫ +∞
0 [ϕWv(se

−ρy)−1]λ(y)dy} is the CF of
∫∞

0 e−ρzdYWz ,
where {YWt , t ≥ 0} is a nonhomogeneous compound Poisson process with intensity λ(y) and
jumps distributed as Wv. Hence one has the convergence in distribution of e−ρtN(t) towards∫∞

0 e−ρzdYWz if (17) holds. This proves (9).
In order to prove (17) we need to exploit the convergenceNo(y)e−ρy −→Wv a.s. as y → +∞

given in Lemma 1. Studying (17) is equivalent to analyzing the limit as t→ +∞ of

Qt :=

∫ t

0
[ϕot−x(se−ρt)− 1]λ(x) dx =

∫ t

0
{E[exp(< is,No(t− x)e−ρt >)]− 1}λ(x) dx. (18)

That is, Qt may be expressed as
Qt := Q1,t +Q2,t, (19)

where

Q1,t :=

∫ t

0

{
E
[

exp

(
< is,

No(t− x)

eρ(t−x)
e−ρx >

)
− exp(< is,Wve−ρx >)

]}
λ(x) dx,

(20)

Q2,t :=

∫ t

0
{E[exp(< is,Wve−ρx >)]− 1}λ(x) dx. (21)

We then separately examine the limits of (20) and (21). In the end, it will be shown that (20)
tends to 0 and (21) tends to the right-hand side of (17).
Limit of Q1,t in (20) as t → +∞. We shall utilize the following basic inequality in the

subsequent proof:
|eia − eib| ≤ |a− b|, a ∈ R, b ∈ R, (22)

and also we have |eia − eib| ≤ 2. Hence |eia − eib| ≤ |a− b| ∧ 2 for a ∈ R and b ∈ R. We then
deduce that

|Q1,t| ≤
∫ t

0
E
[∣∣∣∣ < s,

No(t− x)

eρ(t−x)
e−ρx > − < s,Wve−ρx >

∣∣∣∣ ∧ 2

]
λ(x)dx

=

∫ ∞
0

1[0≤x≤t]E
[∣∣∣∣ < s,

No(t− x)

eρ(t−x)
e−ρx > − < s,Wve−ρx >

∣∣∣∣ ∧ 2

]
λ(x)dx. (23)

By the dominated convergence theorem, we will show in the following that (23) tends to zero
as t → +∞. From the pointwise convergence as t → +∞ in Lemma 1 with the help of the
dominated convergence theorem, one �nds that the integrand goes to zero i.e.

1[0≤x≤t]E
[∣∣∣∣e−ρx < s,

No(t− x)

eρ(t−x)
> −e−ρx < s,Wv >

∣∣∣∣ ∧ 2

]
λ(x) −→ 0, t→∞, ∀x ≥ 0.

We now �nd an upper bound function f(x) ≥ 0 of this integrand such that
∫ +∞

0 f(x)dx < +∞.
Recall that u is an eigenvector with positive entries ui for i = 1, ..., k such that Au = ρu
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(where the elements of the matrix A are de�ned in (5)). Since ui > 0 for all i, there exists
some constant κ > 0 which is large enough satisfying

0 ≤ |sj | ≤ κuj , ∀j = 1, ..., k, (24)

where we recall that the vector s = (s1, ..., sk) is �xed. For example, κ can be chosen as
maxj=1,...,k |sj |/uj . Also, note that E[(X+Y )∧2] ≤ (E[X]+E[Y ])∧2 for nonnegative random
variables X and Y . Using these results and the martingale property of {< u,No(t)e−ρt >, t ≥
0}, also denoting |s| := (|s1|, ..., |sk|), we conclude that the integrand is bounded as

1[0≤x≤t]

{(
e−ρxE

[∣∣∣∣ < s,
No(t− x)

eρ(t−x)
>

∣∣∣∣]+ e−ρxE[| < s,Wv > |]
)
∧ 2

}
λ(x)

≤ 1[0≤x≤t]

{(
e−ρxE

[
< |s|, N

o(t− x)

eρ(t−x)
>

]
+ e−ρxE[< |s|,Wv >]

)
∧ 2

}
λ(x)

≤ 1[0≤x≤t]

{(
e−ρxκ E

[
< u,

No(t− x)

eρ(t−x)
>

]
+ e−ρxE[< |s|,Wv >]

)
∧ 2

}
λ(x), (25)

where the �rst equality is due to the fact that No(t−x)

eρ(t−x) and Wv have nonnegative entries, and

the last inequality is due to (24). The �rst expectation in (25) is E[< u,No(0)/eρ×0 >] because
of the martingale property and in turn, it is equal to < u,E(I) > because of No(0) = I. The
second expectation is some �nite constant. Therefore we conclude that, for some constants
K > 0 and K∗ > 0, (25) is bounded as

1[0≤x≤t]

{(
e−ρxκE

[
< u,

No(t− x)

eρ(t−x)
>

]
+ e−ρxE[< |s|,Wv >]

)
∧ 2

}
λ(x)

= 1[0≤x≤t][(κ < u,E(I) > e−ρx +Ke−ρx) ∧ 2]λ(x) ≤ K∗e−ρxλ(x) := f(x).

It is now shown that the integrand in (23) tends to 0 as t → +∞ for a �xed x and is dom-
inated by the function f(x) which is integrable by assumption. Therefore, by the dominated
convergence theorem we conclude that (23) goes to 0 as t → ∞, which implies that Q1,t in
(20) veri�es limt→∞Q1,t = 0.
Limit of Q2,t in (21) as t → +∞. Let us show that |{ϕWv(se

−ρx)− 1}λ(x)| is upper
bounded by some integrable function. With the help of (22), the following inequality holds:∣∣ exp(< is,Wve−ρx >)− 1

∣∣ ≤ ∣∣ < s,Wve−ρx >
∣∣ ≤ e−ρx < |s|,Wv > .

We then arrive at the following bound∣∣{ϕWv(se
−ρx)− 1}λ(x)

∣∣ =
∣∣{E[exp(< is,Wve−ρx >)]− 1}λ(x)

∣∣ ≤ e−ρxλ(x)E [< |s|,Wv >] ,

which indeed is integrable by the integrability assumption for e−ρxλ(x). Then by the dominated
convergence theorem one �nds

Q2,t −→
∫ +∞

0
{ϕWv(se

−ρx)− 1}λ(x) dx, t→∞.

Hence, combining the limits of Q1,t and Q2,t, (17) is proved. Consequently, this completes the
proof.
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3.2. Proof of Theorem 4

Proving the limit of N(t) in (10) as t → +∞. First, we recall that ρ < 0 and δ = 0, and
the intensity satis�es limt→∞ λ(t) = λ∞. We proceed to show that

∫ t
0 [ϕox(s)− 1]λ(t− x)dx in

Lemma 2 converges to λ∞
∫∞

0 [ϕox(s)−1]dx as t→ +∞ by a dominated convergence argument.
Let Aλ ≥ 0 be large enough such that Cλ := supy≥Aλ λ(y) is �nite, and t ≥ Aλ. We start by
writing∫ t

0
[ϕox(s)− 1]λ(t− x)dx =

∫ ∞
0

1[0≤x≤t][ϕ
o
x(s)− 1]λ(t− x)dx

=

∫ ∞
0

1[0≤x≤t−Aλ][ϕ
o
x(s)− 1]λ(t− x)dx+

∫ ∞
0

1[t−Aλ<x≤t][ϕ
o
x(s)− 1]λ(t− x)dx. (26)

Let us study each term on the right-hand side of (26). Using the inequality in (24), one �nds

|ϕox(s)− 1| = |E[e<is,N
o(x)>]− 1| ≤ E[|e<is,No(x)> − 1|] ≤ E[| < s,No(x) > |]

≤ E[< |s|, No(x) >] ≤ κE[< u,No(x) >] = κeρxE[< u,No(x)e−ρx >]

= κeρxE[< u,No(0) >] = κeρx < u,E(I) >, (27)

where we recall that κ = maxj=1,...,k |sj |/uj for example. Since λ(.) is locally integrable (so

that
∫ Aλ

0 λ(x)dx is �nite), and eρx ≤ eρ(t−Aλ) for t − Aλ ≤ x and ρ < 0, the second term on
the right-hand side of (26) thus veri�es∣∣∣∣∫ ∞

0
1[t−Aλ<x≤t][ϕ

o
x(s)− 1]λ(t− x)dx

∣∣∣∣ ≤ ∫ ∞
0

1[t−Aλ<x≤t]|ϕ
o
x(s)− 1|λ(t− x)dx

≤ κ < u,E(I) >

∫ ∞
0

1[t−Aλ<x≤t]e
ρxλ(t− x)dx

≤ κ < u,E(I) > eρ(t−Aλ)

∫ ∞
0

1[t−Aλ<x≤t]λ(t− x)dx

= κ < u,E(I) > eρ(t−Aλ)

∫ Aλ

0
λ(x)dx −→ 0, t→∞, t ≥ Aλ. (28)

Concerning the �rst term on the right-hand side of (26), from (27) and the de�nition of Cλ
we �nd that

1[0≤x≤t−Aλ]|ϕox(s)− 1|λ(t− x) ≤ 1[0≤x≤t−Aλ]κe
ρx < u,E(I) > λ(t− x)

≤ Cλκeρx < u,E(I) > . (29)

Since ρ < 0, the right-hand side of (29) is integrable, and limt→+∞ 1[0≤x≤t−Aλ][ϕ
o
x(s)−1]λ(t−

x) = [ϕox(s) − 1]λ∞, the dominated convergence theorem entails that the �rst term on the
right-hand side of (26) converges to λ∞

∫∞
0 [ϕox(s)− 1]dx as t→ +∞. Hence, combining with

the limit obtained in (28), we deduce that the limit of the left-hand side of (26) as t → ∞
is λ∞

∫∞
0 [ϕox(s) − 1]dx. We now argue that the function s 7→ exp

(
λ∞
∫∞

0 [ϕox(s)− 1]dx
)
is

continuous in a neighborhood of 0 ∈ Rk such as s ∈ (−1, 1)k , which by Lévy's continuity
theorem implies that exp

(
λ∞
∫∞

0 [ϕox(s)− 1]dx
)
is the CF of some distribution ν on Rk+.

