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We consider well-developed inhomogeneous turbulent shear flows in the  x  direction that are
bounded by interfaces (I ) separating regions of turbulent and non-turbulent (or weak turbulent)
flows. The interfaces are approximately continuous and there is no large-scale forcing (by body

forces  or  external  turbulence)  in  these  flows,  see  fig  1.  The  mean  velocity  is  ū¿
 with

significant mean shear S=∇ ū¿ ~ ΔUo /L  , which is comparable with  the large scale strain

in the turbulence, Σ ~uo/L , where uo  is the rms turbulence, which is of the order of the

large scale velocity fluctuations , i.e. ΔU o ~uo .

 The fluctuating interface location y I  at given x,  z and given time is defined by where the
normal gradients of fluctuating vorticity are maximum (Bisset et al 2002). In all types (without
forcing or external straining flow) there is a significant mean ‘boundary entrainment velocity’

Eb=dy I /dt  which is of order uo . As Prandtl originally suggested, (see Bodenschatz &

Eckert 2011), the rms fluctuations of Eb , 
E

b′
, relative to its mean value 

Eb  are related
to the structure of the interface and the whole flow. There may or may not be a significant mean

normal  velocity,  the  ‘entrainment  velocity  Ev ’,  which  can  be  comparable  with uo ,  as
found in jets.

 The  properties  of  the  turbulence  near  the  interface  y= yI ( x , z , t )  on  the  edge  of  well
developed shear flows has been the object of a number of recent studies, Ouvrard et al (2010),
Westerweel et al (2009), Eames & Flor (2011), Hunt et al (2008, 2011), Braza et al (2010),
Braza (2012), and can be summarised as follows.

(a) Thin shear layers form at the continuous interface between sheared turbulent flow ( y< yI

) and the exterior region where there is weak turbulence with weak shear. There is a jump in the
large-scale velocity,  ΔU0,    (defined conditionally relative to the interface) with fluctuations of

the order of  uo  and a mean jump velocity  
⟨ ΔU I ⟩ . The mean thickness of these sheets
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l I  is of the order of the Taylor micro scale (  ). Fig 2 shows the conditional profile for a

turbulent boundary layer. There may be a jump in the scalar concentration of order ΔC i .

(b) The locations  yI  of the interfaces fluctuate (in a moving frame) on time scales of order

L /uo . The ratio Ri of the rms fluctuations of yI , 
y

I ′ , to the integral length scale L  of
the turbulence in the shear flow depends on the type of shear flow. When Ri >~l the interface

fluctuations are large and the shape of the interface is convoluted (i.e.  yI may have 2 or more
values). Whereas when Ri <<1, the fluctuations are smaller and the interface is single valued. In
the former case external fluid is directly transported or ‘engulfed’ into the internal fluid, while in
the latter case there is small-scale eddy transport and molecular transport at the interface, i.e.
‘nibbling’ (Mathews  &  Basu  2002).  For  the  same  range  of  values  of  Ri,  dominance  of
‘engulfing’ or ‘nibbling’ there is a local form of the flow near the interface. It is found that the

profile of the conditionally sampled velocity field relative to the interface i.e.  u¿
(~y )=⟨U ⟩ ,

where  
~y= y− y I , is similar near the outer edge of different shear flows (Westerweel et al

2009).

(c) The main features of the dynamics of the flow outside and within the interfacial layers are as
follows.

  (i) Growth mechanisms and conditional profiles are affected by the inflection points in the

mean conditional profile ⟨
~U ⟩(~y ) . For jets, wakes and plumes these occur at the outside of

the interface, i.e.  d2 ⟨
~U ⟩(~y )/d~y2=0 ,  where  

~y=0 .  For these types of shear layer the

most energetic eddies are produced by the conditionally averaged shear d ⟨U ⟩ /dy  within the
turbulent region (i.e. non-modal or `rapid distortion' or `horse shoe' eddies (Hunt & Carruthers
1990, Ferre et al 1990)). However in boundary layers and mixing layers the inflection point in

⟨
~U ⟩(~y )  occurs in the interior of the shear flow, approximately where the interface shear

layer joins the internal shear layer, i.e. at 
~y=−l . Since the unstable normal modes of these

profiles have a large magnitude within the turbulent  region on the scale  L,  there are larger

indentation of the interface  
y

I ′ /L ~1
 and larger fluctuations in the boundary entrainment

velocity i.e. 
E

b′ / Eb ~1
 and Ri ~1. 

