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We study the effect of surfactants on the dynamics of a drop-interface coalescence
using full three-dimensional direct numerical simulations. We employ a hybrid interface-
tracking/level-set method, which takes into account Marangoni stresses that arise from
surface tension gradients, interfacial and bulk diffusion, and sorption kinetic effects.
We validate our predictions against the experimental data of Blanchette and Bigioni
[Nat. Phys. 2(4):254-257 (2006)] and perform a parametric study that demonstrates the
delicate interplay between the flow fields and those associated with the surfactant bulk
and interfacial concentrations. The results of this work unravel the crucial role of the
Marangoni stresses in the flow physics of coalescence with particular attention paid to
their influence on neck reopening dynamics in terms of stagnation-point inhibition, and
near-neck vorticity generation. We demonstrate that surfactant-laden cases feature a
rigidifying effect on the interface compared to the surfactant-free case, a mechanism that
underpins the observed surfactant-induced phenomena.

1. Introduction

The occurrence of drop-interface coalescence has been observed in a wide range of
natural phenomena and industrial applications, such as rain/cloud formation (Raes
et al. 2000), atomisation (Villermaux 2007), and also emulsification or de-emulsification
processes (Ziegler & Wolf 2005). Over half a century ago, Charles & Mason (1960)
observed coalescence in their ground-breaking experiments, and, ever since, researchers
have been in constant pursuit of a better physical understanding of this phenomenon.
However, it was not until the advent of high-speed imaging that it became possible for
Thoroddsen & Takehara (2000) to observe the self-similar coalescence cascade phenomena
of a drop before its total coalescence. Since then, the significant interest in the field has
led to a recent comprehensive review on the topic by Kavehpour (2015) who concluded
that further work is needed to understand the Marangoni-effect during the drop-interface
coalescence dynamics.
The dynamics commence with the drainage of the fluid between the drop and an

interface separating this fluid from another bulk phase whose extent is typically much
larger than the drop diameter. This drainage leads to the formation of a thin fluid layer
between the drop and the interface. As the layer thickness decreases, van der Waals forces
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trigger its rupture with the generation of a hole which expands driven by capillarity.
The hole expansion has been widely studied by Eggers et al. (1999); Paulsen et al.
(2011); Anthony et al. (2017) among others, concluding that the interfacial dynamics are
solely governed by a balance between viscous and capillary forces, and subsequently the
Ohnesorge number Oh (e.g., ratio of viscous to capillary forces) is the most appropriate
control parameter for this phenomenon. Different coalescence regimes have been identified
depending on the order of magnitude of Oh: (i) the inertial/capillary coalescence regime
(Oh ≪ 1), which is characterised by a nearly inviscid liquid, and the dynamics are surface-
tension-driven; (ii) the viscous/capillary regime (Oh > 1) where the viscous forces play a
major role in the interfacial dynamics; finally, (iii) an intermediate regime which bridges
the inertial/capillary and viscous/capillary regimes (e.g., no dominance by either viscosity
or surface tension).

As pointed out earlier for intermediate values of Oh, Thoroddsen & Takehara (2000)
observed the so-called ‘coalescence-cascade of a drop’ in which the drop coalescence leads
to the generation of a smaller daughter droplet which results in a cascade of self-similar
events until this successive coalescence process is completed. The process of formation
of a daughter droplet is known as a ‘partial coalescence’ phenomenon, and its physical
understanding came from the insightful experimental and numerical results of Blanchette
& Bigioni (2006) who suggested that the occurrence of pinch-off depends solely on
the competition between the vertical (inertia-viscous) and horizontal (capillary) pulls
(i.e., the former aids the total coalescence and the latter the capillary breakup), rather
than the mechanism of Rayleigh-Plateau instability. Additionally Blanchette & Bigioni
(2006) have provided an extensive Bo-Oh phase diagram delineating the boundaries
between partial and total coalescence. Here, Bo is the Bond number which compares the
importance of gravitational to surface tension forces.

Importantly, Blanchette et al. (2009) and Sun et al. (2018) have also considered
situations in which there is a surface tension mismatch between the drop and the interface
triggering the generation of tangential Marangoni stresses in the plane of the common
interface formed post coalescence. In their experimental and numerical investigation of
the coalescence of a water drop with an ethanol reservoir, they reported that Marangoni-
induced flow leads to the ejection of an additional drop from its summit during its vertical
stretching. Similarly, the generation of gradients of surface tension can also be triggered
by the use of surfactants (Manikantan & Squires 2020).

Current understanding of the coalescence dynamics in such surfactant-laden systems
came from Dong et al. (2019) who experimentally showed for the first time surfactant
concentration profiles for systems characterised by high Bond numbers. Additionally,
they suggested that surfactants have a strong effect on the interfacial dynamics inducing
interfacial rupture (i.e., hole formation) in an off-axis location. Their interfacial con-
centration profiles agree qualitatively with the previous numerical work performed by
Martin & Blanchette (2015). Finally, Shim & Stone (2017) suggested that the presence
of surfactants decreases the air-drainage-time between the drop and interface (so-called,
‘damped-coalescence-cascade mechanism’).

