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ABSTRACT

In many businesses, and particularly in finance, the behavior of a client might drastically change
over time. It is consequently crucial for recommender systems used in such environments to be
able to adapt to these changes. In this study, we propose a novel collaborative filtering algorithm
that captures the temporal context of a user-item interaction through the users’ and items’ recent
interaction histories to provide dynamic recommendations. The algorithm, designed with issues
specific to the financial world in mind, uses a custom neural network architecture that tackles the
non-stationarity of users’ and items’ behaviors. The performance and properties of the algorithm are
monitored in a series of experiments on a G10 bond request for quotation proprietary database from
BNP Paribas Corporate and Institutional Banking.
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1 Introduction

In a financial market, liquidity is provided by market makers, whose role is to constantly offer both buy (bid) and sell
(ask) prices. Market makers benefit from the difference between the two, called the bid-ask spread. Corporate and
institutional banks such as BNP Paribas CIB play the role of market makers in financial markets across many asset
classes and their derivatives. When a client wants to trade a financial product, she either requests prices on an electronic
platform where many different market makers operate in a process called a request for quotation (RFQ), or contact a
salesperson of a bank. Reciprocally, salespeople can also directly contact clients and suggest relevant trade ideas to
them, e.g., financial products held by the bank and on which it might offer a better price than its competitors. Proactive
salespeople, which are particularly important for the bank, help manage financial inventories to minimize the risk to
which the bank is exposed, and serve better their clients when correctly anticipating their needs. Providing salespeople
with an RFQ recommender system would support their proactivity by allowing them to navigate the complexity of the
markets more easily. Our goal is to design a financial recommender system that suits the particularities of the financial
world to assist salespeople in their daily tasks. RFQ recommendation is an implicit feedback problem, as we do
not explicitly observe clients’ opinions about the products they request. Implicit feedback is a classic recommender
system setup already addressed by the research community, e.g., in [1]. The financial environment, however, brings
about specific issues that require attention. To that end, the algorithm we introduce here has three main aims:

• To incorporate time. In a classic e-commerce environment, leaving aside popularity and seasonal effects,
recommendations provided at a given date may remain relevant for a couple of months, since users’ shopping
tastes do not markedly evolve with time. In the financial world, a user is interested in a financial product at
a given date not only because of the product’s intrinsic characteristics but also because of its current market
conditions. Time is consequently crucial for RFQ prediction and should be taken into account in a manner
that allows for future predictions.
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• To obtain dynamic embeddings. Being able to capture how clients (resp. financial products) relate to each
other and how this relationship evolves with time is of great interest for business, as it allows getting a deeper
understanding of the market. One of our goals is consequently to keep the global architecture of matrix
factorization algorithms, where the recommendation score of a (client, product) couple is given by the scalar
product of their latent representations.

• To symmetrize users and items. Classic recommender systems focus on the user-side. However, the
product-side is also of interest in the context of a corporate bank. To control her risk, a market maker needs
to control her positions, i.e., make sure she does not hold a given position for too long. Consequently, coming
up with a relevant client for a given asset is equally important, and the symmetry of clients and assets will be
integrated here in both our algorithms and evaluation strategies.

We tackle these goals with a context-aware recommender system that only uses client-product interactions as its signal
source. In this work, the context is dynamic, and is inferred at a given time from the previous interactions of clients
and products. The terms clients and users (resp. financial products/assets and items) will be used interchangeably to
match the vocabulary used in recommender systems literature.

2 Related work

The work presented in this article is a context-aware and time-dependent recommender system, which are both active
areas of research [2, 3]. Notably, in [4], the recommendations of a bandit algorithm are dynamically adapted to
contextual changes. In [5], the recommendations of a hierarchical hidden Markov model are contextualized based
on the users’ feedback sequences. Down-weighing past samples in memory-based collaborative filtering algorithms
helps better match temporal dynamics [6]. The latent factors of a matrix factorization can also directly include temporal
dynamics [7]. Temporal probabilistic matrix factorization [8] introduces dynamics of users’ latent factors with a time-
invariant transition matrix that can be computed using Bayesian approaches, thereby extending probabilistic matrix
factorization [9]. It is also possible to enhance latent factor models with Kalman filters [10] or recurrent neural
networks [11] to capture the dynamics of rating vectors.

Tensor factorization models handle time by considering the user-item co-occurrence matrix as a three-dimensional
tensor where the additional dimension corresponds to time [12, 13], and where temporal dynamics can be accounted
for using recurrent neural networks [13] — these approaches, however, do not allow for future predictions. Using
historical data to introduce dynamics in a neural network recommender system was done in [14], where users are
assimilated to their items’ histories. The Caser algorithm [15] uses convolutional filters to embed histories of previous
items and provide dynamic recommendations to users.

