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Abstract

A new model for optical tomography in the neonatal brain is presented that takes into account
the presence of arachnoid trabeculæ in the cerebrospinal fluid (CSF). It is known that the classical
diffusion approximation for light propagation is at the limit of validity in the CSF layer due to the
low values of the absorption and scattering coefficients. The new model is obtained by the diffusion
approximation of the homogenized radiative transfer equation and is rigorously justified. Numerical
results in two and three dimensions attest for the improved sensitivity of the new model to the
presence of perturbations in the brain layer.

1 Introduction.

Near infrared (NIR) optical tomography is a method of medical imaging based on the absorption and
scattering of light in the near infrared scale by biological tissues, and in particular those of the brain. This
non-invasive and non-irradiating technique can be used for bedside monitoring and is thus particularly
suitable for newborns or premature babies. A head cup is placed on the children’s head, equipped with
optodes which serve both as light sources and detectors. After passing through the various tissues of
the head, the amount of light arriving at the detector is measured. This measurement constitutes the
observable quantity and makes it possible to reconstruct changes in the optical parameters. The latter
account for changes in hemoglobin concentration during cerebral activity or are used as indicators for
pathological cerebral blood flow as for example intracranial hemorrhage (see [13] and references herein).

A large amount of papers deal with the mathematical modeling of optical tomography in general
tissues (see e.g. [4, 5, 27, 12, 8]). Monte Carlo simulation is a popular method that describes light
transport at the photon level. Its main drawback is the low resolution that implies the need of a huge
number of photons in order to get results that are numerically stable. In our context, the radiative
transfer equation (RTE) yields a valid model for photon transport. However, its discretization in a 3D
setting is still costly due to the high number of variables (3 for space, 3 for the direction, 1 for the time).
Therefore, the diffusion equation is widely used as an approximation of the RTE.

However, it is well known that the quality of the diffusion approximation depends on the ratio between
the involved optical parameters which are the absorption and the scattering coefficient and several papers
state that the diffusion approximation is not valid in cerebrospinal fluid (CSF) [20, 21, 24]. In order to
overcome the difficult question of simulating light propagation in the CSF region, some authors suggest
a radiosity-diffusion model that couples a model based on geometric optics in CSF with the diffusion
approximation in the other regions. The model is shown to be well-posed [21] and numerical results
in a 3D spherical domain attest its efficiency in dealing with void regions. In a realistic head model
obtained from MR and CT images, the method could however be difficult to implement due to the non-
local boundary conditions on the diffusion/void-interfaces. Indeed, the accurate segmentation of these
interfaces is much more difficult than segmentation of the 3D regions occupied by the different tissues.

There is an inherent difficulty of detecting inclusions surrounded by a CSF region: due to the optical
properties, photons in CSF have very small probability to be deviated from their trajectory. The CSF
region thus acts as a wave guide and many photons arrive far from the source point without meeting the
inclusions in the inner layers. This phenomenon can be observed in simulations based on the RTE or
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on Monte Carlo codes. However, NIR spectroscopy and optical tomography were proven to be able to
retrieve useful information from the recorded signals, even in the presence of CSF [13, 16]. The drawback
is the high computational cost of Monte Carlo based simulations.

In this paper, we develop a new model for optical tomography based entirely on the diffusion approx-
imation. The main idea is to take into account the presence of arachnoid trabeculæ (AT) among CSF.
Arachnoid trabeculæ are thin filaments that connect the two inner meninges, arachnoid mater and pia
mater. In [24], the results based on Monte Carlo simulations in a CSF layer filled with small cylindric
regions of AT are in good agreement with experimental results if the CSF incorporates about 15% dis-
crete scatterers. However, the simulations need a mesh that distinguishes between CSF and AT which
have a very small cross section (about 0.1 [mm]). Consequently, the computational cost is much higher
than for Monte Carlo simulations with homogeneous CSF. The resolution of the associated inverse prob-
lem, i.e. three-dimensional reconstruction of optical parameters, seems thus prohibited. Here, we apply
homogenization techniques in order to substitute the two-phase layer by an equivalent homogeneous layer.

The paper is organized as follows. In Section 2, we make precise the classical diffusion equation that
is used as an approximation of the RTE. We discuss the modeling of the source term as well as well as
the choice of a parameter set for the optical parameters of the newborn’s head. The comparison between
measurements with and without the presence of a perturbation illustrate the lack of sensitivity of the
classical model in the presence of the CSF layer. Section 3 is devoted to the description of the new
model and we explain in which way homogenization has to be performed in order to get an improved
diffusion model. The mathematical justification of the homogenization procedure is precised with the
help of a result of [14] on homogenization of transport equations. Numerical results in two and three
dimensions illustrate the improvements provided by the new model. Finally, in Section 4, we present a
local sensitivity analysis via the concept of Gâteaux derivative for the new model.

2 The classical model of diffusive optical tomography.

2.1 The radiative transfer equation.

Any mathematical model of optical tomography is based on a model for light transport. In our context
where the wavelength of light in the near infrared (NIR) range is small compared with the characteristic
distances of the human head, the radiative transfer equation (RTE) yields a valid model for photon
transport.

We denote by µs and µa, respectively, the scattering and absorption coefficient of the medium in
which light propagation occurs. The unknown of the RTE is the specific intensity of radiation I(t,x, s)
which, at time t and at a point x, is defined by the radiation energy transferred by photons per unit
steradian in the direction s. Denote by f(s, s′) the phase function that describes the probability that a
photon arriving by direction s will be scattered in direction s′. We thus have∫

S
f(s, s′) ds′ = 4π

where the integral is taken on the unit sphere S of R3. In the sequel, we shall assume that the phase
function is symmetric in the two variables.

