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ABSTRACT
Eccentricity is a parameter of particular interest as it is an informative indicator of the past
of planetary systems. It is however not always clear whether the eccentricity fitted on radial
velocity data is real or if it is an artefact of an inappropriate modelling. In this work, we address
this question in two steps: we first assume that the model used for inference is correct and
present interesting features of classical estimators. Secondly, we study whether the eccentricity
estimates are to be trusted when the data contain incorrectly modelled signals, such as missed
planetary companions, non-Gaussian noises, correlated noises with unknown covariance, etc.
Our main conclusion is that data analysis via posterior distributions, with a model including
a free error term gives reliable results provided two conditions. First, convergence of the
numerical methods needs to be ascertained. Secondly, the noise power spectrum should not
have a particularly strong peak at the semiperiod of the planet of interest. As a consequence,
it is difficult to determine if the signal of an apparently eccentric planet might be due to
another inner companion in 2:1 mean motion resonance. We study the use of Bayes factors to
disentangle these cases. Finally, we suggest methods to check if there are hints of an incorrect
model in the residuals. We show on simulated data the performance of our methods and
comment on the eccentricities of Proxima b and 55 Cnc f.

Key words: methods: data analysis – techniques: radial velocities – planets and satellites:
dynamical evolution and stability – planets and satellites: fundamental parameters – methods:
analytical.

1 IN T RO D U C T I O N

The nearly coplanar and circular orbits of the Solar system have
long been an argument in favour of Laplace and Kant’s theory
of formation of planets in a disc (Swedenborg 1734; Kant 1755;
Laplace 1796). The first observations of exoplanets suggested that
such low eccentricities were rather the exception than the rule. The
‘eccentricity problem’, along with the need to envision migration
scenarios for hot Jupiters, triggered several theoretical studies
which explored migration scenarios after the disc has dissipated.
The predictions of these models were compared to measured
eccentricities. For instance Jurić & Tremaine (2008) and Petrovich,
Tremaine & Rafikov (2014) evaluate the likelihood of formation
scenarios of hot and warm Jupiters through their agreement with
observed eccentricity distributions.

For a radial velocity data set on a given star, one wants to
extract two pieces of information about the eccentricity. First,

� E-mail: nathan.hara@unige.ch
†NCCR PlanetS CHEOPS Fellow, Switzerland.

a best candidate value (the estimation problem) and what are
the eccentricity values that are incompatible with the data (the
hypothesis testing problem). It is in particular interesting to test if
an eccentricity is non-zero. Both problems do not have completely
obvious solutions. For instance it is known since Lucy & Sweeney
(1971) that when the true eccentricity is small, its least square
estimate is biased upwards. Other aspects of the estimation and
hypothesis testing problems have been addressed in the exoplanet
community.

In Shen & Turner (2008) the bias was found to depend on the
signal-to-noise ratio (denoted by SNR) as well as on the time span
of the observations. This was confirmed by Zakamska, Pan &
Ford (2011), which further showed that the bias depends on the
phase coverage, and updated the Lucy & Sweeney (1971) null
hypothesis test to determine if a null eccentricity can be rejected
or not. They also propose metrics for evaluating the quality of
a data set. O’Toole et al. (2009a) showed that error bars on
eccentricity from least square are underestimated by a factor 5–
10. Brown (2017) shows that there might be orbits with very high
eccentricities with similar goodness-of-fit as a low eccentricity one.
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Pont et al. (2011), Husnoo et al. (2011), and Husnoo et al. (2012)
used Bayesian Information Criterion (BIC) to confirm non-zero
eccentricities. More recently, Bonomo et al. (2017a,b) assessed the
evidence in favour of eccentric solutions with Bayes factors. A
Bayesian test with a physically motivated prior on eccentricity was
devised by Lucy (2013). Also, Anglada-Escudé, López-Morales &
Chambers (2010), Wittenmyer et al. (2013), and Kürster et al. (2015)
note that two planets in 2:1 mean motion resonances can appear as
an eccentric planet, and propose ways to disentangle those cases.
This problem has also been studied in Boisvert, Nelson & Steffen
(2018), Nagel et al. (2019), and Wittenmyer et al. (2019).

The fact that eccentricity estimates can be spuriously high for a
given planet gives reasons for concern on the eccentricity distribu-
tions. The estimation of those has been tackled in Hogg, Myers &
Bovy (2010), which computes the posterior of the eccentricity
probability distribution itself. Zakamska et al. (2011) consider
the accuracy of the eccentricity catalogues obtained by Bayesian
point estimates. They show that for single planet populations
contaminated by white noise, estimating the eccentricity via the
maximum of the marginalized posterior distribution of eccentricity
with a free jitter term gives satisfactory retrieval of the input
population. Furthermore, it has been noted by Cumming (2004)
that high eccentricity orbits �0.6 are more difficult to detect at
fixed semi-amplitude. For a fixed mass, the detection bias is less
strong (Shen & Turner 2008).

We contribute to this series of work by studying in depth the bias
and robustness of eccentricity estimates from radial velocity data
(note that our analysis also applies to astrometric measurements and
to estimates of semi-amplitude and inclination). We proceed in two
steps. First, we highlight key properties of classical estimators,
in order to have a consistent view of eccentricity estimation.
The following questions are then considered: is the eccentricity
inference robust to modelling errors? By that, we refer to wrong
noise models, planetary companion too small to be detected, etc. If
not, how to mitigate the problem? One could encounter a situation
similar to the spectroscopic binaries, where proximity effects or
gas streams lead to spurious high-significance eccentricities if not
properly accounted for (Lucy 2005).

The article is structured as follows. In Section 2 we study the
behaviour of eccentricity estimates when the model is correct. The
least square estimates as well as Bayesian ones are studied, and
it is shown that the latter are less biased at low eccentricity. The
problem of spurious local χ2 minima at high eccentricity is also
tackled, in particular through the Proxima b case (Anglada-Escudé
et al. 2016). Section 3 is devoted to studying the robustness of the
estimates when the numerical method, the model or the prior is
poorly chosen. Finally in Section 4, we consider ways to check the
validity of a noise model. Our methods are illustrated with the 55
Cnc HIRES data set in Section 5. In Section 6, we conclude with a
step-by-step procedure to obtain reliable eccentricities and present
perspectives for future work.

2 PO I N T A N D I N T E RVA L EC C E N T R I C I T Y
ESTIMATES

2.1 Problem definition

2.1.1 Point and interval estimates

Let us first define the problem under study precisely. Some generic
symbols, used throughout the text, are summarized in Table 1. Let
us consider a time series of N observations, modelled as a vector

Table 1. List of symbols.

θ Vector of parameters
θ t True value of the vector of parameters
θ̂ Estimator of θ

f (t, θ) Deterministic model sampled at times t = (tk)k=1..N and of
parameters θ (orbital parameters plus possibly offset, trend,
etc.)

p(θ) Probability density of θ , Pr{θ ∈ �} = ∫
�

p(θ) dθ for some
measurable set �

E{θ} Mathematical expectancy of the random variable θ

k, h k = ecos ω, h = esin ω

y = (y(tk))k=1..N , such that

y(t) = f (t, θ ) + ε (1)

where t = (tk)k=1..N is the vector of measurement times, f is a
deterministic model depending on parameters θ ∈ Rp that include
the eccentricity e and ε is a random variable modelling the noise.
Denoting by et the true value of e, the estimation problem consists
in finding a function ê of the data whose output is close to et in a
sense chosen by the data analyst.

If the mean value of ê(y) (E{ê(y)})is not equal to, the estimator
is said to be biased and

bê(θ t) = E{ê(y)} − et (2)

is called the bias of the estimator ê in θ t, where θ t is the true value
of θ . A common metric for the accuracy of an estimator is the mean
squared error (MSE). Denoting by Var{ê(y)} the variance of ê(y), it
is defined as

MSE := E{(ê(y) − et)
2} = Var{ê(y)} + bê(θ t)

2. (3)

The other problem we consider is to have a testing procedure to
reject or not certain values of the eccentricity. We are now interested
in rejecting the hypothesis that e ∈ C where C is a subset of [0, 1].
More precise definitions are given in the relevant Sections 2.2.4
and 2.3.2.

In the present Section 2, we describe tools for the estimation and
hypothesis testing problems and present some of their properties.
In Section 3, we study the reliability of these tools when the model
is incorrect. By convention, in the following, radial velocity signals
are in m s−1. The analysis is unchanged for other units as long as
the signal-to-noise ratio is identical.

2.1.2 Model

The concern of this work is the estimation of eccentricity from
radial velocity data. The model of a radial velocity planetary signal
is recalled below

f (t, e, K, P , ω,M0) = K(cos (ω + ν(t, e, P , ω,M0))

+ e cos ω) (4)

cos ν = cos E − e

1 − e cos E
(5)

sin ν =
√

1 − e2 sin E

1 − e cos E
(6)

E − e sin E = M0 + 2π

P
t. (7)
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The symbols t, e, K, P, ω, M0 designate respectively the mea-
surement time, eccentricity, semi-amplitude, period, argument of
periastron, and mean anomaly at t = 0. The symbols E and ν denote
the eccentric and true anomalies.

We assume a Gaussian noise model, such that the likelihood
function is

p(y|θ , β) = 1√
(2π )N |V(β)| e− 1

2 (y−f (t,θ ))T V(β)−1(y−f (t,θ )) (8)

where f (t, θ ) is a sum of Keplerian functions defined as (4) possibly
plus some other model features (offset, trend, etc.). The covariance
matrix V is parametrized by β and the suffix T denotes the matrix
transposition. The explicit expression of f (t, θ ) and V(β) will be
given in the relevant sections.

The features of least square and Bayesian estimates are now
studied respectively in Sections 2.2 and 2.3.

2.2 Least square estimate

2.2.1 Bias of the non-linear least square

A common parameter estimator is the maximum likelihood θ̂ML.
For the model of equation (8),

θ̂ML = arg max
θ∈�,β∈B

p(y|θ , β). (9)

When the parameters of the covariance, β, are fixed, maximizing
the likelihood comes down to the least square problem,

θ̂LS(y) = arg min
θ∈�

(y − f (θ ))T V−1(y − f (θ)). (10)

When the model f (θ ) depends linearly on θ , the least square estimate
is unbiased. This is in general untrue when f (θ ) is non-linear,
which has been noted for instance by Hurwicz (1950) and discussed
in Hartley (1964), Bates & Watts (1980), Cook & Witmer (1985),
and Firth (1993). The model we are concerned with (equations 4–7)
is non-linear, and indeed eccentricities obtained by least square are
biased.

2.2.2 Bias and uncertainty at low eccentricity

We begin with a numerical experiment. We generate Keplerian
signals of eccentricity 0.06, 0.5, and 0.9 with fixed ω, M0, and
K = 3 m s−1. The array of time t is the 30 first measurements of
GJ 876 (Correia et al. 2010). We generate 1000 realizations of a
white Gaussian noise with standard deviation of 1 m s−1. For each
realization of the noise, a non-linear Keplerian model and a constant
are fitted with a Levenberg–Marquardt algorithm. The minimization
step is scaled so that the eccentricity never exceeds 0.999. The values
of the estimates (k̂ := ê cos ω, ĥ := ê sin ω) are reported as crosses
(red, purple and blue resp. for e = 0.06, 0.5, and 0.9) in Fig. 1. The
distributions of k̂ and ĥ are fairly isotropic for et = 0.06 and et =
0.5. For e = 0.9 there seems to be more complicated phenomena at
work. The distribution has no circular symmetry and in some cases
ê is stuck at its maximal value, 0.999 (see Section 2.2.3).

In Appendix A, it is shown that provided e is small enough
(≤0.2) and the number of observation is sufficient, k̂ and ĥ, follow
independent Gaussian laws of same variance. This property allows
us to understand the bias qualitatively. In Fig. 2, the distribution of
eccentricity estimates is represented. The pair of true values kt, ht is
represented by a yellow star. The bold black line delimits the region
where 99 per cent of the estimates are located. When the estimate

Figure 1. Estimates of k = ecos ω and h = esin ω for various true
eccentricities. Each cross represents an estimate k̂ and ĥ obtained with a
Keplerian model least-squares fit for a given noise realization. The yellow
stars represent the true (k, h). Estimates for e = 0.06, 0.5, and 0.9 are
respectively in red, purple, and blue (3 × 1000 = 3000 estimates in total on
each figure). σ = 1 m s−1 and K = 3 m s−1.

Figure 2. Representation of the estimates k̂ = ê cos ω̂ and k̂ = ê sin ω̂ when
k̂ and ĥ have a joint Gaussian distributions. The yellow star represents
the true value of k and h, the bold black line encircles the region where
99 per cent of the estimates are found. The red and blue regions represent
respectively the regions where the eccentricity estimates are overestimated
and underestimated.

falls in the blue-coloured region, the eccentricity is underestimated.
When it falls in the red-coloured region, the eccentricity is overesti-
mated. As the volume of higher eccentricity models is larger in the
vicinity of kt, ht, the eccentricity is more probably overestimated.
Informally, there are more and more models with eccentricity e as
e grows.

