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Abstract: For the fast-moving robot systems, the fluctuating dynamic loads transmitted to the 

supporting frame can excite the base and cause noise, wear, and fatigue of mechanical 

components.  By reducing the shaking force, fully or partially, the dynamic characteristics of the 

robot system can be improved. However, the complete inertial force and inertial moment 

balancing can only be achieved by adding extra counterweight and counter-rotation systems, 

which largely increases the total mass, overall size, and complexity of robots. In order to avoid 

these inconveniences, an approach based on the optimal motion control of the center of mass is 

applied for the shaking force balancing of the robot Orthoglide. The application of the 

"Bang-bang" motion profile on the common center of mass allows a considerable reduction of the 

acceleration of the total mass center, which results in the reduction of the shaking force. With the 

proposed method, the shaking force balancing of the Orthoglide is carried out taking into account 

the varying payload. Note that such a solution by purely mechanical methods is complex and 

practically inapplicable for industrial robots. The simulations in ADAMS software validate the 

efficiency of the suggested approach. 

Keywords: balancing; shaking force; center of mass; optimal control; "bang-bang" motion profile 

 

1. Introduction 

It is known that a mechanical system with unbalanced shaking force/moment transmits 

substantial vibration to the frame. Thus, a primary objective of the balancing is to cancel or reduce 

the variable dynamic loads transmitted to the frame and surrounding structures.  

The methods of shaking force balancing can be arranged as follows: 

 By adding counterweight in order to keep the total mass center of moving links stationary [1]. It 

is obvious that the adding of the counterweights is not desirable because it leads to the increase 

of the total mass, of the overall size and of the efforts in joints. To avoid these drawbacks, the 

masses of the motors can be used as counterweights [2] (Figure 1(a)). Taking into account the 

complexity of the parallel manipulators, adding counterweights became not interesting 

especially in spatial ones [3] (Figure 1(b)); 

 By adding auxiliary structures. In [4-6], the parallelograms were used as auxiliary structures in 

order to create the balanced manipulators. In [7], the pantograph (Figure 1(c)) has been added 

in order to balance the shaking force of Delta robot. Such a solution leads to a decrease in the 

added masses of counterweights but practical application remains a challenge; 

 By installing elastic components [8,9] (Figure 1(d)). The addition of elastic elements can 

successfully reduce the input torque and dynamic loads in the robot joints. However, it is less 

effective in reducing vibrations of the robot’s base; 
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 By adjustment of kinematic parameters [10] (Figure 1(e)). The result shows that the such a 

method is consistently better than the counterweight balancing in terms of the reduction of the 

joint forces and the torques in the servomotors, but less efficient for reduction of the shaking 

forces; 

 Via center of mass acceleration control [11-17]. This approach is based on the optimal control of 

the acceleration of the manipulator center of masses. For this purpose, the “bang-bang” profile 

has been used. The aim of the suggested method consists in the fact that the manipulator is 

controlled not by applying end-effector trajectories but by planning the displacements of the 

total mass center of moving links. Such a solution does not allow for complete balancing, but it 

leads to a significant decrease in shaking forces. In [17], a substituted point mass (Figure 1(f)) 

was found to replace the common center of mass of the 5R parallel manipulators as a virtual 

point. In this case, the motion planning of the substituted point mass can ensure a reduction of 

the shaking force. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Figure 1. (a) Motors used as counterweights [2]; (b) Spatial parallel manipulator balanced by adding 

counterweights [3]; (c) Shaking force balancing by adding a pantograph [7]; (d) A combination of a 

proper distribution of link masses and two springs [9]; (e) Two-step kinematic parameter adjustment 

in the adjusting kinematic parameters method [10]; (f) The optimal acceleration control of the 

substituted center of mass *S of 5R parallel manipulator [17]. 

