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For the fast-moving robot systems, the fluctuating dynamic loads transmitted to the supporting frame can excite the base and cause noise, wear, and fatigue of mechanical components. By reducing the shaking force, fully or partially, the dynamic characteristics of the robot system can be improved. However, the complete inertial force and inertial moment balancing can only be achieved by adding extra counterweight and counter-rotation systems, which largely increases the total mass, overall size, and complexity of robots. In order to avoid these inconveniences, an approach based on the optimal motion control of the center of mass is applied for the shaking force balancing of the robot Orthoglide. The application of the "Bang-bang" motion profile on the common center of mass allows a considerable reduction of the acceleration of the total mass center, which results in the reduction of the shaking force. With the proposed method, the shaking force balancing of the Orthoglide is carried out taking into account the varying payload. Note that such a solution by purely mechanical methods is complex and practically inapplicable for industrial robots. The simulations in ADAMS software validate the efficiency of the suggested approach.

Introduction

It is known that a mechanical system with unbalanced shaking force/moment transmits substantial vibration to the frame. Thus, a primary objective of the balancing is to cancel or reduce the variable dynamic loads transmitted to the frame and surrounding structures.

The methods of shaking force balancing can be arranged as follows:  By adding counterweight in order to keep the total mass center of moving links stationary [START_REF] Filaretov | Static balancing and dynamic decoupling of the motion of manipulation robots[END_REF]. It is obvious that the adding of the counterweights is not desirable because it leads to the increase of the total mass, of the overall size and of the efforts in joints. To avoid these drawbacks, the masses of the motors can be used as counterweights [START_REF] Bayer | Industrial robot with a weight balancing system[END_REF] (Figure 1(a)). Taking into account the complexity of the parallel manipulators, adding counterweights became not interesting especially in spatial ones [START_REF] Gosselin | Gravity compensation, static balancing and dynamic balancing of parallel mechanisms[END_REF] (Figure 1(b));  By adding auxiliary structures. In [START_REF] Agrawal | Reactionless space and ground robots: novel design and concept studies[END_REF][START_REF] Fattah | Design and modeling of classes of spatial reactionless manipulators[END_REF][START_REF] Fattah | Design arm simulation of a class of spatial reactionless manipulators[END_REF], the parallelograms were used as auxiliary structures in order to create the balanced manipulators. In [START_REF] Wijk | Dynamic Balancing of Clavel's Delta Robot[END_REF], the pantograph (Figure 1(c)) has been added in order to balance the shaking force of Delta robot. Such a solution leads to a decrease in the added masses of counterweights but practical application remains a challenge;  By installing elastic components [START_REF] Alici | Optimum force balancing with mass distribution and a single elastic element for a five-bar parallel manipulator[END_REF][START_REF] Alici | Optimum force balancing of a planar parallel manipulator[END_REF] (Figure 1(d)). The addition of elastic elements can successfully reduce the input torque and dynamic loads in the robot joints. However, it is less effective in reducing vibrations of the robot's base;

