
HAL Id: hal-03144913
https://hal.science/hal-03144913v1

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Erroneous models in neural networks and their threats
for formal verification

Augustin Viot, Benjamin Lussier, Walter Schön, Stéphane Geronimi,
Armando Tacchella

To cite this version:
Augustin Viot, Benjamin Lussier, Walter Schön, Stéphane Geronimi, Armando Tacchella. Erroneous
models in neural networks and their threats for formal verification. Lambda Mu 22 - Congrès de
maîtrise des risques et de sûreté de fonctionnement, Oct 2020, Le Havre, France. pp.596. �hal-
03144913�

https://hal.science/hal-03144913v1
https://hal.archives-ouvertes.fr

Erroneous models in neural networks and their
threats for formal verification

Erreurs de modèles dans les réseaux de neurones et
leurs menaces pour la vérification formelle

Augustin Viot
CNRS, UMR 7253 Heudiasyc

Sorbonne Universités,
université de technologie de Compiègne

Compiègne, France
augustin.viot@hds.utc.fr

Benjamin Lussier
CNRS, UMR 7253 Heudiasyc

Sorbonne Universités,
université de technologie de Compiègne

Compiègne, France
benjamin.lussier@hds.utc.fr

Walter Schön
CNRS, UMR 7253 Heudiasyc

Sorbonne Universités,
université de technologie de Compiègne

Compiègne, France
walter.schon@hds.utc.fr

Stéphane Geronimi
Automotive Research Innovation and Advanced Engineering

Groupe PSA
Vélizy Villacoublay, France

stephane.geronimi@mpsa.com

Armando Tacchella
DIBRIS

Università Degli Studi di Genova
Genova, Italy

armando.tacchella@unige.it

Keywords: Neural networks dependability, formal verification
Abstract—EN: This article explains why current dependability
techniques are not suitable for neural networks (NN). It also
shows with an experiment that we need to justifiably trust neural
networks modeling before formal verification can be used for
critical applications.
FR: Cet article montre les limites de l’application des techniques
de sureté de fonctionnement actuelles aux réseaux de neurones. Il
montre également à l’aide d’une expérience, le besoin d’apporter
une confiance justifiée dans les modèles des réseaux de neurones
pour permettre l’utilisation de la vérification formelle.

I. INTRODUCTION

Neural networks have shown great capabilities in many
domains (images and sound recognitions, logic games, natural
language processing, etc.). They are also successfully applied
in some non-safety critical domains such as digital marketing,
automated translation, or photo and videos manipulation. Their
performances in tasks necessary for some safety critical ap-
plications also raise interest, particularly for functions such as
situation recognition and decision making, where traditional
systems are often unable to deal with the multiplicity of
possible situations. However, their lack of dependability still
prevents their use in these safety critical applications.

Indeed, current software dependability methods are effective
for traditional imperative systems but are yet not suitable for
declarative mechanisms such as neural networks. In particular,
the complexity and unintuitive knowledge representation of
neural networks make expert analysis difficult, while the
vast operational context of the intended applications makes
exhaustive testing impossible.

Formal verification methods appear as interesting techniques
to validate safety properties on neural network for any inputs,
although they are still constrained by the size of the targeted
neural network.

This article presents three main contributions for the de-
pendability of neural networks. First, we propose a decompo-
sition of neural networks in sub-components that can facilitate
the study of their faults and failures. Second, we try to cate-
gorize software development faults and the resulting failures
consistently with errors studied in the machine learning com-
munity. Finally, we explain how formal verification on neural
networks can be dangerous as the proven property may be
guaranteed on an erroneous NN but still unsatisfied in reality.
This point applies on traditional systems, but model design
faults in neural networks are particularly difficult to detect
and eliminate for reasons detailed in this article. A theoretical
experiment using formal verification and fault injection proves
our point.

This article consists in three sections. After this introduc-
tion, we will present the main concepts related to neural
networks and their dependability, particularly why classical
dependability methods are not effective on such systems.
Then, we will details faults, errors and failures affecting
neural networks, and particularly the model that they learn.
Finally we will present an experiment to prove the third
given contribution: that we need techniques and methods to
justifiably trust a NN model for formal verification to be
dependable.

II. CONCEPTS AND RELATED WORK

In this section, we will introduce neural networks, the
current situation regarding their use in safety critical appli-
cations, and the research that is currently done to improve
their applications. Note that we focus particularly on neural
networks for supervised learning in this article, as the other
existing learning (reinforcement and unsupervised) are even
harder to use in critical systems. Reinforcement learning can
be used for training in both development and operation, or only
in development. When used in development only, it is similar
to supervised learning in the sense that its behavior is already
fixed and what we are presenting in this article will apply.
However, its use in operation implies a modification of the
behavior of the system, which means its dependability must
be reassessed each time it learns (a feat generally impossible in
practice). With unsupervised learning, we usually do not know
what the correct behavior of the system is, which means we
have no ground truth for testing nor oracle to detect errors.

A. Neural networks

Neural networks (or NN) are networks of interconnected ar-
tificial neurons, usually organized in layers, each neuron giving
an output as the result of an activation function on its weighted
inputs and a bias. Figure 1 presents an artificial neuron with f
being the activation function, x1 to xk the inputs from other
neurons each affected by a weight wk, b the bias of the neuron
(typically added to the sum of the weighted inputs of the
neuron) and y the output of the activation function applied to
the inputs and the bias: y = f(x1, x2, ..., xk, w1, w2, ..., wk, b).
The connections between neurons are generally organized in
layers, typically with an input layer containing the inputs
x, an output layer containing the output y, and one or
more hidden layers containing each several neurons. Figure
2 presents a simple neural network with two hidden layers.
The connections between the neurons of the hidden layers can
be designed following different properties, the most common
being feedforward NN, convoluted NN, recurrent NN and
deep NN. A neural network has often more than one of these
properties although some combinations are in opposition (like
feedforward and recurrent).

