

Sensitization of chondrosarcoma cells with PARP inhibitor and high-LET radiation

Mathieu Césaire, Utpal Ghosh, Jean Baptiste Austry, Francesco Cammarata, Laurent Castera, Giuseppe Antonio Pablo Cirrone, François Chevalier

▶ To cite this version:

Mathieu Césaire, Utpal Ghosh, Jean Baptiste Austry, Francesco Cammarata, Laurent Castera, et al.. Sensitization of chondrosarcoma cells with PARP inhibitor and high-LET radiation. ENLIGHT Annual Meeting and Training 2019, Jul 2019, Caen, France. hal-03144597

HAL Id: hal-03144597 https://hal.science/hal-03144597v1

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Centre de Recherche sur les Ions, les Matériaux et la Photonique

Project with the financial support of

Sensitization of chondrosarcoma cells with PARP inhibitor and high-LET radiation

Césaire M.^{1,2,3}, Ghosh U.^{1,2,4}, Austry J.- B.^{1,2} Cammarata F. P. ^{5,6}, Castéra L.⁷, Cirrone G. A. P.⁶ and Chevalier F.^{1,2}

¹ LARIA, iRCM, François JACOB Institute, DRF-CEA, Caen, France ; ² Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP UMR6252, 14000 Caen, France ; ³ Centre Francois Baclesse, Radiotherapy Unit, Caen, France ; ⁴ Department of Biochemistry & Biophysics; University of Kalyani, India; ⁵ Institute of Molecular Bioimaging and Physiology, National Research Council - (IBFM-CNR) Cefalù (PA), Italy; ⁶ National Institutes of Nuclear Physics, South National Laboratory, Catania, Italy; ⁷ Laboratory of Cancer Biology and Genetics, Comprehensive Cancer Center François Baclesse, Caen, France

Chondrosarcoma is a malignant tumor that arises from cartilaginous tissue and is radioresistant and chemoresistant to conventional treatments. The preferred treatment consists of surgical resection, which might cause severe disabilities for the patient; in addition, this procedure might be impossible for inoperable locations, such as the skull base. Carbon ion irradiation (hadron therapy) has been proposed as an alternative treatment, primarily due to its greater biological effectiveness and improved ballistic properties compared with conventional radiotherapy with X-rays.

The goal of this study was to characterize the genetic mutations of a grade III chondrosarcoma cell line (CH2879) and examine the cellular responses to

Irradiations / treatments

The human chondrosarcoma cell line CH2879 (GIII) was irradiated with :

- **X-Rays** (X-Rad 225 Cx)
- **Proton (INFN Catania)**
- Carbon (GANIL NIRS)

Aim of this study

- explore the differential cellular responses of chondrosarcomas to conventional radiotherapy and hadrontherapy

- understand the biological effects of carbon beams in cancer treatment
- estimate the capacity of PARP inhibitors in radio-

conventional radiotherapy (X-rays) and hadron therapy (proton and carbon ions) in the presence of the PARP inhibitor Olaparib.

To better understand PARP inhibition, we analyzed the formation of poly-ADP ribose chains by western blot; we observed an increase in its signal after irradiation, which disappeared on addition of the PARP inhibitor.

PARPi enhanced ratio of approximately 1.3, 1.8, and 1.5 following irradiation of cells with X-rays, protons, and C-ions, respectively, as detected by clonogenic assay. The decrease in cell survival was confirmed by proliferation assay. The radiosensitivity of CH2879 cells was associated with mutations in homologous recombination repair genes, such as RAD50, SMARCA2 and NBN.

This study demonstrates the capacity of the PARP inhibitor Olaparib to radiosensitize mutated chondrosarcoma cells to conventional photon irradiation and proton and carbon ion irradiation.

from Césaire et al. Journal of Bone Oncology, in press - chevalier@ganil.fr

with / without PARP inhibitor : **Olaparib**

sensitizing chondrosarcoma cells

Irradiation facilities with accelerated ions

INFN, Catania, Italy Protons / Carbon ions

GANIL, Caen, France

Carbon ions

LARIA

NIRS, Chiba, Japan **Carbon ions**

Mutation profiles of chondrosarcoma cell lines

Gene	transcript	Description ¹	Expected consequence ²	Mutated allele frequency	Interpretation	detectable by ³
NBN	NM_002485.4	c.2249T>A	p.Leu750*	31%	probably inactive protein with premature termination codon (Nonsens mediated decay may be not active because the variant is located at the very end of the coding sequence)	HC; Lofreq; OutLyser
PTEN	NM_000314.6	c.697C>T	p.Arg233*	100%	inactive protein due to the introduction of premature termination codon	HC; Lofreq; OutLyser
RAD50	NM_005732.3	c.2165del	p.Lys722Argfs*14	54%	inactive protein due to the introduction of premature termination codon	HC; Lofreq; OutLyser
SMARCA2	N.A.	Loss of locus		100%	Loss of the entire tumor suppressor gene (probable	OncoCNV

A panel of genes (69), implicated in DNA repair, have been sequenced. An illumina NextSeq, 2x75pb paired-end technic was Bioinformatics analysis used. was HaplotypeCaller performed (Broad Institute).

Of the 69 genes that were analyzed, 12 were mutated by at least 2 callers: by substitution or deletion, creating nonsense, missense, or frameshift mutation or possible splice (ARID1A; ARID1B, BRIP1, FANCA, FANCG, FANCI, GATA3, HDAC3, NBN, PARP1, PTEN, and RAD50) and loss of sequence (SMARCA2). Of the 12 genes with a single mutation, 3 had a frequency of up to 10% (Table 1) : PTEN was mutated (c.697C>T; nonsense) in 100% of alleles, RAD50 was mutated (c.2165del; frameshift) at 44%, NBN was mutated (c.2249T>A; nonsense) at 31% and SMARCA2 locus was lost in 100% of alleles.

X-rays Protons C-ions

Loss of heterozygoty)

¹Mutation nomenclature per HGVS recommendations; nucleotide position +1 corresponds to the A of the ATG translation initiation codon. ²Expected consequence on protein level. ³Algorithms used for prediction: SIFT, PolyPhen, MutationTaster

Clonogenic cell survival assays

Cells were irradiated at confluency with X-Rays and ion beams at the corresponding physical doses. Following a 18H incubation time, cells were seeded at low density. Colonies were stained after 10 to 12 days and clones (>50 cells) were counted.

CH2879 cells were irradiated with C-ions (blue circles) or C-ions with PARPi (red

ER

1.5

Cell survival (%) is shown as mean +/- SD of 3 independent experiments performed in triplicate irradiation, cell survival (%) is shown as mean +/-SD of triplicate points corresponding to a single

considered to be significantly different (with and

Analysis of PAR (Poly-ADP Ribose) chains using a specific antibody Top : without Parpi at different time points Bottom: with Parpi, at 24h

ENLIGHT Annual Meeting and Training 2019, Caen

DRF / iRCM – CIMAP

UNI (AEN

Université de Caen Normandie