 By adjustment of kinematic parameters [START_REF] Ouyang | A Novel Force Balancing Method for Real-Time Controllable Mechanisms[END_REF] (Figure 1(e)). The result shows that the such a method is consistently better than the counterweight balancing in terms of the reduction of the joint forces and the torques in the servomotors, but less efficient for reduction of the shaking forces;  Via center of mass acceleration control [START_REF] Briot | Shaking Force Minimization of High-Speed Robots via Center of Mass Acceleration Control[END_REF][START_REF] Briot | Shaking Forces Minimization of High-Speed Robots via an Optimal Motion Planning[END_REF][START_REF] Arakelian | Design of Partially Balanced 5R Planar Manipulators with Reduced Center of Mass Acceleration (RCMA)[END_REF][START_REF] Arakelian | Minimization of Shaking Loads in Planar Parallel Structure Manipulators by Means of Optimal Control[END_REF][START_REF] Geng | Design of Partially Balanced Planar 5R Symmetrical Parallel Manipulators via an Optimal Motion Planning[END_REF][START_REF] Geng | Partial Shaking Force Balancing of 3-RRR Parallel Manipulators by Optimal Acceleration Control of the Total Center of Mass[END_REF][START_REF] Geng | Balancing of Planar 5R Symmetrical Parallel Manipulators Taking into Account the Varying Payload[END_REF]. This approach is based on the optimal control of the acceleration of the manipulator center of masses. For this purpose, the "bang-bang" profile has been used. The aim of the suggested method consists in the fact that the manipulator is controlled not by applying end-effector trajectories but by planning the displacements of the total mass center of moving links. Such a solution does not allow for complete balancing, but it leads to a significant decrease in shaking forces. In [START_REF] Geng | Balancing of Planar 5R Symmetrical Parallel Manipulators Taking into Account the Varying Payload[END_REF], a substituted point mass (Figure 1(f)) was found to replace the common center of mass of the 5R parallel manipulators as a virtual point. In this case, the motion planning of the substituted point mass can ensure a reduction of the shaking force. (a) Motors used as counterweights [START_REF] Bayer | Industrial robot with a weight balancing system[END_REF]; (b) Spatial parallel manipulator balanced by adding counterweights [START_REF] Gosselin | Gravity compensation, static balancing and dynamic balancing of parallel mechanisms[END_REF]; (c) Shaking force balancing by adding a pantograph [START_REF] Wijk | Dynamic Balancing of Clavel's Delta Robot[END_REF]; (d) A combination of a proper distribution of link masses and two springs [START_REF] Alici | Optimum force balancing of a planar parallel manipulator[END_REF]; (e) Two-step kinematic parameter adjustment in the adjusting kinematic parameters method [START_REF] Ouyang | A Novel Force Balancing Method for Real-Time Controllable Mechanisms[END_REF]; (f) The optimal acceleration control of the substituted center of mass * S of 5R parallel manipulator [17].

This paper deals with the shaking force balancing problem of the Orthoglide [START_REF] Wenger | Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide[END_REF][START_REF] Chablat | Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide[END_REF] via the last-mentioned approach taking into consideration the robot structure. The robot Orthoglide is a three-degrees-of-freedom parallel manipulator with regular workspace and good compactness. Its three actuators are arranged according to the Cartesian coordinate space. The prototype and architecture of the robot are shown in Figures 2 and3. Here we point out that this paper is an extended version of a work first published at the 29th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD 2020) [START_REF] Geng | Shaking Force Balancing of the Orthoglide[END_REF]. With regard to [START_REF] Geng | Shaking Force Balancing of the Orthoglide[END_REF], additional simulation results are presented here, i.e., the balancing of shaking force taking into account the varying payload and its sensitivity analysis. The rest of the paper is organized as follows: Section 2 describes the balancing approach based on optimal motion planning of the common center of mass; In Section 3, the numerical simulations in ADAMS software are conducted to validate the efficiency of the proposed balancing approach and the sensitivity to the design variables.

Now, let us consider the shaking force balancing of the Orthoglide.

Shaking force Balancing of the Orthoglide

Problem formulation

Let us first consider the kinematic architecture of the Orthoglide (Figure 3(a)). It consists of three identical kinematic chains that are formally described as a PRP R , where P , R and a P denote the actuated prismatic, revolute, and parallelogram joints respectively. The mechanism input is made up by three actuated orthogonal prismatic joints. The output body is connected to the prismatic joint through a set of three kinematic chains. Inside each chain, one parallelogram is used and oriented in a manner that the output body is restricted to translational movements only. The three parallelograms have the same lengths ii L B C  . The arrangement of the joints in the a PRP R chains has been defined to eliminate any constraint singularity in the Cartesian workspace. Each frame point i A is fixed on the i th  linear axis so that 1 2

1 3 2 3
A A A A A A . The points i B and i C are located on the i th  parallelogram, as is shown in Fig. 1. The reference frame is located at the intersection of the prismatic joint axes and aligns the coordinate axis with them. The details of the design of the Orthoglide and its optimization can be found in [START_REF] Wenger | Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide[END_REF][START_REF] Chablat | Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide[END_REF]. . Note that for the Orthoglide robot, a single inverse kinematic solution is reachable.