The algorithm introduced in this work is to some extent reminiscent of graph neural networks [16] and their adaptation
to recommendation [17]. Using time to enhance recommendations with random walks on bipartite graphs was explored
in [18]. How graph neural networks behave with dynamic bipartite graphs is to the best of our knowledge yet to be
discovered and could lead to an extension of this work. A first attempt at financial products recommendation was
made in [19] with the particular example of corporate bonds.

3 Methodology

We introduce a neural network architecture that aims at producing recommendations through dynamic embeddings of
users and items, that we call History-augmented Collaborative Filtering (HCF).

Let U be the set of all users and I the set of all items. Let us note xu ∈ Rd for u ∈ U , xi ∈ Rd for i ∈ I the static
d-dimensional embeddings of all the users and items we consider. Let t ∈ [[0 ;∞]] be a discrete time-step, taken as
days in this work. For a given u, at a given t, we define ht

u as the items’ history of u, i.e., the set of items found to be of
interest to u in the past — we respectively define ht

i as item i users’ history. We use here as histories the last n events
that happened strictly before t to either user u or item i. If at a given twe observe 0 ≤ n′ < n previous events, histories
are only formed of those n′ events. Users are consequently on a same event scale — high-activity users’ histories may
span a couple of days, whereas low-activity ones may span a couple of months (resp. for items). Histories formed of
items/users of interest in a past window of fixed size were also tried, but led to inferior performance.

Figure 1.a shows the global architecture of the HCF network. It is composed of two symmetric blocks — a user block
and an item block. At a given time t, the user block of HCF produces dynamic user embeddings xtu using as inputs
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Figure 1: a. Global architecture of the HCF network, composed of two symmetric user and item blocks. b. Illustration
of the application of a one-dimensional convolution filter of kernel size 1 along the embedding dimension axis of our
inputs xu and htu for a user u ∈ U , where α, β, γ are the parameters of the convolution filter and l ∈ [[1; d]]. The same
computation holds for items i ∈ I respectively.

static embeddings of users xu and their corresponding histories’ embeddings htu, defined as

htu =
1

|ht
u|
∑
i∈ht

u

xi . (1)

If ht
u is empty, we use htu = 0. Respectively, the item block produces dynamic item embeddings xti, and the score

of a (u,i) couple at a given t is given by the scalar product of their dynamic embeddings. In each block, dynamic
embeddings are computed using a network of one-dimensional convolution filters of kernel size 1 along the embedding
dimension axis, considering user and history embeddings as channels (see Fig. 1.b). Convolutions were chosen
because we empirically found that all architectures performing computations involving both xu,l and htu,l′ with l 6=
l′ ∈ [[1; d]] the l-th component of the embedding systematically led to poorer performance than a linear component-
wise combination of xu and htu. The chosen convolutions can be seen as a variation of the linear component-wise
combination with shared parameters across all components, and allow for network depth.

The network is trained using the bayesian personalized ranking (BPR) loss [20], a surrogate of the ROC AUC score
[21]. It is defined in [20] as

LBPR = −
∑

(u,i,j)∈D

ln σ(xuij) , (2)

whereD = {(u, i, j)|i ∈ I+u ∧ j ∈ I\I+u }with I+u the subset of items that were of interest for user u in the considered
dataset, and xuij = xui − xuj , with xui the score of the (u, i) couple. σ is the sigmoid function, defined as σ(x) =
1/(1 + e−x). The underlying idea is to rank items of interest for a given u higher than items of no interest for that u,
and D corresponds to the set of all such possible pairs for all users appearing in the considered dataset. As D grows
exponentially with the number of users and items considered, it is usual to approximate LBPR with negative sampling
[22].