Craster et al. (2002) have shown that the presence of surfactants does not affect the
dynamics of interfacial singularities, as they are swept away from the pinch-off point; thus,
the scaling laws predicted by Eggers (1993) are remain unaltered. Nonetheless, recently,
Constante-Amores et al. (2020) showed the deleterious effect of Marangoni stresses on
interfacial singularities in the context of capillary retraction of a liquid thread. They
demonstrated that Marangoni stresses drive reopening of the neck during the capillary
retraction (i.e., escape from the ‘end-pinching’ mechanism) as a result of the suppression
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of stagnation point formation by flow-reversal in the vicinity of the neck, and the higher
generation of vorticity from the neck.
Although, Martin & Blanchette (2015) have shown that the presence of surfactants

is responsible for the inhibition of the partial coalescence event, there is still a lack
of explanation of what causes this pinch-off inhibition. Moreover, the appreciation of
Marangoni stresses profiles, and other significant insights into the flow fields close to the
pinch-off are also missing. The present study aims to clarify and answer these questions
and to overcome all numerical difficulties presented in Martin & Blanchette (2015) by
taking into account the nonlinear relation between the surfactant concentration and
surface tension, which is of central importance in non-dilute systems. Additionally, we are
able to explore parameter ranges corresponding to large density and viscosity contrasts,
corresponding to air-water systems, without numerical difficulties, and to go beyond the
surfactant elasticity range studied by Martin & Blanchette (2015).
The rest of this article is organised as follows: Section 2 presents the governing

equations, numerical setup, and the validation of the surfactant-free case against the
experimental observations of Blanchette & Bigioni (2006). Section 3 provides a discussion
of the results which are focused on the origin of the inhibition of the interfacial singularity,
and a parametric study accounting for the strength of the Marangoni stress, and sorption
dynamics. Finally, concluding remarks are summarised in Section 4.

2. Problem formulation and numerical method

With the purpose of studying the dynamics of interfacial coalescence in the presence
of surfactants, we perform direct numerical simulations of the two-phase Navier-Stokes
equations in a three-dimensional Cartesian domain x = (x, y, z) (see Figure 1a). The
treatment of the interface and its surface tension forces is handled using a hybrid front-
tracking/level-set technique, also known as the Level Contour Reconstruction Method
(LCRM) (Shin & Juric (2009), Shin et al. (2017)), with surfactant transport being
resolved both in the bulk and on the interface. More information on the numerical
technique applied to surfactant transport can be found in the work of Shin et al.
(2018). Moreover, the dependence of the surface tension on the interfacial surfactant
concentration is described by a nonlinear Langmuir equation of state (Muradoglu &
Tryggvason 2014; Shin et al. 2018).

2.1. Scaling

In what follows, all variables will be made dimensionless (represented by tildes) using

x̃ =
x

Ro
, t̃ =

t

T
, ũ =

u

U
, p̃ =

p

ρlU2
, σ̃ =

σ

σs
, Γ̃ =

Γ

Γ∞

, C̃ =
C

C∞

, C̃s =
Cs

C∞

,

(2.1)
where, t, u, and p stand for time, velocity, and pressure, respectively. The physical
parameters correspond to the liquid density ρl, viscosity, µl, surface tension, σ, surfactant-
free surface tension, σs, and gravitational acceleration, g; T =

√

ρlR3
o/σs is the capillary

time scale and Ro is the initial drop radius; hence the velocity scale is U = Ro/T =
√

σs/(ρlRo). The interfacial surfactant concentration, Γ , is scaled on the saturation
interfacial concentration, Γ∞, whereas the the bulk and bulk sub-phase (the region
immediately adjacent to the interface) surfactant concentrations given by C and Cs,
respectively, are scaled on the initial bulk surfactant concentration, C∞. As a result of
the scaling in equation (2.1), the dimensionless forms of the governing equations for the
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flow and the surfactant transport are respectively expressed as

∇ · ũ = 0, (2.2)

ρ̃(
∂ũ

∂ t̃
+ũ ·∇ũ)+∇p̃ = −Boiz+Oh ∇ ·

[

µ̃(∇ũ+∇ũT )
]

+

∫

Ã(̃t)

(σ̃κ̃n+∇sσ̃) δ
(

x̃− x̃
f

)

dÃ,

(2.3)

∂C̃

∂ t̃
+ ũ ·∇C̃ =

1

Peb
∇2C̃, (2.4)

∂Γ̃

∂ t̃
+∇s · (Γ̃ ũt) =

1

Pes
∇2

sΓ̃ +Bi
(

kC̃s(1− Γ̃ )− Γ̃
)

, (2.5)

σ̃ = 1 + βs ln
(

1− Γ̃
)

, (2.6)

which correspond to the equations of mass and momentum conservation, the convective-
diffusion equations for the surfactant bulk and interfacial concentrations, and the nonlin-
ear surfactant equation of state, respectively. Here, the density ρ̃ and viscosity µ̃ are
expressed by ρ̃ = ρg/ρl + (1− ρg/ρl)H

(

x̃, t̃
)

and µ̃ = µg/µl + (1− µg/µl)H
(

x̃, t̃
)

wherein H
(

x̃, t̃
)

represents a smoothed Heaviside function, which is zero in the gas
phase and unity in the liquid phase, where the subscript g designates the gas phase;
ũt = (ũs · t) t represents the velocity vector tangential to the interface in which ũs

corresponds to the interfacial velocity; κ is twice the mean interface curvature calculated
from the Lagrangian interface grid; ∇s = (I− nn) · ∇ stands for the surface gradient
operator wherein I is the identity tensor and n is the outward-pointing unit normal to
the interface; x̃f is the parameterisation of the interface Ã(t̃); finally, δ represents a Dirac
delta function that is non-zero when x̃ = x̃f only. The numerical method used to solve
the above equations is described in detail by Shin et al. (2018).

The dimensionless groups that appear in equations (2.2)-(2.6) are defined as

Bo =
ρlgR2

o

σs
, Oh =

µl√
ρlσsR

, (2.7)

Bi =
kdRo

U
, k =

kaC∞

kd
, P es =

URo

Ds
, P eb =

URo

Db
, βs =

ℜTΓ∞

σs
, (2.8)

where Bo and Oh are the Bond number (ratio of gravitational to capillary forces) and
Ohnesorge number (ratio of viscous to surface tension forces), respectively. The surfactant
elasticity parameter, βs, measures the sensitivity of the surface tension to the surfactant
concentration in which the parameter ℜ represents the thermodynamic ideal gas constant
value 8.314 J K−1 mol−1, and T denotes temperature. The parameters Pes and Peb are
the interfacial and bulk Peclet numbers that represent the ratio of convective to diffusive
time-scales in the plane of the interface and the bulk, respectively. The Biot number, Bi,
stands for the ratio of characteristic desorptive to convective time-scales. Finally, k is
the ratio of adsorption to desorption time scales where ka and kd refer to the surfactant
adsorption and desorption coefficients, respectively.
At equilibrium, there is no surfactant exchange between the interface and the bulk, and

the last term on the right-hand-side of equation (2.5) reduces to the Langmuir adsorption
isotherm