Fig. 1: Artificial neuron example

1) Neural networks as functions: All neural networks are
in practice a mathematical function, assigning an output y (y
being a m dimensional vector) to an input x (x being a n
dimensional vector). We define in this article the computed
output as Fnn(x) = y, with Fnn being the neural network
function. The goal of a neural network is to approximate a
desired function (or some similar mathematical object) defined

input layer hidden layers output layer

x1

x2

x3

y2

y1

Fig. 2: Neural network example

in this article as F (x) which describes the correct behavior of
the system in all possible situations. Note that F (x) may not
be completely specified when developing the system, primarily
because of the vast operational context of the application.
Moreover, F (x) may be impossible to approximate correctly
within the functional space set of neural network functions F
defined by a given architecture (that is, using the same layers
and connections).

We can distinguish two types of functions, based on two
problems neural networks can be used for: classification (in
which case Fnn(x) is a piecewise-defined function whose
outputs are the possible class labels) and regression (in which
case Fnn(x) is a continuous or semi-continuous function). The
function Fnn can be computed and studied by taking into
account every activation functions of every neurons, with their
weights, biases and interconnections.

2) Neural networks components: In this article we propose
a classification of the components of a neural network that are
sufficient and necessary to completely determine its function
Fnn(x). There are two types of representation, depending
whether we consider an operational fully implemented neural
network in its operational phase (after the learning process
has finished) or the neural network in its development phase
(before the learning process has finished).

a) In the operational phase: A neural network that
has finished learning can be completely determined by the
description of its inputs, outputs and connections between
neurons, by its activation functions, and by the values of all
its weights and biases. We will call this information the NN’s
implementation.

b) In the development phase: We decompose the ele-
ments that completely determine a neural network during its
development phase in three sub-components:

• structure: We define a neural network’s structure as the
enumeration of its inputs and outputs, the description of
its connections, and its activation functions. The prop-
erties of a NN (convoluted, feedforward, etc.) are not
necessary as they can be deduced from the description of
its connections but are useful to mention as they imply
specific behavior of the NN. Note that the difference
between a NN’s implementation and a NN’s structure is
that the weights and biases of the NN are fully determined
in its implementation while they have no definite value
in its structure.

• training data: The training data is a dataset of (x, y)
examples used for learning. In machine learning, includ-
ing NN learning, the training data is usually divided as
followed: training set, validation set, test set. The training
set contains the training data used for the learning. The
validation set is commonly used at the end of one training
phase to evaluate the learning mechanism performances
before possibly modifying the learning conditions (in
neural networks case, modifying the structure and the
processes) and doing another training with these changes
to improve the performances. The test set is typically
used after the last training, to evaluate the definitive per-
formances of the learning mechanism. Note that recurrent
NN examples are formed from a temporal succession of
vectors xt rather than an unique vector x.

• processes: Processes are algorithms or practices that
define some necessary activities in NN development. To
our knowledge, this includes learning algorithm, reg-
ularization, data preparation, and weights and biases
initialization. The learning algorithm is the algorithm in
charge of tuning the weight and biases values during
learning by taking into account the errors between the
outputs of the NN and the desired outputs. Each loop
iteration of the learning algorithm over all the training
data is called an epoch, the training data can be split
into subsets called batches. The number of epochs, and
the number of batches and their sizes are parameters
of the learning algorithm. This algorithm typically uses
back-propagation, an optimization technique, and a cost
function. Regularization is the set of methods that modify
the learning algorithm to avoid or decrease the overfitting
problem described in section III-B2. Examples of regular-
ization techniques include L1 or L2 regularization. Data
preparation include all operations done on training data
before the training start. For example, normalization and
shuffle are common data preparation techniques. Weights
and biases initialization corresponds to the determination
of the initial values of the weights and biases, i.e. before
the training starts.

Note that the functional space F ∗
nn(x), defined in section

II-A1, is determined by the NN’s structure, and some of its
processes (typically the regularization and part of the learning
algorithm). Also note that although a NN’s implementation
is sufficient to determine its function, the knowledge of its
structure, processes and learning data can be useful to predict
some properties on its behavior.

B. Neural networks use in safety critical applications and its
limits

In this section, we will present the current situation regard-
ing the use of neural networks in safety critical applications,
and the limits of using traditional software dependability to
verify neural networks.

1) Current use of neural networks in safety critical applica-
tions: Despite their ability to achieve complex tasks, the use

of neural networks is still not recommended in railway ap-
plications [3] or more generally in safety critical applications
[15]. In the case of automotive applications, different norms
are under development to clarify the conditions and framework
for the use of neural networks and machine learning techniques
[1], [2], [4]. These precautions regarding neural networks use
are due to the inability for neural networks to provide the
sufficient and justified trust that these applications require.
Many factors explain this lack of dependability:

• vast operational domain: neural networks are often used
for applications with operational domains, where the state
space of the system is large, and potentially infinite (such
as autonomous cars, UAV, etc.). This usually lead to both
incomplete specifications since all possible situations
cannot be enumerated, and the impossibility to test all
critical situations.

• complexity: due to their structure and the wideness of
their input domains, neural networks are usually too com-
plex to be fully understandable by humans, or analyzed
by computers. This makes the use of automated tools or
expert analysis to inspect neural networks very limited.