Furthermore, it is possible to obtain an analytical approximation
of the bias. Since k̂ and ĥ approximately follow a joint Gaussian
distribution with same variances, ê = (k̂2 + ĥ2)1/2 follows a Rice
distribution, as noted in Shen & Turner (2008). Interestingly
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enough, the Rice distribution appears as a very good model for
the eccentricity densities of the inner planets of the Solar system,
resulting from chaotic diffusion (Laskar 2008). Supposing that the
measurement noise is white with standard deviation σ and that
p parameters are fitted, within our approximation, k̂ and ĥ have a
standard deviation σk = σh = σ/Kt

√
2/(N − p). Defining the SNR

S as

S := 1

σk

= Kt

σ

√
N − p

2
(11)

and denoting by et the true eccentricity, the bias is

b(et, S) ≈ 1

S

√
π

2
L1/2

(
−S2e2

t

2

)
− et, (12)

where L1/2 is the Laguerre polynomial of order 1/2. When et = 0,
the eccentricity follows a Rayleigh distribution and equation (12)
reduces to a very simple expression,

b(0, S) ≈
√

π

2

1

S
= σ

Kt

√
π

N − p
=

√
π

4 − π
σê. (13)

Equation (13) is identical to equation 18 of Lucy & Sweeney (1971)
except that we are able to derive the effect of the correlations be-
tween parameters on the SNR through the term −p (see Appendix A
for justification).

Formula (13) is useful to see a few trends: the bias is proportional
to the uncertainty on k and h, which is proportional to the inverse of
Kt and

√
N − p. As a consequence, the bias increases as the SNR

decreases, i.e. as σ increases or as Kt or N decrease. This is also
found by simulations in Shen & Turner (2008) and Zakamska et al.
(2011) for Bayesian estimates. We add that increasing the number
of fitted parameters p, increases the bias.

There are particular cases where the correlations between param-
eters drastically increase the uncertainties on k and h and therefore
increase the bias, so that formula (12) should be taken as a lower
bound. However, the fact that the bias is approximately proportional
to the standard deviation with a factor

√
π/(4 − π ), as in equa-

tion (13) stays true. This fact is remarkable because it means that
the accuracy of the estimate [seen as the MSE (3)] is proportional to
its precision (seen as the standard deviation σê). In Appendix A2, we
show that poor phase coverage or short observational baseline affect
the accuracy of the eccentricity estimate insofar as they decrease
the precision of the estimate.

2.2.3 Local minima at high eccentricities

As shown in Baluev (2015), the number of local χ2 minima
increases significantly in the high eccentricity region. These minima
might lead a local minimization algorithm or a Monte Carlo Markov
Chain (MCMC) to be stuck in the wrong region of the parameter
space. We here aim at quantifying and understanding this feature.
In this section, we provide a summary of our results, whose precise
study is in Appendix B. These results are

(i) An incorrect estimation of the noise level can lead to spurious
deep local minima at high eccentricities.

(ii) As the SNR degrades, the probability of missing the global
minimum by a non-linear fit initialized on a circular orbit increases.

(iii) There is a geometrical interpretation of the numerous local
minima at high eccentricity: the set of models with fixed eccentricity
explore more and more dimensions of the N-dimensional sample
space as eccentricity grows.

Figure 3. χ2 of the residuals of a Keplerian fit as a function of the
eccentricity on Proxima b (Anglada-Escudé et al. 2016).

Let us illustrate the first point on Proxima b. Brown (2017) re-
analyses the data of Proxima b, a ≈1.27 M⊕ planet orbiting the M
star Proxima Centauri with a period of 11.186 d (Anglada-Escudé
et al. 2016), and finds that there are local minima at eccentricity
0.75 and 0.95, the 0.95 eccentricity being the global least-squares
fit.

We compute a Keplerian periodogram (O’Toole et al. 2009b;
Zechmeister & Kürster 2009; Baluev 2015) in the vicinity of the
11.186 period. That is Keplerian models (equations 4–7) are fitted
for a grid of periods, argument of periastron, and eccentricity. We
then represent per eccentricity the χ2 minimized over all other
parameters. Using the nominal uncertainties, a single Keplerian
model plus one offset per instrument, a linear and quadratic trend,
we obtain the red curve in Fig. 3.

The curve displays three local minima, the deepest being at
eccentricity 0.92. However, let us note that the best fit gives χ2 of
1057, while there are only 214 measurements. This gives a reduced
χ2 of 5.16, which is unrealistic. We here simply add a constant
jitter term in quadrature with the nominal error bars to obtain a
reduced χ2 of 1 at the best fit. The minimum χ2 as a function of
eccentricity so obtained is represented in blue in Fig. 3. The global
minimum now occurs at e = 0.17. We interpret the global minimum
at eccentricity 0.92 as an artefact of an incorrect estimation of the
error bars.

The same Keplerian periodogram calculations can be done on
simulated data sets with different noise levels and different numbers
of measurements. We simulate such systems with eccentricity
sampled from a uniform distribution on [0, 0.999], and count how
many of them that have an SNR between 0 and 5, 5 and 10, etc. have
k = 1, 2, 3, etc. local minima. The histogram of Fig. 4 is obtained.
Also, for each bin of SNR, we compute the proportion of systems
where the global minimum is not the closest to 0 (as in the case in
Fig. 3, red curve) and therefore a local minimization should miss the
global minimum. It appears that as the SNR increases, the fraction
of cases where the global minimum is missed is decreasing, though
not reaching zero.

Let us now briefly comment on the geometrical interpretation of
the higher number of local minima at high eccentricities. Finding
the best-fitting model amounts to finding the closest model to
the observation in a geometrical sense. We consider the figure
drawn in RN by all the models that have an eccentricity e and a
period P, denoted by Me,P . This figure might explore more or less
dimensions. For instance, if it is close to a plane, it is nearly confined
to a two-dimensional space. Otherwise, exploring many dimensions
traduces a ‘rough’ surface, which increases the chances of finding
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742 N. C. Hara et al.

Figure 4. Blue bins: binned values of the number of systems that have a
condition number lower than 107 with 1, 2, 3, 4, 5, or 6 local minima, with
a bin size in fitted SNR Sfit of 5. Red curve: fraction of the binned systems
where the global minimum is not the one obtained with a linear fit.

a local minimum of distance to the data. By a procedure based on
singular value decomposition, detailed in Appendix B and in Hara
2017 (PhD thesis), it is possible to obtain an approximate number
of dimensions explored by Me,P as a function of e. Table 2 shows
such calculations for the 214 measurement times of GJ 876 (Correia
et al. 2010). As eccentricity increases, Me,P explores more and
more dimensions.

2.2.4 Interval estimates

As said in Section 1, one does not only want to obtain a value of the
eccentricity with error bars, but also to test whether a certain value
of the eccentricity is compatible with the data. This can be done in
the frequentist setting with interval estimates. Since the focus will
be put on Bayesian estimates in Section 3, we simply here give their
definition and refer the reader to Appendix C for their derivation
and detailed study.

The hypothesis that the eccentricity has a certain value e is
rejected with a confidence level α if the likelihood ratio LRe

satisfies

LRe :=
max
θ∈�e

p(y|θ )

max
θ∈�

p(y|θ )
� e− 1

2 β , where (14)

β := F−1
χ2

ρ
(1 − α) (15)

ρ := 2 + 2S ′2 e2

1 + e2
− πe

1 + e2
L 1

2

(
−S ′2

2

)
L 1

2

(
− e2S ′2

2

)
. (16)

where �e is the set of parameters that have all eccentricity e, p(y|θ )
is the likelihood, F−1

χ2
ρ

is the inverse cumulative distribution function

of a χ2 law with ρ degrees of freedom, S ′ = (σ/Kt)
√

2/N , and L 1
2

is the Laguerre polynomial of order 1/2. We also fit a free jitter
term so that the reduced χ2 equals one. Conversely, for a certain
measured LRe the FAP(e) of the hypothesis et = e is defined as

FAP(e) = 1 − F 2
χρ

(−2 ln LRe). (17)

The confidence interval of eccentricity is the set of e with FAP(e)
greater than a certain threshold (for instance 0.05).

2.3 Posterior distributions

2.3.1 Point estimators

The previous sections are devoted to the study the least square
eccentricity estimate. However, the standard practice in the exo-
planet community is rather to compute the posterior probability
p(θ |y) = p(y|θ )p(θ)/p(y) of the orbital elements θ using MCMCs
algorithms (e.g. Ford 2005, 2006).

From such posterior distributions, one can compute the orbital
elements corresponding to the maximum a posteriori (MAP)

θ̂MAP = arg max
θ∈�

p(θ |y). (18)

For a simple Keplerian fit θ̂MAP = (K, e, P , ω,M0)MAP, an ec-
centricity estimate is then obtained by eMAP. Alternately, one can
compute the marginal distribution

p(e|y) =
∫

�e

p(e, θ̃ |y) dθ̃ = 1

p(y)

∫
�e

p(y|e, θ̃ )p(θ̃) dθ̃ (19)

and its mode, mean, and median

emax = arg max
e∈[0,1]

p(e|y) ; emean = mean(p(e|y))

emed = median(p(e|y)), (20)

where θ̃ is the vector of parameters that are not eccentricity, and
�e is the space of parameters where the eccentricity is equal to e.
A standard result is that emean is the estimator that minimizes the
MSE (see equation 3). Also, emed minimizes the mean absolute error
(MAE), defined as

MAE := E{|ê − et|}. (21)

The estimators (20) are in general less than the maximum
likelihood or the maximum a posteriori. This is shown for emean

with a numerical experiment. We generate a circular planet of
semi-amplitude 3.5 m s−1 and 100 realizations of Gaussian white
noise at 2 m s−1. The estimates eML and emean (equation 20) are
computed with a Monte-Carlo Markov Chain (MCMC) algorithm.
The sampler is the same as in Delisle et al. (2018), based on the
adaptive Metropolis sampler of Haario, Saksman & Tamminen
(2001). The model consists of a Keplerian, an offset, and a free
jitter term, with uniform priors on all parameters. Fig. 5 shows
experimental distribution function of eML − emean. The condition
eML > emean is verified in 79 cases out of 100, with a mean value of
eML − emean equal to 0.0944.

The efficiency of the estimates (20) is understandable in terms of
trade-off between model simplicity and agreement with the data. In
Sections 2.2.2 and 2.2.3, it appeared that for eccentricities et < 0.2,
in the vicinity of the true model, there is a larger volume of models
with eccentricities e > et than e < et. The integration over the domain
�e in equation (19) penalizes the models with high complexity,
which here are the high-eccentricity models. This is comparable to
the penalization of models with too many planets by the marginal
likelihood in the context of exoplanets detection (e.g. Nelson et al.
2018). In Section 2.3.2, we argue in favour of reporting emean and/or
emed, as emax is too biased towards low eccentricities.
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Bias and robustness of eccentricity estimates 743

Table 2. Dimension of the models with fixed eccentricity as a function of the eccentricity, GJ876 measurement times.

Eccentricity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999

Dimension of Me,P 3 4 4 6 8 10 14 24 46 91

Figure 5. Binned values of the difference of maximum likelihood and
posterior mean estimates, eML − emean for 100 realization of white noise
and K/σ = 3.5.

2.3.2 Hypothesis testing

Several of the works cited in Section 1 address the question of
whether an eccentricity should be set to zero or not, which is a
model selection problem. It can be addressed by computing the ratio
of posterior likelihood, or odds ratio, of the models (e.g. Kass &
Raftery 1995),

R = Pr{e 	= 0|y}
Pr{e = 0|y} = Pr{y|e 	= 0}

Pr{y|e = 0}
Pr{e 	= 0}
Pr{e = 0} , (22)

where Pr{y|e 	= 0} = ∫
θ∈�

p(y|θ )p(θ) dθ . If this ratio is greater than
a certain value, then one favours e 	= 0 over e = 0. This methodology
has been used in Bonomo et al. (2017a,b). As the number of samples
N tends to infinity, assuming Pr{e 	= 0} = Pr{e = 0}, the odds ratio
is equivalent to the BIC (Schwarz 1978), as used by Pont et al.
(2011) and Husnoo et al. (2011, 2012).

More generally, one can compute a credible set, that is a set of e,
denoted by C ⊂ [0, 1] such that

Pr{e ∈ C|y} =
∫

C

p(e|y) de = α, (23)

where α ∈ [0, 1] is a probability. The set C is in general taken as an
interval but this need not be the case. Let us note that this approach
is also a ratio of posterior likelihood as in equation (22). If e =
0 is given a non-null probability, then the prior probability takes
the form p(e) = p(0)δ(0) + p(e) where δ is the Dirac function. We
now focus on credible intervals, (equation 23) since these are more
widely used and give finer information.

3 ROBUSTNESS O F ECCENTRICITY
ESTIMATES

3.1 Problem statement

In Section 2, several tools to make inferences on eccentricity were
presented. We now study whether these are reliable even if the
adopted model is incorrect. What we call a model is a couple of prior
and likelihood functions. We assume that the orbital elements are
distributed according to a true prior pt(θ ) and the observations have
a true likelihood pt(y|θ ) (Mt) while the analysis is made with the

model M: p(θ), p(y|θ ). The model M can be too simple: missed
planetary signal, non-modelled correlated noise or too complicated:
for instance Gaussian processes are known to be very flexible,
possibly too much.

The case where the model is too complicated will not be treated in
detail. We simply point out that from Section 2.2, we expect that the
bias is higher than for a correct model. Indeed, as the model grows in
complexity the correlation between parameters increases, therefore
the error on eccentricity σ e increases. This might be problematic
as the bias is proportional to σ e (see equation 13). However, the
error bars broaden, so that having too complex a model is unlikely
to produce spurious conclusions. On the contrary, as we shall see,
simplistic models can be problematic.

In the following sections, we study the effect of the noise level
estimate (Section 3.2), numerical effects (Section 3.3), incorrect
noise models (Section 3.4), priors (Section 3.5), and the comparison
of two models: one eccentric planet or two planets in 2:1 mean
motion resonance (Section 3.6).

3.2 Noise level

In Sections 2.2.2 and 2.2.3, it appeared that an incorrect estimate
of the noise norm leads to an underestimated bias and to spurious
local minima at high eccentricity. As a consequence, it is key, as
is standard practice, to adjust at least an extra jitter term σ J in the
likelihood,

p(y|θ , σJ ) = 1√
(2π )N |V0 + σ 2

J I| e− 1
2 (y−f (θ))T (V0+σ 2

J
I)−1(y−f (θ )), (24)

where V0 is the nominal covariance, I the identity matrix, and f (θ ) is
the signal model, containing Keplerians and possibly other features.
All the following analyses are made with the model (24).