χ =
Γeq

Γ∞

=
k

(1 + k)
, (2.9)



Marangoni stresses in drop-interface coalescence 5

(a) (b) (c)

Figure 1. Schematic representation of the flow configuration, and validation of the numerical
procedure: (a) initial shape of the drop resting close to the interface, highlighting the
computational domain of size 12Ro×12Ro×6Ro (not-to-scale) in a three-dimensional Cartesian
domain, x = (x, y, z), with a resolution of 3863; (b) direct comparisons of our numerical
predictions for a surfactant-free case (blue line) with experimental results reported by Blanchette
& Bigioni (2006) for the post-coalescence dynamics of an ethanol drop in air prior to interfacial
singularity formation with Oh = 0.011 and Bo = 0.09; also shown in red lines are the numerical
solutions by Deka et al. (2019) for the same case; (c) evolution of the neck radius as a function
of the time to break-up, to, which agrees with the well-known inertial-viscous scaling theory of
(Eggers 1993) shown as a dashed line with unity slope.

where χ stands for the fraction of the interface covered by adsorbed surfactant. Further-
more, the Marangoni stress, τ̃ , which appears in the third term on the right-hand-side of
equation (2.3), is expressed as a function of Γ̃ as follows:

τ̃ ≡ ∇sσ̃ · t = −
βs

1− Γ̃
∇sΓ̃ · t, (2.10)

where t is the unit tangent to the interface. In all cases considered in the present study,
the Marangoni time-scale, µRo/∆σ = O(10−4) s, as compared to the capillary and sorp-
tive/desorptive time-scales, which are of O(10−3) s and O(10−3)−O(10−4) s, respectively;
thus Marangoni stresses will play a crucial role in the coalescence phenomenon. Finally,
the tildes are dropped henceforth with the understanding that hereafter all variables
discussed are dimensionless unless stated otherwise.

2.2. Numerical setup, validation, and parameters

The numerical setup closely follows the work done by Sun et al. (2018), and Martin
& Blanchette (2015). Thus, the size of the dimensionless computational domain is
chosen as 12Ro × 12Ro × 6Ro, which is found to be sufficiently large to avoid the
effect of artificial reflections from the boundaries. We define a radial component as

r =
√

(x− xo)
2 + (y − yo)

2 where xo and yo are the abscissa and ordinate drop po-
sition, respectively. Solutions are sought subject to Neumann boundary conditions on
all variables at the lateral boundaries, p = 0 at the top boundary z = 6Ro, and no-slip
at the bottom z = 0. The initialisation of the interface corresponds to a spherical drop
resting immediately above a horizontal flat interface before its interfacial rupture (e.g.,
all the velocities set to zero) where both drop and liquid pool are made up of the same
liquid. Importantly, the drop is connected to the flat-interface by a neck of radius 0.25Ro

for the initialisation of the dynamics; a similar approach has been previously used by
Blanchette & Bigioni (2006, 2009) and Martin & Blanchette (2015). The assumption is
based on the time scale associated to the retraction of the neck tCR = Ro/

√

2σs/ρδ,
which is too short to have an influence on the phenomenon.
Figures 1b-c highlight qualitative and quantitative validation of our numerical frame-

work with results from the literature (Eggers 1993; Blanchette & Bigioni 2006; Deka et al.
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2019). The numerical simulations have been benchmarked against the surfactant-free
experimental results of Blanchette & Bigioni (2006) in terms of the temporal interfacial
dynamics of the coalescence of an ethanol drop surrounded by air (displayed in figure
1b). Our numerical results are provided as snapshots of the interface location at times
corresponding to those given by Blanchette & Bigioni (2006). We have also included
the numerical predictions from Deka et al. (2019). Figure 1b demonstrates that our
numerical framework is capable of predicting accurately the interfacial dynamics of the
coalescence phenomenon for ‘clean’ interfaces. Additionally, the temporal evolution of
the neck towards its pinch-off is in good agreement with the well-known inertial-viscous
scaling theory of Eggers (1993) (see figure 1c).

The dimensionless quantities for the studied phenomenon are consistent with
experimentally-realisable systems. The Ohnesorge number was set to Oh = 2 × 10−2

because it allows the observation of the interplay between the full range of dynamics
as there is a competition between inertial, viscous, and capillary forces. The chosen
density and viscosity ratios, ρg/ρl = 1.2 × 10−3 and µg/µl = 0.018, respectively,
are representative of an air-water system. The elasticity number βs depends on the
interfacial concentration at saturation, Γ∞, which, in turn, is related to the critical
micelle concentration (CMC) that is of O(10−6) mol/m2. We have explored the range of
0.1 < βs < 0.5 which corresponds to 2.9 × 10−6 < CMC < 1.4 × 10−5 mol/m2. Typical
values for the interfacial diffusion coefficient for surfactants such as Sodium Dodecyl
Sulphate (SDS), N-Dodecyl-N,N-dimethylammonio-3-propane sulfonate (SB12), and
similar monomers in aqueous solution are within the range of 10−12 < Ds < 10−8 m2/s
when Γ is below the CMC (Joos et al. 1982; Siderius et al. 2002); this range also covers
phospholipid-based pulmonary surfactants, such as N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-
yl)-1,2-Dihexadecanoyl-sn-Glycero-3- phosphocholine (NBD-PC), which are considered
effectively insoluble (Fallest et al. 2010; Strickland et al. 2015). Therefore, the interfacial
Peclet number Pes lies in the range 103 < Pes < 106. Recently, Batchvarov et al.
(2020) and Constante-Amores et al. (2020) suggested that the investigated interfacial
dynamics reach saturation above Pes = 100; thus, the selected interfacial Peclet is
set to Pes = 100. In terms of the chosen bulk Peclet number, Agrawal & Neuman
(1988) suggested that the interfacial and bulk Peclet numbers are of the same order of
magnitude; on this basis, hereafter we set Peb = Pes. In summary, we have chosen the
values of the surfactant-related parameters to ensure that all of the relevant physical
processes associated with surfactant transport such as Marangoni stresses, surface/bulk
diffusion, and sorption kinetics are represented in the present study.