To be more precise, we observe that, when s ∈ (−1, 1)k, the upper bound κ in (29) can
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be chosen independently from s ∈ (−1, 1)k as maxj=1,...,k 1/uj , a dominated convergence
argument subsequently implies this continuity property.

Proving the limit of e−δtN(t) in (11) as t → +∞. We assume here that ρ ≤ 0 and δ > 0
or that ρ > 0 and δ > ρ. First, the CF of e−δtN(t) is given as eRt where Rt can be written as
below:

Rt =

∫ t

0
[ϕot−x(se−δt)− 1]λ(x) dx =

∫ t

0
{E[exp(< ise−δt, No(t− x) >)]− 1}λ(x) dx (30)

= R1,t +R2,t,

R1,t :=

∫ ∞
0

1[0≤x≤t]E
[
exp

(
< ise−δt, No(t− x) >

)
− 1− < ise−δt, No(t− x) >

]
λ(x) dx,

(31)

R2,t :=

∫ ∞
0

1[0≤x≤t]E
[
< ise−δt, No(t− x) >

]
λ(x) dx. (32)

Similar to (18), we then study the limits of R1,t and R2,t separately as t→ +∞.
Limit of R1,t in (31) as t→ +∞. It will be shown that R1,t tends to 0 as t→ +∞. Let us
�rst note that for all x ∈ R we have |eix − 1− ix| ≤ |x|2 if |x| ≤ 1, and (using |eix − 1| ≤ |x|)
|eix − 1− ix| ≤ |eix − 1|+ |ix| ≤ 2|x| ≤ 2|x|2 if |x| > 1, so that we have the following general
inequality

|eix − 1− ix| ≤ 2|x|2, ∀x ∈ R.

The above result, combined with the Cauchy-Schwarz inequality, yields the upper bound for
|R1,t| given by

|R1,t| ≤ 2

∫ ∞
0

1[0≤x≤t]E
[
| < se−δt, No(t− x) > |2

]
λ(x) dx

≤ 2||s||2
∫ ∞

0
1[0≤x≤t]e

−2δtE
[
||No(t− x)||2

]
λ(x) dx. (33)

We here separate the cases ρ < 0, ρ = 0 and ρ > 0, with last case requiring the additional
constraint δ > ρ. If ρ < 0, the growth rate in Lemma 16 (with proof in Appendix A) implies
that E

[
||No(t− x)||2

]
≤ Ceρ(t−x) for some constant C > 0. Also, the assumption λ(x) ∼

λ∞e
δx as x → ∞, in particular implies that λ(x) is bounded by eδx up to a constant, hence

one gets from (33) that for some (di�erent) constant C > 0,

|R1,t| ≤ C
∫ ∞

0
1[0≤x≤t]e

−2δteρ(t−x)eδxdx = Ce(−2δ+ρ)t

∫ t

0
e(−ρ+δ)xdx

=
C

−ρ+ δ
[e−δt − e(−2δ+ρ)t] −→ 0 as t→ +∞.

If ρ = 0, the growth rate in Lemma 16 implies that E
[
||No(t− x)||2

]
is an O((t − x) + 1),

hence for some constant C > 0 we have

|R1,t| ≤ C
∫ ∞

0
1[0≤x≤t]e

−2δt[(t− x) + 1]eδxdx ≤ C(t+ 1)

∫ t

0
e−2δteδxdx

=
C(t+ 1)

δ
[e−δt − e−2δt] −→ 0 as t→ +∞.
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Finally, if ρ > 0 then the growth rate in Lemma 16 implies that E
[
||No(t− x)||2

]
is less than

e2ρ(t−x) up to a constant, hence for some constant C > 0 we have

|R1,t| ≤ C
∫ ∞

0
1[0≤x≤t]e

−2δte2ρ(t−x)eδxdx = Ce2(−δ+ρ)t

∫ t

0
e(−2ρ+δ)xdx, (34)

which can be shown approaching 0 as t→ +∞, using δ > ρ.
Limit of R2,t in (32) as t→ +∞, and conclusion. From [5, p.208], we know that the mean
matrix of the multitype process No(z) is expressed as E[No(z)] = eAzE(I) where the matrix
A is de�ned in (5). Therefore, R2,t can be expressed, after some manipulation, as

R2,t =

∫ t

0
e−δt < is, eA(t−x)E(I) > λ(x)dx

=

∫ ∞
0

1[0≤x≤t]e
−δt < is, eAxE(I) > λ(t− x)dx. (35)

We now wish to use the dominated convergence theorem in order to �nd the limit in (35).
Upper bounding λ(x) by Ceδx for some constant C > 0 results in∣∣∣1[0≤x≤t]e

−δt < is, eAxE(I) > λ(t− x)
∣∣∣ ≤ C < |s|, e(A−δId)xE(I) >,

which is integrable because δ > ρ (in either case ρ ≤ 0 or ρ > 0) so that all eigenvalues of
A− δId have negative real parts. Also, the assumption that λ(x) ∼ λ∞eδx as x→∞, results
in 1[0≤x≤t]e

−δt < is, eAxE(I) > λ(t − x) −→ λ∞ < is, e(A−δId)xE(I) > as t → +∞, for all
x ≥ 0. Hence we deduce from (35) that

R2,t −→ λ∞

∫ ∞
0

< is, e(A−δId)x E(I) > dx =< is, λ∞

∫ ∞
0

e(A−δId)xdx E(I) >

=< is, λ∞(δId−A)−1E(I) > .

Since R1,t −→ 0 as t → +∞, one arrives at the convergence of the CF of e−δtN(t) to exp(<
is, λ∞(δId − A)−1E(I) >), so that e−δtN(t) converges in distribution (or, equivalently, in
probability) towards λ∞(δId−A)−1E(I). Hence (ii) in (11) is proved.

Proving the limit of e−δt N(t)
t in (12) as t → +∞. We assume the supercritical case ρ > 0

and ρ = δ. In this case, instead of (30), we consider the quantity Rt :=
∫ t

0 [ϕot−x(se−δt/t) −
1]λ(x) dx =

∫ t
0{E[exp(< ise−δt/t,No(t − x) >)] − 1}λ(x) dx such that the CF of e−δt N(t)

t is
equal to eRt , which is similarly decomposed as in (31) and (32) as Rt = R1,t +R2,t, where

R1,t :=

∫ ∞
0

1[0≤x≤t]E
[
exp

(
< ise−δt/t,No(t− x) >

)
− 1− < ise−δt/t,No(t− x) >

]
λ(x) dx,

(36)

R2,t :=

∫ ∞
0

1[0≤x≤t]E
[
< ise−δt/t,No(t− x) >

]
λ(x) dx. (37)

Utilizing the inequality in (34), one obtains, for some constant C > 0,

|R1,t| ≤
1

t2
C

∫ ∞
0

1[0≤x≤t]e
−2δte2ρ(t−x)eδxdx = C

1

t2

∫ t

0
e−δxdx −→ 0,



L.Rabehasaina and J.-K.Woo/Multitype branching process with immigration 14

thus (36) tends to 0 as t→ +∞. Using the expression E[No(z)] = eAzE(I) as in (35) and the
change of variable z := 1− x/t together with the assumption δ = ρ, we can rewrite (37) as

R2,t =
1

t

∫ t

0
e−δt < is, eA(t−x)E(I) > λ(x)dx

= < is,

∫ 1

0
eAt(1−z)e−ρtλ(tz)dz E(I) >

= < is,

∫ 1

0
e(A−ρId)t(1−z)e−ρtzλ(tz)dz E(I) > . (38)

We now wish to investigate (38) when t→ +∞. Since A is regular, the Perron Frobenius theory

entails that e(A−ρId)x converges to uv′ as x→ +∞, see e.g. [5, Limit (17) p.203]. Hence, for all

z ∈ (0, 1) one has limt→∞ e
(A−ρId)t(1−z) = uv′. Also, the assumption λ(x) ∼ λ∞eδx as x→∞

with δ = ρ implies that limt→∞ e
−ρtzλ(tz) = λ∞ for all z ∈ (0, 1), so that by the dominated

convergence theorem we may let t→ +∞ in (38) and obtain

R2,t −→< is, λ∞uv
′ E(I) >, t→ +∞.