This paper deals with the shaking force balancing problem of the Orthoglide [18,19] via the 

last-mentioned approach taking into consideration the robot structure. The robot Orthoglide is a 

three-degrees-of-freedom parallel manipulator with regular workspace and good compactness. Its 

three actuators are arranged according to the Cartesian coordinate space. The prototype and 

architecture of the robot are shown in Figures 2 and 3. 

 

 

Figure 2. The prototype of the Orthoglide (LS2N). 

Here we point out that this paper is an extended version of a work first published at the 29th 

International Conference on Robotics in Alpe-Adria-Danube Region (RAAD 2020) [20]. With regard 

to [20], additional simulation results are presented here, i.e., the balancing of shaking force taking 

into account the varying payload and its sensitivity analysis. The rest of the paper is organized as 

follows: Section 2 describes the balancing approach based on optimal motion planning of the 

common center of mass; In Section 3, the numerical simulations in ADAMS software are conducted 

to validate the efficiency of the proposed balancing approach and the sensitivity to the design 

variables. 

Now, let us consider the shaking force balancing of the Orthoglide. 

 

2. Shaking force Balancing of the Orthoglide  

2.1. Problem formulation 

Let us first consider the kinematic architecture of the Orthoglide (Figure 3(a)). It consists of 

three identical kinematic chains that are formally described as 
aPRP R , where P , R and 

aP denote 

the actuated prismatic, revolute, and parallelogram joints respectively. The mechanism input is 

made up by three actuated orthogonal prismatic joints. The output body is connected to the 

prismatic joint through a set of three kinematic chains. Inside each chain, one parallelogram is used 

and oriented in a manner that the output body is restricted to translational movements only. The 

three parallelograms have the same lengths
i iL B C . The arrangement of the joints in the 

aPRP R

chains has been defined to eliminate any constraint singularity in the Cartesian workspace. Each 

frame point
iA is fixed on the i th  linear axis so that

1 2 1 3 2 3A A A A A A  . The points
iB  and

iC are 



 4 of 11 

 

located on the i th parallelogram, as is shown in Fig. 1. The reference frame is located at the 

intersection of the prismatic joint axes and aligns the coordinate axis with them. The details of the 

design of the Orthoglide and its optimization can be found in [18,19]. 

 
(a) 

 
(b) 

Figure 3. (a) The structure of the Orthoglide; (b) The geometrical model of the Orthoglide 

For the Orthoglide geometrical model (see Figure 3(b)), the inverse kinematic equations [21] can 

be drives in a straightforward way as: 

2 2 2

2 2 2

2 2 2

x x x y z

y y y x z

z z z x y

p s L p p

p s L p p

p s L p p







    


   
    


 (1) 

where 
xs , ys , 

zs  are the configuration indices that are equal to 1 ; The input vector of the three 

prismatic joints variables as ρ ( , , )x y z    and the output position vector of the tool center point as

p ( , , )x y zp p p . Note that for the Orthoglide robot, a single inverse kinematic solution is reachable. 

The shaking forces sh
F of mechanisms can be written in the form: 

( )sh

payloadm m F s&& (2) 

where
1

n

i

i

m m


  is the total mass of the moving links of the manipulator, payloadm is the mass of the 

payload and s&& is the acceleration of the total mass center. In the proceeding of 29th International 

Conference on Robotics in Alpe-Adria-Danube Region, the balancing problem of the Orthoglide has 

been addressed without counting the varying payload payloadm . As mentioned above (in section 1), the 

shaking force balancing via mass redistribution consists in adding counterweights in order to keep 

the total mass center of moving links stationary [22]. In this case, 0s&&  for any configuration of the 

manipulator and, as a result, the shaking force is cancelled. It is obvious that the adding of 

supplementary masses as counterweights is not desirable because it leads to the increase of the total 

mass, of the overall size of the manipulator, the efforts in joints, the shaking moment and the input 

torques. Therefore, in the present study, it is proposed to minimize the shaking force via reduction of 

the total mass center acceleration: 

( )
max min

s t
s&&  (3) 

i.e. to apply an optimal control of the total mass center of moving links that allows one to reduce the 

maximal value of its acceleration.  