                      (1) 
The shaking forces sh F of mechanisms can be written in the form:

()

sh payload mm  Fs && (2) 
where

1 n i i mm   
is the total mass of the moving links of the manipulator, payload m

is the mass of the payload and s && is the acceleration of the total mass center. In the proceeding of 29 th International Conference on Robotics in Alpe-Adria-Danube Region, the balancing problem of the Orthoglide has been addressed without counting the varying payload payload m . As mentioned above (in section 1), the shaking force balancing via mass redistribution consists in adding counterweights in order to keep the total mass center of moving links stationary [START_REF] Arakelian | Balancing of Linkages and Robot Manipulators: Advanced Methods with Illustrative Examples[END_REF]. In this case, 0  s && for any configuration of the manipulator and, as a result, the shaking force is cancelled. It is obvious that the adding of supplementary masses as counterweights is not desirable because it leads to the increase of the total mass, of the overall size of the manipulator, the efforts in joints, the shaking moment and the input torques. Therefore, in the present study, it is proposed to minimize the shaking force via reduction of the total mass center acceleration:

() max min st  s && (3) 
i.e. to apply an optimal control of the total mass center of moving links that allows one to reduce the maximal value of its acceleration.

For this purpose, let's consider the control of the spatial parallel manipulator Orthoglide through the motion planning of its center of mass. To ensure it, let us assume that the center of mass moves along a straight line between its initial and final positions. Thus, the motion profile used on this path will define the values of shaking forces. For the same displacement of the total center of mass S and the displacement time f t , the maximal value of the acceleration changes following the motion profile [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]: For quantic polynomial profile, the . It means the application of bang-bang law theoretically brings about a reduction of 30.7% of the maximal value of the acceleration. Hence, to minimize the maximum value of the acceleration of the total mass center and, as a result, shaking forces, the "bang-bang" profile should be used. Thus, by reducing the acceleration of the center of mass of the Orthoglide, a decrease in its shaking forces is achieved. Therefore, to achieve the shaking force balancing through the approach described above, it is necessary to consider the relationship between the input parameters ( , , )

x y z     ρ
and the center of mass positions ( , , )

x y z p p p P of the Orthoglide.

The relationship between the total center of mass and the input parameters of the robot

In order to control the manipulator according to the method described above, it is necessary to establish the relationship between the displacement of the total center of mass and the input parameters ( , , ) 

x y z     ρ , i.e.,

S -S D

. Subsequently, a straight line connecting the initial and final positions of the comment center mass of the manipulator can be established and its motion planning by "bang-bang" profile with the time interval f t can be ensured:

  t  COM SS , i.e. 2 2 2( ) , (0 ) 2 () 1 4( ) 2( ) , ( ) 2 f f f f ff t t t t t t tt tt tt                      COM_i COM_i SD S SD (4) 
Let us now consider the relationship between   ( ), ( ), ( ) x t y t z t  COM S and the input displacement ( , , )

x y z     ρ .
The common COM of the manipulator can be expressed as:

1 n i payload i mm M     iP COM rr S ( 5 
)
where i is the number of the moving link  

1, , in  ,

COM

S

is the coordinate vector of the total mass center of the manipulator, i r is the the coordinate vector of the linkage i , i m is the mass of the linkage i ; P r is the the coordinate vector of the payload, payload m is the mass of the payload;

1 n i payload i M m m   
is the total mass of the Orthoglide including the payload.

In the developed prototype, the slider of prismatic joint is designed as body AB , where A is not on the three axes but has an offset named l . At the same time, 1 2 3

C C C P    . Thus, the coordinates of the joints along X, Y and Z axes are the followings: X-axis : 1 ( , , )

x y z C p p p  ; 1 ( ,0,0) x B   ; 1 ( ,0, ) x A l l   .
Y-axis : 2 ( , , )

x y z C p p p  ; 2 (0, ,0) y B   ; 2 ( , ,0) y A l l   .
Z-axis : 3 ( , , )

x y z C p p p  ; 3 (0,0, ) z B   ; 3 (0, , ) z A l l   .
The mass centers of the parallelograms can be written as:

      0.5 , 0.5 , 0.5 i i i i i i C B C B C B x x y y z z     
, and their masses are 1 m . The masses center of the three actuated links are:

      0.5 , 0.5 , 0.5 i i i i i i A B A B A B x x y y z z     
, the masses of input links are denoted as 2 m . The coordinates of the mass center of the joint of end-effector P are ( , , )

x y z p p p and its mass is 3 m . With the masses of the corresponding links, the expressions of the total center of mass of the moving links of the Orthoglide can be expressed as:

      1 2 3 1 2 3 1 2 3 0.5 3 ( ) ( ) 0.5 3 ( ) ( ) 0.5 3 ( ) ( ) x x x x payload x y y y y payload y z z z z payload z S m p m l m m p M S m p m l m m p M S m p m l m m p M                                     (6)
where,

1 2 3 3( ) payload M m m m m    
is the total mass of the moving components.