• oracle problem: as we often do not know the desired func-
tion (due both to its complexity and the vast operational
context), it is difficult to generate (automatically or not)
the desired output (also called oracle) for a specific prob-
lem. Moreover, as neural networks are approximations of
F (x), several different values may be close enough to
the desired behavior to be deemed correct, but different
enough to cause classical diversification techniques (vot-
ing, error detection) to be not implementable.

• lack of explainability: because neural networks model
their knowledge only through the weights and biases in
their structure, their model representation is extremely
difficult for humans to understand. Safety experts or
analysts are thus unable to study their decision processes
and understand their behaviors. This is a well known
problem in the machine learning community.

2) Applying traditional verification methods to neural net-
works: Current dependability methods include a wide variety
of tools to evaluate and verify the safety of traditional software,
but most of these methods can not be applied to neural
networks. For fault tolerance techniques, the oracle problem
makes it difficult to detect errors since we often do not know
what the correct output is and several correct approximations
may exist. Traditional system recovery mechanisms are also
unadapted because declarative mechanisms are often the only
techniques that can be applied to the considered problem,
and thus we might not have more trust in the redundant
mechanisms than in the original one.

Fault prevention techniques have been developed for tradi-
tional systems as design processes and good practices, but the
neural network domain is not mature enough for such prac-
tices to exist yet. Moreover, the vast operational domain, the
complexity and the lack of explainability of neural networks
make such tasks extremely challenging.

Fault elimination techniques also suffer from same prob-
lems. We cite in the following the broad categories of existing
fault elimination techniques and their limits with neural net-
works:

• Static analysis: manual static analysis (code review or
inspections) can not currently be used on neural networks
models because their complexity and lack of explainabil-
ity make them impossible to analyze.

• Mathematical proof: this field of techniques correspond to
formal verification methods. Current formal verification
methods for neural network are limited to small neural
networks with specific architectures due to the complexity
of large NN. Also note that, to the best of our knowledge,
no industrial formal verification tool exists yet.

• Behavior analysis: this consists in transforming a neural
network into a model that could be studied easily. This
technique is limited due to neural networks vast opera-
tional context and complexity.

• Symbolic execution: this technique consists in propagat-
ing symbolic inputs through the neural network to obtain
symbolic expressions for the outputs. This technique is
limited by the complexity of neural networks.

• Tests: in most applications exhaustive test is impossible
due to the vast operational context. Also, the oracle
problem makes it difficult to automatically generate tests.

C. Neural networks dependability methods classification

As explained in the previous section, traditional depend-
ability methods are not adapted to declarative mechanisms
and neural networks. In this section, we will present works
that have been done to develop new dependability techniques
specifically for neural networks.

The different subsections correspond to each dependability
means.

1) Fault prevention: Fault prevention approaches aim to
prevent the occurrence or introduction of faults. We mostly
identified formal verification approaches like [7] that works
on proving properties through abstract interpretation, [12] that
performs a tree search and uses a simplex algorithm to resolve
a linear programming problem representing the neural network
and the property, and [5] that uses a tool with a Boolean
satisfiability solver (SAT solver) to perform tree search. We
also identified some approaches based on symbolic execution
like [9] that aims to apply symbolic execution to neural
networks to identify important pixels in image classification
problems. These methods have in common their limitation to
small neural networks. Formal verification can also be used
to prove properties, like local robustness. Note that some
properties (including local robustness) require the definition
of a distance, which might be hard or even impossible to
determine depending on the inputs. For example, in image
applications, there are still no meaningful way to significantly
quantify the closeness between two images. In the absence of
meaningful distance, the Minkowski distance (or Lp norm) is
generally used but remains unable to characterize some very
similar inputs (for example, two images where the second one

have the same pixels that the first, but with an x offset of a
few pixels).

2) Fault tolerance: We identified two fault tolerance ap-
proaches in the literature:

• diversification: this aims to use different systems to com-
pute and compare the output given by a neural network
in order to increase the level of confidence towards
the neural network decision. The use of many neural
networks trained differently to perform the same function
is one of the considered approaches [20], but this applies
mainly to a subset of problems (such as classification),
as several acceptable approximations of F with different
outputs can exist and make impossible comparisons and
voting (as explained in the oracle problem of section
II-B1).

• recognition of unknown situations: in the same work [20],
techniques based on diversification are proposed to rec-
ognize situations that the neural network was not trained
for. However recovery mechanisms are not proposed and
once again this work mainly focuses on classification
problems.

3) Fault removal: We identified testing as the main method
developed among possible fault removal approaches. There are
however two categories of testing methods.

• testing to evaluate performances: this corresponds to the
use ot test sets in the machine learning community. The
aim is to see how the neural network behaves on a set
of examples to evaluate what will be its performance
in operation. This verification is not enough for safety
critical systems.

• testing for safety: this method aims to search for test
sets that are supposed to expose criticalities in the neural
network. For example, [19] uses a white box approach to
generate new test sets, and [21] determines the coverage
of neurons activated during the tests. These test sets could
then be used to improve the neural network. However,
approaches aiming to generate new test sets automatically
are challenged by the oracle problem.

4) Fault forecasting: We did not find any method corre-
sponding to this dependability means. Note that very few
fault forecasting methods can be used on software components
such as neural networks. SEEA (Software Errors and Effects
Analysis) is currently impossible to use as it requires fault
representativity studies that have not been done for NN.

D. Existing neural network verification methods

In this section, we will explain what formal verification on
NN entails, and present the possible classifications of these
methods.