Then, the principle of energy conservation leads to the following integro-differential equation, called
radiative transfer equation:

1

c
∂tI(t,x, s) + s · ∇I(t,x, s) + µtI(t,x, s) =

µs
4π

∫
S
f(s, s′)I(t,x, s′) ds′ + q(t,x, s). (1)

Here, µt = µs + µa denotes the total attenuation coefficient and q models the light source. c is the speed
of light which is related to c0, the speed of light in vacuum, through the refractive index n = c0/c > 1.
We refer to [2] for a general introduction to transport and diffusion theory and to [5] for a discussion of
the RTE model in the context of light propagation and appropriate boundary conditions. The numerical
resolution of the RTE is computationally expensive because of the high number of variables (3 for the
space variable, 3 for the directions). Discretization can be performed by means of finite difference or
finite element methods, discontinous Galerkin schemes or Monte Carlo approaches [28, 30, 10, 22]. In
real life applications, where the number of unknowns may be extremely high (typically about 600 000
elements and 100 000 nodes [6]), the use of the RTE in an inverse problem that needs the computation
of a large number of forward solutions, may thus be prohibited with regard to the computational cost.
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The diffusion approximation (DA) is therefore widely used as an approximation for the RTE. Several
methods exist to derive the diffusion equation from RTE, among which the PN approximation that is
based on the expansion of the intensity I(·, ·, s) in terms of spherical harmonics, and an aysmptotic
analysis in terms of a small scaling factor ε � 1 that measures the ratio between a (large) scattering
coefficient µs and a (small) absorption coefficient µa.

For the sake of completeness, we recall the main features of both approaches and refer the reader to
[2, 5] and references therein for further details.

2.1.1 The diffusion equation as P1 approximation of RTE

We introduce the following two quantities derived from the specific intensity I as the moments of order
0 and 1, respectively, with respect to the direction s: the diffuse photon density

Φ(t,x) =

∫
S
I(t,x, s′) ds′, (2)

and the diffuse photon flux

J(t,x) =

∫
S
I(t,x, s′)s′ ds′. (3)

The following relations can be obtained from the developpement in terms of spherical harmonics truncated
at order 1:

I(t,x, s) =
1

4π
(Φ(t,x) + 3J(t,x) · s) , (4)

q(t,x, s) =
1

4π
(q0(t,x) + 3q1(t,x) · s) . (5)

Integrating the RTE over the sphere S then yields

1

c
∂tΦ(t,x) + div J(t,x) + µaΦ(t,x) = q0(t,x). (6)

In the same way, taking the scalar product of RTE with s and integrating over S yields

1

c
∂tJ(t,x) +

1

3
∇Φ(t,x) + (µa + µ′s)J(t,x) = q1(t,x), (7)

where µ′s = (1 − g)µs denotes the reduced scattering coefficient which depends on the anisotropy factor
g defined by

g =
1

4π

∫
S
s · s′f(s, s′) ds′.

The following assumptions allow to retrieve the diffusion equation in terms of the unknown Φ:

• the source of light is isotropic:
q1(t,x) = 0, (8a)

• the time derivative of the photon flux is small compared to the attenuated flux:

1

c
∂tJ(t,x)� (µa + µ′s)J(t,x). (8b)

Under the assumptions (8), the photon flux derives from the scalar potential Φ that satisfies the
following diffusion equation:

1

c
∂tΦ(t,x)− div(κ∇Φ(t,x)) + µaΦ(t,x) = q0(t,x) (9)

where the diffusion coefficient κ is given by

κ =
1

3(µa + µ′s)
. (10)
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2.1.2 Asymptotic analysis of the RTE.

The principle of asymptotic analysis is the scaling of the RTE with the help of a small parameter ε.
We aim to consider a large time scale as well as an absorption coefficient that is small compared to the
scattering coefficient. Hence, we let

µa = εµ̂a, µs =
µ̂s
ε
, (11)

with reference quantities µ̂a, µ̂s of order 1, and

I(t,x, s) = Iε(εt,x, s) (12)

with a function Iε = Iε(t̂,x, s) such that ∂t̂Iε = O(1) [2]. The function Iε satisfies the RTE with
coefficients µ̂a and µ̂s and is formally expanded in a series of powers of ε:

Iε(t̂,x, s) =
1

4π

∞∑
k=0

εkIk(t̂,x, s).

Identification of the powers of ε shows at order 0 that I0 is independent from s,

I0 = I0(t,x).

In absence of a source term q, it may be shown from the analysis of the equations at order 1 and 2 that
I0 satisfies the following diffusion equation depending on the scaled coefficients

1

c
∂t̂I0(t̂,x)− div(κ̂∇I0(t̂,x)) + µ̂aLI0(t,x) = 0, (13)

where

κ̂ =
1

3µ̂′s
. (14)

Notice that definition (14) of the diffusion coefficient is asymptotically equivalent to the former one (10).
Indeed, in terms of the physical coefficients µa and µ′s, we have

1

3(µa + µ′s)
=

1

3(εµ̂a + ε−1µ̂′s)
=

ε

3(ε2µ̂a + µ̂′s)
≈ ε

3µ̂′s
=

1

3µ′s
.

2.2 Mathematical setting of the diffusion approximation.

We have seen in the previous sections that the RTE can be approximated by the diffusion equation under
the assumptions that the source term is isotropic and the absorption coefficient is small compared to the
scattering coefficient. The diffuse photon density, as unknown of the diffusion equation, is a function of
space and time. However, in the case where the light source is pulsed at a fixed frequency ω > 0, the
photon density at point x reads Re (Φ(x)exp(iωt)) with a complex-valued function Φ. Then, Φ is solution
to the following time-harmonic diffusion equation

−div(κ∇Φ) +

(
µa +

iω

c

)
Φ = q.

Here and below, we will define the diffusion coefficient κ from formula (10)

κ =
1

3(µa + µ′s)
.

We are interested in the analysis of light propagation in the human head. The propagation domain is
thus a bounded regular domain Ω ⊂ R3 with boundary Γ = ∂Ω, and the optical parametersr µa and
µ′s are functions of the space variable x. Usually, they are given by piecewise constant functions which
take constant values in each tissue of the head. From a mathematically point of view, we will make the
assumptions that

µa, µ
′
s ∈ L∞(Ω), m ≤ µa(x), µ′s(x) ≤M for almost every x ∈ Ω, (15)
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where m and M are two strictly positive constants. This implies that the parameters (κ, µa) of the
diffusion equation belong to the set of admissible parameters

P = {(κ, µa) ∈ L∞(Ω)× L∞(Ω) | m ≤ κ(x), µa(x) ≤M for almost every x ∈ Ω} , (16)

where we kept the same notations for the (generic) constants m and M as before.
On the boundary Γ, the diffusion equation is usually completed by a Robin-type boundary condition

(see e.g. [5] and references therein) that takes into account the mismatch of the refractive indices between
the biological tissues of the head and the surrounding medium filled with air,

Φ + 2χκ∂nΦ = 0 on Γ.