Therefore, since Rt = R1,t +R2,t with limt→∞R1,t = 0, one concludes the convergence (12).

3.3. Proof of Theorem 5 in the critical case ρ = 0

We start with Lemma 2, from which we deduce that the CF of N(t)/t admits the expression

E
[

exp

(
< is,

N(t)

t
>

)]
= E[exp(< t−1is,N(t) >)] = exp

{∫ t

0
[ϕot−y(t

−1s)− 1]λ(y)dy

}
.

(39)

We thus study∫ t

0
[ϕt−y(t

−1s)− 1]λ(y)dy =

∫ t

0
E
[

exp

(
< is,

No(t− y)

t
>

)
− 1

]
λ(y)dy

=

∫ Λ(t)

0
E
[

exp

(
< is,

No(t− Λ−1(y))

t
>

)
− 1

]
dy

=

∫ 1

0
Λ(t) E

[
exp

(
< is,

No(t− Λ−1(Λ(t)x))

t
>

)
− 1

]
dx

:= −
∫ 1

0
γt(x)dx, (40)

where Λ−1(.) is the inverse of the function Λ(.) (invertible as it is assumed that λ(t) > 0 for
all t ≥ 0), the second last equality is due to a change of variable with x := y/Λ(t) and γt(x)
is given by

γt(x) := Λ(t) E
[
1− exp

(
< is,

No(t− Λ−1(Λ(t)x))

t
>

)]
. (41)

We note that the assumption limt→+∞ Λ(t)/t = λ∞ implies that limt→+∞ Λ−1(t)/t = λ−1
∞ ,

which is in turn equivalent to

Λ−1(t) ∼ λ−1
∞ t, i.e. Λ−1(t) = λ−1

∞ t+ η(t)t, (42)
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where limt→∞ η(t) = 0.
In the following, we shall prove by the dominated convergence theorem that the right-hand

side of (40) has the following limit

−
∫ 1

0
γt(x)dx −→ λ∞β̄

∫ ∞
0

E[exp(< is, e−yX >)− 1]dy, t→ +∞, (43)

where β̄ is given by (14). In here we have

X = χv ⊗ µ−1 ∈ [0,+∞)k, (44)

where χ ∼ E(c) for c > 0 given by (15) and the survival function of X given by

P (X > z) = exp

(
−c max

i=1,...,k

zi

viµ
−1
i

)
, z = (z1, ..., zk) ∈ [0,+∞)k. (45)

The proof is decomposed in the following steps.
Step 1: Dominating the integrand in (40). Using the basic inequality |eix− 1| ≤ x, we

have for all t ≥ 0 and x ∈ (0, 1), s = (s1, ..., sk) ∈ Rk that∣∣∣∣1− exp

(
< is,

No(t− Λ−1(Λ(t)x))

t
>

)∣∣∣∣ ≤< |s|, No(t− Λ−1(Λ(t)x))

t
> .

Using (24), one �nds < |s|, N
o(t−Λ−1(Λ(t)x))

t >≤ κ
(
< u, N

o(t−Λ−1(Λ(t)x))
t >

)
. Hence, taking

the expectation and multiplying by Λ(t) on both sides result in

|γt(x)| ≤ Λ(t)κ E
[
< u,

No(t− Λ−1(Λ(t)x))

t
>

]
≤ Cλκ E[< u,No(t− Λ−1(Λ(t)x)) >]

=Cλκ E[< u,No(0) >] = Cλκ < u,E(I) >, t ≥ t0, (46)

where the �rst equality is obtained by the martingale argument and Cλ := supt≥t0 Λ(t)/t
which is �nite for a large enough t0. Since Cλ and κ are constants (independent of t and x),
the integrand in (40) is dominated by some constant independent from t ≥ t0 and x ∈ (0, 1).
Step 2: Almost sure limit of the integrand in (40). Let us now prove the following

convergence for (41):

γt(x) −→ γ(x) := λ∞
β̄

1− x
E[1− exp(< is, (1− x) X >)], (47)

for a �xed x ∈ (0, 1) and s = (s1, ..., sk) ∈ Rk as t→ +∞, where β̄ is de�ned by (14). To show
this, we �rst express γt(x) in (41) using the representation (3) as

γt(x) =
∑

n0=(n0(1),...,n0(k))∈Nk
γt(x,n0)pn0 , (48)

where γt(x,n0) := Λ(t)

[
1− E

(
exp

(
< is,

No(t− Λ−1(Λ(t)x))

t
>

)∣∣∣∣ No(0) = n0

)]
= Λ(t)

[
1−

k∏
j=1

ψj(t, x)n0(j)

]
, (49)
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ψj(t, x) := E
[

exp

(
< is,

N j(t− Λ−1(Λ(t)x))

t
>

)]
, j = 1, ..., k. (50)

In the following, we de�ne for all J ⊂ {1, ..., k} and z = (z1, ..., zk) ∈ R∗k+ the vector zJ of
which the jth entry zJj is zj if j ∈ J , and some arbitrary negative value (e.g. −1) otherwise.

The following lemma, proved in Appendix B, gives the asymptotic behaviour of ψj(t, x),
j = 1, ..., k, as t→∞, which helps us prove (47).

Lemma 8. The following limit holds for all j = 1, ..., k and x ∈ (0, 1):

t[ψj(t, x)− 1] −→ 1

1− x
βj [1− E (exp[< is, (1− x)X >])] , t→∞. (51)

Note that (51) in particular implies that ψj(t, x) − 1 = O(1/t) −→ 0 as t → ∞, which,
plugged into (49) together with Λ(t) ∼ λ∞t as t→ +∞, yields

γt(x,n0) ∼ λ∞
[ k∑
j=1

n0(j) t[ψj(t, x)− 1]

]
, t→ +∞.

This implies, along with (51), that (48) converges as

γt(x) −→ λ∞
1− x

{ k∑
j=1

βj

[ ∑
n0∈Nk

n0(j)pn0

]}
[1− E (exp[< is, (1− x)X >])] , t→ +∞,

and thus (47) holds.
Step 3: Proof of (43). Thanks to (46) and (47), by the dominated convergence theorem,

one thus deduces that (40) converges as t→ +∞ to

−
∫ 1

0
γ(x)dx = −

∫ 1

0

λ∞β̄

1− x
E[1− exp(< is, (1− x) X >)]dx,

which results in (43) after a change of variable y := − ln(1− x).
Step 4: End of proof. From (39) with the convergence results of (40) towards (43), one

�nds that

E
[

exp

(
< is,

N(t)

t
>

)]
−→ exp

(
λ∞β̄

∫ ∞
0

E[exp(< is, e−yX >)− 1]dy

)
, t→ +∞,

(52)
for s ∈ Rk. Since X = χv ⊗ µ−1 with χ ∼ E(c), one computes that E[exp(< is, e−tX >

) − 1] = E[exp(< is, v ⊗ µ−1 > χe−t) − 1] = e−t<is,v⊗µ−1>
c−e−t<is,v⊗µ−1>

. In turn, changing of variable

z := e−t < is, v ⊗ µ−1 > yields that the right-hand side of the above convergence is the CF

equivalent to
(

c
c−<is,v⊗µ−1>

)λ∞β̄
, which indeed is the CF of Zv⊗µ−1 in (16). This completes

the proof.

4. Immigration modelled by a contagious Poisson process (CPP)

As discussed in Section 1, CPP is a special case of GPP which has become a well-known
contagion model when the transition intensity in the non-homogeneous birth process is a linear
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function of the current state multiplied by a function of the current time. In this section, we
now assume that the arrival process {S(t), t ≥ 0} is a CPP and note that S(0−) = 0. We �rst
consider GPP and obtain the CF of N(t). This will in turn imply that the one for a CPP is
available. It is known that GPP (or a positive contagion model in [8, 35]), is a particular case
of self exciting counting process with intensity rate λ(t) satisfying

λ(t) = [aS(t−) + b]λt, a > 0, b > 0, (53)

for some underlying function λt > 0 for t ∈ (0,+∞) which is assumed to be continuous and
integrable over �nite ranges. Let us denote Λt =

∫ t
0 λydy for t ≥ 0. When b = 1, this arrival

process was referred to as the Linear Extension of the Yule Process by [23]. Hence, the intensity
increases linearly with the number of arrivals at time t. This explains why these models could
be appropriate for the situations where the arriving particles representing cells infected by
a rapidly expanding disease contaminate other cells in an organism modelled by a certain
network mechanism, or where the occurrence of shocks causes outages of interconnected lines
in a power system as studied in [26]. In particular, we shall focus on the case when λt = λ > 0
is constant. In this case, {S(t), t ≥ 0} is called a CPP in [1] and [32].