1) Definition of formal verification for neural networks:
Neural network formal verification can be seen as formally
proving a property establishing a relation between inputs and
outputs of a neural network on specific input domains. [17]
express mathematically the most common properties in current

formal verification methods, which we will reformulate for
clarity as:

∀x, (x ∈ X) ⇒ (Fnn(x) ∈ Y) (1)

with Dx the domain of Fnn, Dy the codomain of Fnn, X ⊆
Dx and Y ⊆ Dy .

2) Classifications of formal verification methods for neural
networks: There exists a wide variety of neural network
formal verification methods currently being developed. Each
method is usually specialized for a specific situation, with very
little possibility to adapt for other uses. Many classifications
were proposed for these methods and we introduce here three
classifications with their criteria.

• [16] builds its classification based on two criteria: the
kind of proof the method brings and the neural network
structures which it can be applied to (e.g. Binarized neural
networks, neural networks with only ReLu activation
functions, deep neural networks...). The different kinds of
proof mentioned in the article are: invariance that aims to
prove that a neural network respects a property (or that it
does not), invertibility that aims to prove that for a given
set of outputs, the set of inputs leading to these outputs
can be computed, and equivalence that aims to prove that
two neural networks will attribute the same outputs for
the same inputs.

• [10] builds its classification based on three criteria: the
guarantees and precision that the method will bring on
the verification of the property, the proving method, and
the type of property to verify. The guarantees and pre-
cision can be of the following types. Exact deterministic
means that the method determines exactly if the prop-
erty holds for the given neural network. Approximated
means that the method uses either an over or an under
approximation of the neural network structure or of the
property. Converging means that the method uses both
over and under approximation and then convergence to
verify the property. Statistical means that the method aims
to estimate the probability that the property holds. The
type of property to verify can be of the following types.
Robustness means that the property is a local robustness
property. Reachability means that the property aims to
compute the set of outputs for a given set of inputs.
Interval means that the property aims to compute an over
estimation of the set of outputs for a given set of inputs.
Lipschitzian means that the property aims to validate the
Lipschitz continuity of the NN function, which is similar
to but more restrictive than the local robustness (and
requires a distance too).

• [17] builds its classification based on the proving meth-
ods. The main proving strategies include reachability that
aims to compute the reachable set for a given set of
inputs, optimization that represents the NN as a set of
constraints and then aims to falsify the property, search
that aims to find a counterexample that does not respect
the property using either reachability or optimization.

For some formal verification methods, a tool has been devel-
oped to automate formal verification on a neural network. We
identified three tools with good levels of maturity and stability,
and an available documentation with a correct level of details:
Marabou [13], MIPVerify [22] and ERAN [6]. We focus in
this article on the tool Marabou for reasons detailed in the
section IV-B1. Marabou [13] would be classified by [16] as a
method aiming to verify Invariance properties and that can be
applied to neural networks using ReLu activation functions. In
[10] Marabou would be classified as a method providing exact
deterministic guarantees and aiming to validate and interval
properties.

III. MODELING ERRORS AND THEIR THREATS FOR
FORMAL VERIFICATION

In this section, we will underline two activities realized by
neural networks: modeling and decision making. We will then
present specific threats in NN, particularly faults and errors,
and their consequences for NN formal verification.

A. Neural networks model

A neural network aims to approximate as a complex mathe-
matical function an unknown desired process , referred in this
article as the desired function F (x) although it might not be
expressed as a mathematical function. As stated previously,
this desired function might be impossible to approximate
mathematically with a given accuracy. The desired process
usually consists in making an informed decision from a set of
inputs (such as in image recognition, car lane change decision
or actuators commands). By model of a NN, we identify in
this article its means during operation to:

• model the relation that exists in reality between its differ-
ent inputs and infer other possible important relations and
variables to have a correct and sufficient representation
of the current problem,

• take a correct decision from this current problem and
generate the corresponding outputs.

During operation, these two activities are completely defined
by the NN’s implementation. A major difference between
neural networks and traditional imperative software is that the
models here are not explicitly detailed by the programmer, but
are implicitly learned during development and then contained
in NN’s connections and weights and biases values. As said
before, this is a cause for the lack of explainability of NN.

Also note that even if this article focuses particularly on NN
models, both modeling and decision making are intrinsically
linked in the NN structure. Indeed, as explained in this section,
the NN has to model both the evolution of the environment and
the correct decision that the system should take in a unique
mathematical function. Thus, we found it impossible to make
a distinction between modeling errors and decision making
errors and will consider them both together in this article.

Note finally that the term model applied to NN in the
learning community has another meaning that the one we will
use: it commonly includes both the structure and the processes
of the neural network.

B. Faults, errors and failures in neural network

In this section, we will discuss the faults, errors and failures
that can affect neural networks. In particular, we focus on
software development faults and their impacts on errors and
failures.

1) Faults: Following the decomposition of a neural network
in three subsets (structure, processes and data) as seen in II-A2,
faults can affect any of these subsets.

Faults related to the structure of neural networks are
incorrect choices in designing the network structure. They
encompass incorrect choices in the inputs and outputs of the
NN, in its type (convoluted, deep NN, etc.), in its connections
(number of layers and connections between them) and in its
activation functions. Incorrect choices in the input usually
consists in relevant inputs that are not taken into account
as input of the NN, which will inevitably cause errors in
the approximation of the desired function as their influence
will not be considered. Irrelevant inputs present in the NN
should a priori not impact the behavior of the NN, but may
cause added complexity in both its structure and the learning
processes, possibly causing imprecision errors. Wrong choices
in a NN’s connections or activation functions may cause the
NN to not achieve an approximation as precise as otherwise
possible. Note that wrong choices in the NN types (convoluted,
recurrent, etc.) are included in the incorrect choices in its
connections.