The parameter χ is a constant given by the following formula (see [27]):

χ =
2

1−R0
− 1 + | cos θc|3

1− | cos θc|2
. (17)

Here, R0 =

(
n/n0 − 1

n/n0 + 1

)2

with n (resp. n0) the refractive index of the tissue (resp. of air), and θc =

arcsin(n0/n). Since n > n0, we have 0 < R0 < 1 and χ can be shown to be strictly positive. Summing up,
the complete model for the time-harmonic diffusion approximation reads as follows: find a complex-valued
function Φ : Ω→ C such that −div(κ∇Φ) +

(
µa + iω

c

)
Φ = q in Ω,

Φ + 2χκ∂nΦ = 0 on Γ.
(18)

The variational formulation of (18) reads{
Find Φ ∈ H1(Ω) such that
a(Φ, ψ) = `(ψ) ∀ψ ∈ H1(Ω),

(19)

where the sesqui-linear form a(·, ·) is defined for complex-valued functions of H1(Ω) by

a(Φ, ψ) =

∫
Ω

κ∇Φ · ∇ψ dx +

∫
Ω

(
µa +

iω

c

)
Φψ dx +

1

2χ

∫
Γ

Φψ ds, (20)

and the linear form `(·) is defined by

`(ψ) =

∫
Ω

qψ dx. (21)

Theorem 2.1 Assume that the source term q belongs to the space L2(Ω). Let µa and µ′s belong to L∞(Ω)
such that (15) holds true. Further, let χ be a strictly positive constant. Then, the variational formulation
(19) admits a unique solution Φ ∈ H1(Ω).

The proof follows in a classical way from Lax-Milgram’s Theorem since the (complex-valued) sesqui-
linear form is coercive on H1(Ω), i.e. there is a constant α > 0 such that

Re(a(Φ,Φ)) ≥ α‖Φ‖21,Ω ∀Φ ∈ H1(Ω).

2.3 Modeling of the source term.

In diffuse optical tomography or near infra-red spectroscopy, the biological tissue is illuminated by a light
source. This light source is usually realized by a laser beam at the surface of the object under examination.
One distinguishes three types of devices: continuous wave, frequency-domain and time-resolved sources.
In the present study, we focus on frequency-domain source terms as a compromise between the quantity
of information contained in the recorded signals and the construction cost of the device.

In view of the assumptions allowing the use of the diffusion approximation, the source term must be
isotropic. In the case of a focusing laser beam, the center of the source should therefore be placed at a

distance of at least one mean free path, i.e. at δ =
1

µ′s
. At this distance, the emitted photons have lost

the memory of the direction they were coming from and the isotropy condition is satisfied [23] .
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Mathematically, a focusing point source can be described by the Dirac delta q = δS where S ∈ Ω is the
source point. However, the Dirac delta is not a function and the mathematical justification of the model
is less straightforward. We refer to [3] where a model problem with Dirac right hand side is set in the
functional framework of Lp-spaces. Another possibility would be to split the solution into a singular part
that can be described analytically from the knowledge of the fundamental solution of the Laplacian and
a regular part that can be computed numerically. This approach is popular in electro-encephalography
(EEG) models where the right hand side contains derivatives of the Dirac delta [15, 29, 6]. In our setting,
we choose to model the source term as a Gaussian function with specified beam waist: if q is given by
the function

q(x) = a exp

(
−‖x− S‖

2

2σ2

)
, (22)

the beam waist where the field amplitude falls to 1/e is related to σ by w =
√

2σ.
In comparison to the Delta dirac, the numerical simulations showed more stability of the observed

variables for the Gaussian source term.

2.4 Parameter sets.

In this section, we discuss the choice of a paramater set among those available in literature. This brings
up the question whether the diffusion approximation of the RTE is valid or not for the given parameter
set.

Realistic head models usually distinguish up to 5 tissues in the brain: scalp and skull that have similar
optical properties, gray matter and white matter, and cerebrospinal fluid (CSF) which has low absorption
and scattering coefficients.

The following baseline values correspond to optical properties of the neonatal head tissues at a wave-
length of 800 nm. They are taken from [17] and have been used in [13]. The reduced scattering coefficient
has been obtained by multiplying µs by the factor (1 − g) with g = 0.9 for all tissues. The last column
exhibits the ratio between µa and µs and yields an estimation of the small parameter ε in the asymptotic
expansion described in Section 2.1.2. Indeed, from the assumptions (11), we infer that

ε2µs
µa

=
µ̂s
µ̂a

= O(1).

Therefore, the ratio µa/µs is of order O(ε2) and√
µa
µs
≈ ε

yields an estimation of the parameter ε. We notice that the ratio in CSF is about one magnitude higher
than in scalp or skull. However, the difference is less important compared to gray and white matter.

Tissue µ′s [mm−1] µa [mm−1] µa

µ′s
ε =

√
µa

µs

scalp 1.9 0.018 0.0095 0.03
skull 1.6 0.016 0.01 0.03

gray matter 0.5 0.048 0.096 0.098
white matter 1.0 0.037 0.037 0.06

CSF 0.032 0.0041 0.128 0.11

Table 1: Baseline values for optical parameters of the neonatal head at 800 nm. Anisotropy factor g = 0.9
for all tissues.

2.5 Sensitivity analysis of the measurements in presence of inclusions. Nu-
merical results.

In this section we study the impact of the CSF layer on surface measurements in the presence of one
inclusion in the inner layer (brain without distinction of white and grey matter).
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The motivation is to analyze the ability of the device to detect intraventricular hemorraghes (IVH)
and periventricular leucomalacia (PLM) which are types of brain injury that affect premature infants.