3.3 Numerical effects

It appeared in Section 2.2.2 that uncertainties on the eccentricity
estimates increase the biases. This is also valid for the uncertainties
stemming from the numerical methods used to compute the orbital
elements.

As noted by Eastman, Gaudi & Agol (2013), there is a specific
error in the implementation of the Metropolis–Hastings algorithm
that worsens the bias, when the true eccentricity is close to zero
and when the parameter space is parametrized by (e, ω) instead of
(k, h) or (k̃, h̃). This error consists in not recording the value of a
proposed parameter in the chain if it is rejected.

More generally, credible intervals or Bayes factors can be
unreliable if the numerical schemes have not converged. Hogg &
Foreman-Mackey (2018) gives several ways to check for con-
vergence of MCMC algorithms. In the following analyses, the
convergence diagnostic is the number of effective samples, as
computed in appendix A of Delisle et al. (2018) (see also Sokal
1997). This number, Neff is interpretable as an equivalent number
of independent samples from the posterior distribution. Then, for
instance, the numerical uncertainty on the mean of the marginal
posterior p(θ0|y) of a parameter θ0 scales as σp/

√
Neff , where σ p is

the standard deviation of p(θ0|y).
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The first result we show is that at low SNR, the convergence
is slower. This is likely due to the existence of local minima at
high eccentricity (see Fig. 4, Section 2.2.3). We simulate a one
planet system on CoRoT-9 28 measurements (Bonomo et al. 2017b),
the eccentricity is generated with a Beta distribution (a = 0.867,
b = 3.03), angles are uniformly distributed and the period is
fixed to 95 d. The nominal measurement errors are normalized to
obtain a mean variance of 1. A Gaussian white noise following the
normalized nominal errors plus a 1 m s−1 white noise is added. A
hundred data sets with orbital elements and noise sampled according
to their distributions are created. This is done for K = 2.5 m s−1 and
K = 5 m s−1, which corresponds to SNR 4.2 and 8.5 (as defined
in equation 11), so to obtain 2 × 100 = 200 data sets. Finally,
an MCMC is performed on each of them with model (24) with
1100 000 samples and a burn-in phase of a fourth of the total
number of samples. The average number of independent samples is
7300 versus 12 000, and the chain does not reach a 1000 efficient
samples in 28 and 5 cases, respectively. In conclusion, low SNR
signals should be treated with particular attention since the number
of independent samples of the MCMC is smaller, while chains are
initialized with a high eccentricity due to the higher bias of least
square estimates at low SNR (see equation 13).

As an example of the problem associated with not having enough
samples, this experiment is repeated with an injected eccentricity
of 0. We consider that the ‘small eccentricity’ hypothesis is rejected
if p(e ∈ [0, 0.05]) < 0.05. Let us consider the samples obtained
for the experiment described above with K = 2.5 m s−1. Depending
on whether we take the first fourth of the samples or all of them,
the fraction of rejection of the small eccentricity hypothesis goes
respectively from 12 to 4 per cent.

In the following sections, simulations are taken into consideration
if they reach an effective number of independent samples greater
than 1000, so that the mean of the eccentricity posterior (of variance
σ e) is known with at least a ≈ σe/

√
Neff ≈ σe × 3 per cent accuracy.

Since we compare different types of noise, we do not require an
extremely good precision on the posterior distribution (also the
following result stay approximately identical if we take runs with
at least 2000, 5000 efficient samples). In practice, it is safer to
ensure that 10 000 independent samples are reached to obtain a
σe/

√
10 000 = σe × 1 per cent accuracy on the posterior mean.

3.4 Incorrect noise model

3.4.1 Non-Gaussian noise

The first question we address is whether, when the noise is non-
Gaussian, using the model (24) leads to spurious inferences on
eccentricity. For the sake of brevity, we here only report the results
of the analysis done in Appendix D. The non-Gaussianity of the
noise can only lead to slightly underestimating or overestimating
the error bars, when the noise distribution is very heavy-tailed. We
found that the estimates of the eccentricity and the error bars are
mostly sensitive to the covariance of the noise and the following
sections are focused on this aspect.

3.4.2 Incorrect covariance: simulations

To study the effect of the noise covariance on eccentricity estimates,
we proceed as follows. We consider the 28 measurement times of
CoRoT-9, spanning on 1700 d, and generate a circular planet at
95 d, denoted by yplanet(t). We then generate 100 realizations of
white noise, ynoise(t), and for each of them, a non-modelled noise

is added. Six different types of such noises, described below, are
considered. In total, 6 × 100 = 600 data sets are obtained. The
signal generated is then of the form y(t) = yplanet(t) + ynoise(t) +
yk(t) with k = 0..5. ynoise(t) is generated according to the nominal
uncertainties, which are CoRoT-9 uncertainties scaled so that their
root mean square is equal to 1 m s−1. Such signals are generated in
three contexts: with a semi-amplitude of the planet at 95 d of 2.5,
3.5, or 5 m s−1. The methodology described aims at evaluating if,
when the noise model is incorrect, circular planets tend to appear
as eccentric. This experiment is also done with the eccentricity of
the planet drawn from the same Beta distribution as the prior, to
evaluate the impact of the noise on the estimates. The simulation
where the eccentricity is fixed to zero and the one where it follows
a beta distribution are respectively called S0 and Se.

In each simulation, on each of the 3 × 600 data sets, the posterior
distribution of the orbital elements is computed using the model (24)
and priors given in Table 4. 1100 000 samples are computed, the
first fourth being the burn-in phase. The algorithm is an adaptive
Metropolis algorithm as in Delisle et al. (2018), and the convergence
is checked by calculating the effective number of independent
samples (see Delisle et al. 2018, Appendix A).

Since our goal is to test the effect of the noise nature, and not its
level, we impose that the norm of the non-modelled noise is such
that ‖y0‖ = ‖y1‖ = ...‖y5‖ = γ . For each of the 100 realizations of
white noises, we draw γ from a χ2 law with N = 28 degrees of
freedom. The yk are defined as follows:

y0: white, Gaussian noise identically distributed.
y1: also white Gaussian noise but with different variances. The

variances are drawn from a Laplace law so to obtain a wide range
of value.

y2: A circular planet that is too small to be fitted, the period of
the added planet P is drawn from a log-normal distribution until a
period is found such that P differs from 95 d of at least 20 per cent.
This value is chosen to avoid the lowest probability region of period
ratios of planet pairs found by Kepler (Steffen & Hwang 2015).

y3: planet in resonance with the injected planet, in 1:2 or 3:2
resonance, inner or outer with probability 1/2.

y4: a Gaussian correlated noise with covariance κ

κi,j = α2 exp

[
−1

2

{
sin2[π (ti − tj )/τ ]

λ2
p

+ (ti − tj )2

λ2
e

}]
, (25)

as in Haywood et al. (2014). We use the values of the Evidence
Challenge (Nelson et al. 2018), α = √

3 m s−1, λe = 50.0 d, λp =
0.5 (unitless), and τ = 20.0 d.

y5: same as y4 but with values α = √
3 m s−1, λe = 50.0 d, λp =

0.3 (unitless), and τ = 30.0 d.

The rationale behind taking y1 as such is to emulate the effect of
mild outliers, not obvious enough to be completely discarded. As
the Laplace distribution has heavy tails, it generates values of the
variances that are very different from each other. y2 and y3 are chosen
as such because the strongest resonances found in Kepler data are
the 3:2 and 1:2 (or close to) resonances. In first approximation, the
real period ratio distribution is a combination of these two artificial
distributions. Finally, y4 and y5 are two types of stellar noises, the
second one having a slightly stronger periodic component in the
covariance.

For the simulation where the eccentricity is fixed to zero, S0,
on each simulation we compute the probability Pr{e ∈ [0, 0.05]}.
We report the number of simulations where this quantity is below
a threshold α = 0.05 and that have at least a thousand effective
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Bias and robustness of eccentricity estimates 745

Figure 6. Fraction of cases where the posterior probability of e ∈ [0, 0.05]
is below 0.05 for an injected circular signal and different noises described in
Section 3.4.2. The blue, red, and yellow points correspond to the experiment
for K = 2.5, 3.5, and 5 m s−1, respectively. The posterior distribution is
computed with the model (24).

Table 3. Root mean squared error (
√

MSE) and MAE averaged over all
types of noises of several estimators: maximum likelihood (eML, max. a
posteriori eMAP, mode, mean and median of the eccentricity posterior emax,
emean, and emed for the K = 3.5 m s−1 simulation).

Estimator eML eMAP emax emean emed

√
MSE 0.1384 0.1362 0.1613 0.1088 0.1117

MAE 0.1071 0.1062 0.1239 0.0842 0.0849

samples. The results are shown in Fig. 6 for different values of
the semi-amplitude of the input planet (K = 2.5, 3.5, or 5 m s−1,
respectively blue, red, and yellow markers). These values of K were
chosen to be close to relatively low SNRs. The small eccentricity
rejection rate is approximately constant for the different noises
except for a resonant companion, where the non-zero eccentricity is,
on average, rejected in 26 per cent of the cases, that is 13 times more
often than for the other noise models. A non-resonant companion
also might induce an increased rate of rejected zero eccentricity
(4.2 per cent on average versus 1.3 per cent for white noise). The
power of the stellar noise is stronger around 20 and 30 d, which is
not on a harmonic of the period of the planet (95 d), and therefore
they lead to an even lower rejection of the low eccentricity scenario
(see Section 3.4.3).

In the simulation Se, we compute the absolute value of the
difference between the estimated eccentricity and the true one for
the three estimators (20). In all cases, we find that the median and
mean of the posterior distribution of eccentricity are very similar and
largely outperform the other estimates in terms of MSE (equation 3)
and MAE (equation 21). We have seen in Section 2.3 that for a
correct model, the mean and median have respectively minimal
MSE and MAE, this is indeed the case on the simulations with the
white noise. The MSE and MAE over the six types of noise are
reported in Table 3. The estimator emean and emed are more accurate
when the noise model is incorrect both for MSE and MAE, as a
consequence we deem them as the best ones overall. An argument
in favour of emean is that it has minimal MSE (equation 3). The MSE
penalizes the square of the difference between the estimated and
true value. Multiplying by two this difference multiplies by four
the cost of the error. Therefore, estimators with small MSE are less
likely to produce large errors.

This result seems in contradiction with Zakamska et al. (2011),
which finds the mode of the posterior to be less biased. However,
they consider cases where the eccentricity is small. We also find that

Figure 7. MAE on eccentricity of the posterior mean (emean, equation 20)
and maximum likelihood (eML) eccentricity estimator. The values of K are
given in m s−1.

for small eccentricities, emax is less than emed and emean. Due to the
Beta prior in eccentricity, it happens that the posterior is bi-modal
and emax = 0. When e follows the prior distribution, emed and emean

are more accurate, at least in terms of MSE and MAE.
We now only present in Fig. 7 the performance in terms of MAE of

the estimator emean (circles) and the maximum likelihood estimator
eML (crosses), for comparison (MSE behaves similarly). In all cases
emean shows better performance. The MAE does not heavily depend
on the type of noise. However, we do observe a slight increase of
the error for the unseen resonant companion. Let us also note that as
the signal semi-amplitude increases, the difference of performance
between the maximum likelihood and emean becomes less clear.

3.4.3 Interpretation: noise power at the planet semiperiod

In Section 3.4.1 we showed that the error on eccentricity is mainly
determined by the true covariance of the noise. In Section 3.4.2
however, the simulated stellar noises did not yield particularly
high errors on the eccentricity. We now show that the property
of correlated noises most impacting eccentricity estimates is their
power at the semiperiod of the planet of interest.

Let us consider a signal y = y0 + ε, where y0 is a circular orbit
of period P, and ε is an unknown stochastic signal, that the data
analyst supposes to have covariance V. Denoting by ω0: =2π /P,
we define the N × 2 matrix Mk = [cos(kω0t), sin(kω0t)] and P :=
Mk(MT

k V
−1Mk)−1MT

k V
−1 the projection matrix on to the space

spanned by the columns of Mk . More generally, for a projection
matrix P on to a vector space M we define

Rε(M) = (Pε)T V−1(Pε)

εT V−1ε

N

2
(26)

Qε(M) = E {Qε} . (27)

The rationale of defining these quantities is to identify if, assuming
a covariance V a noise is more correlated to a certain space than
to its orthogonal. If ε is a white noise, then it is not particularly
correlated to any particular space, so that R = 1. In the limit cases
where ε lies in, or is orthogonal to the space spanned by Mk , then
R = N/2 resp. 0.

To test the influence of Qε(M2) on the eccentricity error we
proceed as follows. We consider an array of measurement times
from a real system and generate a circular signal y0 plus a noise with
a certain true covariance. In order to obtain noises with very different
spectral contents, we proceed as follows. For a given frequency
ω, we draw thirty realizations of ε = cos(ωt + φ) , φ following a
uniform distribution on [0, 2π ]. For each of them we compute Rε ,
the least square estimate of the orbital elements θ̂ , the estimate of

MNRAS 489, 738–762 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/1/738/5529403 by guest on 28 M
ay 2023
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Figure 8. Error on eccentricity plotted against the estimated Qε (see
equation 27) for different noise types (blue points) and Gaussian white noise
(yellow cross). Same quantity averaged per interval of Qε with standard
deviations (purple stair curve). The estimates of noise level, averaged per
bin, are represented in green.

the noise level ‖y − f (θ̂ )‖/√N . The Rε are averaged to have an
estimate Q̂ε of Qε and the average error on eccentricity 〈|ê − et|〉.
For each type of noise ε, we plot (Q̂ε, 〈|ê − et|〉), which corresponds
to a blue point in Fig. 8. The point obtained with ε being a white
Gaussian noise model is represented with a yellow cross. We then
bin the values with a constant step in log Qε and compute the
average error, as well as its standard deviation (purple stair curve).
We also compute the mean value of the estimated jitter, and divide
it by the value of the jitter estimated for Qε = 1. The normalized
jitter so obtained is represented in green, with its scale on the right
y-axis.