Faults related to the training data include erroneous data
(when some data in the training set is incorrect), and erroneous
distribution (when the situations considered in the training set
are not representative of the distribution and the importance of
the real situations). The absence of data for a possible situation
is a specific case of erroneous distribution.

Faults related to the processes are wrong choices in the
parameters of the learning algorithm (chosen cost function, op-
timizer and number of batches, for example), in the parameters
of the training data preparation (choice of the normalization
method, of training data repartition, etc.), and in the neural
network initialization (choice of initial value of weights and
biases).

2) Errors: The statistical learning community distinguishes
the following types of errors concerning an approximation
function (such as a NN) [11]:

• irreducible errors, which are approximation errors that
can not be reduced for a particular function by learning
better but are dependent of unconsidered factors or an
indeterministic behavior of the desired function. In our
case, some structural faults, mainly wrong choices in the
inputs and outputs of the system (and particularly the
absence of relevant inputs), can cause such errors.

• reducible errors, which are further decomposed in [11]
into bias errors and variance errors.

– Bias errors are errors introduced due to the fact that
the NN function is a simplification of the (possibly
impossible to achieve) desired function. In our case,
structural faults, particularly wrong choices in the

NN’s type and architecture as they limit the possible
expression of its function, and some process faults
cause such errors.

– Variance errors correspond to errors that are due to
the learning. In our case, both process faults and
training data faults can cause such errors.

The learning community also adds to these errors a
final category of reducible errors called approximation
errors, which signifies that the NN could have learned
better using the same training data, structure and learning
algorithm. They are typically due to being trapped in a
local minimum during the learning process, or stopping
the learning process before the difference between the
NN’s outputs and the training data outputs converges to
a minimum. Process faults (such as the initialization of
weights and biases) can cause approximation errors.

Additionally to previously mentioned errors, the machine
learning community distinguishes two phenomena that can be
associated to errors: overfitting and underfitting. As defined in
[8] they are phenomena that appear when there is a significant
difference between the ground truth and the computed output
on the test set for overfitting and on the training set for under-
fitting. Overfitting can be seen as Fnn being too specialized
on the training data and then imprecise during opration on
examples unseen during the training. Underfitting can be seen
as Fnn being not precise enough on the training data.

3) Failures: As a reminder, failure in a system is the
deviation from correct service. For a neural network, that
means that its output deviates from the desired function. In
particular for classification tasks, a failure would be to assign
the wrong class to an input. For regression tasks, a failure
would occur when the NN’s function for the considered input
deviates significantly from the desired function’s output. All
this is consistent with the errors previously detailed, as they
all can be expressed as imprecision errors from the desired
function. Note however that the desired function is usually
not known for learning mechanisms, as otherwise it would be
much simpler to implement it in an imperative language. The
system’s specifications may also be incomplete considering
the vast execution contest of most NN’s applications. These
facts are the cause of the oracle problem which makes NN
validation and the use of recovery mechanisms difficult as said
in section II-B2.

C. Formal verification of neural networks with erroneous
model

Formal verification is a tempting method for NN’s validation
because it can guarantee properties over ranges of the input
domain. This would answer part of the problems in testing
due to possibly infinite execution contexts. However, we
believe that faults in the NN’s model could lead to a neural
network’s guaranteeing a property in its model (that is, on
its approximated function) while the property is in fact not
guaranteed in real life (on the desired function).

For example, let us consider the following desired function:
state A leads to state D and state B leads to state E. Let us

consider an erroneous NN model where the NN’s function
wrongly assigns state D to state B. We will then be able
to prove the following property on the NN: state E is never
reached. However, the property is false in reality, that is on
the desired function. In fact, the system will believe that it is
in state D after B, while reality forces E after B.

This is equivalent in traditional systems design to using for-
mal verification on an incorrect model. However, in traditional
systems we usually validate the model with expert reviews
and other such analyses. Because of the lack of explainability
and the complexity of NN such a verification is difficult or
even impossible in our case. How can we trust a formal
verification’s result when we can not trust the model on which
it is applied? For formal verification to be applied trustfully
to NN we need means to justifiably trust in the NN’s model.
This is currently not the case and dependability techniques
for NN modeling are thus necessary to develop before formal
verification can be applied for critical applications.

IV. ERRONEOUS MODELING EXPERIMENT

In this section, we detail an experiment using formal verifi-
cation and fault injection, to prove that a neural network with
an erroneous model can guarantee a propriety that is false in
reality, as theoretically stated in section III-C. We first present
the desired function Fexp(x) and a property that Fexp(x) does
not satisfy. We then explain how we designed our neural
networks and present a developed nominal neural network
nNN that closely approximates Fexp. Then, we introduce
neural networks with injected faults, specifically faults on
the training data, namely erroneous distribution and absence
of data. Finally we present the formal verification of the
property on the nominal neural network and the erroneous
neural networks using the Marabou tool.

A. Activity, experimental neural network and injected faults
In this section, we describe first the nominal behavior of the

neural network (the desired function Fexp(x)), second how we
implemented our neural networks, and third which faults we
injected in these neural networks.