In our first numerical study, the computational domain is a two-dimensional disk of total radius
RΩ = 60[mm] divided into four concentric layers: two layers, each of thickness 5[mm], representing
respectively the scalp and the skull, a third layer of thickness 2[mm] filled with CSF, and the inner layer
of brain that contains a circular inclusion of radius 15[mm] (see Figure 1). Since a circular multi-layer
model is not able to account for the detailed folds of the cortex, we take the mean between the respective
values of white and grey matter for the absorption and scattering coefficients of the brain tissue. Finally,
we take µa = 0.1[mm−1] and µ′s = 3[mm−1] in the inclusion. Figure 2 (left picture) shows the difference
in the Log-scale between the modulus |Φpert| of the photon density in presence of the perturbation and
the modulus |Φref | in the reference configuration without perturbation. One clearly sees that boundary
measurements are not able to detect the presence of the inclusion. In comparison, we show the difference
between boundary measurements with and without an inclusion if the optical parameters of the second
layer are those of skull instead of CSF. In this case, boundary measurements taken on the perturbed
configuration contain information about the presence of an inclusion.

Figure 1: 2D four-layer head model: scalp (yellow), skull (brown), CSF (blue), white/grey matter (grey),
with circular inclusion (red). Inclusion near to the source (left). Inclusion opposite to the source (right).

Figure 2: Sensitivity of the boundary measurements to the presence of an inclusion. Diffusion approx-
imation. Third layer: CSF (left), skull (right). Center of perturbation projected on the boundary (red
star).

3 A new homogenized model in the CSF layer.

3.1 The problematic case of the CSF layer. State of the art.

An important number of papers state that the diffusion approximation is not valid in the CSF layer.
Indeed, as we have seen in Section 2.5, inclusions in the brain become nearly invisible in the presence of
CSF. However, the values of the optical parameters in CSF related in Table 1 attest that the absorption
coefficient is still significantly smaller than the scattering coefficient. The ratio

√
µa/µs which can be

taken as a measure for the scaling parameter ε in the asymptotic analysis is about 3 times larger in CSF
than in skull, but it is still small compared to 1. A similar ratio is by the way observed in gray matter.
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This indicates that the error that occurs by taking the diffusion approximation instead of the RTE will
be more important in CSF and gray matter than in skull or scalp tissues.

A comparative study between RTE and DA [20] attests that for a ratio of µa/µ
′
s = 0.1 (which is

approximatively the case for CSF and for gray matter), the diffusion theory underestimates the photon
density by almost 35%. However, this estimation depends on the distance between the measurement
point and the source point which is 5 cm in the study. Due to the important mean free path (mfp) in
CSF (about 3 cm), Figure 2 in [20] seems to indicate that the error is less than 5% at 5mfp = 15 cm
which covers entirely the neonatal head.

Another study [11] compares the RTE- and DA-model in a circular geometry containing a thin ring of a
non- or low-scattering medium. In this study, the DA approximation overestimates the RTE. However, the
scattering coefficients of the two models are not the same: µs = 0[mm−1] for RTE and µ′s = 0.005[mm−1]
and the absorption coefficient has been taken constant over the whole domain (µa = 0.025[mm−1]). These
values differ strongly from the baseline optical parameters that we found in the literature (Table 1) which
makes an interpretation of the results in the realistic context of the neonatal head difficult. The same
paper states that the DA model is not able to reconstruct the optical parameters in the presence of
inclusions whenever the thickness of the clear layer exceeds 0.5 mm. This corroborates our results of
Section 2.5.

Since the coupling of RTE and DA in a realistic head model is difficult due to non-local boundary
conditions on the interfaces [21], our aim is to develop a model based on the only diffusion approximation
that is able to deal with CSF. We started from the statement that experimental data contain informa-
tion about the presence of inclusions in the inner brain tissues, whereas DA together with the optical
parameters of Table 1 is obviously not sensitive to these perturbations. We therefore looked for a more
sophisticated description of the tissues that does not reduce the CSF layer to a simple homogeneous
void region. We follow the idea of [24] to take into account arachnoid trabeculæin CSF, but we apply
homogenization in order to substitute the two-phase layer by an equivalent homogeneous layer. This
reduces the number of mesh elements and thus the computational cost in a significant manner.

3.2 Description of the periodic structure.

Homogenization is mostly applied to media that have periodic microstructure since explicit formula for
the equivalent homogeneous medium can be obtained. In this section, we make precise this periodic
structure of CSF containing discrete scatterers that we have in mind.

Assume thus a given periodic medium recovered by small cells Yδ indexed with the parameter δ > 0

(Figure 3, right). Let Y =]−1/2, 1/2[d be the macroscopic cell of volume 1. Then, Yδ
def
= δY =]−δ/2, δ/2[d

denotes the cell at the microscopic scale. For a point x belonging to a microscopic cell Yδ, the point y = x
δ

belongs to Y . Now, assume that each cell Yδ contains two phases (in our case AT surrounded by CSF).
A (generic) physical parameter kδ is thus defined in the following way by a partition of the cell Y into
two subdomains Y AT (containing AT) and Y CSF (containing CSF),

kδ(x) = k
(x

δ

)
,

where

k(y) =

{
kAT in Y AT,
kCSF in Y CSF.

and kAT, kCSF are strictly positive constants. Consequently, if p =
area(Y AT)

area(Y )
denotes the proportion of

AT in the medium, the mean < kδ > of the parameter kδ is given by

< kδ >=
1

area(Y )

∫
Y

k(y) dy = pkAT + (1− p)kCSF.

3.3 Homogenization results for the diffusion equation.

Homogenization theory for partial differential equations (PDE) of diffusion type has been widely studied
in the literature (see [9, 26, 7] and references therein).

If the governing PDE reads
− div (kδ∇uδ) + µδuδ = f in Ω,
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Figure 3: Illustration of a domain with periodic microstructures. Presence of arachnoid trabeculae in
CSF (left). Recovering of the domain by microcells Yδ (right).

with parameter functions kδ = kδ(x) and µδ = µδ(x) depending on the space variable x as described in
Section 3.2, the associated homogenized equation is obtained by a two-scale approach [1] and reads

−div (K∗∇u) + µ∗u = f in Ω,

where K∗ ∈ Md(R) is a symmetric matrix and µ∗ =< µδ > is the mean of µδ. The coefficients of the
matrix K∗ can be obtained from the following formula

K∗ij =

∫
Y

(k(y) + k(y)∇yχj · ei) dy.