In our proposed methodology, scores become time-dependent. Data samples are therefore not seen as couples, but as
triplets (t, u, i). To enforce user-item symmetry in the sampling strategy, we define

Dt
u =

{
(t, u, i, j)|i ∈ It,+u ∧ j ∈ I\ht

u

}
(3)

Dt
i =

{
(t, u, v, i)|u ∈ U t,+

i ∧ v ∈ U\ht
i

}
(4)

with It,+u the subset of items that had a positive interaction with user u at time t, and U t,+
i the subset of users that

had a positive interaction with item i at time t. For a given positive triplet (t, u, i), we sample either a corresponding
negative one in Dt

u or Dt
i with equal probability. Note that considering samples as triplets adds a sampling direction,

as a couple that was active at a time t may no longer be active at other times t+ t′ or t− t”, t′, t” > 0. Such sampling
strategies will be more extensively studied in further iterations of this work.
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4 Experiments

We conduct a series of experiments to understand the behavior of the proposed HCF algorithm on a proprietary
database of RFQs on governmental bonds from the G10 countries. This database, which describes every day the RFQs
performed by the clients of the bank on G10 bonds, accounts for hundreds of clients and thousands of bonds and ranges
from 08/01/2018 to 09/30/2019. On average, we observe tens of thousands of user-item interactions every month.

We examine here the performance of our proposal in comparison to benchmark algorithms in two experiments. Bench-
mark algorithms, chosen for their respect of the aims outlined in Section 1, are a historical baseline and two matrix
factorization algorithms trained using a confidence-weighted euclidean distance [1] and the BPR objective [20], that
we respectively call MF - implicit and MF - BPR. MF - implicit is trained with gradient descent, and we adopt for MF
- BPR the symmetrical sampling strategy outlined in Section 3. The historical baseline scores a (user, item) couple
with their observed number of interactions during the considered training period.

In this section, the performance of our models is evaluated using mean average precision (mAP) [21], defined as

mAP = 1/|Q| ∗
∑
q∈Q

AP(q) , (5)

where Q is the set of queries to the recommender system, and AP(q) is the average precision score of a given query
q. To monitor the performance of our algorithms on both the user- and item-sides, we define two sets of queries over
which averaging:

• User-side queries. Queries correspond to the recommendation list formulated every day for all users;
• Item-side queries. Queries correspond to the recommendation list formulated every day for all items.

These two query sets lead to user- and item-side mAPs that we summarize with a harmonic mean in a symmetrized
mAP score used to monitor all the following experiments, as

mAPsym =
2 ∗mAPu ∗mAPi

mAPu + mAPi
. (6)

The user- and item-sides equally contribute to the symmetrized score since both sides equally matter in our financial
context, as seen in Section 1. The mAP scoring perimeter corresponds to the Cartesian product of all the users and
items observed in the training period1.

4.1 Evolution of forward performance with training window size

This experiment aims at showing how benchmark algorithms and our HCF proposal behave with regards to stationarity
issues. We already advocated the importance of time in the financial setup — taking the user side, clients’ behavior is
non-stationary, owing to the non-stationarity of the financial markets themselves but also externalities such as punctual
needs for liquidity, regulatory requirements, . . . In machine learning, this translates into the fact that the utility of past
data decreases with time. However, machine learning and more particularly deep learning algorithms work best when
provided with large datasets [23]: there is an apparent trade-off between non-stationarity and the need for more training
data. Our goal in this experiment is to show that introducing time in the algorithm helps to reduce this trade-off.

To prove this, we examine the evolution of forward performance as the training window size grows. We split the
G10 bonds RFQ dataset into three contiguous parts — a train part that ranges from up to 08/01/2018 to 07/31/2019
(up to one year), a validation part from 08/01/2019 to 08/30/2019 (one month) and a test part from 09/01/2019 to
09/30/2019 (one month). Validation is kept temporally separated from the training period to avoid signal leakages
[24], and is taken forward to match business needs. For all the considered algorithms, we train an instance of each
on many training window sizes ranging from a week to a year using carefully hand-tuned hyperparameters and early
stopping, monitoring validation symmetrized mAP.

We see in Fig. 2 that all benchmark algorithms present a bell-shaped curve. They attain a peak after which their
performance only degrades as we feed these models more data, corroborating the non-stationarity vs. amount of data
trade-off. On the contrary, HCF only gets better with training data size. Notably, HCF 12m which obtained best
validation performance used n = 20 and blocks with two hidden layers and ReLU activations.

1This scoring perimeter proved to be the fairest with regard to all considered models, as a model is consequently scored only
on what it can score and nothing else. Fixing the perimeter for all algorithms to the Cartesian product of all the users and items
observed in the maximal training window and attributing the lowest possible score to otherwise unscorable couples only lowers the
mAP scores of candidate algorithms that cannot obtain satisfactory results on such window sizes.
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Figure 2: Evolution of validation symmetrized mAP with training window size. Whereas benchmark algorithms seem
to have an optimal training window size, our HCF proposal keeps improving with the training window size.