Let us start by establishing the CF of N(t) as obtained in Lemma 2 for the NHPP immi-
gration.

Lemma 9. When the new particle arrives according to a GPP with the intensity rate given
in (53), the CF of N(t) in (7) admits the following expression

ϕt(s) =

{
1−

∫ t

0
[ϕot−y(s)− 1]aλye

aΛydy

}−b/a
. (54)

In particular, when λt = λ in (53) (i.e. CPP case), (54) is simpli�ed as

ϕt(s) =

{
1−

∫ t

0
[ϕot−y(s)− 1]aλeaλydy

}−b/a
. (55)

Proof. It is known that the marginal distribution of S(t) is expressed as a negative binomial
distribution with Λt =

∫ t
0 λydy (e.g. [9, Theorem 1(i)]) given by

pt(n) := P(S(t) = n) =
Γ(b/a+ n)

Γ(b/a)n!
(1− e−aΛt)n(e−aΛt)b/a,

where Γ(z) =
∫∞

0 xz−1e−xdx, for all complex number z with positive real part, is the gamma
function. The above is a negative binomial distribution (r, p) where r = b/a and p = 1−e−aΛt .
Its probability generating function is Pt(z) =

∑∞
n=0 z

npt(n) = ( 1−p
1−pz )r for all complex number

z verifying |z| < p−1.
Then, from [21, Section 3.2], the CF of N(t) can be expressed as a compound negative

binomial distribution
ϕt(s) = Pt(f̃t(s)), (56)

where the CF of the secondary distribution is given by

f̃t(s) =

∫ t

0
qt(y)ϕot−y(s)dy, (57)
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with

qt(y) =
aλye

aΛy

eaΛt − 1
, 0 ≤ y ≤ t. (58)

Since Pt(z) = ( 1−p
1−pz )r, (56) is obtained as

ϕt(s) =

(
e−aΛt

1− (1− e−aΛt)f̃t(s)

)b/a
=
[
eaΛt − (eaΛt − 1)f̃t(s)

]−b/a
.

Using
∫ t

0 aλye
aΛydy = eaΛt − 1, one �nds from (57) and (58) that

eaΛt − (eaΛt − 1)f̃t(s) =

∫ t

0
aλye

aΛydy + 1−
∫ t

0
aλye

aΛyϕot−y(s)dy

= 1 +

∫ t

0
[1− ϕot−y(s)]aλyeaΛydy.

That is,

ϕt(s) =

{
1 +

∫ t

0
[1− ϕot−y(s)]aλyeaΛydy

}−b/a
, (59)

or equivalently (54).

In the case of a constant baseline intensity λt = λ, taking the expectation on both sides of
(53) yields E[λ(t)] = aλE[S(t−)]+λb. Since E[S(t−)] = E[S(t)] and {S(t)−

∫ t
0 λ(s)ds, t ≥ 0} is

a martingale (see e.g. [18, Proposition 8.3.2.1 p.467]), we arrive at E[λ(t)] = aλ
∫ t

0 E[λ(s)]ds+λb
for all t ≥ 0, from which the expected intensity has the closed form

E[λ(t)] = bλeaλt, t ≥ 0. (60)

We note that there is some resemblance between this exponential expression in (60) in the
GPP case and the exponential asymptotic form λ(t) ∼ λ∞e

δt of the (deterministic) intensity
appeared in Theorems 3 and 4 in the NHPP case. However, due to the randomness in time
feature of the intensity in this case, we can observe di�erent limiting behaviors of the branching
process N(t) with the CPP immigration. More precisely, in the following it is shown that the
distributional behaviour changes depending on whether the largest eigenvalue ρ of A is less
than, larger than, or equal to aλ. The main result of this section is given in the following
theorem.

Theorem 10. Suppose that λt = λ , a is de�ned by (53) and ρ is the largest eigenvalue of
the matrix A with elements aij de�ned by (5).
(1) If ρ > aλ, then

e−ρtN(t)
D−→ ZT v, t→ +∞, (61)

where v is the left eigenvector of the matrix A, T ∼ Γ(b/a, 1) and {Zt, t ≥ 0} is an independent
Lévy process with characteristic exponent ψ(x) :=

∫
R (1− exp [ixz]) Π(dz), x ≥ 0. Here, Π(.)

is de�ned by

Π(dz) := E
[
W aλ/ρ

1[W≥z]

] aλ

ρ
z−aλ/ρ−1

1[0<z<+∞] dz, (62)

and we recall that W is characterized by its CF given by (6).
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(2) If ρ < aλ, then

e−aλtN(t)
D−→ Z γ, t→ +∞, (63)

where Z is a rv distributed as Γ(b/a, 1) and γ is the vector de�ned by

γ := aλ(aλId−A)−1E(I) (64)

(3) If ρ = aλ, then
N(t)

t
e−aλt

D−→ Zv, t→ +∞, (65)

where Z is a rv distributed as Γ(b/a,E[W ]aλ).

Remark 11. In the case ρ > aλ we may note that, since Π(.) de�ned by (62) has support
on (0,+∞) and veri�es

∫
(0,+∞) min(1, z)Π(dz) < +∞ (precisely because of the condition

ρ > aλ), the underlying Lévy process {Zt, t ≥ 0} in (61) belongs to the class of subordinators
according to [20, Lemma 2.14, p.55].

Remark 12. As shown in (60), the expected intensity in the present CPP case has an expo-
nential form, hence it is natural to compare the limiting convergence results in Theorem 10
to those in Theorems 3 and 4 in the NHPP case with asymptotic intensity λ(t) ∼ λ∞e

δt for
δ > 0. With an analogy between aλ and δ, Table 1 summarizes the di�erent directions of the
supports of the limiting distributions obtained in (11), (12) and (9) for ρ < δ, ρ = δ and ρ > δ
in the NHPP case, to those in (63), (65) and (61) for ρ < aλ, ρ = aλ and ρ > aλ in the CPP
case. Each value in Table 1, that all belong to Rk+, roughly shows the position in which the
renormalized process N(t) is located asymptotically in the corresponding case. Interestingly,

ρ < ξ ρ = ξ ρ > ξ

NHPP: ξ = δ (ξId−A)−1E(I) u v

CPP: ξ = aλ (ξId−A)−1E(I) v v
Table 1

Direction of limiting distribution

the directions are the same except for ρ = δ in the NHPP case and ρ = aλ in the CPP case,
which are respectively given by the vectors u and v.

The proofs of each case in Theorem 10 are provided in the following Section 4.1, Section
4.2, and Section 4.3 respectively.

4.1. Proof of Theorem 10 in the case ρ > aλ

In (55), with the normalizing function g(t) = eρt we get

ϕt(s/g(t)) = ϕt(se
−ρt) =

{
1 +

∫ t

0
[1− ϕot−y(se−ρt)]aλeaλydy

}−b/a
(66)

for all s ∈ Rk. The proof is divided into two steps as follows.
Step 1: Studying the convergence of ϕt(se

−ρt) as t→ +∞. It is convenient to introduce
the function

Ξt,s :=

∫ t

0
[1− ϕot−y(se−ρt)]aλeaλydy
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=

∫ ∞
0

1[0<y<t]E
[
1− exp

(
< is,No(t− y)/eρ(t−y) > e−ρy

)]
aλeaλydy, (67)

so that ϕt(se
−ρt) = {1 + Ξt,s}−b/a, t ≥ 0. Thus, studying the limit of ϕt(se

−ρt) as t →
+∞ essentially requires �nding limt→+∞ Ξt,s, which will be completed by the dominated
convergence theorem. First note that for all y ∈ (0,+∞) one has that No(t − y)/eρ(t−y) −→
Wv, t →∞, a.s. from Lemma 1. One has by the dominated convergence theorem for a �xed
y ∈ (0,+∞) and that

E
[
1− exp

(
< is,No(t− y)/eρ(t−y) > e−ρy

)]
−→ E

[
1− exp

(
< is, v > We−ρy

)]
, t→ +∞.

(68)
Using (22), the integrand in (67) is upper bounded in modulus as

1[0<y<t]

∣∣∣E [1− exp
(
< is,No(t− y)/eρ(t−y) > e−ρy

)]
aλeaλy

∣∣∣
≤ 1[0<y<t]E

[
< |s|, No(t− y)/eρ(t−y) > e−ρy

]
aλeaλy

= aλ1[0<y<t]E
[
< |s|, No(t− y)/eρ(t−y) >

]
e(aλ−ρ)y.