For this purpose, let's consider the control of the spatial parallel manipulator Orthoglide 

through the motion planning of its center of mass. To ensure it, let us assume that the center of mass 
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moves along a straight line between its initial and final positions. Thus, the motion profile used on 

this path will define the values of shaking forces. For the same displacement of the total center of 

mass S and the displacement time ft , the maximal value of the acceleration changes following the 

motion profile [23]: For quantic polynomial profile, the 2

max 10 3a S t ; For bang-bang profile, 

2

max 4a S t . It means the application of bang-bang law theoretically brings about a reduction of 

30.7% of the maximal value of the acceleration. Hence, to minimize the maximum value of the 

acceleration of the total mass center and, as a result, shaking forces, the “bang-bang” profile should 

be used. Thus, by reducing the acceleration of the center of mass of the Orthoglide, a decrease in its 

shaking forces is achieved. Therefore, to achieve the shaking force balancing through the approach 

described above, it is necessary to consider the relationship between the input parameters

( , , )x y z  ρ and the center of mass positions ( , , )x y zp p pP of the Orthoglide. 

2.2. The relationship between the total center of mass and the input parameters of the robot 

In order to control the manipulator according to the method described above, it is necessary to 

establish the relationship between the displacement of the total center of mass and the input 

parameters ( , , )x y z  ρ , i.e., for the given position and the law of motion of the Common Center 

of Mass (COM) of the manipulator determine its input displacements. Then, by means of the 

obtained input parameters via forward kinematics determine the position of the output axis

( , , )x y zp p pP . For this purpose, it is necessary to establish the relationship between the common 

center of mass of the manipulator and its input parameters.  

Let us start this issue with the initial and final positions ( , , )x y zp p pP of the platform 

( , , )i i ix y ziP  and ( , , )f f fx y z
f

P . So, by invers kinematics [21], the input angles corresponding to these 

positions will be determined: ( , , )xi yi zi  
i
ρ and ( , , )xf yf zf  

f
ρ . The corresponding values of the 

common COM of the manipulator can also be found: , , )( Si S ii Sx zy
COM_i

S  and , )( , Sf Sf Sfx zy
COM_f

S

. The displacement of the total center of mass is ( , , )x y zd d d 
COM_f COM_i

S -SD . Subsequently, a 

straight line connecting the initial and final positions of the comment center mass of the manipulator 

can be established and its motion planning by “bang-bang” profile with the time interval ft can be 

ensured:  t
COM

S S , i.e.  

2

2

2( ) , (0 )
2

( )

1 4( ) 2( ) , ( )
2

f

f

f

f

f f

tt
t

t
t

tt t
t t

t t


  


   
       
   

COM_i

COM_i

S D

S

S D

 (4) 

Let us now consider the relationship between  ( ), ( ), ( )x t y t z t
COM

S  and the input displacement

( , , )x y z  ρ . 

The common COM of the manipulator can be expressed as: 

1

n

i payload

i

m m

M






 i P

COM

r r

S  
(5) 

where i  is the number of the moving link  1, ,i n  , 
COMS  is the coordinate vector of the total 

mass center of the manipulator, 
ir is the the coordinate vector of the linkage i , 

im is the mass of the 

linkage i ; 
Pr is the the coordinate vector of the payload, payloadm is the mass of the payload;

1

n

i payload

i

M m m


   is the total mass of the Orthoglide including the payload. 



 6 of 11 

 

In the developed prototype, the slider of prismatic joint is designed as body AB , where A is not 

on the three axes but has an offset named l . At the same time, 
1 2 3C C C P   . Thus, the 

coordinates of the joints along X, Y and Z axes are the followings: 

X-axis : 1 ( , , )x y zC p p p ; 
1 ( ,0,0)xB  ; 

1 ( ,0, )xA l l  . 