According to the proposed method, the displacement of the total center of mass should follow Bang-bang motion profile () t S , i.e. 
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Note that the output parameters ( , , )

x y z p p p of the manipulator Orthoglide can be expressed with the functions including the input parameters ( , , )

x y z    via direct kinematics [START_REF] Pashkevich | Kinematics and Workspace Analysis of a Three-Axis Parallel Manipulator: The Orthoglide[END_REF]. Thus, Equation (6) becomes a group of three equations expressed with three unknowns ( , , )

x y z

   and it has a unique solution. Finally, the time-varying input displacements of the actuated prismatic joints can be obtained in order to ensuring the displacement of the COM.

Illustrative example via CAD model

To validate the proposed method, numerical simulations are conducted in ADAMS software. We created a CAD model and carry out the simulations by applying the following parameters of the Orthoglide [START_REF] Guegan | Identification of the dynamic parameters of the Orthoglide[END_REF] which correspond to the geometrical parameters of the prototype developed in LS2N (Figure 1). The detailed geometric parameters are: the length of the longer side of the three parallelograms is 

1 1 2 2 3 3 0.31 L B C B C B C m     ,

Balancing of the Orthoglide without taking into account the payload

The traditional control strategy based on the trajectory and motion planning of the end-effector. In the application of the pick-and-place robot, the displacement of the end-effector is defined as a straight line and parameterized with a motion profile such as a quantic polynomial profile. With the proposed approach in this paper, the trajectory of the end-effector is not defined but the trajectory of the COM. Then, the "bang-bang" motion profile is applied to the trajectory of the COM. Thus, in this section, three studied cases are designed in order to see the efficiency of the proposed method:  Case 1: Defining the displacement of the end-effector of the unbalanced manipulator as a straight line and parameterized with "fifth-order polynomial" profile;  Case 2: Defining the displacement of the end-effector of the unbalanced manipulator as a straight line and parameterized with "bang-bang" profile;  Case 3: The generation of the motion via defining the displacement of the manipulator center of mass as a straight line and parameterized with "bang-bang" profile. By comparing Cases 1 and 2, we can see the necessity of using "bang-bang" law; by comparing Cases 2 and 3, the advantage of COM motion planning become obvious; in comparison of Cases 1 and 3, the difference between the traditional control method and proposed one becomes evident. The simulation results (Figure 4(a)) show that, compared to the traditional control technique (Case 1), the shaking force has been reduced up to 33.2% by applying "Bang-bang" law to the COM (Case 3) without carrying a payload. Employing the "Bang-bang" motion on the end-effector (Case 2) reduces the shaking force by 24.9%. Obviously, the motion control of the COM of the Orthoglide is more efficient.

Compared to the increase of the shaking moment of the balancing method based on adding counterweights, the shaking moment (see in Figure 4(b)) has a reduction of 33.6% with the approach based on the motion planning of the COM (Case 3). The method that defines the motion of the end-effector with "bang-bang" (Case 2) motion profile reduces the shaking moment by 23.8%.

Another advantage of this method is its simplicity and versatility. In the case of changing trajectory, it is just necessary to provide the initial and final coordinates of the end-effector, calculate the input parameters according to the proposed method and implemented in the manipulator control system.

Balancing of the Orthoglide while taking into account the payload

With the balancing method by adding counterweights, once the payload changed, the mass redistribution needs to be redone, which brings about the complexity of the balancing process.

However, the proposed approach by optimal motion planning of the COM is still efficient taking into account the varying payload because the motion planning can be conducted without modifying the robot components and configuration. In view of the payload capacity of the Orthoglide (5kg), Table 1 and Table 2 demonstrate the shaking force and shaking moment for three cases when the Orthoglide is carrying a payload. The variations and reduction ratio of the shaking force and the shaking moment taking into account the payloads are respectively presented in Table 1 and Table 2. As is shown in Table 1, the shaking force of the Orthoglide has been reduced up to 33.2%. Following the increase of the payload, the reduction ration is approaching the theoretical value 30.7%. Thus, we have the conclusion that, with the proposed balancing approach, a minimum reduction (30.7%) of the shaking force can be achieved. Compared to Case 3, Case 2 has a minimum reduction of the shaking force of 24.9%.