In terms of mesh resolution studies, we have ensured that our numerical simulations are
mesh-independent, and subsequently for a resolution of (386)3, the results do not change
with decreasing cell size. We have also ensured that the liquid volume and surfactant
mass conservation are satisfied with an error under 10−3 % (see Appendix for more
information). Extensive mesh studies for surface tension-driven phenomena using the
same computational method have been published previously (Batchvarov et al. (2020);
Constante-Amores et al. (2020)). A discussion of the results is presented next.

3. Results

Following the good agreement between the surfactant-free coalescence simulation and
the experimental results of Blanchette & Bigioni (2006), key surfactant effects will be
investigated in this section. We first display our results related to the effect of insoluble
surfactant, e.g. NBD-PC (Fallest et al. 2010; Strickland et al. 2015), showing ultimately
the insights regarding the surfactant-driven-escape from a potential pinch-off singularity
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t = 0.17 t = 0.69 t = 1.20 t = 1.69

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. Effect of βs on the drop-interface coalescence dynamics for insoluble surfactants.
Spatio-temporal evolution of the three-dimensional interface shape for surfactant-free, (a)-(d),
and surfactant-laden coalescence for βs = 0.1, (e)-(h), βs = 0.3, (i)-(l), and βs = 0.5, (m)-(p).
Here, the dimensionless parameters are Oh = 0.02 and Bo = 10−3, and for the surfactant-laden
cases, Pes = 100 and Γo = Γ∞/2. The colour indicates the magnitude of Γ , and legend is shown
in (e).

such as the one depicted in figure 1b. We then present the effect of the sorptive kinetics
on the phenomenon throughout the use of soluble surfactants, e.g. SDS (Siderius et al.
2002). It is also worth mentioning that all surfactant simulations have been carried out
until the neck has either pinched off or undergone reopening. Additionally, we provide
with conclusive evidence that the neck-reopening is driven by Marangoni stresses.
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(a) (b) (c)

Figure 3. Effect of βs on the temporal dynamics of the vertical extent of the drop, (a), its
minimum neck radius, (b), and the system kinetic energy Ek, (c), for Oh = 0.02, Bo = 10−3,
Pes = 100, and Γo = Γ∞/2.

3.1. Insoluble surfactants

We start the discussion of the results by presenting the effect of the surface-active
agents through the analysis of the elasticity parameters βs with Oh = 0.02, Bo = 10−3,
Pes = 100, and Γo = Γ∞/2. Figure 2 shows the spatio-temporal interfacial dynamics for
the surfactant-free and surfactant-laden cases as a function of the elasticity parameter. At
the early stages of the dynamics, the neck expands as a result of the capillary retraction of
the liquid bridge which separates the drop from the underlying liquid pool. The capillary
retraction gives rise to the formation of capillary waves that travel upwards towards the
drop summit. As pointed out by Blanchette & Bigioni (2006), the oscillations caused by
the travelling capillary waves yield vertical stretching forming a nearly-cylindrical drop,
as shown in figure 2c, before capillarity acts to drive the dynamics towards a more energy-
favourable state by pulling on the sides of the drop. This capillary action leads to pinch-off
of the liquid bridge via a singularity which culminates in the formation of a secondary
droplet; this, in turn, follows a ‘cascade of coalescence events’ until the coalescence process
is completed as also shown by Thoroddsen & Takehara (2000), Blanchette & Bigioni
(2006), and Blanchette & Bigioni (2009).
For all surfactant-laden cases, the generation of a secondary droplet is avoided even

for the lower end of the elasticity parameter range. For βs = 0.1, the dynamics follow
closely those of the surfactant-free case, where significant vertical stretching of the original
droplet is observed (see figures 2e-h). At the point where surface tension is expected to
dominate the narrowing of the neck, the presence of non-uniform surfactant concentration
generates Marangoni stresses that change the outcome of the dynamics. By increasing
βs, surfactant redistribution along the interface is enhanced as displayed in figures 2i-l
and figures 2m-p, for βs = 0.3 and βs = 0.5, respectively. The surfactant concentration
gradients, and associated transport, is seen to suppress the capillary waves and to limit
the vertical stretch of the drop.
Figure 3 shows the immobilising effect brought about by the presence of surfactants

through the analysis of the temporal dynamics of the maximum vertical stretch of the
droplet, zmax, the neck radius, rmin, and the kinetic energy, Ek =

∫

V
(ρu2/2)dV . Here,

the Ek values have been normalised by the surface energy Es = Sσs, where S is the initial
superficial area of the system. The evidence for damping of the upward drop oscillation
can be seen in figure 3a. Here, the increase in βs is seen to depress the maximum crest
location of the drop. These observations confirm the expectations of Martin & Blanchette
(2015) of suppression of the axial oscillation with an increase in the surfactant strength
(though these authors were only able to run simulations for βs ! 0.2). Interestingly,



Marangoni stresses in drop-interface coalescence 9

the temporal evolution of zmax exhibits a non-monotonic dependence on βs, with the
most suppressed crest being associated with the intermediate value of βs = 0.3. The
physical explanation of this outcome will be provided in the discussion of figure 4 below.
Furthermore, investigation of the temporal variation of the minimum neck radius, rmin

(see figure 3b), confirms neck reopening for all surfactant-laden cases, with a 50% rise
in the time associated with the onset of re-opening, tr, corresponding to an increase in
βs from 0.1 to 0.5. The non-monotonic dependence on βs is also exhibited by tr: even
though the longest delay in neck closure is observed for the highest βs studied, the tr
value for βs = 0.3 is associated with the largest rmin. Further quantification of these
physical phenomena is provided below.