Y-axis : 2 ( , , )x y zC p p p ; 2 (0, ,0)yB  ; 2 ( , ,0)yA l l  . 

Z-axis : 3 ( , , )x y zC p p p ; 
3 (0,0, )zB  ; 

3 (0, , )zA l l  . 

The mass centers of the parallelograms can be written as: 

     0.5 ,  0.5 ,  0.5
i i i i i iC B C B C Bx x y y z z   

 
, and their masses are 

1m . The masses center of the three 

actuated links are:      0.5 ,  0.5 ,  0.5
i i i i i iA B A B A Bx x y y z z   

 
, the masses of input links are denoted 

as
2m . The coordinates of the mass center of the joint of end-effector P  are ( , , )x y zp p p  and its mass 

is 
3m . 

With the masses of the corresponding links, the expressions of the total center of mass of the 

moving links of the Orthoglide can be expressed as: 

 

 

 

1 2 3

1 2 3

1 2 3

0.5 3 ( ) ( )

0.5 3 ( ) ( )

0.5 3 ( ) ( )

x x x x payload x

y y y y payload y

z z z z payload z

S m p m l m m p M

S m p m l m m p M

S m p m l m m p M

 

 

 

        
         

         

 (6) 

where, 1 2 33( ) payloadM m m m m    is the total mass of the moving components. 

According to the proposed method, the displacement of the total center of mass should follow 

Bang-bang motion profile ( )tS , i.e. 
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
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 (7) 

Note that the output parameters ( , , )x y zp p p  of the manipulator Orthoglide can be expressed with 

the functions including the input parameters ( , , )x y z    via direct kinematics [21]. Thus, Equation 

(6) becomes a group of three equations expressed with three unknowns ( , , )x y z   and it has a 

unique solution. Finally, the time-varying input displacements of the actuated prismatic joints can 

be obtained in order to ensuring the displacement of the COM. 

3. Illustrative example via CAD model 

To validate the proposed method, numerical simulations are conducted in ADAMS software. 

We created a CAD model and carry out the simulations by applying the following parameters of the 

Orthoglide [24] which correspond to the geometrical parameters of the prototype developed in 

LS2N (Figure 1). The detailed geometric parameters are: the length of the longer side of the three 
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parallelograms is
1 1 2 2 3 3 0.31L B C B C B C m    , the configuration indices of the current mechanism 

are 1x y zs s s   . The masses of sliders are: 
1 0.396m kg , the masses of the parallelograms are

2 0.248m kg  and the mass of the revolute joint P is
3 0.1m kg . The trajectory of the output axis P of 

the platform is given by its initial position 
iP  with the coordinates: 0ix  , 0iy  , 0iz   and the 

final position fP  with the coordinates: 0.1fx m  , 0.07fy m , 0.11fz m  . The corresponding 

input displacements are determined via inverse kinematics: 0.31 0.1,   8xi xf mm   , 0.31yi m  , 

0.34yf m  , 0.31zi m  , 0.17zf m  . The coordinates of the common COM of the manipulator for 

two positions have been found: 0.04Six m , 0.04Siy m , 0.04Siz m , 0.04Sfx m , 0.09Sfy m ,

0.05Sfz m . The traveling time of this trajectory is 0.1ft s , the designed acceleration of the center 

of mass is 238.7 /coma m s . 

3.1. Balancing of the Orthoglide without taking into account the payload 

The traditional control strategy based on the trajectory and motion planning of the end-effector. 

In the application of the pick-and-place robot, the displacement of the end-effector is defined as a 

straight line and parameterized with a motion profile such as a quantic polynomial profile. With the 

proposed approach in this paper, the trajectory of the end-effector is not defined but the trajectory of 

the COM. Then, the “bang-bang” motion profile is applied to the trajectory of the COM. Thus, in this 

section, three studied cases are designed in order to see the efficiency of the proposed method:  

 Case 1: Defining the displacement of the end-effector of the unbalanced manipulator as a 

straight line and parameterized with “fifth-order polynomial” profile; 

 Case 2: Defining the displacement of the end-effector of the unbalanced manipulator as a 

straight line and parameterized with “bang-bang” profile; 

 Case 3: The generation of the motion via defining the displacement of the manipulator center of 

mass as a straight line and parameterized with “bang-bang” profile.  