Fig. 8 is obtained with the time array of Gl 96 SOPHIE
measurements (67 measurements), et = 0, an assumed covariance
matrixV equal to identity, a period of 40 d and fixed ratio of the norm
of the Keplerian signal and the input noise of 10 (which corresponds
to a very high SNR = 78), to have as little influence as possible
of the noise level. As the noise becomes more correlated with the
M2 space (Qε increases) it is absorbed in the fit and the RMS of
the residual decreases. Indeed in Fig. 8 it is apparent that as Qε

increases the error on eccentricity grows while the estimated level
of the noise decreases. The error on e for et = 0.9 is consistently
higher, which is likely due to local minima at high eccentricity (see
Section 2.2.3).

One can then wonder how the SNR S affects the bias on
eccentricity for correlated noises. Defining the noise ‘quality factor’
as q := √

Qε(M2), in the linear approximation used for (11), the
uncertainty on k and h becomes qσ k. With notations of equation (13),
the bias at et = 0 is therefore approximately

b(0, S) ≈
√

π

2

q

S
. (28)

For a given q, as the SNR increases, the bias decreases.
To check if the power at semiperiod is also correlated with the

error on eccentricity if the true eccentricity is high, we perform
the same experiment with a value of the eccentricity equal to 0,
0.3, 0.5, 0.7, 0.9. Again, the ratio of the norm of the Keplerian
signal and the input noise is fixed to 10. For each eccentricity the
experiment is done 20 times with periods randomly drawn with a
lognormal law. The results are shown in Fig. 9. We first remark

Figure 9. Error on eccentricity plotted against the estimated Qε (see
equation 27) averaged for 10 different periods. The average error per Qε

and the estimated jitter for the different values of the true eccentricity are
represented: e = 0, 0.3, 0.5, 0.7, 0.9 (resp. purple, yellow, red, light blue,
dark blue).

Figure 10. Erroron eccentricity (solid stairs) and estimated error (round
markers) plotted for a true circular orbit against the estimated Qε (Pk) (see
equation 27) where Mk are the vector spaces = (cos kω0t, sin kω0t) for
k = 0.5...5 (see legend for colour code) and ω0 is the frequency of the input
planet.

that as e increases, the bias, and therefore the error on eccentricity,
decreases. Secondly, from e = 0.5, Qε is less relevant to predict
the effect of the noise on eccentricity estimates. This result is in
accordance with Wittenmyer et al. (2019), who found that planets
with e>0.5 are very unlikely to be mistaken for a two circular planet
model. As eccentricity increases, the harmonics of order greater
than two increase, so that a noise localized at the semiperiod cannot
mimic a higher eccentricity.

The same experiment is performed with a ratio of norm of the
signal and the noise of three and an injected circular orbit. We
compute Qε(Mk) with k = 1/2, 2/3, 1, 3/2, 2, 3, 4, 5. The results are
plotted in Fig. 10, with a colour code for each k. It appears that a
strong component of the noise on the harmonic 2, 3, 4, or 3/2, and
5 leads to an increased error on eccentricity (in decreasing order of
effect). The noise level is notably underestimated in the k = 2 case.
On the contrary, a strong component of the noise on k = 0 leads
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Bias and robustness of eccentricity estimates 747

Figure 11. False rejection rate estimated with formula (15) as a function
of Qε as defined in equation (27) for the six noises generated (y0, ...y5) and
period of the true planet equal to 5..5..100 d.

to a smaller error, which is easy to understand. Indeed, since the
eccentricity of the injected signal is zero, the noise reinforces the
signal.

The results of Section 3.4.2 are interpretable with the analysis
above. The metric Qε defined in equation (27) is computed [here
Qε(M2)] for the noises of Section 3.4.2, that are noises generated
with nominal uncertainties plus y0, ...y5. For K = 2.5, 3.5, and
5 m s−1, we generate 10 000 realizations of these noises, and inject
a circular planet at period P with a random phase. We do this
simulation for P = 5–100 d per step of 5 d. in each of the
6 × 10 000 × 20 simulations, we compute the FAP associated
with e = 0 with formula (17), and adopt as a convention that e =
0 is rejected if the p-value is below 0.05. We also compute Rε(M2)
as defined in equation (26). For the six noises and 20 periods, we
average the values of the Rε to obtain Qε (27). Fig. 11 shows the
proportion of false eccentricity rejected as a function of Qε for K =
5 m s−1. It clearly appears that there is a strong correlation with the
power of the noise at the semiperiod.

Obviously, one can test on a given system if a specific type of
noise has a particular impact on a planet with injected parameters,
the goal of this section was to identify some generic properties of
the noise that lead to spurious inferences.

3.5 Robustness to prior changes

3.5.1 Simulations

In the previous sections we have studied the impact of having a
wrong likelihood function. We now turn to the sensitivity of the
estimate on the prior probability, here with a numerical experiment.
With the formalism of Section 3.1, the data are generated with
prior and likelihood pt(θ), pt(y|θ ), and the analysis is done with
p(θ), pt(y|θ ). The likelihood is correct, but the prior is not, which
corresponds to having an incorrect idea of the population distribu-
tion. Note that the prior probability of all parameters has an effect
on the eccentricity estimate, but we focus on the prior probability
chosen for the eccentricity.

Two distributions are considered. We generate eccentricities
according to the distribution Beta (a = 0.867, b = 3.03) and compute
posterior probabilities with a uniform prior. Otherwise the priors are
taken as in Table 4 and the data are generated as in Section 3.4. The

Table 4. Priors used for the numerical experiments.

Parameter Prior

K Uniform on [0, 10 000]
P 1/P uniform on [0, 20]
e Beta (a = 0.867, b = 3.03) as in Kipping (2014)
ω Uniform on [0, 2π ]
M0 Uniform on [0, 2π ]

Table 5. Mean absolute and mean square error (MAE and MSE) of the
estimate when the eccentricities are generated with a Beta distributions, and
the analysis is done with the same Beta distribution as prior (correct model)
or done with a uniform prior (incorrect model).

Estimator Prior K = 2 m s−1 K = 3.5 m s−1 K = 5 m s−1

√
MSE Correct 0.1325 0.0994 0.0791√
MSE Incorrect 0.1530 0.1118 0.0899

MAE Correct 0.1073 0.0803 0.0601
MAE Incorrect 0.1188 0.0851 0.0713

results are shown in Table 5 as a function of the input amplitude. The
errors, measured by MSE and MAE, are systematically worse when
using the incorrect prior, however with an extra error not exceeding
15 per cent. It seems like an error of ≈0.01 on e could be counted
as uncertainty on the prior distribution.

The uncertainty on the prior seems not to be a major concern, at
least for the estimation of eccentricity. However, in some cases, one
might want to recompute the credible interval with another prior,
which is the object of the next section.

3.5.2 Recomputing the posterior without new sampling

The most straightforward way to explore the dependence of the
posterior on the prior is to recompute it with another prior dis-
tribution. However, this might be lengthy to do systematically on
several systems. We here propose an alternative which consists in
multiplying the prior by a constant on a subset of its domain of
definition, and to scale it elsewhere. In so doing, the output of the
posterior sampler can be used straightforwardly without doing any
sampling. In the following we illustrate the process with the prior
on eccentricity.

We consider a measurable subset D of [0, 1] and its complement
D̄ in [0, 1]. For instance an interval D = [0, e0] for some arbitrary
e0 ∈ (0, 1]. Let us denote by θ̃ the model parameters other than
eccentricity, so θ = (e, θ̃ ). We define a new prior p

′
such that for

e ∈ D, p′(e, θ̃ ) = xp(e, θ̃ ). To ensure that
∫ 1

0

∫
p′(e, θ̃ ) dθ̃ de = 1,

we take

a =
∫

D

∫
p(e, θ̃ ) dθ̃ de. (29)

x ∈ [0, (1 − a)/a] (30)

p′(e, θ̃ ) = (1 − ax)/(1 − a)p(e, θ̃ ) for e ∈ D̄ (31)

We now want to compute the probability that e ∈ C for a prior
distribution p′(e, θ̃ ). This one is given by replacing p by p

′
in

equation (23). With the notations

z := (1 − ax)/(1 − a) (32)
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748 N. C. Hara et al.

IE :=
∫

e∈E

∫
θ̃

p(y|e, θ̃ )p(e, θ̃ )

p(y)
dθ̃ de (33)

for E⊂[0, 1], we compute

Pr{e ∈ C|y, p′} =
∫

C

∫
θ̃

p′(e|y) dθ̃ de

= x IC∩D + z IC∩D̄

x ID + z ID̄

, (34)

where p′(e|y) is the posterior distribution when the prior is p
′
(e)

and p(y|e) is the likelihood marginalized on all parameters but
eccentricity. When x = 0, all the prior probability goes to the
complementary of D and Pr{e ∈ D|y} goes to 0. If x = (1 − a)/a, e
is certainly in D therefore Pr{e ∈ D|y} = 1.

The advantage of this calculation is that the integrals can be
computed from the posterior samples. Denoting, |E| the number of
the MCMC samples that are such that e ∈ E ⊂ [0, 1] and Ntot the
total number of samples, an estimate of IE is ÎE = |E|/Ntot, so that
an estimate of (34) is

P̂r{e ∈ C|y, p′} = x |C ∩ D| + z |C ∩ D̄|
x |D| + z|D̄| . (35)

The reasoning can be extended straightforwardly to credible regions
D and C in the parameter space, and to prior region subdivisions in
D1...Dq with disjoint (Di)i = 1..q whose union is the whole parameter
space.

Apart from the Markov chain samples, the only quantity needed
to use (35) is a as given by (29). This expression might be difficult
to compute in general, but in the case where p(e, θ̃ ) = p(e)p(θ̃),
a = ∫

Dp(e ) de, which is a one-dimensional integral. Analytic
expressions might exist and a Riemann integration is always
possible.

Since the integrals to be evaluated from posterior samples are
random variables, it must be ensured that they have a controlled
uncertainty. When breaking the posterior in many domains D1...Dq,
the procedure outlined may become unreliable if there are not
enough independent samples in each Dk. One can easily compute the
effective number of samples in each Dk, Neff,k by counting how many
samples are in that region and dividing by the correlation time-scale.
A number of effective samples greater than n gives an accuracy of
≈ 1/

√
n × 100 per cent on the probability Pr{e ∈ Dk|y}. Further

investigation is left for future work.

3.6 Model comparison: one eccentric planet or 2:1 mean
motion resonance

A system of two planets in 2:1 mean motion resonance can be
mistaken for one eccentric planet, and vice versa. We here study
the possibility to disentangle the two cases via Bayes factor as a
function of the SNR. Two models are considered, Me and M1:2,
respectively an eccentric planet and two circular planets in mean
motion resonance:

Me : y(t) = K(cos(ν + ω) + e cos(ω)) + g(θ̃ ) + ε (36)

M1:2 : y(t) = K1 cos

(
2π

P1
t + φ01

)
+ K2 cos

(
2π

P2
t + φ02

)
+ g(θ̃) + ε. (37)

Table 6. Priors used for the Bayes factor of the eccentric and 2:1 mean
motion resonance models. The symbol Tobs denotes the observation time,
P0 = 60 d and α = 0.1.

Parameter Prior

σ 2
J Uniform on [0, 100] m s−1

offset Uniform on [−100, 100]

K, K1 Uniform in ln K on [−1, 9]
P, P1 1/P uniform on [1/P0 − 1/Tobs, 1/P0 + 1/Tobs]
e Uniform on [0, 1]
ω Uniform on [0, 2π ]
M0 Uniform on [0, 2π ]

K2 Uniform in ln K on [−1, 9]
P2 1/P uniform on [(1 − α) 2

P0
, (1 + α) 2

P0
]

φ1 Uniform on [0, 2π ]
φ2 Uniform on [0, 2π ]

Denoting by g(θ̃ ) a deterministic model encapsulating other planets,
offsets, trends, etc. We also let vary a jitter term σ J as in equation (8).
The Bayes factor of the two models is defined as

B = p(y|Me)

p(y|M2:1)
, (38)

where

p(y|M) =
∫

p(y|θ )p(θ ) dθ (39)

with θ = (K, k, h, P , M0, θ̃ , σJ ) or θ =
(K1, P1, M01, K2, P2,M02, θ̃ , σJ ) for M = Me and M = M2:1,
respectively. We expect the two models to be distinguishable
if the amplitude of the second harmonic of the signal can be
resolved (Anglada-Escudé et al. 2010, see equation 5).

In order to determine at which SNR the Bayes factor allows
to disentangle resonant planets and eccentric ones, we perform a
numerical experiment. We select a semi-amplitude K and a period
P, then generate a Keplerian signal with e = 0.25, random M0 and
ω. K is chosen on a grid (2, 5, 8, 11, 14 m s−1), to see how the ability
to disentangle scenarios evolves with the true SNR.

On the other hand, we generate a two planet system. The outer
planet has period P with random phase and semi-amplitude K1 = K.
The inner planet is circular with K2 = K1/4, so that K2/K1 = e of the
single planet. The phase of the second planet is chosen uniformly.
The simulation is performed in two different settings. In the first
one, the period ratio is fixed to P2 = P1/2. In the second, 1/P2 is
chosen uniformly between [(1 − α)2/P1, (1 + α)2/P1] with α =
0.1. The rationale behind the choice of P2 is that the period ratios of
Kepler planets are located within a neighbourhood of 2:1 (Steffen &
Hwang 2015).