Finally, inspection of the kinetic energy plots shows that the presence of surfactants
induces a monotonically-decreasing overall value of Ek with βs over the range in time
encompassing the creation of the cylindrically-shaped drop (see figure 3c). This reduction
of the kinetic energy is a result of the rigidification of the interface brought on by
the tangential Marangoni stresses in agreement with Asaki et al. (1995). It is evident,
however, that for the surfactant-free case, EK decreases rapidly, as the drop breaks up
via neck pinch-off, eventually dipping below those associated with βs = 0.1 and βs = 0.3.

The next part of the analyses focuses on the time evolution of a two-dimensional
projection of the interfacial shape, Γ̃ , τ , and the radial component of the interfacial
velocity, utr, presented in panels a-i of figure 4. We also show the interplay between the
surface and the azimuthal component of the vorticity field (i.e., vorticity is defined as
ω = ∇ × u), displayed in figures 4j and 4k. In the surfactant-free case, it is seen from
figure 4d that utr < 0 and utr > 0 upstream and downstream of the developing neck,
which drives flow away from this region. The narrowing of the neck induces capillary-
driven flow that leads to further neck-thinning and the development of large peaks in utr,
as shown in figure 4e and h, which are typical of singularity formation. Close inspection
of the utr profile in figure 4i for the surfactant-free case reveals that it is characterised
by the presence of a large velocity peak (P1) and two stagnation points (labelled S1 and
S2) with the neck sandwiched between them. Over time, the inertio-capillary-induced
flow ultimately culminates in interfacial breakup to form a daughter droplet. From the
vorticity plots in figures 4j and 4k, it is seen that for the surfactant-free case, the vorticity
generation is confined to the vicinity of the neck as the two stagnation points aid the
fluid recirculation around the neck (so-called ‘vortex-ring’, displayed in the left-panel of
figure 4j). As time evolves, the interfacial curvature of the neck increases, and a large
vorticity generation can be observed on the side of the bulk accompanying the eventual
neck pinch-off, as depicted in the left-panel of figure 4k. More information regarding
the mechanisms which induce the generation of vorticity at the liquid-gas interface is
provided below.

For the surfactant-laden cases, the accumulation of Γ near the nascent neck can be
seen in figure 4b thus giving rise to a local decrease of σ. The presence of Γ gradients
results in the generation of a large positive peak in the τ profile in the vicinity of the neck
region, which is largest for the intermediate value of βs = 0.3, as shown in figure 4c (i.e.,
consistent with the non-monotonic response of dynamics observed in figure 3). Upstream
and downstream of the neck, τ > 0 and τ < 0, respectively, which drives flow towards
the drop summit and tail, reflected by utr < 0 and utr > 0, respectively. Although the
overall shape of the utr curve for the surfactant-free case is robust to the addition of
insoluble surfactant, it is evident that the magnitude of utr decreases with increasing βs,
particularly in the neck region; moreover, the oscillation in utr in the surfactant-free case
is damped out for βs > 0.
Additionally, by close inspection of the utr plots for the surfactant-laden cases in figure
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)
Surfactant-free Surfactant-laden Surfactant-free Surfactant-laden

(j) (k)

Figure 4. Panels (a-i): Effect of the elasticity parameter βs on the flow and
surfactant concentration fields associated with the drop-interface coalescence phenomenon.
Two-dimensional representation of the interface location, Γ , τ , and the radial component of the
interfacial velocity utr are shown in (a)-(d) and (e)-(h) for t = 1.20 and t = 1.68, respectively.
Note that the abscissa in (a) and (e) corresponds to the radial coordinate r, and in (b)-(d) and
(f)-(h) to the arc length s. The panel (i) represents a magnified view of (h). The arrows in (g)
indicate the directions of motion driven by the Marangoni stresses τ ; in (h) and (i), point P1, and
S1 and S2 designate the peak in utr and the stagnation points in the surfactant-free utr profile,
respectively. The diamond shapes in (i) show the location of the necks. The parameter values
and the times for the radius are the same as in figure 3. Panels (j) and (k): Effect of surfactants
on the azimuthal vorticity ωθ for the surfactant-free (left panels), and the surfactant-laden cases
(right panels), for βs=0.5, at t = 1.20, t = 1.68, respectively. All other parameters remain
unchanged from figure 3. The colour indicates the value of the azimuthal vorticity ωθ.
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4i, it becomes clear that only one stagnation point is present near the neck for βs = 0.3
and 0.5; thus, utr > 0 towards its tail. The Marangoni-induced flow has therefore led to
the suppression of one of the stagnation points. Furthermore, by comparing the vorticity
field pattern of the surfactant-free and the surfactant-laden cases, a change is observed
as a result of the presence of surfactants, and the inhibition of a stagnation point. The
generation of vorticity is also confined to the vicinity of the free-surface; however, the
‘vortex-ring’ no longer exists, as shown in the right panel of figure 4j.
Further in time, when the escape of capillary singularity commences, we observe that

vorticity is separated from the vicinity of the interface, and advected towards the bulk
of liquid reservoir, which is consistent with the findings of Ananthakrishnan & Yeung
(1994), supporting the reopening of the neck, as displayed in the right panel of figure
4k. The reason behind the vorticity separation is the inhibition of one of the stagnation
points. This behaviour is similar to the phenomenon explained by Hoepffner & Paré
(2013) in terms of capillary retraction of surfactant-free viscous ligaments where they
suggested that the advection of ωθ plays a crucial role in their escape from breakup.
These observations also agree with the recent studies reported by Constante-Amores
et al. (2020) and Constante-Amores et al. (2021) in terms of the escape of capillary
singularity during the capillary retraction of a liquid thread, and the inhibition of jet-
drops formation from bursting bubbles, respectively.
Next, we turn our attention to the role of the Marangoni stresses in the generation of

vorticity at the gas-liquid interface; this is consistent with the work of Batchelor (2007)
who concluded that vorticity in a homogeneous fluid is generated at the boundaries
only. Furthermore, we can assume that the interface behaves as a viscous free-surface
because of the vanishing viscosity and density ratios (similar assumptions have been
made previously by Dooley et al. (1997) and Xia et al. (2017)). Kamat et al. (2020)
demonstrated that for surface-tension-driven phenomena, vorticity generation depends
solely on the interfacial boundary conditions when Oh << 1. As a result, the tangential
stress at the interface is balanced by the surface tension gradients, resulting in

t ·D · n = t ·∇sσ (3.1)

in which, D represents the rate of deformation tensor (the symmetric part of the velocity
gradient tensor). By further mathematical manipulation (Lundgren & Koumoutsakos
1999), the generation of vorticity at the free-surface depends entirely on the velocity
field, interfacial geometry, and surface tension gradients:

ω = ωn + ωt + ωτ = −2
∂u · n
∂s

+ 2u · tκ+ t ·∇sσ. (3.2)

Similar results for ωn and ωt have been reported by Lundgren & Koumoutsakos (1999)
and Brøns et al. (2014). The first two terms on the right-hand-side of equation (3.2) corre-
spond to the the normal and tangential velocity-driven vorticity generation, respectively,
whereas the last term is representative of the Marangoni stress vorticity contribution.
Figure 5 shows the vorticity distribution along the interface according to equation (3.2).

By close inspection of the profiles, we observe that the vorticity generation at the interface
is highly dominated by the interfacial curvature term, ωt. Moreover, in the vicinity of the
neck we discover the existence of a positive peak in the Marangoni stress-driven vorticity
production (i.e., ωτ ). The peak of ωτ has a different sign in comparison to ωn. The leading
cause for this behaviour stems from the suppression of the stagnation points on both sides
of the neck, as shown in figure 4i. Ultimately, this analysis demonstrates the positive effect
of surface tension-driven vorticity generation on the neck reopening process. Additionally,
this finding is in agreement with Kamat et al. (2020), who concluded that the generation
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Figure 5. Vorticity production, ω, along the gas-liquid interface expressed in terms of the
local normal and tangential components from the velocity field and the Marangoni stresses,
represented by ωn, ωt and ωτ , respectively. The surfactant-laden case is characterised by βs = 0.5
at t = 1.68. All other parameters remain unchanged from figure 3. The diamond shape shows
the location of the neck.

(a) (b) (c)

Figure 6. Demonstration that tangential Marangoni stresses are responsible for the inhibition
of the interfacial singularity. Temporal evolution of the maximum vertical displacement of
the interface, neck radius and kinetic energy; (a)-(c), respectively, for the surfactant-free,
full-Marangoni |τ | > 0, and no-Marangoni cases |τ | = 0, for Oh = 0.02, Bo = 10−3, βs = 0.5,
Pes = 100 and Γo = 0.5Γ∞.

of vorticity arising from the presence of surfactants is generated over a time scale of
similar magnitude to the capillary time scale.

Finally, we aim to provide more conclusive evidence that the interfacial singularity
inhibition is Marangoni-driven rather than a result of the reduction of the surface tension
(i.e., capillary pressure reduction). For this reason, we have performed an additional
simulation in which, Marangoni stresses have been suppressed. Figure 6 reports the
temporal evolution of the maximum axial position zmax, the neck radius rmin, and the
kinetic energy Ek for the surfactant-free and Marangoni-suppressed cases. Similar flow
behaviour between the surfactant-free and Marangoni-suppressed cases are observed. The
most remarkable finding is that for the Marangoni-suppressed-case, it is observed that
the mean reduction of the surface tension does not prevent the horizontal collapse of
the droplet (see figure 6b). The inspection of the kinetic energy plot shows that the
Marangoni-suppressed and surfactant-free cases have almost identical behaviour (see
figure 6c). Therefore, when Marangoni stresses are enabled fully, a change of the fate
of the coalescence is observed via the reopening of the neck.
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(a) (b) (c)

Figure 7. Effect of Bi on the temporal dynamics of the vertical strength of the drop, (a),
minimum neck radius, (b), and kinetic energy (c), when Oh = 0.02, Bo = 10−3, Pes = 100,
βs = 0.5, k = 1 and Γo = χ.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Effect of the solubility parameter Bi on the flow and surfactant concentration fields
associated with the drop-interface coalescence phenomenon. Two-dimensional representation of
the interface location, Γ , τ , and the radial component of the interfacial velocity utr are shown
in (a)-(d) and (e)-(h) for t = 1.20 and t = 1.68, respectively. Note that the abscissa in (a) and
(e) corresponds to the radial coordinate r, and in (b)-(d) and (f)-(h) to the arc length s. Here,
all other parameters remain unchanged from figure 7.

3.2. Soluble surfactants

In this subsection we present a discussion of the results associated with the effects
of surfactant solubility and sorption kinetics, parameterised by Bi and k, respectively.
Unless stated otherwise, the parameters remain fixed to their ‘base’ values: Oh = 0.02,
Bo = 10−3, βs = 0.5, and Pes = 100; the interfacial surfactant concentration is initialised
using its equilibrium surfactant concentration, thus Γo = χ = k/(1 + k). Once again,
simulations are carried out until either neck pinch-off or reopening has been observed.

3.2.1. Effect of the Biot number, Bi

Figure 7 shows the effect of varying Bi in the range 0.1 − 10 on the drop maximal
vertical extent, zmax, the neck radius rmin, and the kinetic energy Ek with k = 1; also
shown are the curves associated with the insoluble surfactant and surfactant-free cases
which respectively correspond to the Bi → 0 and Bi → ∞ (and/or βs → 0) limits. At the
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lower end of this range (i.e., Bi = 0.1), the sorptive timescales are much larger than those
associated with interfacial effects; therefore, the dynamics are dominated by capillarity
and Marangoni stresses, and are therefore expected to be similar to those observed
for the insoluble surfactant case. This is confirmed upon inspection of figure 7 as the
curves associated with the Bi = 0.1 case practically overlap with those generated for the
insoluble surfactant case. For large Bi, the monomers desorb rapidly from the interface,
which represents the case of a highly-soluble surfactant characterised by dynamics that
are similar to those that accompany the surfactant-free case. This is also confirmed by
comparing the curves associated with the surfactant-free and Bi = 10 cases, the latter
corresponding to the largest Bi value studied.