By the similar martingale argument applied to the one leading to (29) for example, and
since Assumption (A) holds, one can show that 1[0<y<t]E

[
< |s|, No(t− y)/eρ(t−y) >

]
is upper

bounded by some constant K which is independent of t and y. That is,

0 ≤ 1[0<y<t]

∣∣∣E [1− exp
(
< is,No(t− y)/eρ(t−y) > e−ρy

)]∣∣∣ aλeaλy ≤ aλKe(aλ−ρ)y, (69)

which is integrable over y ∈ (0,+∞) when ρ > aλ. Hence, using (68), (69) and the dominated
convergence theorem, we arrive at

Ξt,s −→ Ξ∞,s :=

∫ ∞
0

E
[
1− exp

(
< is, v > We−ρy

)]
aλeaλydy, t→ +∞, (70)

so that the renormalized CF in (66) converges as

ϕt(se
−ρt) −→ ϕ̃(s) := {1 + Ξ∞,s}−b/a, t→ +∞. (71)

Step 2: Identifying the CF ϕ̃(s). In order to interpret (71) as the convergence towards
some known distribution, we use the following elementary Lemma (its proof is given in Ap-
pendix C):

Lemma 13. Let {Zt, t ≥ 0} be a Lévy process with characteristic exponent ψ(x) such that
E[eixZt ] = e−tψ(x) for x ∈ R, and let T be a rv distributed as Γ(ζ, 1), independent from
{Zt, t ≥ 0}. Then the CF of ZT is given by

E[eixZT ] = {1 + ψ(x)}−ζ , x ≥ 0. (72)

The aim is now to write ϕ̃(s) in (71) in the form of (72). We �rst write Ξ∞,s in (70) as

Ξ∞,s =

∫ ∞
0

∫ ∞
0

(
1− exp

[
< is, v > we−ρy

])
aλeaλydy P(W ∈ dw).
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Performing a change of variable z := we−ρy (i.e. y = −1
ρ ln z

w ) within the integral in y, it may
be expressed as

Ξ∞,s =

∫ ∞
0

∫ w

0
(1− exp [< is, v > z])

aλ

ρ

( z
w

)−aλ/ρ dz
z

P(W ∈ dw)

=

∫ ∞
0

(1− exp [< is, v > z])

{∫ ∞
0

waλ/ρ1[w≥z]P(W ∈ dw)

}
aλ

ρ
z−aλ/ρ−1dz

=

∫ ∞
0

(1− exp [< is, v > z]) E
[
W aλ/ρ

1[W≥z]

] aλ

ρ
z−aλ/ρ−1dz

=

∫
R

(1− exp [< is, v > z]) Π(dz),

where the measure Π(dz) on (0,+∞) is de�ned as (62). Finally, we get the following expression
for (71):

ϕ̃(s) =
{

1 + ψ(< s, v >)
}−b/a

, s ∈ Rk,

so that one deduces from Lemma 13 the convergence result in (61).

4.2. Proof of Theorem 10 in the case ρ < aλ

After a change of variable y := t− y, (55) is rewritten as

ϕt(s) =

{
1 +

∫ t

0
[1− ϕoy(s)]aλeaλ(t−y)dy

}−b/a
, t ≥ 0, s ∈ Rk.

Let us consider the normalizing function g(t) = eaλt, so that

ϕt(s/g(t)) = ϕt(se
−aλt) =

{
1 +

∫ t

0
[1− ϕoy(se−aλt)]aλeaλ(t−y)dy

}−b/a
. (73)

In the following, the limit of the integral on the right-hand side of (73) is studied in the
subcritical case. First, similar to (67), let

Ξt,s :=

∫ t

0
[1− ϕoy(se−aλt)]aλeaλ(t−y)dy. (74)

To apply the dominated convergence theorem, let us de�ne

Ξt,s,y := 1[0<y<t][1− ϕoy(se−aλt)]aλeaλ(t−y) = 1[0<y<t]E[1− e<is,No(y)>e−aλt ]aλeaλ(t−y). (75)

Since
|1− e<is,No(y)>e−aλt | ≤ < |s|, No(y) > e−aλt, (76)

(75) is bounded in modulus by

|Ξt,s,y| ≤ 1[0<y<t]E[< |s|, No(y) >]aλe−aλy ≤ E[< |s|, No(y) >]aλe−aλy

=< |s|,E[No(y)] > aλe−aλy := Ξ∗s,y. (77)

We recall from [5, p.202] that the mean matrix of the multitype process No(t) is expressed as
E[No(y)] = eAyE(I) where the matrix A is de�ned in (5). For the case ρ < aλ, the integral
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0 e(A−aλId)ydy is convergent because all eigenvalues of the matrix A− aλId have negative

real part in the case of ρ < aλ. In turn, one concludes that
∫ +∞

0 Ξ∗s,ydy converges. Besides,
for a �xed y ∈ (0,+∞) one �nds

E[1− e<is,No(y)>e−aλt ]eaλt −→ −E[< is,No(y) >], t→ +∞ (78)

by the dominated convergence theorem. Indeed, from (76) |1 − e<is,No(y)>e−aλt |eaλt is upper
bounded by < |s|, No(y) > which has a �nite expectation. Finally, because of the bound for
the integrand Ξt,s,y obtained in (77) and the pointwise limit in (78), one deduces that (74)
converges to

Ξt,s −→ −
∫ +∞

0
E(< is,No(y) >)aλe−aλydy = −

∫ +∞

0
< is, eAyE(I) > aλe−aλydy

= − < is,

∫ +∞

0
aλe(A−aλId)ydy E(I) >=< is, aλ(aλId−A)−1E(I) >,

as t→ +∞. Consequently, it follows that (73) converges to

ϕt(se
−aλt) −→

{
1− < is, aλ(aλId−A)−1E(I) >

}−b/a
, t→ +∞,

for all s ∈ Rk, which entails (63) with the vector γ de�ned as (64).

4.3. Proof of Theorem 10 in the case ρ = aλ

We consider here the renormalizing function g(t) := teρt = teaλt. As in (66) and (67), after a
change of variable y := y/t we have for all s ∈ Rk,

ϕt(s/g(t)) = ϕt(se
−aλt/t) =

{
1 +

∫ t

0
[1− ϕot−y(se−aλt/t)]aλeaλydy

}−b/a
=

{
1 +

∫ t

0

(
1− E

[
exp(< is,No(t− y) > e−aλt/t)

])
aλeaλydy

}−b/a
=

{
1 +

∫ 1

0
t
(

1− E
[
exp(< is,No(t(1− y)) > e−aλt/t)

])
aλeaλtydy

}−b/a
= {1 + Ξt,s}−b/a, (79)

where Ξt,s is now de�ned by

Ξt,s :=

∫ 1

0
t
(

1− E
[
exp(< is,No(t(1− y)) > e−aλt/t

])
aλeaλtydy

=

∫ 1

0
t
(

1− E
[
exp(< is,Wv > e−aλty/t)

])
aλeaλtydy

+

∫ 1

0
t
(
E
[
exp(< is,Wv > e−aλty/t)

]
−E

[
exp(< is,No(t(1−y)) > e−aλt/t)

])
aλeaλtydy

:= Ξ1
t,s + Ξ2

t,s. (80)
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In the following we shall determine the limits of Ξ1
t,s and Ξ2

t,s separately as t → +∞. For

notational convenience, let Ξ2
t,s :=

∫ 1
0 Υ2

s(t, y)dy where

Υ2
s(t, y) := t

(
E
[
exp(< is,Wv > e−aλty/t)

]
− E

[
exp(< is,No(t(1− y)) > e−aλt/t)

])
aλeaλty.

(81)
Step 1: Studying the convergence of Ξ1

t,s as t → +∞. It is readily obtainable that
using the inequality (22), one has for all t ≥ 0 and y ∈ (0, 1) that

t
∣∣∣1− exp(< is,Wv > e−aλty/t)

∣∣∣ aλeaλty
≤ t < |s|,Wv > (e−aλty/t)aλeaλty =< |s|,Wv > aλ,

which is integrable, so that for a �xed y ∈ (0, 1) one has by the dominated convergence
theorem that t

(
1− E

[
exp(< is,Wv > e−aλty/t)

])
aλeaλty −→ −E [< is,Wv >] aλ as t →

+∞. Likewise:

t
∣∣∣1− E

[
exp(< is,Wv > e−aλty/t)

]∣∣∣ aλeaλty ≤ E [< |s|,Wv >] aλ,

is a constant, so that by the dominated convergence theorem one deduces that

lim
t→+∞

Ξ1
t,s = −E [< is,Wv >] aλ = − < is,E[W ]aλv > . (82)

Step 2: Dominating Υ2
s(t, y). In order to study limt→+∞ Ξ2

t,s, we again use the dominated
convergence theorem. First, it can be shown that |Υ2

s(t, y)| in (81) is upper bounded as:

|Υ2
s(t, y)| ≤ tE[| < s,Wv > e−aλty/t− < s,No(t(1− y)) > e−aλt/t|]aλeaλty

= aλE[(| < s,Wv > − < s,No(t(1− y)) > e−aλt(1−y)|] (83)

≤ aλE[| < s,Wv > |] + aλE[| < s,No(t(1− y)) > e−aλt(1−y)|]
≤ aλE[< |s|,Wv >] + aλE[< |s|, No(t(1− y)) > e−aλt(1−y)],

where the �rst inequality is obtained from (22) and the last equality holds because W and
No(t(1−y)) are non negative or have non negative entries. Using again the constant κ satisfying
(24) and the martingale argument one thus obtains, together with the above result, that
|Υ2

s(t, y)| is upper bounded by some constant as

|Υ2
s(t, y)| ≤ aλE[< |s|,Wv >] + aλκ < u,E(I) >, ∀t ≥ 0, ∀y ∈ (0, 1).