The priors chosen to compute the Bayes factor are summarized
in Table 6. The Bayes factor is computed with the nested sampling
algorithm PolyChord (Handley, Hobson & Lasenby 2015a,b). The
performance of the algorithm was checked on the data sets of the
Evidence Challenge (Nelson et al. 2018). For each data set, the
algorithm is ran at least five times. The lnZ estimate is taken as
the median of the different runs and the error bars are given by the
variance of the empirical median as provided by Kenney & Keeping
(1962). The error on the log Bayes factor lnBF = lnZ2 − lnZ1 is
taken as (σ 2

Z1
+ σ 2

Z2
)1/2.

Figs 12 and 13 show the results of the simulation, where the
measurement time arrays are those of CoRoT-9 (Bonomo et al.
2017b) and Gl 96 (Hobson et al. 2018). The ln of the Bayes
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Bias and robustness of eccentricity estimates 749

Figure 12. Difference of the log evidence of the correct and incorrect
models. In the two planet case, the inner planet is generated with period
exactly half of the outer planet. The colour code corresponds to the
description of the true data set (one eccentric or two circular planets) and
the array of measurement times used (CoRoT-9 or Gl96).

Figure 13. Difference of the log evidence of the correct and incorrect
models, when the inner planet is generated with a frequency uniformly
drawn on the same interval as the prior (Table 6).

factor is represented, such that the correct model is always at the
numerator. The black dashed lines indicate a Bayes factor equal to
150 and 1/150. Bayes factors above 150 and below 1/150 correspond
respectively to very strong evidence in favour or against the correct
model.

Figs 12 and 13 show that distinguishing the resonant and eccentric
models is possible, especially if the period of the inner planet varies,
which is the case in Kepler data. None the less, at low SNR, there
are cases of decisive Bayes factor against the correct model. In the
low SNR regime, the evidence is dominated by the prior, and the
parameter space is hard to explore. Both effects can account for
these spurious results.

We point out that the values reported in Figs 12 and 13 are very
sensitive to the prior on K. The narrower it is, the ‘cheaper’ it is to
add a planet, such that the two planets model is be favoured. The

Figure 14. Difference of the log evidence of the correct and incorrect
models, when the inner planet is generated with a frequency uniformly
drawn on the same interval as the prior (Table 6) except for the semi-
amplitude, where the prior is uniform on [0, 40] m s−1.

same experiment as above is done with a flat prior on K on [0, 40]
m s−1. In that case, the two planet model is systematically favoured,
as shown in Fig. 14.

As a conclusion, it seems good practice to check the influence of
the prior on K. Secondly, since we expect that as the period ratio
of resonant planets not to be exactly one half, if the two planet
hypothesis is true then it will be strongly favoured by the Bayes
factor. It therefore seems reasonable to consider the eccentric planet
as the null hypothesis and not to reject it if there is no strong evidence
for the two planet model.

4 D ETECTI NG MODEL ERRO RS: R ESI DUA L
ANALYSI S

4.1 Objective

In the previous section, we have seen that adjusting a jitter term is
satisfactory in most cases, however we did not envision all possible
errors. It is good practice to check if the models considered are
plausible at all. One approach to take into account model uncertainty
is to consider many models (Jones et al. 2017) and rank them
via cross validation, Akaike Information Criterion or BIC, or even
Bayes factor if possible. Alternately, we can test the hypothesis that
the residuals are consistent with the model in an absolute sense. This
problem is sometimes referred to as the goodness-of-fit problem,
and is in general difficult (see Lehmann & Romano 2005, chap. 14).

We reason as follows: if the set of models is appropriate to
describe the data, then the residuals of the best fit must verify
certain properties. If they do not, then we reject the hypothesis that
there is one acceptable model that explains entirely the data set,
among the set of models considered. Furthermore, we would like
to obtain hints on the origin of a model misspecification. We expect
outliers to change the distribution of the residuals, and astrophysical
or instrumental noise to introduce correlations. As a consequence,
we consider two types of checks: is the distribution of the residuals
approximately Gaussian? and: is there remaining time correlations
in the residuals?
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4.2 Distribution of the residuals

As in Section 2.2.2, we first examine the linear case and show that
the results are still helpful in the non-linear setting. Let us suppose
that we have a linear model y = Aθ + ε where A is a N × p matrix
and ε is a Gaussian noise of covariance matrix V =: W−1. Let
us denote by ŷ the least-squares fit model, and suppose the model
(A,V) is known. Then the weighted residual

rW := W1/2(y − ŷ) (40)

is a vector of N random variables that are approximately in-
dependent, Gaussian of null mean and variance one. To obtain
a weighted residual that is a vector of independent Gaussian
variables, let us define Q, the matrix such that J = QT (IN −
W1/2AT (AT WA)−1AT W1/2)Q is diagonal (it exists). Then the re-
weighted residual r′

QW = QT W1/2(y − ŷ) has p null components.
The N − p others are Gaussian variables of mean 0 and variance 1.
In what follows, we denote by rQW the vector made of the N − p
components of r′

QW . These two results are proven in Appendix E.
In practice, A and V are unknown, and we choose models A′ and

V′. The two above properties can be used to test if (A,V) = (A′,V′)
because if so, then the weighted residuals rW and rQW have a known
distribution.

We compute an experimental cumulative distribution function
(CDF) of rW and rQW . If our model is correct, then it should be
close to the CDF of a Gaussian variable of mean zero and variance
one.

4.3 Correlations in the residuals

The test suggested in the previous section is relevant to check
the distribution of the residuals without temporal information, and
thus is not most adapted to spot correlations. We here adapt the
variogram (Matheron 1963) for unevenly sampled time series, sim-
ilarly to Baluev (2013a). The quantity d(ti , tj ) = rW (ti) − rW (tj ) is
plotted as a function of ti − tj for ti > tj. If rW is indeed independent
and Gaussian, d(ti, tj) should not depend on the time interval.

Secondly, we consider n time bins with constant spacing in log t.
For each bin B, we compute the sample variance of the d(ti, tj)
such that ti − tj ∈ B. We expect that if there are correlations, these
variances should grow as ti − tj increases. To obtain an error bar
on the variances, we add an independent Gaussian noise of mean
0 and variance 1 to rW and re-compute the variances for the same
time bins. One can alternately add a Gaussian noise of covariance
V to the data, and re-compute the residuals. The error bars are taken
as ±σ where σ is the standard deviation of the variances estimates
per bin.

4.4 Example

Let us now show how it can be used in practice. We take the 214
measurement times of Proxima b Anglada-Escudé et al. (2016). A
is made of six columns as defined in Appendix A and fix xt. We
then generate three series of a thousand realization of y = Axt + ε.
The covariance matrix of the noise has a kernel e−|�t |/τ where �t
is the duration between two samples. The three series are generated
with a noise time-scale τ = 0, 10 and 100 d. For each of the 3 ×
1000 signals generated, we compute the least-squares fit with the
correct matrix A, but with a weight matrix W equal to identity, so
our model is entirely correct only in the first case. First, we pick
randomly one realization among the 1000 available in each series,
and perform the first test whose result is plotted in Fig. 15. One

Figure 15. Dots: difference between the residuals at two different time as
a function of the time interval between them in three cases: when the noise
has a time-scale of 0, 10, and 100 d, units on the left y-axis. Stair curves:
variance of the data points per time bin, with uncertainty, units on the right
y-axis.

Figure 16. A thousand realizations of the cumulative distribution functions
of the normalized residual in three cases: when the noise has a time-scale of
0, 10, and 100 d.

clearly sees a pattern: the higher the correlation, the smaller is the
difference between residuals. We then consider six time bins, and
compute the variances of the data and their uncertainties within
each bin. The results of these calculations are represented by the
stair curves. For correlated noises, the variance increases with the
time interval, while it stays compatible with a constant for the white
noise. Fig. 16 shows the 1000 empirical CDFs in the three cases.

The plots 15 and 16 are useful indicators of remnant correlations
in the residuals and non-Gaussianity. However, they do not consti-
tute metrics with known statistical properties. One can potentially
test the hypothesis that rQW is a realization of such a law with a
Kolmogorov–Smirnov test or other metrics such as Anderson &
Darling (1954), Shapiro & Wilk (1965), etc. We have tested the
Anderson–Darling metric which did not show a high statistical
power (see Hara 2017, thesis) and that is not discussed further. The
visual inspection, though less quantifiable, seems more accurate.
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Bias and robustness of eccentricity estimates 751

Figure 17. 55 Cnc HIRES17 data with nominal error bars. The box on the
bottom is a zoom on measurements taken at rjd 55351.

Study of correlations in RV residuals have already been under-
taken for instance by Baluev (2011, 2013b) with a smoothed residual
periodogram (Baluev 2009). The systematic comparison of these
statistics is left for future work.

5 A P P L I C AT I O N : 5 5 C A N C R I

To illustrate the methods above, the estimation of the eccentricities
of the 55 Cnc system is discussed. This system has been extensively
studied and many measurements, from several spectrographs, are
publicly available: Hamilton (Marcy et al. 2002; Fischer et al.
2008), ELODIE (Naef et al. 2004), HRS (McArthur et al. 2004;
Endl et al. 2012), HIRES (Butler et al. 2017). We here focus on
the HIRES (Butler et al. 2017) data set, from now on denoted
by HIRES17, which illustrates the importance of the noise model
choice for reliable eccentricities.

The HIRES17 data set is made of 607 velocity measurements,
with on average four data points per night. Fig. 17 shows these
data with nominal error bars. The inset is a zoom on five points
taken within a time interval of 50 min at reduced Julian day (RJD)
55351. We first consider the raw data. The posterior distributions
of the orbital elements is computed with a model including the five
known planets plus a free jitter term as defined in Section 3.2, and
priors defined as in Table 4. We now focus on 55 Cnc f, orbiting
at 260.9 d with a minimum mass of 0.1503+0.0076

−0.0076 MJ and a period
of 259.88+0.29

−0.29 d (Bourrier et al. 2018). In Fig. 18, the posterior
distribution of the eccentricity is represented in yellow. The estimate
is 0.5 with a 68 per cent credible interval equal to [0.44, 0.58]. This
estimate is very different from the one in Bourrier et al. (2018),
e = 0.08+0.05

−0.0.04, where orbital elements estimates are based on all
the available radial velocity data.

To check for correlations in the residuals, these are studied with
the method of Section 4.3. We define W = (V + σ̂ 2

ML)−1, where V is
the nominal covariance matrix, and σ̂ 2

ML is the maximum likelihood
estimate of the jitter. The weighted residuals rW as defined in
equation (40) are computed. For all combinations of measurement
times ti > tj we represent dij := rW(tj) − rW(ti) as a function of tj

− ti. We then compute the variance of the dij such that tj − ti is
in a certain time bin. Fifteen such intervals are considered, with a
constant length in log scale. The uncertainty on this variance σ 2

is estimated by bootstrap. The results are shown in Fig. 19, where
the blue points represent a couple (tj − ti, dij), and the red stair
curve represents the variance per bin and its uncertainty. As the

Figure 18. Posterior distributions and confidence intervals of the eccentric-
ity of 55 Cnc f for different models of noise, raw and binned data, HIRES17
data. The histograms represent the posterior distributions obtained with
different noise models: white noise and red + white noise for the raw data
(respectively in yellow and red), and a white noise model on the binned data
(in white).

Figure 19. Difference between all couples of residuals with a five planets
+ offset and white noise fit on the HIRES17 raw data as a function of the
time difference between residuals (see Section 4.3). The red stair curves
represent the variance of the residuals on a constant step in log time with
an estimate of the error on this variance.

time difference grows, the residuals are more and more dispersed,
which is indicative of correlated noise .

To account for this correlated noise, we adopt two strategies.
First, we include a red noise term in the model of Section 3.2. This
one is assumed Gaussian with a covariance kernel

k(t, t ′) = σ 2
R e− (t−t ′)2

2τ2 , (41)

and σ R and τ are included in the posterior sampling with a normal
prior on ln τ of mean and variance 1. The resulting eccentricity
posterior for 55 Cnc f is shown in red in Fig. 18. The posterior
median of τ is 2.3 d, with a 68 per cent confidence interval of
[0.5, 9.6] d. The second strategy we adopt is to bin the velocity
measurements per day. Such a strategy is actually what likely lead to
the measurement pattern chosen, as binning data per night averages
out stellar oscillations (Dumusque et al. 2011). The posterior so
obtained is represented by the white histogram in Fig. 18. In
both cases it appears that that the eccentricity is in fact much
less constrained. Note that the posterior distribution favours a
null eccentricity. We attribute this to the choice of the beta prior,
which favours small eccentricities, but also to the fact described in
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Figure 20. Qε as defined in equation (27) at 130 d for the measurement
times of HIRES17 data, as a function of the assumed noise characteristic
time. The yellow dots correspond the nominal measurements, and the white
dots correspond to the data binned per day.

Section 2.3: high eccentricity models represent a larger volume of
models, and are therefore be penalized by Bayesian estimates.

In Section 3.4.3, we argued that the main characteristic of a
noise that influences eccentricity estimation is, for a particular time
sampling, its power at the semiperiod of the planet. The results
above are indeed interpretable in this term. The quantity Qε(M2)
defined in equation (27) is computed for noises with a kernel defined
in equation (41). The calculation is made with the nominal time
sampling and the one corresponding to a one day binning. Fig. 20
shows the result of these calculations. With the nominal times, the
power at 130 d is much more sensitive to correlated noise, even at
time-scales as short as 5 min, which results in a clear eccentricity
overestimation. This example illustrates that due to the sampling,
some noises might create spurious eccentricities if not properly
accounted for.