As depicted in figure 7a, increasing the level of solubility leads to a decrease in the
surfactant mass at the interface available to induce Marangoni stresses and, consequently,
delays the retardation in the initialisation of the vertical stretch of the drop. Interestingly,
the lowest zmax is associated with the intermediate Bi = 1 case, thus zmax exhibits a
non-monotonic dependence on the surfactant solubility. Turning attention towards the
effect of solubility on the neck-size, rmin displayed in figure 7b, it is clearly seen that
Marangoni-induced flow results in the inhibition of the capillary-driven singularity over
the entire range of Bi values studied. This effect becomes increasingly more pronounced
with decreasing Bi and the rmin vs t profiles for the surfactant-laden cases are bounded
between the insoluble and the surfactant-free cases. Finally, the Ek profiles depicted in 7c
show that decreasing Bi leads to an overall reduction in the kinetic energy, which stems
from the rigidifying effect of the Marangoni stresses; this is weakened by increasing the
solubility and the enhanced surfactant desorption from the interface which leads to a
reduction in τ .
Evidence of surfactant-induced immobilisation with decreasing Bi is further provided

in figure 8a,e, and 8d,h, which depict the interface shape and utr, respectively; the rest
of the parameters remain unaltered from figure 7. It is also clearly seen from figure 8b,f
that higher surfactant desorption is observed as Bi increases driven by the mass transfer
between the interface and bulk. Although the largest Γ is associated with the smallest
Bi values, the largest gradients, and, therefore, Marangoni stresses, τ , are found for the
intermediate Biot number, Bi = 1, as shown in figure 8c,g; this is consistent with with
the non-monotonic dependence of the vertical stretch of the drop on Bi, described in
figure 7a. Notably, a comparison of panels (b) and (f), and (c) and (g) of figure 8 reveals
that over time, the Γ gradients become sharper, particularly for small and intermediate
Bi leading to an increase in τ , as was also observed in the insoluble surfactant case.
These Marangoni stresses counteract the direction of the inertio-capillary-induced flow,
dampen the oscillations in utr (see figure 8d,h), and act to prevent neck pinch-off where
the efficacy is once more dependent on the magnitude of Bi. Finally, the same analysis
regarding the role of surfactants in the inhibition of stagnation points, explained in
subsection 3.1, can be extrapolated to the solubility parameter, Bi.

3.2.2. Effect of the adsorption parameter, k

Figure 9 shows the effect of the adsorption parameter, k, on the temporal dynamics of
the drop-interface coalescence phenomenon through the analysis of the vertical stretch
of the droplet, zmax, the neck radius, rmin, and the kinetic energy, Ek, for Bi = 1, and
k = (0.01, 1, 5). We note that as k → 0, χ → 0, and this corresponds to vanishingly small
equilibrium interfacial concentrations, which were used to initialise the simulations. In
addition, from eq. (2.5), k → 0 implies that Γ will remain small, and thus, in this limit,
we expect the dynamics to be consistent with those associated with the surfactant-free
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(a) (b) (c)

Figure 9. Effect of the adsorption parameter k on the temporal dynamics of the vertical strength
of the drop, (a), minimum neck radius, (b), and kinetic energy (c), when Oh = 0.02, Bo = 10−3,
βs = 0.5, Pes = Peb = 100, Bi = 1 and Γo = χ.

case. For k ≫ 1, on the other hand, the flow behaviour is similar to that observed in the
insoluble surfactant case.
We start the discussion of the effect of the k parameter by analysing its effect on

the vertical stretch of the droplet (shown in figure 9a). By inspection of the profiles,
a monotonic response of the vertical stretch is observed with decreasing k values (e.g.,
k = 0.1) the dynamics are similar to that of the surfactant-free case characterised by neck
formation and pinch-off, as shown in figure 10a,e; this arises due to the increase in mass
transfer from the interface to the bulk decreasing the interfacial concentration (see figure
10b,f) and reducing the magnitude of the Marangoni stress, which is maximal for k = 1,
as shown in figure 10c,g. The trends highlighted in figure 9a are mirrored in figure 9b that
displays the temporal dynamics of the rmin which also exhibits a monotonic dependence
on k. Increasing k alters the utr profile in figure 10d,h in a similar manner to that observed
upon increasing βs and/or decreasing Bi as was shown previously in figures 4d,h and 8d,h,
respectively. As a result, it is seen clearly that the presence of surfactants alters the fate of
the coalescence phenomenon as Marangoni-driven flow induces neck reopening. Finally,
the Ek plots shown in figure 9c support, once more, the high interfacial rigidification
brought about by the presence of surfactants.

4. Conclusions

A study of the effect of Marangoni-induced flow as a result of the presence of surfactants
on the drop-interface coalescence was presented using a hybrid front-tracking/level-set
method (Shin & Juric (2009), Shin et al. (2017), Shin et al. (2018)). The surfactant
transport equations were fully-coupled to the Navier-Stokes equations in which the
surface tension depends on the interfacial surfactant concentration through a nonlinear
Langmuir equation of state. The numerical framework has been validated against the
experimental work presented by Blanchette & Bigioni (2006) for the surfactant-free coa-
lescence dynamics, and the inertio-viscous scaling-lows regarding the temporal evolution
of the neck towards its capillary singularity presented by Eggers (1993). We have selected
a surfactant-free base case characterised by the dimensionless quantities of Oh = 0.02
and Bo = 10−3. The former parameter ensures a rich dynamics in the inertia-viscous-
capillary flow regime, whereas the latter parameter ensures that gravity forces do not
affect the dynamics of the system, which could mask effects related to the presence of
surfactants.
For insoluble surfactants, we have demonstrated that Marangoni stresses drive motion

from regions of high-surfactant concentration (low surface tension) to low concentration
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Effect of the adsorption parameter k on the flow and surfactant concentration fields
associated with the drop-interface coalescence phenomenon. Two-dimensional representation of
the interface location, Γ , τ , and the radial component of the interfacial velocity utr are shown
in (a)-(d) and (e)-(h) for t = 1.20 and t = 1.68, respectively. Note that the abscissa in (a) and
(e) corresponds to the radial coordinate r, and in (b)-(d) and (f)-(h) to the arc length s. Here,
all other parameters remain unchanged from figure 9.