Step 3: Pointwise convergence of Υ2
s(t, y) towards 0 as t → +∞. Let y ∈ (0, 1) be

�xed. Since Rk can be decomposed as the direct sum of Ru and (Rv)⊥ (the orthogonal vector
space of Rv for the euclidean inner product), there exists some (unique) α ∈ R and s0 ∈ (Rv)⊥

such that s = αu+ s0. Since < s0, v >= 0, it follows that (83) is expressed as

|Υ2
s(t, y)| ≤ aλE[| < s,Wv > − < s,No(t(1− y)) > e−aλt(1−y)|)

= aλE(|α < u,Wv > −α < u,No(t(1− y)) > e−aλt(1−y)− < s0, N
o(t(1− y)) > e−aλt(1−y)|)

≤ aλE(|αW − α < u,No(t(1− y)) > e−aλt(1−y)|)
+E(| < s0, N

o(t(1− y)) > e−aλt(1−y)|), (84)

where the last line follows from the triangle inequality and the fact that < u,Wv >= W <
u, v >= W.1 = W . We next show that both terms in the above inequality tend to zero as



L.Rabehasaina and J.-K.Woo/Multitype branching process with immigration 24

t → +∞. From this decomposition of s along Ru and (Rv)⊥, it holds that the �rst term is
linked to the martingale {< u,No(t)e−ρt >, t ≥ 0} with ρ = aλ, whereas in the second term
the behaviour of {< s0, N

o(t)e−ρt >, t ≥ 0} is determined precisely thanks to the estimates
given in [4] and the fact that s0 ∈ (Rv)⊥. Indeed, one has from (94) that D(t) = O(e2ρt),
resulting in

(
E[||No(t)||2e−2ρt]

)
t≥0

is uniformly upper bounded with ρ = aλ here. Since E[| <
u,No(t) > e−aλt|2] is upper bounded by E[||No(t)||2e−2ρt] up to a constant for all t ≥ 0,
one deduces that the martingale {< u,No(t)e−aλt >, t ≥ 0} is uniformly square integrable,
hence converges in mean square towards W as t → +∞; and in turn, the �rst term on the
right-hand side of (84) converges to 0 as t→ +∞. Concerning the second term, we have, using
the representation (3) and triangular inequality, that

E(| < s0, N
o(t(1− y)) > e−aλt(1−y)|)

=
∑

n0=(n0(1),...,n0(k))∈Nk
E( | < s0, N

o(t(1− y)) > e−aλt(1−y)|
∣∣∣ No(0) = n0)pn0

≤
∑

n0=(n0(1),...,n0(k))∈Nk

{ k∑
j=1

n0(j)E(| < s0, N
j(t(1− y)) > e−aλt(1−y)|)

}
pn0

≤
{ ∑

n0=(n0(1),...,n0(k))∈Nk

[ k∑
j=1

n0(j)

]
pn0

}
max
j=1,...,k

E(| < s0, N
j(t(1− y)) > e−aλt(1−y)|)

=

{ k∑
j=1

E(I(j))

}
max
j=1,...,k

E(| < s0, N
j(t(1− y)) > e−aλt(1−y)|)

≤
{ k∑
j=1

E(I(j))

}
max
j=1,...,k

E(| < s0, N
j(t(1− y)) > |2e−2aλt(1−y)|)1/2 (85)

where the last line is obtained thanks to the Cauchy-Schwarz inequality. From [4, Proposition
3] together with < s0, v >= 0, there exists some real number a(s0) < ρ = aλ as well as an
integer γ(s0) (both depending on s0, see their precise de�nitions in [4, (9a) and (9b)]) such
that one of the three following situations occurs for all j = 1, ..., k:

E
[∣∣ < s0, N

j(t) >
∣∣2] =


O(e2a(s0)tt2γ(s0)) if 2a(s0) > ρ = aλ,

O(e2a(s0)tt2γ(s0)+1) if 2a(s0) = ρ = aλ,
O(eρt) = O(eaλt) if 2a(s0) < ρ = aλ.

Here the above three cases are corresponding to [4, a), b) and c) of Proposition 3] respectively.
In all cases, since a(s0) veri�es a(s0) < ρ = aλ, one can check easily that E[| < s0, N

j(t) >
|2]e−2ρt = E[| < s0, N

j(t) > |2]e−2aλt tends to 0 as t → +∞. Since Assumption (A) holds,
(85) thus tends to 0 as t → +∞ (for a �xed y ∈ (0, 1)). Combining all the above results,
we thus prove that both terms on the right-hand side of (84) converge to 0. Therefore, it is
concluded that (81) goes to zero as t→ +∞ for all y ∈ (0, 1).
Step 4: Convergence of Ξ2

t,s and conclusion. Step 2 and Step 3 imply by the dominated
convergence theorem that limt→+∞ Ξ2

t,s = 0. Using this and (82), from (80) it follows that (79)
converges to

ϕt(se
−aλt/t) −→

{
1− < is,E[W ]aλv >

}−b/a
, t→ +∞.

Hence we have proved (65).
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5. Transient expectation when k = 2

We shall hereafter consider two-type branching processes (i.e. k = 2) to study transient ex-
pectation of the number of particles at time t. Assume that the lifetime of type j particles
for j = 1, 2 is exponentially distributed as E(µi). The branching mechanism is given by the
following generating functions in (1)

h1(z1, z2) = p1(0, 0) + p1(0, 1)z2, h2(z1, z2) = p2(0, 0) + p2(1, 0)z1, (z1, z2) ∈ [0, 1]2,

where probabilities p12 := p1(0, 1) and p21 := p2(1, 0) in (0, 1] satisfy p12p21 < 1, which means
that type 1 particle (resp. 2) produces a type 2 (resp. 1) particle with probability p12 (resp.
p21), or else dies with probability p1(0, 0) = 1− p12 (resp. p2(0, 0) = 1− p21). We also suppose
that there is only one immigrant of type 1 entering the system at each time Ti, i ∈ N, i.e.
that I ∼ δ(1,0). We shall see in Remark 15 that this assumption can be relaxed to a general
incoming immigration vector I in (2). Also note that in this model, each particle produces one
o�spring only, and only one o�spring of the other type. Finally, we denote by m(t) = E[S(t)]
for t ≥ 0 the renewal function associated to the immigration process {S(t), t ≥ 0} with the
convention m(t) = 0 when t < 0.

Theorem 14. At time t, the transient expectation E[N1(t)] for type 1 particle is given by

E[N1(t)] =

∫ t

0

{
m(t)−m(t− z) +

∫ t

0
[m(t− v)−m(t− v − z)]

µ1µ2p12p21

[
1

ζ1(ζ2 − ζ1)
eζ1v +

1

ζ2(ζ1 − ζ2)
eζ2v

]
dv

}
µ1e
−µ1zdz, t ≥ 0, (86)

where ζ1 and ζ2 are given by

ζ1 :=
1

2

[
−(µ1 + µ2) +

√
(µ1 − µ2)2 + 4µ1µ2p12p21

]
, (87)

ζ2 :=
1

2

[
−(µ1 + µ2)−

√
(µ1 − µ2)2 + 4µ1µ2p12p21

]
. (88)

Note that the expression (86) depends on the renewal function m(t), which is explicitly
available in many processes. For example, m(t) =

∫ t
0 λ(s) ds when the immigration process

is a NHPP with intensity λ(·) whereas m(t) = ( ba)1−e−aΛt

e−aΛt
when the immigration process is a

GPP with parameters (a, b, λt). In addition to these two processes considered in this paper, we
remark that (86) for the transient �rst moment is also available for other non Poisson arrival
processes where their renewal functions are known. Typical examples include the case when
{S(t), t ≥ 0} is a fractional Poisson process with parameter β ∈ (0, 1) (where m(t) = Ctβ

for some constant C > 0, see [22, Expression (26)]), or when the interarrival times Ti − Ti−1,
i ≥ 1, follow matrix exponential distributions (in which case m(t) is explicit and given by [3,
Theorem 3.1]).