As a remark, some measurement dates correspond to the obser-
vation of the 55 Cnc e transit. As noted in Bourrier et al. (2018), the
effect of the Rossiter–McLaughlin effect has been put in question
in López-Morales et al. (2014), and should not exceed 0.5 m s−1,
which is well below HIRES precision and does not impact the
analysis above.

6 C O N C L U S I O N

6.1 Summary and step-by-step method

In Section 2, we have seen that at low eccentricity, the bias of the
least square estimate can be approximated analytically (equation
12). This equation as well as numerical simulations show that the
bias is approximately proportional to the uncertainty on eccentricity.
We show that an incorrect estimate of the noise level can create
spurious global minima at high eccentricity through the Proxima b
example, and that at high SNR it is less likely, though not impossible,
to miss the global minimum by doing a least-squares fit initialized at
e = 0. In Section 2.3, it appeared that the maximum of the marginal
distribution of eccentricity (equation 20) is less biased than the
maximum likelihood.

In Section 3, we explored the reliability of the maximum likeli-
hood and posterior distributions when the noise model is incorrect,
along with the sensitivity of the inference to numerical methods. In
summary, we recommend the following data analysis method for
robust inference of eccentricities.

(i) Computing the posterior distribution of eccentricity leads to
correct inference in general (see Section 2.3.2), if one includes
in the noise model at least a free jitter term (equation 24). Without
such a term the inference is very likely to be spurious. The mean and
median of the marginal posterior distribution of eccentricity, defined

in Section 2.3, constitute good point estimates (see Section 3.4.2).
Credible intervals (equation 23) allow reliable hypothesis testing,
confidence intervals (see Section 2.2.4) are an alternative for
probing the low eccentricity region especially.

(ii) Using a white, Gaussian noise model might however lead
to spurious inferences in some cases. Eccentricity estimates are
weakly sensitive to non-Gaussianity of the noise, but are impacted
by its true covariance, especially by the noise power at P/2 and
to a lesser extent at P/3 where P is the period of the planet of
interest (see Section 3.4.3). Stellar signals might have a modulation
at the rotation period, but as shown in Section 5, correlated noise
combined with the sampling can also create spurious eccentricities.
The effects on the bias of the noise level and nature are summarized
in equation (28). Inappropriate models leave signatures in the
residuals, these ones can be studied with techniques presented in
Section 4.

(iii) It is key to check the convergence of the MCMC used for
posterior calculation, for instance with the effective number of
independent samples (we recommend at least 10 000). An unreliable
numerical method increases the bias (see Section 3.3).

(iv) At low SNR, posteriors are dominated by the prior and the
parameter space is harder to explore. This might lead to spurious
inferences (e.g. in Section 3.6). The influence of the prior can be
assessed with the method of Section 3.5.2.

(v) The most degenerate case is an inner planet in 2:1 resonance.
As discussed in Section 3.6, Bayes factors can disentangle those
cases. However, the value of the Bayes factor strongly depends on
the prior used for the semi-amplitude. We suggest to select a log
prior on semi-amplitude and to consider the eccentric scenario as
the null hypothesis.

(vi) In multiplanetary systems, checking the system stability
might also help ruling out some values of the eccentricity (e.g.
Hébrard et al. 2016; Delisle et al. 2018).

(vii) As more measurements are obtained, least square and
Bayesian estimates get closer, so that equation (13) can also be
used to approximate the number of measurements N(εe) needed
to have an average bias on eccentricity εe for a planet with semi-
amplitude K, p parameters fitted in total and a measurement root
mean square RMS,

N (εe) = p + π
RMS2

K2ε2
e

. (42)

This formula is for εe ≤ 0.05 and subtends that there is a good phase
coverage.

This procedure should be familiar to observers, since it is mainly
a formalized and tested version of common practices. It is applicable
to other purposes, especially the methods of Section 4, since
checking the model validity improves the inference robustness in
general.

6.2 Perspectives

The main point of this work is that modelling errors might have
systematic impacts on the estimates of orbital elements, and thus on
our understanding of planetary systems. It is yet to be determined
in which extent this has been the case in past studies.

In Section 4, we presented tools to measure the absolute adequacy
between a model and the data, which is complementary to com-
paring models to one another. There remain many such adequacy
metrics to explore. These ones could prove useful in the context of
exoplanets characterization but also exoplanets detection.
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APPENDI X A : FI RST-ORDER
APPROX IMATION

In this section, we developp the Keplerian model to first order in
eccentricity to obtain an analytical expression of the bias. Within
this approximation, the distribution of the least-squares fit knowing
that e = 0 is given in Lucy & Sweeney (1971). This section extends
their formula to small e, and takes into account the number of fitted
parameters. First, we develop (4) to order one in e, obtaining

y(λ,K, P , e, ω) = K(cos(λ) + e cos(2λ − ω)), (A1)
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where λ = nt + ω + M0 = λ0 + 2π t/P is the mean longitude, λ0

being its value at t = 0. Denoting by n = 2π /P the mean motion,
the above expression can be re-written

y(1)(t, A, B, C, D, n) = A cos nt + B sin nt + C cos 2nt

+D sin 2nt, (A2)

where A = Kcos λ0, B = −Ksin λ0, C = Kecos (2λ0 − ω),
D = −Kesin (2λ0 − ω). When other parameters are fitted, the
uncertainties on A, B, C, D increase as well. To quantify this effect,
we consider the problem of fitting the period and a constant.

y(2)(t, A, B, C, D, E, F ) = A cos nt + B sin nt + C cos 2nt

+D sin 2nt + E
∂y

∂n
(t) + F . (A3)

which in a matrix form gives

y(2)(t, A, B, C, D, E, F ) = M(P )x. (A4)

Let us assume that the observations are y(t) = M(P )xt + ε, where
ε is a Gaussian noise, independent and identically distributed with
variance σ 2. The least square estimate of x is x̂ = (MT M)−1MT y,
and the estimate of eccentricity is

ê =
√

Ĉ2 + D̂2

Â2 + B̂2
=

√
Ĉ2 + D̂2

Kt

(√
Â2 + B̂2

Kt

)−1

, (A5)

where Kt is the true semi-amplitude. By change of random variable
we can obtain the law followed by ê. If we assume that N is large
enough then the columns of M(P ) are approximately orthogonal,
the components of x̂ are independent Gaussian variables. Since the
modulus of a sum of independent Gaussian variables follows a Rice
distribution,

U ≡
√

Ĉ2 + D̂2

Kt
∼ g(u) = S2u e− S2

2 (u2+e2
t ) I0(S2eu) (A6)

W ≡
√

Â2 + B̂2

Kt
∼ h(w) = S2w e− S2

2 (w2+1) I0(S2w), (A7)

where I0 is a modified Bessel function of first kind, S = Kt/σ is
the SNR, where σ is the standard deviation of Â, B̂, Ĉ, and D̂.
If K is sufficiently large, W is close to 1 and g(u) gives a good
approximation of the law followed by the eccentricity fitted. Within
this approximation, one can obtain analytical formula for the bias
b of the eccentricity that only depends on the true eccentricity and
the SNR,

b(et, S, n) = 1

S

√
π

2
L1/2

(
S2e2

t

2

)
− et, (A8)

where L1/2 is the Laguerre polynomial of order 1/2. In case Kt is
small, one must use the formula for the law followed by the quotient
of two random variables:

ê = U

W
∼ f (e) =

∫ +∞

−∞
g(u)h(ue)|u| du (A9)

but no simple analytical expression was found.
When fitting model (A4) to y(t), the estimate θ̂ have a covari-

ance matrix �−1 where � = σ 2(M(P )T M(P )) [this is a classical
statistical result, see for example Pelat (2013)]. The variances of the
components of x̂ are given by the diagonal elements of �−1. Their
approximate calculation is the object of the next section.

A1 Average error

First we consider the estimation of the error on A, B, C, D
when averaging over the mean motion n. At little cost, we can
generalize our claim to the fitting of model (A3) plus fitting other
linearized Keplerian model. This approximately corresponds to
fitting a multiplanetary system starting closely from the correct local
minimum of χ2. Again, the model can be written as a linear one,
y = Mx but where M has p = 6 + 5k columns, k being the number
of additional planets. To facilitate the discussion, we normalize the
columns of M. To have an expression of the model of the form (A4),
we have multiplied the kth component of θ by the norm of the kth
column of M. The variances of these new model parameters are still
given by the diagonal elements of σ 2�−1 where � = (MT M), but
now � has only ones on its diagonal.

Calculating precisely the uncertainty on A, B, C, D averaged
over n and the phase of the signal as a function of the instant of
observations t is complex since it requires the inversion of σ which
is a 6 + 5k × 6 + 5k matrix. Instead, we use an approximation that
grasps the effect we want to estimate: how the uncertainty worsens
as more parameters are added to the model. We consider that the
elements of M are drawn from independent Gaussian laws that
have a variance 1/N. To avoid confusion with the true model, the so
defined random matrix is denoted by M̃ and its covariance matrix
by �̃.

This approximation seems to be rough at first but turns out to be
surprisingly accurate as a lower bound in practice. A few arguments
to justify that it is a reasonable guess are listed below.

(i) The variances of the entries were chosen such that the
expectancy of a squared norm of a column is one, which is the
value of � diagonal elements.

(ii) The columns are cosines and sines, which are approximately
orthogonal, and in the Gaussian case decorrelation implies indepen-
dence. Furthermore, the average of the spectral window is equal to
the expected value of a correlation between two random Gaussian
variables.

(iii) The normed vectors cos νt and sin νt are approximately
distributed uniformly on the sphere of RN when ν is distributed
uniformly between 0 and 2π /Tobs.

The expected value of the variance of any parameter is the
expected value of any diagonal element of �−1, since all the
columns of M̃ follow the same law. To tackle that problem, we
rewrite �̃ as

�̃ = σ 2

(
�11 �T

1

�1 �c

)
,

where �11 is �̃ element at first row and first column and �1 is a
column vector with N − 1 entries. We now have

E
{

�̃
−1
11

}
= 1

σ 2
E

{
1

�11 − �T
1 �−1

c �1

}
.

By Jensen inequality (Jensen 1906), since x → 1/x is convex,

E
{

�̃
−1
11

}
� 1

σ 2

1

E
{
�11 − �T

1 �−1
c �1

} .
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Now since for two independent variables X and Y, E{XY } =
E{X}E{Y },

�T
1 �−1

c �1 =
p∑

k=2

E
{
�2

1k

}
E

{
�−1

c,kk

}
�

p∑
k=2

E
{
�2

1k

}
= 1 − p − 1

N
.

As by construction E {�11} = 1, we finally obtain

E
{

�̃
−1
11

}
� 1

σ 2

1

1 − p−1
N

,

where the inequality follows again from Jensen’s inequality applied
to matrix inversion. Finally, the standard deviation on I = A, B, C,
D is

σI � σ

√
1

1 − p−1
N

. (A10)

With the approximation ‖ cos νt‖ ≈ ‖ sin νt‖ ≈ √
N/2, the errors

on k = C/
√

A2 + B2 and k = D/
√

A2 + B2 then verify

σk � σ

Kt

√
2

N
σI = σ

Kt

√
2

N − p + 1
≈ σ

Kt

√
2

N − p
=: 1/S.

(A11)

As k and h approximately follow a Gaussian law, e = √
k2 + h2

follows a Rice distribution, whose mean is given by

E{ê} = 1

S

√
π

2
L1/2

(
−S2e2

t

2

)
. (A12)

E{ê|et = 0} = σ

Kt

√
π

N − p
. (A13)

L1/2 being the Laguerre polynomial of degree 1/2. The relevance
of formula (A12) is checked on numerical examples next section.
As we shall see, the lower bound is tight when p does not exceeds
≈N/2.

Let us finally stress that formula (A12) approximates the bias
averaged on the mean motion, that is the frequency of the orbit, not
the period. Averaging on the period would give more weight to the
bias at low frequencies, which is high, and would therefore lead to
a greater average value of the bias.

A2 Precision and accuracy

Equation (3) expresses the MSE as a function of the bias and the
standard deviation. Assuming the model is correct, the MSE is
an accuracy metric (dispersion about the true value), while the
variance captures the precision of the estimate (dispersion of the
estimate about its mean value). Shen & Turner (2008); Zakamska
et al. (2011) have shown that the estimates accuracy degrades – all
other parameters being fixed – as the SNR decreases, as the period
of the planet is longer, and as phase coverage degrades.

In this appendix, we argue that these effects can be seen as de-
grading the precision of the eccentricity estimates. More precisely,
we show that the bias is proportional to the standard deviation of
the estimate, so that the MSE is also proportional to the standard
deviation.

We proceed with a numerical simulation. We consider the 74
measurement times of HD 69830 (Lovis et al. 2006), spanning on
800 d, as they are spaced in a typical manner. We then inject a

Figure A1. Bias as a function of the standard deviation of the eccentricity
estimates in different configurations.

simulated planet in circular orbit and a white, Gaussian noise of
standard deviation 1 m s−1. In all the following simulations, the
phase is uniformly random. By default, the semi-amplitude of the
planet is K = 3 m s−1 and the period is 31.56 d (like HD 69830 c).

(i) Data points are taken off two by two, from 74 to 14.
(ii) The semi-amplitude of the planet varies from 0.5 to 6.3 m s−1

by a step of 0.2 m s−1.
(iii) The period is drawn from a lognormal law, where log10P ∼

G(1, 1). Thirty different periods are drawn.
(iv) The phase coverage is degraded. We consider the 25 times

tk = k × P where P = 31.56 is the planet period. For each tk, three
epochs of measurements are drawn uniformly between tk and tk +
�t. We choose thirty different lengths for �t, equispaced from P/4
to P. The rationale is to generate observations more or less localized
around the same time when folded in phase at P.