Here, (ei)1,...,d denotes the canonical basis of Rd and (χj)j=1,...,d are the solutions of d auxiliary problems
in the macroscopic cell Y

It turns out, however, that this approach does not yield a correct description of the presence of discrete
AT scatterers in CSF since the asymptotic behavior of the characteristic length scales is not satisfied:
indeed, in order to be valid, the mean free path in the background medium should be small compared
to the microscopic length scale of the inhomogeneities. In our configuration, the discrete scatterers are
generally assumed to have a diameter of 0.1 mm, whereas the mean free path in CSF is about 31 mm
according to the values of Table 1. Numerically, we see nearly no difference between simulations with pure
CSF and the homogenized medium (Figures 2 (left) and 4). The matrix K∗ behaves, roughly speaking,
as the mean of the diffusion parameter κ which undergoes only slight modification in the homogenization
process (see Table 2). It can be clearly seen that classical homogenization of the diffusion equation does
not yield any improvement on the sensitivity of the measurements to the presence of an inclusion.

p classical DA 0.10 0.15 0.20 0.30

< κ > 9.23 8.33 7.88 7.43 6.52

Table 2: Mean value of the diffusion parameter κ for different percentages p of AT among CSF.

In the sequel, we thus follow a different approach. We first proceed to homogenization of the RTE
and then use the diffusion approximation with the homogenized parameters of the RTE.

3.4 Homogenization results for the RTE.

Homogenization of the RTE has been less studied than for the diffusion equation. Here, we use the results
of [14, Theorem 3.1] and refer to references therein for an overview of the state of the art.

The following theorem yields the convergence result of the homogenization process in the context of
RTE and identifies the optical parameters of the homogenized RTE.

Theorem 3.1 Let µa and µs be piecewise constant functions on the cell Y , defined, respectively, by

µa(y) =

{
µAT
a in Y AT,
µCSF
a in Y CSF,

and µs(y) =

{
µAT
s in Y AT,
µCSF
s in Y CSF,

(23)
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Figure 4: Sensitivity of the boundary measurements to the presence of an inclusion in the inner layer.
DA with classical homogenization in the coefficients κ and µa. Center of perturbation projected on the
boundary (red star).

where µAT
a , µCSF

a (resp. µAT
s , µCSF

s ) are strictly positive constants. For δ > 0, let

µa,δ(x) = µa

(x

δ

)
, and µs,δ(x) = µs

(x

δ

)
be the associated periodic oscillating functions defined on the microscopic cell Yδ. Assume that the phase
function f(s, s′) belongs to L∞(S× S) and satisfies∫

S

∫
S
|f(s, s′)− f(s, s′ + t)| ds′ → 0

when t → 0 on S. Let Iδ(t,x, s) denote the photon intensity, solution of the following equation in the
domain covered by the microscopic cells Yδ,

1

c
∂tIδ(t,x, s) + s · ∇Iδ(t,x, s) + µt,δIδ(t,x, s) =

µs,δ
4π

∫
S
f(s, s′)Iδ(t,x, s

′) ds′ + q(t,x, s) (24)

with initial condition I(0) ∈ L∞(Rd,S). Then, as δ → 0, Iδ converges weakly-* in L∞ to the solution I
of the homogenized RTE,

1

c
∂tI(t,x, s) + s · ∇I(t,x, s) + (µ∗a + µ∗s) I(t,x, s)− µ∗s

4π

∫
S
f(s, s′)I(t,x, s) ds′ = q(t,x, s) (25)

with initial condition
I(0,x, s) = I(0)(x, s) a.e.,

and the homogenized coefficients µ∗a and µ∗s are given by the respective mean values:

µ∗a =< µa > and µ∗s =< µs > . (26)

Proof.
The assumptions on the coefficients enter within the particular example mentioned in [14] where

the coefficient µt,δ = µa,δ + µs,δ is independent of the direction variable s and the collision operator
µs,δ(x)f(s, s′) is separated in the variables x and s. The assumptions of Theorem 3.1 in [14] are thus
fulfilled.

It remains to prove that the sequences (µa,δ)δ and (µs,ε)δ converge weakly-* in L∞ to their respective
mean values < µa > and < µs >. This is a standard result in functional analysis. For the sake of
completeness, we give the proof in Appendix A.

In [14], the governing equation does not contain any source term. However, since in the setting of RTE,
the source term q is independent of the oscillating parameter δ, the generalization to the inhomogeneous
case is straigthforward and the convergence result keeps true. �
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3.5 The homogenized DA model.

Our final goal is to use the diffusion approximation in each layer. In order to overcome the lack of
validity of DA in the CSF layer, we proposed to take into account the presence of discrete scatterers,
the arachnoid trabeculæ. As in [24], we assume that arachnoid trabeculæ have optical properties close
to skull. In Table 3, we report the homogenized values for the absorption coefficient µ∗a and the reduced
scattering coefficient µ′,∗s for different percentages of AT among CSF. Here, the homogenized reduced
scattering coefficient is given by µ′∗s = (1− g)µ∗s with an anisotropic factor g = 0.9 as before. The value
of the homogenized diffusion coefficient κ∗ is computed from µ∗a and µ′∗s by

κ∗ =
1

3(µ∗a + µ′∗s )
. (27)

p classical DA 0.10 0.15 0.20 0.30

µ∗a[mm−1] 0.0041 0.0053 0.0059 0.0065 0.0077
µ′∗s [mm−1] 0.032 0.1888 0.2672 0.3256 0.5024

κ∗ 9.23 1.72 1.22 0.95 0.65
µ∗a
µ′∗s

0.1281 0.0280 0.0220 0.0188 0.0153

ε∗ =
√

µ∗a
µ∗s

0.1131 0.0529 0.0469 0.0433 0.0391

Table 3: Homogenized absorption, scattering and diffusion coefficients for different percentages p of AT
among CSF. Baseline values for AT: µAT

a = 0.016[mm−1], µ′AT
s = 1.6[mm−1]. Ratio between absorption

and reduced scattering coefficient. Scaling factor for DA.

