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CONCLUSIONS AND FUTURE WORK ACKNOWLEDGEMENTS

 We demonstrate the feasibility of modeling the thermal denaturation-aggregation of whey proteins under continuous flow 
through numerical simulations. COMSOL Multiphysics was employed, and no reasons forbid the application of other 
commercial or in-house modeling software.

 The development of a CFD model for representing a liquid food product transformation requires reliable information about the 
product properties (like its viscosity) as well as about the transformation model itself. Satisfying results were obtained in the 
case of the thermal denaturation-aggregation of whey proteins by assuming a reaction kinetics.

 The reconstruction of bulk thermal history experienced by the liquid food product along the experimental setup allowed us to 
estimate the parameters of a reaction kinetics of order 1.5. Future work may consider an ensemble of test cases under similar 
operating conditions, in order to improve the robustness of our approach. Efforts remain to be accomplished regarding the 
influence of the temperature on the apparent viscosity associated with the liquid food product.

 Future work has to consider sensitivity tests regarding the influence of key modeling issues, including the mesh resolution.

SCOPE AND GOALS

 The modeling of thermal treatment of a liquid food 
product under continuous flow is a challenging problem. 
Fluid flow and heat transfer determine the temperature 
field, which can influence product transformation; in turn, 
the transformation can modify the product transport 
properties (as its viscosity). Such a two-way dependence 
has to be considered when modeling coupled processes 
such as thermal denaturation-aggregation of whey proteins.

 Our goal is to demonstrate the feasibility of modeling, 
through numerical simulation, the thermal denaturation-
aggregation of whey proteins under continuous flow:

 by developing a computational fluid dynamics (CFD) 
model for solving the coupled problem of fluid flow, 
heat transfer, and thermal denaturation-aggregation of 
whey proteins, where the latter is represented with the 
help of a reaction kinetics of order 1.5; and

 by representing a laboratory processing unit (heater, 
holder and cooler) that effectively exists, with the help 
of a sequence of computational domains.

METHODS  The influence of shear rate g and denaturation ratio d on 
the apparent viscosity h associated with the liquid food 
product was approximated through the expression:

h = K g n-1 exp( b d )  .

Parameters K, n, and b were estimated through least 
squares method, from measurements performed at 50°C 
after three heat treatments of the liquid food product.
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 Protein unfolding and                                               
particle aggregation are                                         
represented with the help                                                     
of a kinetics of order 1.5.                                                     
Parameters are estimated                                                 
after reconstructing the                                                      
bulk thermal history of                                                       
the liquid food product.

The integration over time along the exchangers gives:

where d = 1- Cnat{tOUTLET} / C0) is the denaturation ratio.

k0 ~ 2.51 1015, EA ~ 1.18 105 J/mol

d = 62 %94°C, 40s

d = 17 %80°C, 30s

d = 6 %72°C, 20s

test #64treatment

 Conservation equations for the liquid food product mass, 
momentum and energy are expressed as:

.u = 0

r (u.)u = .( -p I + h ( u + (u)T ) )

 r CP (u.)T = .( k T ) 

In the case of the concentration of native proteins, the 
following convection-diffusion equation is employed:

(u.)Cnat = R + .( D Cnat )

 Coupled phenomena are solved for a sequence of two-
dimensional axial-symmetric computational domains. They 
represent eight heating sections, a holder, and a cooling 
section. Computational domains have a radius of 4 mm, as 
in the experimental setup; their lengths were estimated 
from the actual volumes: about 0.4 m for each heating 
section and about 4 m for the holding and cooling sections. 
Regular grids constituted of rectangular cells are employed 
for all the domains.

 Selected boundary conditions are presented below.
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 At the inlet of the first heating section, a fully developed parabolic flow profile is assumed. Flow rate is 18.1 L/h, and mean velocity is about 0.100 m/s; Reynolds number is about 150.

 At the inlet of all the other (heating, holding and cooling) sections, uniform velocity profile is assumed.
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EIGHT HEATING SECTIONS

COOLING SECTION

EIGHT HEATING SECTIONS

COOLING SECTIONHOLDING SECTION

 Bulk values of temperature and concentration are evaluated at the outlet of each computational domain; they are later assumed as boundary conditions at the inlet of the following domain.

 Such an approach help us to represent the occurrence of mixing along the corners which connect two successive sections.

inward heat flux at the wall = 1300 (Tvapor – T) W/m2, with Tvapor = 108.4°C 

outward heat flux at the wall = 500 W/m2 outward heat flux at the wall = 10100 W/m2

HOLDING SECTION

denaturation ratio measured at the cooler outlet after the strong heat treatment (94°C, 40s ): 0.62

measurement: 91.4°C measurement: 39.6°C 

measurement: 93.8°C 