To show that these bell-shaped curves are not an artifact of the hyperparameters chosen in the previous experiment,
we conduct a systematic hyperparameter search for multiple training window sizes using a combination of a hundred
trials of random search [25] and hand-tuning. The optimal sets of hyperparameters for each considered window size
are then used as in the previous experiment to obtain graphs of their validation mAP scores against the training window
size. Results are shown in Figure 3. MF - BPR 6m and 12m optimal hyperparameters happened to coincide, and their
results are consequently shown on the same graph.

Figure 3: Evolution of validation symmetrized mAP with training window size. Left: Optimal MF - implicit for the
1m, 3m, 6m and 12m windows. A consensus arises around the 1m window. Right: Optimal MF - BPR for the 1m,
2m, 3m, 6m and 12m windows. A consensus arises around the 2m-3m windows, slightly favouring the 2m window.

We see here that for both MF algorithms, hyperparameters optimized for many different window sizes seem to agree
on optimal window size, respectively around one month and two months, with slight variations around these peaks.
Consequently, bell shapes are inherent to these algorithms, which proves their non-stationarity vs. data size trade-off.

To obtain test performances that are not penalized by the discontinuity of the training and test windows, we retrain
all these algorithms with the best hyperparameters and window size found for the validation period on dates directly
preceding the test period, using the same number of training epochs as before. The performances of all the considered
algorithms are reported in Table 1.

It appears that our HCF algorithm, augmented with the temporal context, obtains better performances on both valida-
tion and test periods than the static benchmark algorithms. Consequently, introducing temporal dynamics is essential
in the financial setup that we consider.

5
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Table 1: Window size study — symmetrized mAP scores, in percentage.

Algorithm Window Valid mAP Test mAP
Historical 3m 18.51 16.86

MF - implicit 1m 19.94 19.24
MF - BPR 2m 21.89 20.05

HCF 12m 24.43 25.02

4.2 Evolution of forward performance with time

It follows from the previous experiment that our benchmark algorithms cannot make proper use of large amounts of
past data and have to use short training window sizes to obtain good performances compared to historical models.
Moreover, the results of these algorithms are less stable in time than HCF results. Fig. 4 visualizes the results reported
on Table 1 on a daily basis for all the considered algorithms.

Figure 4: Daily evolution of symmetrized mAP during the test period. Light shades correspond to the true daily
symmetrized mAP values, and dark ones to exponentially weighted averages (α = 0.2) of these values.

We see a downward performance trend for all the benchmark algorithms — the further away from the training period,
the lower the daily symmetrized mAP. On the contrary, HCF has stable results over the whole test period: introducing
temporal context through user and item histories hinders the non-stationarity effects on forward performances.

The results from Section 4.1 and the observed downward performance trend consequently suggest that benchmark
models need frequent retraining to remain relevant regarding future interests. A simple way to improve their results
is to retrain these models on a daily basis with a constant, sliding window size w — predictions for each day of the
testing period are made using a model trained on the w previous days. Each model uses here the number of epochs
and hyperparameters determined as best on the validation period in the previous experiment. Results of these sliding
models are shown in Table 2, where HCF results corresponds to the previous ones.

Table 2: Sliding study — symmetrized mAP scores, expressed in percentage.

Algorithm Window Test mAP
Historical (sliding) 3m 20.32

MF - implicit (sliding) 1m 24.27
MF - BPR (sliding) 2m 24.46

HCF 12m 25.02

We see that both MF - implicit and MF - BPR significantly improved their results compared to their static versions from
Table 1, but are still below the results of HCF trained on 12 months. Consequently, our HCF proposal is inherently
more stable than our benchmark algorithms and captures time in a more efficient manner than their daily retrained
versions.

6



History-Augmented Collaborative Filtering for Financial Recommendations A PREPRINT

5 Conclusion

We introduce a novel HCF algorithm, a time-aware recommender system that uses user and item histories to capture
the dynamics of the user-item interactions and that provides dynamic recommendations. In the context of financial
G10 bonds RFQ recommendations, we show that for classic matrix factorization algorithms, a trade-off exists between
the non-stationarity of users’ and items’ behaviors and the size of the training datasets. This trade-off is overcome with
history-augmented embeddings. Moreover, these embeddings outperform sliding versions of classic matrix factoriza-
tion algorithms and prove to be more stable predictors of the future interests of the users and items. Further research
on the subject will include a more thorough investigation of alternative histories’ embeddings formulations and time-
aware sampling strategies. Finally, the HCF algorithm could be applied beyond the financial world to tasks where
temporal dynamics drive users’ behaviors, e.g., music and movie recommendation, where the current mood of a user
highly influences her next decisions.
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