It should be noted that the purpose of these simulations was not an illustration of the decrease in the shaking moment. However, it was considered useful to give the simulation results, which show that a decrease in shaking force is accompanied by a decrease in shaking moment. It can be considered a further advantage of the suggested balancing solution.

Sensitivity analysis of the shaking force and shaking moment

In the current industry, manufacturing errors are unavoidable and should be considered during the design process in order to ensure high accuracy of achieved results. With the proposed balancing strategy, the mass of the payload is one of the design variables, which can largely influence the final values of shaking forces and shaking moments acting on the frame. During the balancing process, if a mass error exists, the balancing condition can be different. Thus, we assume that the error presents. Then, two cases are designed in order to evaluate its sensitivity:  Case 3: balancing by optimal motion planning with "bang-bang" law taking into account the mass error;  Case 4: balancing by optimal motion planning with "bang-bang" law without taking into account the mass error. By comparing Case 3 and 4, the errors of shaking force and shaking moment to the payload can be obtained. is the difference of the shaking moment between the Case 4 and Case 3.

The simulation results given in Table 3 and Table 4 show the variations of shaking force and shaking moment. As we can see, both shaking force and shaking moment are not very sensitive to the payload's variations, which means the proposed balancing solution has good stability even under manufacturing errors. Following the increase of the payload, the difference between Cases 3 and 4 is reducing, which indicates that the mass error of the payload carried by the Orthoglide can be ignored.

Conclusion

It is known that the shaking force balancing by counterweights mounted on the moving links is more appropriate for serial and planar parallel manipulators. It is much more difficult for spatial parallel manipulators. Therefore, in this paper, an alternative method based on optimal acceleration control of the common COM is applied for shaking forces minimization of the Orthoglide robot. The suggested balancing technique consists in the fact that the Orthoglide is controlled not by applying platform trajectories but by motion planning of the total mass center of moving links. The trajectories of the total mass center of the manipulator are defined as straight lines and are parameterized with "bang-bang" profile. Such a control approach allows the reduction of the maximum value of the center of mass and consequently the shaking force. The numerical simulations show the efficiency of the proposed solution.

Future works concern now the experimental validation of the suggested balancing technique via tests that will be carried out on the prototype of the Orthoglide developed in LS2N (Figure 2).

Figure 1 .

 1 Figure 1. (a) Motors used as counterweights[START_REF] Bayer | Industrial robot with a weight balancing system[END_REF]; (b) Spatial parallel manipulator balanced by adding counterweights[START_REF] Gosselin | Gravity compensation, static balancing and dynamic balancing of parallel mechanisms[END_REF]; (c) Shaking force balancing by adding a pantograph[START_REF] Wijk | Dynamic Balancing of Clavel's Delta Robot[END_REF]; (d) A combination of a proper distribution of link masses and two springs[START_REF] Alici | Optimum force balancing of a planar parallel manipulator[END_REF]; (e) Two-step kinematic parameter adjustment in the adjusting kinematic parameters method[START_REF] Ouyang | A Novel Force Balancing Method for Real-Time Controllable Mechanisms[END_REF]; (f) The optimal acceleration control of the

Figure 2 .

 2 Figure 2. The prototype of the Orthoglide (LS2N).

Figure 3 .

 3 Figure 3. (a) The structure of the Orthoglide; (b) The geometrical model of the Orthoglide

  configuration indices that are equal to 1  ; The input vector of the three prismatic joints variables as ρ ( , , )

Figure 4 .

 4 Figure 4. (a) Variations of shaking forces for three studied cases; (b) Variations of shaking moments for three studied cases.

  for the given position and the law of motion of the Common Center of Mass (COM) of the manipulator determine its input displacements. Then, by means of the obtained input parameters via forward kinematics determine the position of the output axis ( , , )

	P	p p p												
		x	y	z											
																P	x p p p y	z	of the platform
	i P	( , , ) i i i x y z	and	f ( , , ) f f x y z									
						ρ	i	xi    yi	zi	and	ρ	f	( , , ) xf yf zf   	. The corresponding values of the
	common COM of the manipulator can also be found:	S	COM_i		(	Si x	, , ) S i i S z y	and	S	COM_f		Sf ( , x	y	Sf	Sf ,) z
	d d d  . The displacement of the total center of mass is ( , , ) x y z	COM_f	COM_i

. For this purpose, it is necessary to establish the relationship between the common center of mass of the manipulator and its input parameters.