One clearly sees that for all given percentages, the assumption µ∗a � µ′∗s is satisfied. The diffusion
approximation is thus valid in all layers with a scaling factor ε∗ that varies between 0.04 and 0.05
compared to 0.03 in scalp and skull.

The new homogenized model for time-harmonic optical tomography then reads: find a complex-values
function Φ∗ : Ω→ C such that −div(κ∗∇Φ∗) +

(
µ∗a + iω

c

)
Φ∗ = q in Ω,

Φ∗ + 2χκ∗∂nΦ∗ = 0 on Γ,
(28)

where κ∗ is given by (27) with absorption and scattering coefficients from Table 1 for scalp, scull, grey
and white matter, and homogenized values for µ∗a and µ′∗s according to Table 3.

3.6 Sensitivity analysis of the measurements in presence of inclusions. Nu-
merical results for the new homogenized DA model.

In this section, we analyze the behavior of our new DA model in the presence of a perturbation. We
test several geometric configurations and different proportions of AT among CSF. We then represent
the difference in the log-scale between the modulus of the perturbed solution |Φ∗,pert| and the reference
solution |Φ∗,ref | at the boundary.

In the first example, the perturbation is located in the first quadrant of the inner disc near to the light
source at a distance of 2 [mm] from the brain/CSF interface (cf. Figure 1, left). We clearly see in Figure
5 (upper line) that even for only 10% AT among CSF, the sensitivity to the presence of the inclusion is
improved, and we observe a link between the projection of the inclusion’s center on the boundary and
the difference between the reference and the perturbed solution.

In the second example (Figure 5, lower line), the perturbation is located in the third quadrant opposite
to the light source, again at a distance of 2 [mm] from the interface. The same observations as for the
first test case can be made: the presence of AT among CSF improves sensitivity to the presence of the
perturbation. Furthermore, the peak of the difference yields a better approximation of the projection of
the center as in the first example where the perturbation was located near the source term.

Next, we consider the new homogenized model with 10% AT among CSF for a perturbation located
at different distances from the brain/CSF interface (cf. Figure 6). As expected, sensitivity improves with
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Figure 5: Sensitivity of the boundary measurements to the presence of an inclusion. Classical DA model
(left column). New homogenized DA model. 10% of AT among CSF (center), 20% of AT among CSF
(right column). Upper line: inclusion near to the source (cf. Fig. 1 – left). Lower line: inclusion opposite
to the source (cf. Fig. 1 – right). Center of inclusion projected on the boundary (red star).

Figure 6: Sensitivity of the boundary measurements to the presence of an inclusion located at different
distances from the CSF/brain interface: 8 [mm] (left), 4 [mm] (center), 1 [mm] (right). New homogenized
DA model with 10% AT among CSF. Center of perturbation projected on the boundary (red star).

decreasing distance. But the new homogenized model allows for the detecting perturbations that are
located deeper in the brain than the classical one.

Similar observations can be made in 3D where we considered a four-layer spherical domain (scalp,
skull, CSF, brain). The boundary values of the difference between the perturbed and the reference
solution are represented on the equirectangular projection of the sphere (cf. Figure 7). In the case where
the perturbation is situated near the source point, its visual localization from the boundary data seems
to be difficult, but we clearly see that the presence of the inclusion becomes visible if we take into account
10% AT among CSF. For a perturbation located far from the source point, information about its location
can be retrieved from the surface plot.
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Figure 7: Equirectangular projection of the difference between the perturbed and the reference solution
(lower line). New homogenized model with 10% AT among CSF. Perturbation near the source (left
column). Perturbation far from the source (right column).

4 Sensitivity analysis via the Gâteaux derivative.

For better reading, we denote in the sequel by Φ (instead of Φ∗) the solution of the new DA model for a
given proportion p of AT among CSF. In the same way, the parameters of the new model are denoted by
κ and µa instead of κ∗ and µ∗a. Notice that for p = 0, we recover the classical model that does not take
into account the presence of arachnoid trabeculæ.

Sensitivity describes the variation of the solution to a problem according to the variation of the
parameters of the problem. In the present context, we aim to study the sensitivity of the solution to the
diffusion equation Φ = Φ[µ] with respect to variations of the parameters µ = (κ, µa).

Mathematically, this concept of sensitivity is formulated in terms of the directional derivative. More
precisely, for a direction δµ = [δκ, δµa] ∈ L∞(Ω)× L∞(Ω), the derivative of Φ at µ ∈ P in the direction
δµ is given by

Φ1[µ] = lim
h→0

Φ[µ+ hδµ]− Φ[µ]

h
, (29)

if the limit exists in H1(Ω). Here, P denotes the set of admissible parameters defined in (16).

4.1 The sensitivity equation.

Let µ = (κ, µa) be a fixed couple of parameters in the set P. The derivative Φ1 defined by (29) can be
shown to be the solution of a variational problem that involves the same sesqui-linear form as the original
problem:

Proposition 4.1 Let δµ = (δκ, δµa) be a direction in L∞(Ω)×L∞(Ω). For a given couple of parameters
µ ∈ P, Φ1[µ] is the unique solution in H1(Ω) to the variational equation

a(Φ1[µ],Ψ) = −
∫

Ω

δκ∇Φ[µ] · ∇Ψ dx−
∫

Ω

δµaΦ[µ]Ψ dx ∀Ψ ∈ H1(Ω) (30)

where Φ[µ] ∈ H1(Ω) is the solution of problem

a(Φ[µ],Ψ) = `(Ψ) ∀Ψ ∈ H1(Ω). (31)

Here, a(·, ·) is the sesqui-linear form defined by (20) with parameters κ and µa.

The proof of Proposition 4.1 is straightforward and can be adapted e.g. from the results in [6] where sensi-
tivity with respect to the electrical conductivity has been studied in the context of electro-encephalography.
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4.2 The adjoint problem.