(high tension) regions, resulting in retardation of the interfacial dynamics. This immo-
bilising effect of the surfactants as a result of the Marangoni stresses is also observed
via the strong reduction in the maximum stretching (by dampening the strength of the
capillary waves which converge in the drop summit) of the drop and kinetic energy. We
have also shown, that the condition for the capillary singularity is the existence of two
stagnation points close to the drop neck, which leads to the generation of vorticity in this
area (‘vortex-ring’). In the presence of surfactants, Marangoni-induced flow suppresses
one of the stagnation points resulting in the advection of vorticity towards the liquid
bulk and the reopening of the neck. This effect is strongest for insoluble surfactants and,
for soluble surfactants, is maximal for an intermediate range of solubility and sorption
kinetic parameter values.
Future directions are related to the performance of numerical simulations featuring

three-dimensional behaviours occurring for large Bond numbers. Recently, the experi-
mental work performed by Dong et al. (2019) suggested that the presence of surfactants
induces the rupture of the interface (i.e., hole formation) in an off-axis location at high
Bond numbers. Thus, a fully three-dimensional retracting capillary wave will certainly
affect the behaviour of the system rising a more complex coalescence dynamics, and
constitute a fruitful area of future research.
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APPENDIX: mesh study

On account of showing mesh independent results, we have monitored the temporal
variation of the liquid-volume of the system for a resolution of (386)3, which has been
used throughout the entire study. Figure 11 shows the plot profiles for the surfactant-
free and the surfactant-laden cases. It is evident that the numerical method is capable
of capturing the rich interfacial dynamics with a conservation of volume under 10−3%.
With respect to the accuracy of the surfactant equations, we refer to Shin et al. (2018),
who carefully benchmarked the formulation and numerical implementation of the surface
gradients of surfactant concentration and surface tension. For the studied phenomenon,
we observed the conservation of surfactant mass under 10−2% for all the surfactant-
laden cases. Additionally, extensive mesh studies for capillary phenomena, using the same
numerical method, had been previously reported (Batchvarov et al. 2020; Constante-
Amores et al. 2020, 2021).
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José R. and Anthony, C. R. & Basaran, O. A. 2020 Surfactant-driven escape from
endpinching during contraction of nearly inviscid filaments. J. Fluid Mech. 899, A28.

Kavehpour, H. P. 2015 Coalescence of drops. Annu. Rev. Fluid Mech. 47, 245–268.
Lundgren, T. & Koumoutsakos , P. 1999 On the generation of vorticity at a free surface. J.

Fluid Mech. 382, 351–366.
Manikantan, H. & Squires, T. M. 2020 Surfactant dynamics: hidden variables controlling

fluid flows. J. Fluid Mech. 892, P1.
Martin, D. W. & Blanchette, F. 2015 Simulations of surfactant effects on the dynamics of

coalescing drops and bubbles. Phys. Fluids 27, 012103.
Muradoglu, M. & Tryggvason, G. 2014 Simulations of soluble surfactants in 3d multiphase

flow. J. Comput. Phys. 274, 737–757.
Paulsen, J. D., Burton, J. C. & Nagel, S. R. 2011 Viscous to inertial crossover in liquid

drop coalescence. Phys. Rev. Lett. 106, 114501.
Raes, F., Van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.-P., Seinfeld, J. H.



Marangoni stresses in drop-interface coalescence 19

& Adams, P. 2000 Formation and cycling of aerosols in the global troposphere. Atmos.
Environ. 34, 4215–4240.

Shim, S. & Stone, H. A. 2017 Damped coalescence cascade of liquid drops. Phys. Rev. Fluids
2, 044001.

Shin, S. & Juric, D. 2009 A hybrid interface method for three-dimensional multiphase flows
based on front tracking and level set techniques. Int. J. Numer. Methods Fluids 60, 753–
778.

Shin, S., Chergui, J. & Juric, D. 2017 A solver for massively parallel direct numerical
simulation of three-dimensional multiphase flows. J. Mech. Sci. Tech. 31, 1739–1751.

Shin, S., Chergui, J., Juric, D., Kahouadji, L., Matar, O. K. & Craster, R. V. 2018 A
hybrid interface tracking – level set technique for multiphase flow with soluble surfactant.
J. Comp. Phys. 359, 409–435.

Siderius, A., Kehl, S. K. & Leaist, D. G. 2002 Surfactant diffusion near critical micelle
concentrations. J. Solution Chem. 31, 607–625.

Strickland, S. L., Shearer, M. & Daniels, K. E. 2015 Spatiotemporal measurement of
surfactant distribution on gravity–capillary waves. J. Fluid Mech. 777, 523 – 543.

Sun, K., Zhang, P., Che, Z. & Wang, T. 2018 Marangoni-flow-induced partial coalescence
of a droplet on a liquid/air interface. Phys. Fluids 3, 023602.

Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids
12, 1265.

Villermaux, E. 2007 Fragmentation. Ann. Rev. of Fluid Mech. 39, 419–446.
Xia, X. and He, C. and Yu, D. and Zhao, J. & Zhang, P. 2017 Vortex-ring-induced internal

mixing upon the coalescence of initially stationary droplets. Phys. Rev. Fluids 2, 113607.
Ziegler, V. E. & Wolf, B. A. 2005 Bimodal drop size distributions during the early stages

of shear induced coalescence. Polymer 46, 9265–9273.