1) Desired function and property to verify: Let us con-
sider the following desired function Fexp(x), representing the
ground truth that the neural network must model:

Fexp(x0, x1) =

{
x2
0 if x1 = 0

x0 if x1 = 1
(2)

with x0 ∈ [−10; 10] and x1 ∈ {0, 1}.
We consider that this ground truth will happen whatever the

output of the neural network is: the neural network objective
is only to approximate the function (similarly to perception
and situation recognition functionalities). Note that we chose
this function because for x0 ∈ [10; 0[, its behavior strongly
differs depending on the value of x1: namely, it is negative if
x1 = 1 and positive if x1 = 0. We are thus interested in the
following property on a function g(x):

∀x0,∀x1, (x0 ∈ [−10; 10] , x1 ∈ {0, 1})
⇒ (g(x0, x1) ∈ [0;+∞[)

(3)

In other words, g(x) is always positive on the specified input
domain, which corresponds to the input domain of Fexp(x).
However, this property is obviously false for Fexp(x) as, for
any negative x0, Fexp(x) is negative when x1 = 1.

2) Experimental neural networks: We will here explain
how we developed our neural networks by detailing the three
components presented in section II-A2.

• Structure: All neural networks in our study use the
same structure. It is a feedforward architecture with 4
layers: the input layer, 2 hidden layers and the output
layer, respectively of sizes 2, 15, 15, 1. The input layer
corresponds to the two input variables x0 and x1. The
size of the 2 hidden layers were chosen as a compromise
between a correct approximation of the function Fexp(x)
and a short time for the learning and formal verification
processes. The last layer has a size of 1 corresponding to
the unique output of the function Fexp(x). All activation
functions in our neural networks are ReLu functions.

• Training data: The training set used for the nominal
network has 10000 examples. We generated the x0 values
of these examples randomly using a uniform law between
-12 and 12. We decided to have a training set with values
outside of the operational domain of the Fexp(x) function
in order to have a better approximation on the extreme
values of the x0 domain (-10 and 10). Note that this
can be considered a good practice, although we have not
studied it enough yet to pretend that it is necessary in our
case. 50% of the 10000 examples were given a x1 value
equal to 0, the other 50% were given a x1 value equal
to 1. For each example, we computed the y value using
the Fexp(x) function. The test set was generated using
the same algorithm as the training set for the nominal
situation (50% of examples with x1 = 1), but with x0

values between -10 and 10. We did not use a validation
set for these neural networks.

• Processes: The training was done using the pytorch1

tool described in [18]. To perform the training, we first
shuffled our training data, then we divided our training
set in 100 batches, and performed 200 epochs. The
loss function used was the MSE (Mean Squared Error),
and the optimization algorithm was the Adam algorithm
(proposed by [14]) implemented in pytorch. The weights
and biases initialization is done automatically by py-
torch following this pattern: the values of each weights
and biases are generated using a random uniform law
U(−

√
k,
√
k), with k = 1

numberofinputfeatures = 1
2 . The

default implementation of the Adam algorithm used by
pytorch does not use regularization techniques.

To evaluate the quality of the approximation done by neural
networks developed as proposed, we implemented a nominal
neural network we call nNN , and its mathematical function
FnNN (x). We plotted its outputs in Figure 3a and 3b. We can
see that the approximation is very close to the ground truth
(in fact, the two curves cannot even be distinguished on the

1version 1.15 for gpu

(a) for x1 = 0 (b) for x1 = 1

Fig. 3: Ground truth and output of a nominal neural network
developed as in IV-B2

(a) for x1 = 0 (b) for x1 = 1

Fig. 4: Ground truth and output of a erroneous neural network
eNN0 developed as defined in IV-B2

figures). On our test set, the mean of the absolute values of
its errors (the difference between its output and Fexp(x)) is
0.254.

3) Erroneous neural networks: The erroneous neural net-
works were generated using the same structure and processes
as the nominal neural network. However, we injected faults in
the training data by modifying the quantity of examples where
x1 = 1 (erroneous distribution and absence of situation). We
present in this article the results of two erroneous neural
networks, called eNN0 and eNN0 .05 respectively obtained
with 0% and 0.05% of examples where x1 = 1. We name
the mathematical functions of these neural networks FeNN0

and FeNN0.05
.

Figures 4a and 4b show the outputs of eNN0 compared to
the ground truth, and figures 5a and 5b show the same for
eNN0 .05 . We can see in both cases that they approximate
correctly the outputs when x1 = 0. However, when x1 = 1
eNN0 presents the same outputs as when x1 = 0. This is
understandable as we did not give it examples to learn from
when x1 = 1. Meanwhile, eNN0 .05 has a better but still
wrong approximation of FnNN (x0, 1) impacted by the very
few examples where x1 = 1 in the training set.

B. Formal verification

In this section, we present the formal verification of the
property defined in IV-B1 on the three developed neural
networks: nNN , eNN0 and eNN0 .05 .

1) Choice of the Marabou tool: Among the variety of
formal verification techniques presented in the classifications
of section II-D2, Marabou [13], MIPVerify [22] and ERAN
[6] were potential candidates for our verification. We chose to

(a) for x1 = 0 (b) for x1 = 1

Fig. 5: Ground truth and output of a erroneous neural network
eNN0 .05 developed as defined in IV-B2

use Marabou2 for the convenience that it offers when working
on regression tasks like in our experiment.

To perform the verification, we used the ability of Marabou
to determine if there is at least one example that satisfies given
constraints (lower and upper bounds) on the different input and
output variables. When no example following these constraints
exists, Marabou will return the answer UNSAT. When at least
one example satisfying these constraints exists, Marabou will
return the answer SAT with the example that it found.