For a given couple of parmeters µ = (κ, µa) ∈ P, let M [µ] denote the measurement at a given detector
situated at position rd ∈ Γ. If M [µ] depends on the solution Φ[µ] of the diffusion equation in a linear
way, define the linear form b : H1(Ω)→ C such that b(Φ[µ]) = M [µ]. Consequently, the derivative of M
at µ in the direction δµ is given by M1[µ] = b(Φ1[µ]). Now, define the adjoint problem of (31) by{

Find p[µ] ∈ H1(Ω) such that
a(q, p[µ]) = b(q) ∀q ∈ H1(Ω).

(32)

Obviously, (32) admits a unique solution since µ = (κ, µa) belongs to the set of admissible parameters
P and b(·) is continuous. Now, taking q = Φ1[µ] in (32) and ψ = p[µ] in the sensitivity equation (30), we
see that

M1[µ] = b(Φ1[µ]) = −
∫

Ω

δκ∇Φ[µ] · ∇p[µ] dx−
∫

Ω

δµaΦ[µ]p[µ] dx. (33)

Now, we discretize the parameters with the help of finite elements of type P0 on a mesh Th = (T`)`=1:L

of L elements. These piecewise constant finite elements are well suited to represent functions of the space
L∞. The canonical basis functions of the associated discretization space are the characteristic functions
χ` of the mesh elements. The decomposition of the parameters in the basis (χ`)` together with (33) yields

M1[µ] =
L∑
`=1

(δκ)`J
κ
` + (δµa)`J

µa

`

where

Jµa

` = −
∫
T`

Φ[µ]p[µ] dx (34)

Jκ` = −
∫
T`

∇Φ[µ] · ∇p[µ] dx (35)

for ` = 1 : L. The coefficient Jκ` thus represents the sensitivity of the measurement at a detector rd with
respect to a small variation of the parameter κ in the mesh element T`.

4.3 Numerical results.

In this section, we show some numerical results of sensitivity. To this end, the measurement operator M
has to be precised.

A possible definition is the pointwise measurement M [µ] = Φ(rd). Notice however that this example
does not define a continuous linear form on H1(Ω) since functions in H1 are not well defined at a single
point. Indeed, in this case the adjoint problem is equivalent to a boundary value problem with Dirac right
hand side and other techniques should be used to get a rigorous solution theory. Formally, we recognize
here the well known reciprocity principle in optical tomography which states that the photon density at
a point rd due to a source situated at rs is the same as the one at rs due to a source situated at rd (see
e.g. [4]). Roughly speaking, this means that in the adjoint problem, the detector plays the role of the
source term in the adjoint problem and vice versa.

Here, we define the measurement as the photon density on a small neighborhood of the detector
located at rd,

M [µ] =

∫
Γ

Φ[µ](s)g(rd − s) ds

where g is a (given) Gaussian function centered at 0. Then, the associated linear form b is well defined
on H1(Ω) by

b(q) =

∫
Γ

qg(rd − s) ds.

The sensitivity with respect to µa and κ is then computed respectively through formulas (34) and
(35). One may observe that the measurements are more sensitive to changes in the banana-like region
linking the detector to the source position if the new homogenized DA model is used (see Figure 8)
and increases with the proportion of AT among CSF. One further notices that measurements are more
sensitive to changes in the absorption coefficient µa than in the diffusion coefficient κ.
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Figure 8: Sensitivity with respect to µa (upper line) and κ (lower line) for a given source/detector couple
in a four-layer spherical model. Classical DA model (left column). New homogenized DA model with
10% AT among CSF (center) and 20% AT among CSF (right column).

5 Concluding remarks.

We presented a new model for optical tomography in the neonatal brain that takes into account the pres-
ence of arachnoid trabeculæ in cerebrospinal fluid. The new model is based on the diffusion approximation
of the homogenized radiative transfer equation in the CSF layer (see Figure 9). The homogenization pro-
cess has been rigorously justified by applying existing homogenization results for transport equations.
The equivalent homogenized CSF coefficients allow approximation of the RTE by the diffusion equation.
Numerical simulations in 2D and 3D show the improved sensitivity of the new model with respect to the
presence of perturbations in the brain layer. The new model has the same computational complexity as
the classical diffusion approximation and is thus well suited to be used in inverse parameter reconstruction
for which first promising results have been obtained. This item will be adressed in futur work.

Figure 9: How to obtain the new DA model.
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A Weak-* convergence to the mean value.

Lemma A.1 Let w ∈ L∞(Rd) be a periodic function satisfying

w(x + ei) = w(x) for almost every x ∈ Rd,∀i = 1, . . . , d

where (ei)i=1,...,d denotes the canonical basis of Rd. Let Y =]0, 1[d be the unit cell in Rd and W =∫
Y
w(x) dx the mean value of the function w. For n ∈ N, define the sequence (wn)n∈N by wn(x) = w(nx).

Then,
wn →W weak-∗ in L∞(Rn).

Proof. We will give the proof in two dimensions for the sake of readability. Without loss of generality,
we assume that W = 0. Let E =]a1, b1×]a2, b2[. We have∫

E

w(nx) dx =
1

n2

∫ nb2

na2

∫ nb1

na1

w(y) dy.

Now, for i = 1, 2, let Ni = [nbi − nai] be the integer part of nbi − nai. Hence,

nbi − 1 ≤ nai +Ni ≤ nbi. (36)

We split the integrals into a sum of integrals over intervals of length 1 and a rest:

1

n2

∫ nb2

na2

∫ nb1

na1

w(y) dy. =
1

n2

N2−1∑
k2=0

(
N1−1∑
k1=0

∫ na2+k2+1

na2+k2

∫ na1+k1+1

na1+k1

w(y) dy

)

+
1

n2

∫ na2+N2

na2

∫ nb1

na1+N1

w(y) dy

+
1

n2

∫ nb2

na2+N2

∫ nb1

na1+N1

w(y) dy.

Now, the first term in the above expression vanishes since w has 0 mean value and is 1-periodic. The
second term can be majored as follows

1

n2

∫ na2+N2

na2

∫ nb1

na1+N1

w(y) dy ≤ N2(nb1 − na1 −N1)

n2
‖w‖L∞(Y )

and tends to zero since N2

n2 ≤ b2−a2
n and nb1 − n1 −N1 ≤ 1. In the same way, the third term is of order

O( 1
n2 ) and tends to zero as n→∞. This shows that

lim
n→∞

∫
E

wnξ dx = 0

for any step function ξ. By density, this holds true for any function ξ ∈ L1(Rd) and thus

wn → 0 weak-∗ in L∞.