(ii)  Within the thin interfacial  shear  layer,  whose thickness  ℓ  is  of  order  ,  as  small  scale
vortical  eddies  are  stretched  by  the  shear,  their  typical  radius  reduces  to  the  Kolmogorov

microscale lv ~ L⋅Re−3 /4
  (da Silva & dos Reis 2011). 

(iii) The key external influence of the interfacial shear layers is that it ‘blocks’ the smaller scale
eddies  of  the  turbulent  region  (which  move  at  the  local  mean  velocity)  and  distorts  their
vorticity  as  they  impact  onto  the  layer  (Hunt  & Durbin  1999,  Turfus  & Hunt  1987).  The
blocking leads to a decorrelation of velocity fluctuations across the interface. (Ishihara et al
2015)  Also these distortions lead to the sharp mean velocity gradients within and outside the
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layers (Hunt et al 2008). However the larger scale eddy motions inside the interface move at the
average speed across the shear flow which differs from the local speed at the interface. They are
not blocked but stimulate irrotational  fluctuations in the exterior region (Carruthers & Hunt
1986; Bissett et al 2002), see fig3. The combined contribution of the small and large scales leads

to a jump in the Reynolds stress across the layer from zero outside to  Δτ  just inside the
interfacial layer. 

(iv) As the vortex sheet of the interfacial shear layer moves in the y-direction with velocity Eb

, there is a local acceleration (~ Eb ⟨ ΔU I ⟩/l I ), which is balanced by the gradient in the

Reynolds stress in the layer ( Δτ /l I ). Integrating the x-component of the mean momentum
equation across the layer shows how the mean product of the mean and fluctuating boundary

entrainment velocity and the mean and fluctuating velocity jump 
⟨ ΔU I ⟩

′
 momentum flux is

balanced by the jump in shear stress, i.e. 

⟨Eb ⟩ ⟨ΔU I ⟩⋅(1+Ce )=−Δτ
. 

The entrainment coefficient 

 
Ce=⟨ E

b′⋅⟨ ΔU I ⟩
′ ⟩/( ⟨Eb⟩ ⟨ ΔU I ⟩ )

 
is of order 1 when the engulfment is greater  than 'nibbling' (as DNS of turbulent boundary
layers demonstrate), and small when nibbling dominates  (as with wakes and jets Westerweel et
al 2009).

(d) The above studies enable an adaptation of the Organised Eddy Simulation, OES method
(Braza et al 2006, Braza et al 2008, Bourguet et al 2008), to better capture interfacial layers at
the  same  time  as  using  economic  grids.  In  the  OES  method  the  resolved  velocity  field

U (x , t )  is the ensemble-average of the exact velocity representing all the coherent processed

and the turbulent fluctuation û  represents all the random turbulence processes. The second
moments of this field are especially modelled by means of tensorial eddy-viscosity modelling
that captures quite well the turbulence stress anisotropy. Thus

u¿
=U ( x , t )+ {û( x , t ) } ,

where {}  denotes the component that is only defined statistically. 

In  the  Improved  OES  method  (IOES),  an  intermediate  random  velocity  field  V RI  is
introduced,  by  means  of  the  high-order  POD  (Proper  Orthogonal  Decomposition)  modes
(Szubert  et  al,  2015).  The  method  first  requires  estimating  the  position  of  the  continuous

interface  y I ( x , t )  from the OES field, using the dynamical criterion for the interface (e.g.
max  of  dissipation  or  shear)  and  then  computing  its  mean  and  fluctuating  positions  i.e.

⟨ yI ( x , z , t )⟩
 and 

y
I ′ .  (e.g. as in Deri et al 2011).

In  order  to  model  the  effects  of  the  different  types  of  eddies  impacting  on  the  interface,
y I ( x , t )  is filtered into ‘large’ and ‘medium’ scales. The new step in the IOES method is to

introduce  at  each  time  step  a  random explicit  intermediate  velocity  field  {ǔ} .  ǔ  is

calculated in terms of the OES velocity, i.e.  U (x , t )  near the interface, using the theory of
blocking by the interfacial layer for the medium to small scales and irrotational transformation
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for  the  large scales,  as  explained  in  (iii)  above (see also  Turfus  & Hunt  1987).  The sharp
gradients  associated  with  the  intermediate  velocity  field  also  lead  to  a  correction  to  the
statistically modelled Reynolds stresses (i.e. for medium and small scales). 