2) Adaptation of the properties to fit Marabou: To perform
the verification with Marabou, we had to put property (3)
under a form on which Marabou could find a counterexample
(property (5)). To do that, we go through the following steps:

We first obtain the negation of (3) which is the property (4):

∃x0,∃x1, (x0 ∈ [−10; 10] , x1 ∈ {0, 1})
∧¬ (g(x0, x1) ∈ [0;+∞[)

(4)

Note that (4) can be reformulated as (5), which is very close
to what we will express in the Marabou tool:

∃x0,∃x1, (x0 ∈ [−10; 10] , x1 ∈ {0, 1})
∧ (g(x0, x1) ∈]−∞; 0[)

(5)

Proving that (5) is unsatisfied will be equivalent to proving
that (3) is satisfied, and the former is a task that Marabou can
do. Thus when asking Marabou to find an example that verifies
(5), getting an UNSAT answer will mean that the property (3)
is true, while getting a SAT answer will mean that the property
(3) is not satisfied.

However, we had to limit the g(x0, x1) ∈]−∞; 0[constraint
to g(x0, x1) ∈]−10000;−0.3[for two practical reasons. The
left side of the interval is changed because formal verification
tools usually do not have representations for infinite values.
We thus chose instead a negative number (-10000) with a
significant value compared to the theoretical lower bound of
our desired function (-10). The right side of the interval is
changed because our developed neural networks (nNN , eNN0

and eNN0 .05) are only approximations of the desired function,
and will still have negative outputs even for the square function
around the point (x0, x1) = (0, 0). Note that the absolute value
of this chosen number (0.3) is very close to the mean absolute

2Version released on github the 3/02/2020 (commit fc985bf).

values of nNN ’s errors (0.254). The property we actually
verify can be then written as (6) and what we will ask Marabou
as (7).

∀x0,∀x1, (x0 ∈ [−10; 10] , x1 ∈ {0; 1})
⇒ (g(x0, x1) ∈]−∞;−10000[∪]−0.3;∞[)

(6)

∃x0,∃x1, (x0 ∈ [−10; 10] , x1 ∈ {0, 1})
∧ (g(x0, x1) ∈ [−10000;−0.3])

(7)

Finally, to set x1 to either 0 or 1 during the verification,
we split (7) into two properties: one for x1 = 0 and another
x1 = 1.

Here is the code that we use to verify property (7) for x1 =
1 with Marabou:
1 # Set input bounds
2 network.setLowerBound(X0,-10.0)
3 network.setUpperBound(X0, 10.0)
4 network.setLowerBound(X1, 1)
5 network.setUpperBound(X1, 1)
6 # Set output bounds
7 network.setLowerBound(Y, -10000)
8 network.setUpperBound(Y, -0.3)

As previously said, an UNSAT answer would mean that
there exists no (x0, x1, y) example that satisfies the given
constraints, and that (6) is true for x1 = 1.

Note that when analyzing the results, we will also mention
property (8) which is similar to (3) but with the constraint
g(x0, x1) ∈]−6.5;+∞[. This property is obviously less
constraining than (3).

In a similar manner, we actually transform (8) into (9) and
split the latter into two properties: one for x1 = 0 and another
x1 = 1.

∀x0,∀x1, (x0 ∈ [−10; 10] , x1 ∈ {0; 1})
⇒ (g(x0, x1) ∈ [−6.5;∞[)

(8)

∀x0,∀x1, (x0 ∈ [−10; 10] , x1 ∈ {0; 1})
⇒ (g(x0, x1) ∈]−∞;−10000[∪]−6.5;∞[)

(9)

The code that we use to verify property (9) for x1 = 1 is
the same as before, but with this change on line 8:
8 network.setUpperBound(Y, -6.5)

An UNSAT answer would mean that there exists no
(x0, x1, y) example that satisfies the given constraints, and
that (9) is true for x1 = 1.

3) Results of the formal verification: In this section, we
present the results of the verification done with marabou on
each property, and give a conclusion of these results.

a) For nNN : Marabou gives the following results:
Due to the two examples found, we can see that nNN does

not respect the properties (6) and (8) for x1 = 1 (respectively
equivalent to (7) and (9)), and thus nNN has negative outputs
(strictly, outputs below -0.3). These results are consistent with
figures 3a and 3b.

property result
(7) for x1 = 0 UNSAT

(7) for x1 = 1

SAT
input 0 = -8.585003190816256
input 1 = 1.0
output 0 = -8.698448463114229

(9) for x1 = 0 UNSAT

(9) for x1 = 1

SAT
input 0 = -9.44927891732047
input 1 = 1.0
output 0 = -9.524702312172995

TABLE I: Formal verification for nNN

property result
(7) for x1 = 0 UNSAT
(7) for x1 = 1 UNSAT
(9) for x1 = 0 UNSAT
(9) for x1 = 1 UNSAT

TABLE II: Formal verification for eNN0

b) For eNN0 : injected with an absence of situation fault
for x1 = 1, Marabou gives the following results:

We can see that in every cases, no example has been found.
We can conclude that properties (8) and (6) hold on this
NN. This confirms what we proposed in Section III-C: a
property has been formally verified on an (erroneous) NN,
while it is incorrect in the desired function (the ground truth
of our experiment). Thus, formal verification can not hold
if we do not have arguments for justifiably trusting how the
NN modeled the problem that the desired function represents.
These results are consistent with figures 4a and 4b.

c) For eNN0 .05 : injected with an erroneous situation
representativity fault, lesser than the previous absence of
situation fault, Marabou gives the following results:

property result
(7) for x1 = 0 UNSAT

(7) for x1 = 1

SAT
input 0 = 0.6011074525473619
input 1 = 1.0
output 0 = -0.3

(9) for x1 = 0 UNSAT
(9) for x1 = 1 UNSAT

TABLE III: Formal verification for eNN0 .05

We can see that although property (6) does not hold, prop-
erty (8) does. Which means that although we have negative
numbers in the output, we have no negative numbers below
-6.5, a property that once again is incorrect in the reality. These
results are consistent with figures 5a and 5b.