By comparing Cases 1 and 2, we can see the necessity of using “bang-bang” law; by comparing Cases 

2 and 3, the advantage of COM motion planning become obvious; in comparison of Cases 1 and 3, 

the difference between the traditional control method and proposed one becomes evident. 

 
(a) 

 
(b) 

Figure 4. (a) Variations of shaking forces for three studied cases; (b) Variations of shaking moments 

for three studied cases. 

The simulation results (Figure 4(a)) show that, compared to the traditional control technique 

(Case 1), the shaking force has been reduced up to 33.2% by applying “Bang-bang” law to the COM 

(Case 3) without carrying a payload. Employing the “Bang-bang” motion on the end-effector (Case 

2) reduces the shaking force by 24.9%. Obviously, the motion control of the COM of the Orthoglide is 

more efficient. 
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Compared to the increase of the shaking moment of the balancing method based on adding 

counterweights, the shaking moment (see in Figure 4(b)) has a reduction of 33.6% with the approach 

based on the motion planning of the COM (Case 3). The method that defines the motion of the 

end-effector with “bang-bang” (Case 2) motion profile reduces the shaking moment by 23.8%. 

Another advantage of this method is its simplicity and versatility. In the case of changing 

trajectory, it is just necessary to provide the initial and final coordinates of the end-effector, calculate 

the input parameters according to the proposed method and implemented in the manipulator 

control system. 

3.2. Balancing of the Orthoglide while taking into account the payload 

With the balancing method by adding counterweights, once the payload changed, the mass 

redistribution needs to be redone, which brings about the complexity of the balancing process. 

However, the proposed approach by optimal motion planning of the COM is still efficient 

taking into account the varying payload because the motion planning can be conducted without 

modifying the robot components and configuration. In view of the payload capacity of the 

Orthoglide (5kg), Table 1 and Table 2 demonstrate the shaking force and shaking moment for three 

cases when the Orthoglide is carrying a payload. The variations and reduction ratio of the shaking 

force and the shaking moment taking into account the payloads are respectively presented in Table 1 

and Table 2. 

 

 

 

 

 

 

Table 1. The shaking force and its reduction of the Orthoglide while carrying a payload 

Mass of 

payload / kg 

Shaking force1 / Newton Reduction2 / % 

Case 1 Case 2 Case 3 Case2 Case3 

0 117.99 88.56 78.86 24.9 33.2 

1 212.08 152.82 144.57 27.9 31.8 

2 306.73 218.08 210.55 28.9 31.3 

3 401.55 283.65 276.31 29.3 31.2 

4 496.43 349.36 342.22 29.6 31.1 

5 591.35 415.14 408.14 29.8 30.9 
1The maximum value of the shaking force during the movement 

2The reduction ratio of shaking force is calculated by
2 1 3 1

1 1

Case Case Case Case
and

Case Case

 
. 

Table 2. The shaking moment and its reduction of the Orthoglide while carrying a payload 

Mass of 

payload / kg 

Shaking moment1 / 

Newton*m 

Reduction2 / % 

Case 1 Case 2 Case 3 Case2 Case3 

0 38.19 29.11 25.35 23.8 33.6 

1 64.11 47.18 43.66 26.4 31.9 

2 90.08 65.25 61.82 27.6 31.4 

3 116.06 83.33 79.93 28.2 31.1 

4 142.03 101.40 98.02 28.6 31.0 

5 168.01 119.47 116.09 28.9 30.9 
1The maximum value of the shaking moment during the movement 
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2The reduction ratio of shaking moment is calculated by
2 1 3 1

1 1

Case Case Case Case
and

Case Case

 
. 