�

B Proof of the homogenization result for the RTE

In [2], the following linear Boltzmann equation is studied:

∂tf(t,x,v) + v · ∇xf(t,x,v) + a(t,x,v)f(t,x,v) =

∫
Rn

k(t,x,v,w)f(t,x,w)dµ(w) + q(t,x,v), (37)

completed by the initial condition
f(0, ·, ·) = f in. (38)
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Notice that µ denotes a general positive Radon measure on Rn. In particular, this covers the case of the
surface measure on the unit sphere S, ∫

Rn

Φ dµ =

∫
S

Φ(s) ds.

We make the following assumptions:

a ≥ 0, a ∈ Cb([0, T ]× Rn × Rn) (39a)

k ≥ 0, k ∈ Cb([0, T ]× Rn × Rn × Rn) (39b)

q ∈ Cb([0, T ]× Rn × Rn) (39c)

f in ∈ Cb(Rn × Rn). (39d)

Under the assumptions (39), the Cauchy problem (37)–(38) admits a unique solution f ∈ Cb([0, T ],Rn,Rn)
(Theorem 3.1.2 in [2]). If, in addition, f in ≥ 0 and q ≥ 0, then the solution f of (37)–(38) satisfies f ≥ 0
and

f(t,x,v) ≤
(
‖f in‖L∞ + T‖q‖L∞

)
eDt, (40)

where

D = sup
t,x,v

∫
Rn

k(t,x,v,w)dµ(w)

(Proposition 3.1.4. and following remark in [2]). In the case where the measure is the surface measure
on the unit sphere and the kernel k is bounded by a constant M , we have

D = 2π2M.

The same results can be obtained for data belonging to L∞ instead of Cb [2] .
Now, let Iδ(t,x, s) denote the solution of (24) with initial condition I(0) ∈ L∞(Rd × S). From (40),

it follows that the sequence (Iδ)δ is bounded in L∞([0, T ] × Rd × S). Hence, there is a sub-sequence,
denoted by (Iδn)n, and I ∈ L∞([0, T ]× Rd × S) such that

Iδn
∗
⇀ I weakly-* in L∞.

It follows from equation (24) that Ψδ = ∂tIδ + s · ∇xIδ is also bounded in L∞([0, T ] × Rd × S) and a
sub-sequence converges thus weakly-* in L∞ to a limit Ψ:,

Ψδn
∗
⇀ Ψ weakly-* in L∞.

Since the weak*-convergence in L∞ implies convergence in the sense of distributions – D([0, T ]×Rd×S) ⊂
L1([0, T ]× Rd × S) – we infer that Ψ = ∂tI + s · ∇xI a.e. in [0, T ]× Rd × S.

In [14] (Prop. 2.3), the velocity averaging method is stated in L1. However, it keeps true in L1
loc as

well under the same conditions on the measure (see [18, 19]). We thus need to show that Iδ ⇀ I weakly
in L1

loc(R × Rd × S). But the dual space of L1
loc can be identified with the subspace L∞c of functions in

L∞ that have bounded essential support. Then, let v ∈ L∞c (R×Rd×S). Since the essential support of v
is bounded, v belongs to L1(R×Rd × S) and it follows from the weakly-* convergence of (Iδn) to I that∫

Iδnv →
∫
Iv.

This proves the weak convergence of (Iδn) in L1
loc(R×Rd× S). We prove in the same way that Ψδn ⇀ Ψ

weakly in L1
loc.

The result of velocity averaging then states that the sequence∫
S
Iδ(t,x, s)χ(t,x, s) ds −→

∫
S
I(t,x, s)χ(t,x, s) ds strongly in L1(R× Rd) (41)

for any test function χ ∈ D(R×Rd × S). Indeed, the surface measure µ = ds on the unit sphere satisfies
obviously the condition

µ ({s ∈ S | τ + s · x = 0}) = 0

for any τ ∈ R and x ∈ Rd \ {0} since the set {s ∈ S | τ + s · x = 0} is the intersection of the unit sphere
and the plane with normal vector x, thus a circle on the unit sphere which has vanishing surface measure.
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We aim to apply Proposition 2.1 of [14] with an = Iδn − I and bn = µt,δn − µ∗t The sequence
bn = µt,δn − µ∗t is independent from the direction s and thus satisfies in a trivial way∫

S

∫
|x|≤R

sup|s−s′|<ε|bn(x, s)− bn(x, s′)| dx ds→ 0 (42)

uniformly in n as ε→ 0. We therefore obtain

µs,δnIδn → µ∗sI in D′(R× Rd × S). (43)

Next, we let bn(x, s, s′) = (µs,δn(x)−µ∗s)f(s, s′). Since the phase function f is bounded by assumption,
we have ∫

|x|≤R

∫
S

∫
S

sup
|s′−s′′|<ε

|bn(x, s, s′)− bn(x, s, s′′)| ds′ ds dx

=

(∫
|x|≤R

|µs,δn(x)− µ∗s| dx

)(∫
S

∫
S

sup
|s′−s′′|<ε

|f(s, s′)− f(x, s, s′′)| ds′ ds

)

≤ C

∫
|x|≤R

|µs,δn(x)− µ∗s| dx

→ 0

uniformly in n as ε→ 0. Indeed, the characteristic function χ{|x|≤R} belongs to L1(Rd) and the integral

on the space variable x thus converges since µs,δn
∗
⇀ µ∗s weakly-* in L∞(Rd).

We thus get, applying once more Proposition 2.1 of [14], that

µt,δnIδn → µ∗t I in D′(R× Rd × S× S). (44)

From (44), it follows easily that∫
S
µs,δn(x)f(s, s′)Iδn(t,x, s′) ds′ →

∫
S
µs(x)f(s, s′)I(t,x, s′) ds′

in D′(R×Rd × S). Hence, the limit I satisfies the homogenized RTE (25) as well as the initial condition
which is independent from δ. This completes the proof.
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