Each of the four simulations is made with 30 different
parametrizations. For each of the 30 × 4 of these, we generate 500
realizations of white noise and report the average value of eccentric-
ity (the bias) and the standard deviation of the estimate. The results
are reported in Fig. A1, where it appears that the bias is proportional
to the standard deviation. The points obtained with simulations 1 to
4 described above correspond to the blue, red, yellow, and purple
points on the graph. The analytical approximation (13) suggests
that the bias should be proportional to the standard deviation of the
estimate with a factor

√
π/(4 − π ). The black line, which represents

y = √
π/(4 − π )x is in close agreement with the scatter observed.

The σ e reported in Fig. A1 is computed as the standard deviation
of the estimate. Note that the bias is also proportional to the
uncertainty on eccentricity computed from the correlation matrix,
obtained from the least-squares fit.

A P P E N D I X B: LO C A L χ2 M I N I M A AT H I G H
ECCENTRI CI TI ES

As shown in Baluev (2015), the number of local minima increases
significantly in the high eccentricities region. These minima might
lead a local minimization algorithm or an MCMC to be stuck in the
wrong region of the parameter space. We here aim at quantifying
and understanding this feature.
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In Section 2.2.2, we defined a notion of SNR (equation 11).
Interestingly enough, one can adapt this notion to predict the number
of local minima at high eccentricity, provided the value of the SNR
is checked to be reliable.

B1 Number of local minima per SNR

We explore through simulations how many local minima should be
expected, and how frequently the local minimum given by a non-
linear fit starting at a circular orbit is not the global minimum. Our
simulation is structured as follows. We consider the measurement
times of CoRoT-9 (Bonomo et al. 2017b), Gl96 (Hobson et al.
2018), of HD69830 (Lovis et al. 2006), HD40307 (Mayor et al.
2009), which have respectively 28, 67, 74, and 129 observations and
generate a planet with uniform distribution in e, ω, M0, and K (the
latter on [0,3]). The period is drawn from a log normal distribution
(log10P ∼ G(1.5, 1)). The uncertainties on the measurements are
taken as the nominal ones that are normalized to obtain a mean
variance of 1. We then obtain the fitted uncertainty σ 2

fit.
For each realization of the true planet and the noise, we perform

first a local minimization, initialized at a circular orbit. We then
compute three quantities at this local minimum: the condition
number of the Fisher matrix F, as well as the SNR, similarly to
equation (11),

cF = maxi=1..N λi

mini=1..N λi

with (λi)i=1..N = eigenvalues(F) (B1)

St = Kt

σt

√
N − p

2
(B2)

Sfit = Kfit

σfit

√
N − p

2
, (B3)

where Kt and Kfit are respectively the true and fitted values of the
semi-amplitude, N is the number of measurements, p the number
of fitted parameters. σ fit is defined as follows. We adjust a term σ 2

J

so that the reduced χ2 is equal to one and take σ fit as the mean of
(σ 2

J + σ 2
k )k=1..N . The rationale of taking this definition instead of

the true SNR is to have a quantity that does not require to know the
true orbital elements and can be computed on a real data set.

Secondly, we perform a Keplerian periodogram on a closely
spaced grid of e ∈ [0, 1], ω ∈ [0, 2π ), and n ∈ [nt − 1/Tobs, nt

+ 1/Tobs], where nt is the true mean motion. We compute the value
of the eccentricity where the global minimum of χ2 is attained, as
well as the number of local minima. For instance, in Fig. 3, the red
curve displays four local minima at e = 0.17, 0.75, 0.92, and 1, and
the global minimum is attained at e = 0.92. In that case, a local
minimization would not give the global minimum.

For both definitions of the SNR, we compute the number of
systems that have an SNR between 5k and 5(k + 1), k = 0..7 and
greater than 35. In each bin, we compute the number of systems
with 1, 2, 3, 4, 5, 6, or 7 local minima. The results are represented
in Figs B1 and B2 for St (equation B2) resp. Sfit (equation B3)
by the blue histograms. We then compute in each bin the fraction
of systems where the global minimum is not the local minimum
closest to 0, which means that most likely, a local minimization
does not yield the global minimum (red stair curve, see the right
y-axis scale). For instance, in Fig. B1, we see that out of the 2500
systems simulated, 472 had a St between 0 and 5, 176 of which had
only one local minimum, 203 had 2, 84 had 3, 9 had 4, and none had

Figure B1. Blue bins: binned values of the number of systems with 1, 2, 3,
4, 5, 6, or 7 local minima, with a bin size in true SNR St of 5. Red curve:
fraction of the binned systems where the global minimum is not attained at
the one obtained with a linear fit.

Figure B2. Blue bins: binned values of the number of systems with 1, 2, 3,
4, 5, 6, or 7 local minima, with a bin size in fitted SNR Sfit of 5. Red curve:
fraction of the binned systems where the global minimum is not attained at
the one obtained with a linear fit.

more. Among those 472 systems, 34 per cent of them had a local
minimum that is not the global minimum.

Note that in Fig. B2, the systems with Sfit > 35 present the
highest proportion of missed global minima. This is due to the
fact that no systems with very high SNR where generated. As a
consequence, all the very high values of Sfit result from datasets
with very low St where K was very overestimated. To obtain a more
reliable diagnostic, we need to determine if a fitted SNR can be
trusted. The criterion we used is to select only the data sets where cF

< 107. The Fig. B3 shows the number of local minima per bin of Sfit

so obtained. The predominance of systems with two local minima
is due to the fact that at very high eccentricity, there is in general
a decrease of χ2. As a consequence, the second local minima is
attained at the maximum eccentricity used for the calculation of the

MNRAS 489, 738–762 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/1/738/5529403 by guest on 28 M
ay 2023



Bias and robustness of eccentricity estimates 757

Figure B3. Blue bins: binned values of the number of systems that have a condition number lower than 107 with 1, 2, 3, 4, 5, or 6 local minima, with a bin
size in fitted SNR Sfit of 5. Red curve: fraction of the binned systems where the global minimum is not attained at the one obtained with a linear fit.

global periodogram. For instance in the case of Proxima b (Fig. 3),
there is such a minimum at e = 0.999. Note if we do the same
analysis per data set (CoRoT-9, Gl96, HD69830, HD40307), we
obtain very similar figures, which shows that indeed the SNR is a
reliable metric for the number of local minima. As a conclusion,
we expect that the exploration of the parameter space to be more
difficult at low SNR, since there are more local minima to expect.

B2 Interpretation

We now give a geometrical interpretation of why the high eccen-
tricity region is prone to having local minima.

Finding the best-fitting model amounts to finding the model
closest to the observation in a geometrical sense. We consider the
figure drawn in RN by all the models that have an eccentricity e and a
period P, Me,P . This figure might explore more or less dimensions.
For instance, if it is close to a plane, it is nearly confined to a two-
dimensional space. Otherwise, exploring many dimensions traduces
a ‘rough’ surface, which increases the chances of finding a local
minimum of distance to the data.

By a procedure based on singular value decomposition, detailed
in Hara (2017) Section 4.3, we obtain an approximate number of
dimensions explored by Me,P as a function of e. We here provide
a brief description of our methodology. The measured velocity can
be expressed as a linear combination of the velocity components in
the orbital frame Ẋ, Ẏ . With these variables, equation (4) becomes

y(t, A, B, ω, e, P ) = AẊ(t, ω, e, P ) + BẎ (t, ω, e, P ). (B4)

The components Ẋ(P , e, ω) = (Ẋ(tk, P , e, ω))k=1..N ,
Ẏ(P , e, ω) = (Ẏ (tk, P , e, ω))k=1..N are computed for a grid
of ω, (ωk)k = 1..n. Those vectors are concatenated to form a matrix
M(e, P ) = [Ẋ(P , e, ω1)..Ẋ(P , e, ωn)Ẏ(P , e, ω1)..Ẏ(P , e, ωn)],
whose columns are normalized to obtain M̃(e, P ). We compute the
number of singular values of M̃(e, P ) that are greater than a tenth
of the maximum singular value. This constitutes a proxy for the
number of dimensions explored by models with e, P fixed.

As an example, we perform this calculation on the 214 measure-
ment times of GJ 876 (Correia et al. 2010). The number of explored

dimensions are shown in Table 2. As eccentricity increases, the
models explore more dimensions. Since the models at high eccen-
tricity occupy a very large volume in many dimensions, there will
often be at least one high eccentricity model closely fitting the data.

APPENDIX C : FREQU ENTIST
M E T H O D O L O G I E S

C1 Presentation

Testing possible eccentricities can also be done in a frequentist
framework. This one offers confidence intervals, which are not
as easy to interpret as Bayesian credible intervals but have the
advantage of being quicker to compute. Furthermore, the associated
algorithms have clearer convergence tests.

So far frequentist inferences for eccentricities have been done in
several ways. Lucy & Sweeney (1971) and Husnoo et al. (2012)
respectively used p-values and BIC to test the hypothesis that
eccentricity is non-zero. More precisely, Lucy & Sweeney (1971)
compute the probability distribution of the eccentricity estimate
under the hypothesis that the eccentricity is null and find a Rayleigh
distribution whose variance depends on the SNR (which we also
obtain as a special case of our analysis Section 2.2.2 with p = 0).
For a given measured eccentricity ê, they measure the probability
that the Rayleigh distribution is higher than ê and report an eccentric
orbit if this probability is lower than a certain threshold.

Husnoo et al. (2012) computes

BIC(M) = χ2
min(M) + p ln N + ln(2π |V|), (C1)

where χ2
min is the minimum χ2 obtained when minimizing the

distance between the data and model M, p is the number of degrees
of freedom of M (three for a sine model and five for a Keplerian
one), and |V| is the determinant of the correlation matrix. The orbit
is said to be eccentric if BIC(Mecc) � BIC(Mcirc), where Mecc

and Mcirc are respectively eccentric and circular models.
Though reasonable, these techniques can be improved. First, they

both consider the alternative e is zero or non-zero, and do not allow
to test if a given value of eccentricity is compatible with the data
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758 N. C. Hara et al.

or not. Secondly, the analytical approximation of the eccentricity
distribution is not always accurate. Finally, the BIC (C1) gives
equal weight to all parameters, only their number k appears. This
approximation is valid in the limit of a large number of observations.

C2 New methods

Our aim is to overcome as much as possible these limitations.
It turns out that the procedure to construct confidence intervals
outlined in Casella & Berger (2001), chapter 9, allows us to test
the hypothesis that the true eccentricity is equal to a certain value
e for all e. The idea is to reject the hypothesis that eccentricity is
equal to e if all models with eccentricity e have a likelihood lower
than a fraction of the maximum likelihood. The following criterion
is computed in Appendix C4. We reject the hypothesis that the
eccentricity has a certain value e with a confidence level α if

LR :=
max
θ∈�e

f (y|θ )

max
θ∈�

f (y|θ )
� e− 1

2 β (C2)

β = F−1
χ2

ρ
(1 − α) (C3)

ρ = 2 + 2S ′2 e2

1 + e2
− πe

1 + e2
L 1

2

(
−S ′2

2

)
L 1

2

(
− e2S ′2

2

)
, (C4)

where �e is the set of parameters that have all eccentricity e, f (y|θ )
is the likelihood, F−1

χ2
ρ

is the inverse cumulative distribution function

of a χ2 law with ρ degrees of freedom, S ′ = (σ/Kt)
√

2/N and
L 1

2
is the Laguerre polynomial of order 1/2. The quantity (C2) is

simply the ratio of the maximum likelihood obtained by restriction
to the models with fixed eccentricity divided by the maximum
likelihood on all models. The condition states that if all models
that have eccentricity e have too low a likelihood, then e is rejected.
The following equations give the value of that threshold, which is
obtained by calculating the law followed by the random variable LR
under the hypothesis that the true eccentricity is e (LR|(et = e)). It
is in fact easier to compute the law followed by the logarithm of LR,
to obtain a χ2 law whose degree depends on a definition of the SNR
S and on the eccentricity under study, but is always smaller than
2. Our computations, detailed in Appendix C4, also make use of
simplifying assumptions, but these are checked to give satisfactory
results on simulated signals.

One of the problems of that expression is that it depends on the
true value of the semi-amplitude, Kt, which is unknown. There are
two ways to circumvent this issue: either by assuming that ρ =
2 for all e, which is the maximum value ρ can take, of Kt, or by
approximating Kt by the semi-amplitude of a circular orbit fitted
at the period of the signal. The first option can be used to obtain
conservative intervals to ensure that e is non-zero. The second one
gives a more realistic criterion to reject an eccentricity if no extra
care is needed. Let us note that ρ = 2 is obtained for e = 0. This has
a simple interpretation: the model can be approximated by a linear
one in k = ecos ω and h = esin ω. When e = 0, both k and h are set
to zero, which blocks two degrees of freedom. Denoting by ye the
model with fixed eccentricity e that has maximum likelihood and
y� the model with maximum likelihood, all parameters free,

0.5 ln(LR) = ‖W(y − ye)‖2 − ‖W(y − y�)‖2 (C5)

behaves then as a χ2 law with two degrees of freedom.
To offer a point of comparison of the confidence interval com-

puted equation (C4), two other metrics are tested. First, we simply

consider

F = N − p

ρ

‖W(y − ye)‖2 − ‖W(y − y�)‖2

‖W(y − y�)‖2
(C6)

which is basically equation (C5), normalized by ‖W(y − y�)‖2 so
that it depends less on the noise level assumption. The quantity (C6)
is assumed to follow a F distribution with ρ and N − p degrees of
freedom.