Proof. The key idea is to consider the successive passage times from type 2 to type 1 of the
ith particle arriving at Ti, i ∈ N∗ which is type 1. The type of particles is changing between 1
and 2 while it remains in the same type during an exponentially distributed lifetime as long
as it is alive (i.e. it has not left the system). Let Gi be the number of sojourn times as type 1
before dying, so that the (Gi)i∈N∗ are iid with distribution

Gi ∼ G(1− p12p21)
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where G denotes the geometric distribution. In other words, Gi = r if the ith particle survives
r times as a type 1 particle then dies, or survives one last time as a type 2 particle then

dies. Let us introduce the sequence (V
(r)
i )r∈N representing the successive time instants of this

particle (arriving at time Ti) changing back to type 1 after being type 2 prior to its death. In

other words, this ith particle becomes type 1 again at times Ti+V
(1)
i , Ti+V

(2)
i , etc. Then the

sequence is expressed as V
(r)
i − V (r−1)

i = Y
(r)

1,i + Y
(r)

2,i from r ∈ N∗ with V (0)
i = 0 where Y

(r)
j,i

represents the rth sojourn time of type j particle for j = 1, 2 such that the rv Y
(r)
j,i , j = 1, 2,

i ∈ N∗, r ∈ N∗, are independent, with distributions given by D(Y
(r)
j,i ) = E(µj). See Figure 1

for an illustration. Then, N1(t) has the following expression

Ti
Ti + V

(1)
i Ti + V

(2)
i Ti + V

(r)
i Ti + V

(r+1)
i

Y
(1)
1,i

Y
(1)
2,i Y

(2)
1,i

Y
(2)
2,i

Type 1 Type 2

Arrival of ith particle

Y
(r+1)
1,i

Y
(r+1)
2,i

Fig 1. Evolution of ith particle.

N1(t) =

∞∑
i=1

Gi−1∑
r=0

1
[Ti+V

(r)
i ≤t<Ti+V

(r)
i +Y

(r+1)
1,i ]

, (89)

as [Ti + V
(r)
i ≤ t < Ti + V

(r)
i + Y

(r+1)
1,i ] corresponds to the event that type 1 particle which

arrived at time Ti is again type 1 at time t after its rth return time. Taking the expectation in
(89), interchanging the order of summation and using the independence of Gi from the arrival

process {S(t), t ≥ 0} and (Y
(r)
j,i )r∈N∗ , j = 1, 2, yield

E[N1(t)] =
∞∑
r=0

Br(p12p21)r, (90)

Br :=

∞∑
i=1

P(Ti + V
(r)
i ≤ t < Ti + V

(r)
i + Y

(r+1)
1,i ).

Let us denote by G(r)(·) the cumulative distribution function of V
(r)
i , in other words, the rth

convolution of the sum of two exponential variables with mean µ1 and mean µ2, and also

denote G(0)(ds) = δ0(ds). By the independence of the arrival process {S(t), t ≥ 0}, V (r)
i and

Y
(r+1)

1,i we get

Br =

∫ t

0

∫ t

0
[m(t− v)−m(t− v − z)]G(r)(dv)µ1e

−µ1zdz.

It then follows from (90) that E[N1(t)] is given by

E[N1(t)] =

∫ t

0

∫ t

0
[m(t− v)−m(t− v − z)]Ψ(dv)µ1e

−µ1zdz, t ≥ 0, (91)
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where Ψ(ds) is a measure de�ned by

Ψ(ds) =
∞∑
r=0

(p12p21)rG(r)(ds), (92)

which remains to be determined. Since G(r)(ds) is the distribution of the sum of two indepen-
dent Erlang distributions with respective parameters (r, µ1) and (r, µ2), its Laplace transform
is given by

Ĝ(r)(x) =

∫ ∞
0

e−xsG(r)(ds) =

(
µ1

µ1 + x

µ2

µ2 + x

)r
, r ≥ 0, x ≥ 0,

so that, taking the Laplace transform on both sides of (92), one obtains

Ψ̂(x) =

∞∑
r=0

(p12p21)rĜ(r)(x) =
1

1− p12p21
µ1

µ1+x
µ2

µ2+x

= 1+
µ1µ2p12p21

x2 + (µ1 + µ2)x+ µ1µ2(1− p12p21)

= 1 +
µ1µ2p12p21

(x− ζ1)(x− ζ2)
= 1 + µ1µ2p12p21

[
1

(ζ1 − ζ2)(x− ζ1)
+

1

(ζ2 − ζ1)(x− ζ2)

]
, (93)

where ζ1 and ζ2 are de�ned by (87) and (88). Inverting (93) then yields

Ψ(ds) = δ0(ds) + µ1µ2p12p21

[
1

ζ1(ζ2 − ζ1)
eζ1s +

1

ζ2(ζ1 − ζ2)
eζ2s

]
ds, s ≥ 0

which, by substituting in (91), yields (86).

Remark 15. Similar analysis is available to obtain a transient expression for E[N2(t)] for
type 2 particles, as well as the expected number of particles, say E[M1(t)] of type 1 when
immigration has the distribution I ∼ δ(0,1), i.e. when one particle of type 2 arrives at each
instant Ti. By the superposition principle (3)), one deduces that, for a general immigration
vector I = (I(1), I(2)) in (2), the total number of expected particles of type 1 is then given
by

E(I(1))E[N1(t)] + E(I(2))E[M1(t)].
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Appendix A: A growth rate for the second order moment of No(t)

Let D(t) := (E(No
i (t)No

l (t)))i,l=1,...,k = E(No(t)No(t)′) be the second order matrix at time t ≥
0 of the the baseline multitype branching process {No(t), t ≥ 0}, with branching mechanism
in (1) and immigration vector at time 0 in (2) described in Section 2. The following lemma is
a consequence of the growth rates for the second moments provided in [5, Section 7.4 p.203]
which are the results obtained when No(0) is deterministic.

Lemma 16. The following growth rate holds entrywise under Assumption (A) as t→∞:

D(t) =


O(eρt) if ρ < 0,
O(t) if ρ = 0,

O(e2ρt) if ρ > 0.
(94)

Proof. Let us denote D(t|n0) := E(No(t)No(t)′| No(0) = n0) with n0 = (n0(1), ...,n0(k)) ∈
Nk. The superposition principle (3) and the independence of processes

(
{N j,l(t), t ≥ 0}

)
j,l∈N2

entails that

D(t|n0) =
k∑
j=1

n0(j)∑
l=1

E(N j,l(t)N j,l(t)′) +
k∑
j=1

∑
l,r=1,...,n0(j)

l 6=r

E(N j,l)E(N j,r)′

+
∑

j,p=1,...,k,
j 6=p

∑
l=1,...,n0(j),
r=1,...,n0(t)

E(N j,l(t))E(Np,r(t))′

=
k∑
j=1

n0(j)E(N j(t)N j(t)′) +
k∑
j=1

(n0(j)− 1)n0(j)E(N j(t))E(N j(t))′



L.Rabehasaina and J.-K.Woo/Multitype branching process with immigration 30

+
∑

j,p=1,...,k,
j 6=p

n0(j)n0(p)E(N j(t))E(Np(t))′. (95)

We study the terms on the right-hand side of (95) in the following cases for the eigenvalue ρ,
yielding the growth rates (94).
If ρ < 0, we have from [5, (19) p.204] that E(N j(t)N j(t)′) = O(eρt) entrywise and uniformly
in all j = 1, ..., k, and from [5, (17) p.203] that E(N j(t)) = O(eρt) entrywise and uniformly in
all j = 1, ..., k. The latter estimate yields that E(N j(t))E(N j(t))′ and E(N j(t))E(Np(t))′ are
O(e2ρt), hence also O(eρt) (as ρ < 0) entrywise uniformly in all j, p = 1, ..., k, yielding in turn
from (95) that

D(t|n0) =

[ k∑
j=1

n0(j)2

]
O(eρt),

meaning that each entry of D(n0)(t) grows at most as
[∑k

j=1 n0(j)2
]
Ceρt for some constant

C independent from n0. This �nally implies, thanks to Assumption (A), that

D(t) =
∑

n0∈Nk
D(t|n0)pn0 =

∑
n∈Nk

[ k∑
j=1

n0(j)2

]
pn0 O(eρt) = E(||I||2) O(eρt) = O(eρt),

proving (94) when ρ < 0. If ρ = 0, we have from [5, (19) p.204] that E(N j(t)N j(t)′) = O(t)
entrywise and uniformly in all j = 1, ..., k, and from [5, (17) p.203] that E(N j(t)) = O(1)
entrywise and uniformly in all j = 1, ..., k. Thus similar analysis using (95) and Assumption
(A) implies the growth rate (94) when ρ = 0. Finally, if ρ = 0, we have from [5, (19) p.204] that
E(N j(t)N j(t)′) = O(e2ρt) entrywise and uniformly in all j = 1, ..., k, and from [5, (17) p.203]
that E(N j(t)) = O(eρt) entrywise and uniformly in all j = 1, ..., k, implying in turn that
E(N j(t))E(N j(t))′ and E(N j(t))E(Np(t))′ are O(e2ρt). Similar analysis implies the growth
rate (94) when ρ > 0.

Appendix B: Proof of Lemma 8

Before proceeding with the proof, we recall the multidimensional version of Polya's theorem,
which will be used later on.