Let us start this issue with the initial and final positions ( , , ) f P . So, by invers kinematics

[START_REF] Pashkevich | Kinematics and Workspace Analysis of a Three-Axis Parallel Manipulator: The Orthoglide[END_REF]

, the input angles corresponding to these positions will be determined: ( , , )

  the configuration indices of the current mechanism

	are	1    . The masses of sliders are: 1 0.396 y z s s s x m kg 	, the masses of the parallelograms are
	2 m		0.248 kg	and the mass of the revolute joint P is 3 0.1 m kg 	. The trajectory of the output axis P of
	the platform is given by its initial position	i P with the coordinates:	0 x  , i	0 y  , i	0 z  and the i
	final position	f P with the coordinates:	0.1 xm  f	,	0.07 ym  f	,	0.11 zm  f	. The corresponding
	input displacements are determined via inverse kinematics:	0.31 m ,   xi xf	0.1 8 m	,	yi  	0.31 m	,
	yf  	0.34 m	,	zi  	0.31 m	,	zf  	0.17	m	. The coordinates of the common COM of the manipulator for
	two positions have been found:	0.04 xm  Si	,	0.04 ym  Si	,	0.04 zm  Si	,	0.04 xm  Sf 	,	0.09 ym  Sf	,
	0.05 zm  Sf 	. The traveling time of this trajectory is	0.1 ts  f	, the designed acceleration of the center
	of mass is	com a		38.7 / m s	2	.

Table 1 .

 1 The shaking force and its reduction of the Orthoglide while carrying a payload

	Mass of	Shaking force 1 / Newton	Reduction 2 / %
	payload / kg	Case 1	Case 2	Case 3	Case2	Case3
	0	117.99	88.56	78.86	24.9	33.2
	1	212.08	152.82	144.57	27.9	31.8
	2	306.73	218.08	210.55	28.9	31.3
	3	401.55	283.65	276.31	29.3	31.2
	4	496.43	349.36	342.22	29.6	31.1
	5	591.35	415.14	408.14	29.8	30.9
	1 The maximum value of the shaking force during the movement
	2 The reduction ratio of shaking force is calculated by	2 Case Case 1 11 3 Case Case 1 and Case Case 	.

Table 2 .

 2 The shaking moment and its reduction of the Orthoglide while carrying a payload

	Mass of	Shaking moment 1 /	Reduction 2 / %
	payload / kg		Newton*m			
		Case 1	Case 2	Case 3	Case2	Case3
	0	38.19	29.11	25.35	23.8	33.6
	1	64.11	47.18	43.66	26.4	31.9
	2	90.08	65.25	61.82	27.6	31.4
	3	116.06	83.33	79.93	28.2	31.1
	4	142.03	101.40	98.02	28.6	31.0
	5	168.01	119.47	116.09	28.9	30.9

Table 3 .

 3 Maximal value of the total shaking force of the robot taking into account the mass error of the payload  is the difference of the shaking force between the Case 4 and Case 3.

	Mass of payload/kg	Case 3/Newton	Case 4/Newton	sh F  /Newton
	1+	m 	157.73	158.36	0.63
	2+	m 	223.60	223.95	0.35
	3+	m 	289.49	289.70	0.20
	4+	m 	355.40	355.51	0.11
	5+	m 	421.32	421.36	0.04

sh F

Table 4 .

 4 Maximal value of the total shaking moment of the robot taking into account mass error of the payload

	Mass of payload/kg	Case 3/Newton*m	Case 4/Newton*m	M 	sh	/Newton*m
	1+	m 	47.30	47.74			0.43
	2+	m 	65.44	65.75			0.30
	3+	m 	83.55	83.78			0.23
	4+	m 	101.63	101.82			0.19
	5+	m 	119.70	119.86			0.16

sh M 

The maximum value of the shaking moment during the movement
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