The dynamical effect of the interaction between of the intermediate field and the OES field
together with the corrected statistical Reynolds stresses, were modelled by Hunt et al (2008),
which showed how the interfacial  layer remains sharp through the distortion of eddies near
interface.  The  theoretical  base  of  this  model  is  achieved  by  considering  higher-order  POD
(Proper Orthogonal Decomposition) modes for the stochastic forcing of the kinetic energy and
dissipation transport equations (Braza, 2012).  This is created by a randomly fluctuating forcing
term in the dissipation rate of these equations (Braza et al 2013) containing a kinetic-energy
scale reconstructed by higher-order POD modes, as presented in the following. 

This leads to a corrected value of U (x , t ) . 
It can be shown that the higher-order POD modes whose energy distribution is presented in
Figure 4, precisely act within the shearing regions and in the separated areas, as well as between
the shearing regions delimiting the wake, without ‘contaminating’ the irrotational regions. The
present ‘re-injection’ of turbulence in these regions characterised by the shearing mechanism
and  the  Turbulent-Non-Turbulent  (TNT)  interfaces  dynamics  produces  the  “eddy-blocking
effect” previously described and maintains these shear layers thin. This leads to a reduction of
the wake’s width and therefore to an improved drag force.   
Figure  4  represents  the  transonic  interaction  around  a  supercritical  airfoil,  the  OAT15A
configuration, obtained by the present IOES approach. The interfacial shear-layer and the von
Kármán eddies which span the whole shear layer are both quite well captured, as well as the
buffet frequency of 78 Hz in good agreement with the experiments by Jacquin et al (2009). The
results show in fig. 4 the sharper interfacial layer using the IOES method. 
The  present  test-case  has  been  one  of  the  test-cases  of  the  ATAAC (Advanced Turbulence
Simulations  for  Aerodynamic  Application  Challenges)  European  program  N°  233710,
coordinated by  DLR (D.  Schwamborn),  (March  2009 -  June 2012).  The  method is  also  in
application in the case of the so-called V2C supercritical laminar wing designed by Dassault
Aviation,  in  the  TFAST  (Transition  location  effect  on  shock-boundary  layer  interaction)
European project N° 265455 (2013-2016). Fig.5 shows the 3D buffet dynamics interacting with
the shear layer and the von Kármán vortices of the near wake. Fig. 6 shows the energy of the
three-dimensional POD modes as well as the signal and spectrum of the second POD temporal
coefficient describing the buffet phenomenon and the spectrum of the 11-th order POD temporal
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coefficient beyond which the influence of the von Kármán frequency bump becomes visible.
Figure 7 shows the topology of the higher-order three-dimensional POD modes for the V2C
configuration.
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Fig. 1. A typical interface separating turbulence in shear layers from irrotational fluctuations outside. (a) 
High Reynolds number experiments of a turbulent boundary layer (from “Album of Fluid Motion” by 
Van Dyke ). (b) Schematic diagram of the outer region of a wake or jet (when fully developed)
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Fig. 2. Direct Numerical Simulations of profiles in a turbulent boundary layer, relative to the location of 
the interfacial layer, of the conditional mean vorticity and mean velocity.
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Fig. 3. DNS of the profile of the changing structure of the gradients of velocity fluctuations relative to the 
interface position of a turbulent boundary layer. (a) Showing rotational strain where the layer adjoins the 
turbulence, and irrotational strain fluctuations at the edge and outside the layer. (b) Dissipation rate, 
normalized, showing the sharp gradient at the interfacial layer.  
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Fig.4. Computation of the transonic interaction over a supercritical airfoil (the OAT15A)  by means of the
Organised Eddy Simulation, OES. Left: iso-div(U) contours showing the wake  and the production of 
waves outside it
Right:  

Fig.4b Higher-order POD modes from the OES simulation (Fig. 4a)  
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Fig.4c Effect of the stochastic forcing on the velocity and vorticity  profiles. The positions are shown in 
the above figure.
Mean velocity profiles by simulations using the stochastic forcing - IOES  (red line) and comparison 
without forcing - OES (blue line).

Fig. 5. Illustration of the three-dimensional Q criterion coloured by vorticity for two instants 
corresponding to the upstream and downstream shock motion and to the buffet phenomenon around the 
V2C supercritical wing at incidence of 7°, free-stream Mach number 0.70 and Reynolds number 
3.245x106.
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Fig.6. Temporal coefficient of the  2nd-order POD mode (top left) ; spectrum of  the 2nd  order mode 
temporal coefficient (top right) illustrating the buffet predominant frequency bump;  11-th order POD 
mode temporal coefficient (bottom left) and corresponding spectrum (bottom right),  illustrating the von 
Kármán frequency bump (see Fig.5).

  

    

Fig.7. Higher-order POD modes - V2C wing
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