Lemma 17. Let {Xt, t ≥ 0} be a sequence of random variables with values in Rk converging
in distribution towards X ∈ Rk, such that x ∈ Rk 7→ P(X ≤ x) is continuous. Then one has
for all x ∈ Rk that

lim
t→+∞

P(Xt > xt) = P(X > x),

where limt→∞ xt = x, xt lying in Rk, and '≤' and '>' are understood componentwise.

We now turn to the proof of Lemma 8. First, for the process N j(t) = (N j
1 (t), ..., N j

k(t))
described in Section 2 one has that

exp(islN
j
l (t− Λ−1(Λ(t)x))/t) =

∫
R∗+
isl exp(islzl)1[zl<N

j
l (t−Λ−1(Λ(t)x))/t]

dzl + 1, ∀sl ∈ R,

for l = 1, ..., k. Together with an expansion formula, we get that
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exp

(
< is,

N j(t− Λ−1(Λ(t)x))

t
>

)
=

k∏
l=1

[ ∫
R∗+
isl exp(islzl)1[zl<N

j
l (t−Λ−1(Λ(t)x))/t]

dzl+1

]
= 1 +

∑
J⊂{1,...,k}

∫
(R∗+)Card(J)

∏
l∈J

[
isl exp(islzl)1[zl<N

j
l (t−Λ−1(Λ(t)x))/t]

dzl

]
, (96)

where
∑

J⊂{1,...,k} is the sum over nonempty sets J ⊂ {1, ..., k}. The results in [33] will be
repeatedly used in the following leading to the convergence (47). Taking expectations on both
sides of (96), it follows that ψj(t, x) in (50) may be expressed as

ψj(t, x)− 1 =
∑

J⊂{1,...,k}

∫
(R∗+)Card(J)

∏
l∈J

[
isl exp(islzl)P

(
zl < N j

l (t− Λ−1(Λ(t)x))/t
)
dzl

]
,

which, using the notation zJ introduced just before Lemma 8 and multiplied by t, drives a
more compact form given by

t[ψj(t, x)− 1] =
∑

J⊂{1,...,k}∫
(R∗+)Card(J)

∏
l∈J

[isl exp(islzl)] t P
(
N j(t− Λ−1(Λ(t)x))/t > zJ

)
dzJ , (97)

where, for two vectors v1 and v2, v1 > v2 means that each entry of v1 is larger than the
corresponding one in v2, and dz

J :=
∏
l∈J dzl.

Next, let us observe that, for a �xed x ∈ (0, 1), from (42) it follows that t− Λ−1(Λ(t)x) =
t− λ−1

∞ Λ(t)x− η(Λ(t)x)Λ(t)x = t− λ−1
∞ Λ(t)x+ o(t) and also λ−1

∞ Λ(t)x = λ−1
∞ [λ∞t+ o(t)]x =

tx+ o(t) due to limt→+∞ Λ(t)/t = λ∞. Thus, one �nds that

t− Λ−1(Λ(t)x) ∼ t(1− x), t→ +∞. (98)

Since the above result entails that t − Λ−1(Λ(t)x) −→ +∞ as t → +∞, from [33, Theorems
1 and 5], we �nd for x ∈ (0, 1) that

[t− Λ−1(Λ(t)x)] P(N j(t− Λ−1(Λ(t)x)) > 0) −→ βj , (99)

P
(
N j(t− Λ−1(Λ(t)x))

t− Λ−1(Λ(t)x)
> z

∣∣∣∣N j(t− Λ−1(Λ(t)x)) > 0

)
−→ exp

(
−c max

i=1,...,k

zi

viµ
−1
i

)
= P(X > z), (100)

as t → +∞ and for all z = (z1, ..., zk) ∈ R∗k+ , where we recall that βj is given by (13) and
that X has a distribution given by (45). Here again, the relation '>' is understood entrywise.

It is noted that (100) simply states that the distribution of N
j(t−Λ−1(Λ(t)x))
t−Λ−1(Λ(t)x)

given that N j(t−
Λ−1(Λ(t)x)) > 0 converges to the distribution of X . Also, since z ∈ Rk 7→ P(X > z) is
continuous (extending the de�nition in (45) from z ∈ R∗k+ to z ∈ Rk by putting P(X > z) = 1
if maxi=1,...,k zi ≤ 0), and limt→+∞

t
t−Λ−1(Λ(t)x)

= 1
1−x from (98), one has from Lemma 17 for

all z that

P
(
N j(t− Λ−1(Λ(t)x))

t
> z

∣∣∣∣N j(t− Λ−1(Λ(t)x)) > 0

)
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= P
(
N j(t− Λ−1(Λ(t)x))

t− Λ−1(Λ(t)x)
>

t

t− Λ−1(Λ(t)x)
z

∣∣∣∣N j(t− Λ−1(Λ(t)x)) > 0

)
−→ P

(
X >

1

1− x
z

)
= P((1− x)X > z), t→ +∞,

for a �xed x ∈ (0, 1). The latter convergence along with (98) and (99) entail that the compo-
nents of the integrand in (97) satisfy

t P
(
N j(t− Λ−1(Λ(t)x))

t
> zJ

)
=

t

t− Λ−1(Λ(t)x)
P
(
N j(t− Λ−1(Λ(t)x))

t
> zJ

∣∣∣∣N j(t− Λ−1(Λ(t)x)) > 0

)
× [t− Λ−1(Λ(t)x)] P(N j(t− Λ−1(Λ(t)x)) > 0)

−→ 1

1− x
βj P((1− x) X > zJ), t→ +∞, ∀J ⊂ {1, ..., k}.

It is important to note that from the convergence result in (99), [t − Λ−1(Λ(t)x)] P(No(t −
Λ−1(Λ(t)x)) > 0) is bounded uniformly in t ≥ 0 and x ∈ (0, 1) by some constant. Furthermore,
(100) says that At converges in distribution towards (1−x)X as t→∞, where At is a random
vector such that D(At) = D

(
Nj(t−Λ−1(Λ(t)x))

t

∣∣∣N j(t− Λ−1(Λ(t)x)) > 0
)
for all t ≥ 0. We

recall that X admits the expression (44), and we thus deduce that (1 − x)X is light tailed,
i.e. that there exists some vector w0 ∈ Rk close to 0 with positive entries such that E(exp(<
(1−x)X , w0 >)) is �nite. The fact that w0 has positive entries together with Cherno�'s bound
thus yields that

P
(
N j(t− Λ−1(Λ(t)x))

t
> zJ

∣∣∣∣N j(t− Λ−1(Λ(t)x)) > 0

)
= P(At > zJ)

≤ P(<At, w0> > <zJ , w0>) ≤ E(exp(< At, w0 >))e−<z
J ,w0>

−→ E(exp(< (1− x)X , w0 >))e−<z
J ,w0>, t→∞.

Also, t
t−Λ−1(Λ(t)x)

is upper bounded in t ≥ 0 by some constant that depends on x as it is

convergent towards 1
1−x as t→ +∞. Therefore, from the above �ndings we conclude that the

following function is bounded by

t P
(
N j(t− Λ−1(Λ(t)x))

t
> zJ

)
≤ Kj

xe
−<zJ ,w0>, ∀J ⊂ {1, ..., k}, ∀t ≥ 0,

whereKj
x is some constant independent from t ≥ 0 and z ∈ R∗k+ . Since

∫
(R∗+)Card(J) e−<z

J ,w0>dzJ

is �nite for all J ⊂ {1, ..., k}, one �nds by the dominated convergence theorem that the inte-
grand in (97) satis�es∫

(R∗+)Card(J)

∏
l∈J

[isl exp(islzl)] t P
(
N j(t− Λ−1(Λ(t)x))/t > zJ

)
dzJ

−→
∫

(R∗+)Card(J)

∏
l∈J

[isl exp(islzl)]

{
1

1− x
βj P((1−x) X > zJ)

}
dzJ , t→ +∞, ∀J ⊂ {1, ..., k}
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for a �xed x ∈ (0, 1). Putting this into (97) yields the following limit as t→∞

t[ψj(t, x)− 1] −→
∑

J⊂{1,...,k}

∫
(R∗+)Card(J)

∏
l∈J

[isl exp(islzl)]

{
1

1− x
βj P((1− x) X > zJ)

}
dzJ .

By an expansion formula similar to (96) (with (1−x)X here instead of N j(t−Λ−1(Λ(t)x))/t),
one can check that the right-hand side of the above limit is equal to 1

1−xβj [1− E (exp[< s, (1− x)X >])],
yielding (51).

Appendix C: Proof of Lemma 13

The moment generating function of T ∼ Γ(ζ, 1) is given by E(ezT ) = (1− z)−ζ for z being a
complex number with real part less than 1. By the independence assumption, one then gets

E[eixZT ] =

∫ ∞
0

E[eixZt ]P(T ∈ dt) =

∫ ∞
0

e−tψ(x)P(T ∈ dt) = {1 + ψ(x)}−ζ ,

which completes the proof.
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