As is shown in Table 1, the shaking force of the Orthoglide has been reduced up to 33.2%. 

Following the increase of the payload, the reduction ration is approaching the theoretical value 

30.7%. Thus, we have the conclusion that, with the proposed balancing approach, a minimum 

reduction (30.7%) of the shaking force can be achieved. Compared to Case 3, Case 2 has a minimum 

reduction of the shaking force of 24.9%. 

It should be noted that the purpose of these simulations was not an illustration of the decrease 

in the shaking moment. However, it was considered useful to give the simulation results, which 

show that a decrease in shaking force is accompanied by a decrease in shaking moment. It can be 

considered a further advantage of the suggested balancing solution. 

3.3. Sensitivity analysis of the shaking force and shaking moment 

In the current industry, manufacturing errors are unavoidable and should be considered during 

the design process in order to ensure high accuracy of achieved results. With the proposed balancing 

strategy, the mass of the payload is one of the design variables, which can largely influence the final 

values of shaking forces and shaking moments acting on the frame. During the balancing process, if 

a mass error exists, the balancing condition can be different. Thus, we assume that the error presents. 

Then, two cases are designed in order to evaluate its sensitivity: 

 Case 3: balancing by optimal motion planning with “bang-bang” law taking into account the 

mass error; 

 Case 4: balancing by optimal motion planning with “bang-bang” law without taking into 

account the mass error. 

By comparing Case 3 and 4, the errors of shaking force and shaking moment to the payload can be 

obtained. 

Table 3.  Maximal value of the total shaking force of the robot taking into account the mass error of 

the payload  

Mass of payload/kg Case 3/Newton Case 4/Newton shF /Newton 

1+ m  157.73 158.36 0.63 

2+ m  223.60 223.95 0.35 

3+ m  289.49 289.70 0.20 

4+ m  355.40 355.51 0.11 

5+ m  421.32 421.36 0.04 

shF is the difference of the shaking force between the Case 4 and Case 3. 

Table 4.  Maximal value of the total shaking moment of the robot taking into account mass error of 

the payload 

Mass of payload/kg Case 3/Newton*m Case 4/Newton*m shM /Newton*m 

1+ m  47.30 47.74 0.43 

2+ m  65.44 65.75 0.30 

3+ m  83.55 83.78 0.23 

4+ m  101.63 101.82 0.19 

5+ m  119.70 119.86 0.16 

shM  is the difference of the shaking moment between the Case 4 and Case 3. 

The simulation results given in Table 3 and Table 4 show the variations of shaking force and 

shaking moment. As we can see, both shaking force and shaking moment are not very sensitive to 

the payload’s variations, which means the proposed balancing solution has good stability even 

under manufacturing errors. Following the increase of the payload, the difference between Cases 3 
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and 4 is reducing, which indicates that the mass error of the payload carried by the Orthoglide can 

be ignored. 

4. Conclusion 

It is known that the shaking force balancing by counterweights mounted on the moving links is 

more appropriate for serial and planar parallel manipulators. It is much more difficult for spatial 

parallel manipulators. Therefore, in this paper, an alternative method based on optimal acceleration 

control of the common COM is applied for shaking forces minimization of the Orthoglide robot. The 

suggested balancing technique consists in the fact that the Orthoglide is controlled not by applying 

platform trajectories but by motion planning of the total mass center of moving links. The trajectories 

of the total mass center of the manipulator are defined as straight lines and are parameterized with 

“bang-bang” profile. Such a control approach allows the reduction of the maximum value of the 

center of mass and consequently the shaking force. The numerical simulations show the efficiency of 

the proposed solution. 

Future works concern now the experimental validation of the suggested balancing technique 

via tests that will be carried out on the prototype of the Orthoglide developed in LS2N (Figure 2). 
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