V. CONCLUSION AND PERSPECTIVES

In this article, we introduced basic concepts of neural
networks, and proposed a decomposition in sub-components
of a neural network during its development phase that are
necessary and sufficient to determine its future behavior. We
then presented several reasons why traditional dependability
techniques are not well suited for declarative mechanisms
and neural networks in particular. We also detailed how these
reasons impede each dependability means. We then introduced

a fault classification based on our proposed decomposition
in sub-components and explained how they are related to
errors known in the machine learning community. Finally, we
explained that formal verification on neural networks can be
dangerous as the proven property may be unsatisfied in reality
but still guaranteed on an erroneous NN suffering from any
of the faults previously presented. As these faults are still
very difficult to detect and eliminate, we believe that this is
an important lock for formal verification in neural network.
We detailed in the last section of this article a theoretical
experiment based on formal verification and fault injection
to prove this assertion.

This article underlines the importance of justifiably trusting
a NN’s model in order to be able to formally verify safety
properties on it. As such, the main perspectives of this article
are to develop techniques to improve the confidence in a
neural network ability to correctly learn and represent the
real world model. Moreover, the experiment presented in
section IV could be realized on a less theoretical example.
We could use an autonomous vehicle application, such as
an ACC (automated cruise control) which typically use the
vehicle current speed and current distance to a preceding
vehicle as inputs to generate an acceleration command. We
could then show that the relation between distance, speed
an acceleration is erroneously modeled in a NN. This would
be done by proving that formal verification guarantees under
some conditions that the vehicle will not hit the previous
car, while in reality (i. e. according to a precise and correct
dynamical model) it could.

ACKNOWLEDGEMENT

The authors would like to thank Yves Grandvalet from
Heudiasyc and Patrick Boutard from Groupe PSA for their
helpful comments and inputs.

REFERENCES

[1] Road vehicles safety and security for automated driving systems
design, verification and validation methods. standard ISO/CD TR 4804,
International Organization for Standardization.

[2] Road vehicles safety of the intended functionality. standard ISO/CD
21448, International Organization for Standardization.

[3] Railway applications - communication, signalling and processing sys-
tems - software for railway control and protection systems. standard
EN 50128, European Committee for Electrotechnical Standardization,
2011.

[4] Road vehicles functional safety. standard ISO 26262, International
Organization for Standardization, 2018.

[5] Ruediger Ehlers. Formal Verification of Piece-Wise Linear Feed-
Forward Neural Networks. arXiv e-prints, page arXiv:1705.01320, May
2017.

[6] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin Vechev. Ai 2: Safety and robustness
certification of neural networks with abstract interpretation. In Security
and Privacy (SP), 2018 IEEE Symposium on, 2018.

[7] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin T. Vechev. Ai2: Safety and robustness
certification of neural networks with abstract interpretation. 2018 IEEE
Symposium on Security and Privacy (SP), pages 3–18, 2018.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. Book in preparation for MIT Press.

[9] Divya Gopinath, Kaiyuan Wang, Mengshi Zhang, Corina S. Pasareanu,
and Sarfraz Khurshid. Symbolic Execution for Deep Neural Networks.
arXiv e-prints, page arXiv:1807.10439, July 2018.

[10] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng
Sun, Emese Thamo, Min Wu, and Xinping Yi. A Survey of Safety
and Trustworthiness of Deep Neural Networks. arXiv e-prints, page
arXiv:1812.08342, Dec 2018.

[11] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

[12] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient smt solver for verifying deep neural
networks. In Rupak Majumdar and Viktor Kunčak, editors, Computer
Aided Verification, pages 97–117, Cham, 2017. Springer International
Publishing.

[13] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christo-
pher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu,
Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer, and Clark
Barrett. The marabou framework for verification and analysis of deep
neural networks. In Isil Dillig and Serdar Tasiran, editors, Computer
Aided Verification, pages 443–452, Cham, 2019. Springer International
Publishing.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. arXiv e-prints, page arXiv:1412.6980, December 2014.

[15] Zesha Kurd, Tim Kelly, and Jim Austin. Safety criteria and safety
lifecycle for artificial neural networks. In Proc. of Eunite, 2003.

[16] Francesco Leofante, Nina Narodytska, Luca Pulina, and Armando
Tacchella. Automated Verification of Neural Networks: Advances,
Challenges and Perspectives. arXiv e-prints, page arXiv:1805.09938,
May 2018.

[17] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and
Mykel J. Kochenderfer. Algorithms for Verifying Deep Neural Net-
works. arXiv e-prints, page arXiv:1903.06758, Mar 2019.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[19] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, pages
1–18, New York, NY, USA, 2017. ACM.

[20] Kaoutar Rhazali, Benjamin Lussier, Walter Schön, and Stéphane
Géronimi. Fault Tolerant Deep Neural Networks for Detection of
Unrecognizable Situations. In 10th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes (SAFEPROCESS 2018),
volume 51, pages 31–37, Warsaw, Poland, August 2018.

[21] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. DeepTest:
Automated Testing of Deep-Neural-Network-driven Autonomous Cars.
arXiv e-prints, page arXiv:1708.08559, August 2017.

[22] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of
Neural Networks with Mixed Integer Programming. arXiv e-prints, page
arXiv:1711.07356, November 2017.