Secondly, we generalize the test suggested by Lucy & Sweeney.
Let us denote by e� the estimate of eccentricity obtained by
maximum likelihood when all parameters are free. For eccentricity
e, we fit a Keplerian model that has an eccentricity fixed at e. We
then compute the probability

Pr{|ê − e| > |e� − e||e,V, ê ∼ Rice(e, η2)} (C7)

that is the probability that an eccentricity estimated by maximum
likelihood ê is at least as far from its assumed value e than the
distance between e and the best fit actually observed, assuming
the noise model is Gaussian with known covariance matrix V. We
also assume that e follows a Rice distribution as in appendix A.
A Rice distribution can be seen as the modulus of a vector with
two independent Gaussian variables that have the same variance,
X ∼ G(a, η2) and Y ∼ G(b, η2) where k and h are the means of
these variables. To specify the distribution, we need therefore two
scalars: the variance of both random variables η2 and the modulus
of the mean of these two variables, r = √

a2 + b2. Here a = k and
b = h, so r = e. Then η2 is the variance of the estimates of k
or h, which under the hypotheses of Section 2.2.2 have the same
variance η2 = (σ 2

RV/K2
e )(π/(N − p)). Then the quantity (C7) can

easily be evaluated by the cumulative distribution function of the
Rice distribution, which is a Marcum Q-function.

Computing (C5), (C6), or (C7) necessitates to compute the
minimum distance between the observations and a model with fixed
eccentricity. To do so, we exploit the fact that Keplerian models are
partly linear, y(t, θ ) = AẊ(P , e, ω) + BẎ(P , e, ω) + C, where Ẋ
and Ẏ are the components of the velocity on the orbital plane.
For each couple e, ω, we can minimize ‖y − y(t, θ )‖ on A, B, C,
and P, which are respectively three linear parameters and one non-
linear parameter. Such a problem is fast to solve with, for instance,
a Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt
1963). If the period is already known (which is supposed here),
obtaining an array of χ2 on a fine grid of e and ω (60 values
each) takes only up to one minute. Let us finally note that the
idea of restricting the global χ2 minimization to a grid of non-
linear parameters is not new (Hartkopf, McAlister & Franz 1989;
Lucy 2014). There are even further resemblances of our interval
calculation with Lucy (2014), where confidence intervals on orbital
parameters are computed in a similar way. However, Lucy (2014)
uses a degree of freedom ρ = 1 for all parameters. This is correct
only if the model is linear in all the parameters or approximately
linear in the vicinity of the best fit and unimodal.

C3 tests

The formula (C3) and (C4) have been derived with simplifying
assumptions. To test and compare them to other options, we proceed
as follows. We define the acceptable interval as the set of e where
LRe � exp(−0.5Fχ2

ρ
(1 − α)).

(i) We generate a population of exoplanets according to a
certain prior density on the orbital elements p(K, e, P, M0, ω).
The measurement times are taken from existing data sets. The
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Bias and robustness of eccentricity estimates 759

noise generated according to a Gaussian density of covariance
matrix V.

(ii) For each system, we compute the set of eccentricity that are
not rejected, we check that the true eccentricity belongs to this set
and compute the measure of its complement in [0, 1], that is the
measure of the set of rejected eccentricities.

(iii) The results are summarized in two plots. First, the fraction
of cases where the true eccentricity is not in the acceptable interval
as a function of α. Secondly, the curve drawn when α goes from 0
to 1 by a point whose ordinate is the measure of the complement of
the set of acceptable eccentricity and whose abscissa is the fraction
of cases where the true eccentricity is not in the acceptable interval.

Such tests were carried out with the following inputs: the
measurement times are those of CoRoT-9 (Bonomo et al. 2017b).
The angles ω and M0 are chosen uniformly, e follows an uniform
distribution. In Fig. C1(a) and (b) we plot the result of the experiment
for a period fixed at 95 d the semi-amplitude is fixed to K =
3.5σ where σ is the RMS of the errors. These are the parameters
of the detected Jupiter in the system. In Fig. C1(c) and (d), we
let the period vary uniformly in log P and compute the same
quantities.

Plots (a) and (c) of Fig. C1 are labelled ‘ROC-like’ curve as a
reference to receiver–operator characteristic. These ones are defined
when the data are used to decide between two hypothesis. The ROC
curve represents the fraction of true positives as a function of the
fraction of false positives for a given decision rule. We adapt this
notion to our case, where there is an infinity of hypotheses (each e
in [0, 1] is a hypothesis). For a given rate of true eccentricity that
is not in the acceptable interval (false negatives), the y-axis gives
the precision on the estimate. The more eccentricities are rejected,
the more precise the estimate. The closer such a curve is to the
upper left corner the better: regardless of the value of α, the fraction
of true e rejected is zero (no false negatives) and almost all other
eccentricities are rejected: the estimation is very precise.

Interestingly enough, the ROC curve (left) is very similar for all
the metric considered with a slight advantage for the F-ratio and
the likelihood ratio tests (formulae C5 and C6), which have a better
precision (more eccentricities rejected) when the fraction of true
e rejected is low. We now need to set the level of true e rejected.
As expected, the curve obtained for ρ = 2 gives an overestimated
error rate for a given α. For the three other tests, the correspondence
seems appropriate. Overall, the F-ratio and the likelihood ratio tests
seem to perform best.

One advantage of the frequentist method is that it relies only on
local minimization algorithms, therefore it is fast and convergence is
ensured. We have also shown that the parameter α (see equation C3)
allows us to directly control the confidence intervals meaning.
Let us mention that we observed some peculiar behaviour of the
estimates for some periods where the matrix of the linearized
model is ill-conditioned, that we wish to investigate into more
depth in future studies. In those cases, the hypotheses allowing
to compute formula (C4) are not verified and Bayesian analysis or
more sophisticated formula would be required. On the other hand,
it seems unlikely that someone would want to prove a non-zero
eccentricity of a planet particularly poorly sampled.

C4 Confidence interval calculation

In this section, we outline the calculation of the confidence intervals
for eccentricity. Such an interval is constructed as a set of eccen-

tricities that are not rejected by a hypothesis test. We choose the
likelihood ratio test:

e is rejected if R :=
max
θ∈�e

f (y|θ )

max
θ∈�

f (y|θ )
� β,

where y denotes the actual observations, f (y|θ ) denotes the likeli-
hood, �e is the set of parameters that have eccentricity e, and β is
a constant which will be made explicit later. Our aim is to compute
the distribution of R under the assumption that the random variable
giving the observations is Y = yt + ε, ε being a Gaussian noise. We
further assume the noise is independent and identically distributed,
the condition translates to

e is rejected if D := ‖y − y(θ e)‖2 − ‖y − y�‖2 � −2σ 2 ln β,

(C8)

where θ e = arg min
θ∈�e

‖y − y(θ )‖2, σ 2 is the variance of the obser-

vations, and y� is the global minimum. We now compute the law
followed by D, so that we can select a β that corresponds to a false
alarm probability. Since D is defined implicitly, the calculation of
its distribution is difficult. We make two simplifying assumptions
that allow us to obtain an analytical expression. The expression will
then be tested on real cases through numerical simulations.

Let us first consider the linear approximation y = Mxt + ε where
M is defined as in (A3) and (A4). We further suppose that the
columns of M are orthonormal. Since the columns are originally of
the form cos nt, sin nt, cos 2nt, sin 2nt, they must be multiplied by√

2/N and the amplitude of the signal is no Kt but Kt
√

N/2. We
look for the solution θ̂e defined as

θ̂e = arg min
x∈Rp

‖y − Mx‖ subject to

√
x2

3 + x2
4

x2
1 + x2

2

= e. (C9)

Thanks to the Lagrange multipliers theorem, θ̂e satisfies the condi-
tions

∂L

∂x
= 0,

∂L

∂λ
= 0, where (C10)

L(x, λ) = 1

2
‖y − Mx‖2 + λ

2
xT Ex (C11)

with

E = diag
(−e2, −e2, 1, 1, 0, . . . , 0

)
. (C12)

The condition ∂L/∂x = 0 leads to(
MT M + λE

)
x = MT y. (C13)

Since the columns ofM are orthonormal,MT M is the identity, thus

x1 = u1

1 − λe2
, x2 = u2

1 − λe2
, x3 = u3

1 + λ
,

x4 = u4

1 + λ
, (C14)

and xj = uj, ∀j ≥ 5, where we have defined ui = Mi
T y, Mi being

the i-th column of M. The first four components of x are also con-
strained by ∂L/∂λ = 0. Let U = u2

1 + u2
2 and V = u2

3 + u2
4. We get

−e2

(1 − λe2)2
U + 1

(1 + λ)2
V = 0, (C15)

or, equivalently,

e2(e2V − U )λ2 − 2e2(V + U )λ + V − e2U = 0, (C16)
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760 N. C. Hara et al.

Figure C1. Results of simulations described by steps (i)–(iii) of Section C3. Here K = 3.5 σ , ω, and M0 are chosen uniformly in [0, 2π ], e is chosen uniformly
in [0, 0.99]. For figures (a) and (b), the period is fixed to 95 d, while it is chosen uniformly in log P for plots (c) and (d). Figures (a) and (c) represent the
fraction of eccentricities rejected (or equivalently, the measure of the set of rejected eccentricities) as a function of the rate of rejection of true eccentricity.
Figures (b) and (c) represent the rate of rejection as a function of α. The blue, red, yellow, and purple curves are respectively obtained with rejection criteria
given by equations (C2)–(C3) with ρ = 2, equations (C2)–(C3) with ρ given by equations (C4), (C5), and (C6) with ρ given by equation (C4). In the figure
legends, ν refers to ρ.

whose solutions are

λ± = e2(U + V ) ± e(1 + e2)
√

UV

e2(e2V − U )
. (C17)

For the solution θ̂e to actually be a minimum of L, all its eigenvalues
must be positive, i.e., λ must verify −1 < λ < 1/e2. Only λ− fulfils
this criterion, thus

λ = e2(U + V ) − e(1 + e2)
√

UV

e2(e2V − U )
, (C18)

and

x1 = 1 + e2
0

1 + e2
u1, x2 = 1 + e2

0

1 + e2
u2, x3 = e2

e2
0

1 + e2
0

1 + e2
u3,

x4 = e2

e2
0

1 + e2
0

1 + e2
u4, (C19)

with e4
0 = e2V /U . After a few calculation, we show that

D =
4∑

k=1

(uk − xk)2 =
(
e
√

u2
1 + u2

2 −
√

u2
3 + u2

4

)2

1 + e2
. (C20)

Let x = e
√

u2
1 + u2

2/Kt and y =
√

u2
3 + u2

4/Kt. These two random
variables follow Rice distributions with parameters

ρx = e

√
N

2
, σx = eσ

Kt
, ρy = e

√
N

2
, σy = σ

Kt
. (C21)

An expansion of the product term shows that D behaves
approximately as a weighted sum of variables following a
χ2 distribution. We can then use the Welch–Satterthwaite
approximation (Satterthwaite 1946; Welch 1947): D approximately
follows a χ2 distribution whose number of degrees of freedom ρ

is given by E{D}. In the following, we denote by S ′ = Kt
σ

√
N
2 the
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SNR. The expected value of D is

E{D} = K2
t

1 + e2

∫ ∞

0

∫ ∞

0
(x − y)2f (x|ρx, σx)f (y|ρy, σy) dxdy,

= K2
t

1 + e2

[
2σ 2

x + ρ2
x + 2σ 2

y + ρ2
y − πσxσyL 1

2

×
(

− ρ2
x

2σ 2
x

)
L 1

2

(
− ρ2

y

2σ 2
y

) ]

= K2
t

1 + e2

[
2

σ 2

K2
t

(1 + e2) + Ne2 − eπ
σ 2

K2
t
L 1

2

×
(

−S ′2

2

)
L 1

2

(
− e2S ′2

2

)]
. (C22)

With ρ = E{D}/σ 2, we get

ρ = 2 + 2S ′2 e2

1 + e2
− πe

1 + e2
L 1

2

(
−S ′2

2

)
L 1

2

(
− e2S ′2

2

)
.

(C23)

To obtain a confidence level α, then we need to take −2 ln β =
F−1

χ2
ρ

(1 − α) where F−1
χ2

ρ
is the inverse cumulative distribution func-

tion of a χ2 distribution with ρ degrees of freedom. Conversely,
it is possible to convert a measured D to a probability simply by
computing αe = 1 − Fχ2

ρ
(D). The hypothesis et = e is rejected if

αe is below a certain threshold.
This formula was tested numerically. It is in very good agreements

with the simulations as soon as S
′

is above ≈20. As it decreases,
the average of estimated eccentricity increases (which is exactly
saying that the bias increases) therefore the approximation of low
eccentricities does not hold any more. The value of S

′
can be

evaluated keeping in mind that when the linearized model at e = 0
is poorly conditioned, (matrix M, as defined equations A3 and A4),
then the uncertainty on k and h is higher than given by the simple
formula (A11) and the S

′
analytical approximation is inoperative.

APPEN D IX D : N ON-GAU SSIAN NOISE

D1 simulations

In this appendix, we show that the non-Gaussianity of the noise has
a small impact on the quality of the eccentricity estimates.

We generate 1000 realizations of six different types of noises.
These have a null mean, are independent, identically distributed and
scaled to have a standard deviation σ = 1 (their covariance matrix is
the identity). We consider noises that are Gaussian, Student T with
3 and 4 degrees of freedom, uniform, exponential, and Poisson. We
inject a circular planet on the measurement times of Gl 96 with
K = 4 × σ and uniform ω, M0. Ten periods are chosen randomly
according to a log normal distribution on the 5–500 d interval.

For each type of noise, each of the 10 × 1000 noise realizations
chosen, we compute the error on eccentricity |ê − et|, et being the
true eccentricity and ê the estimate), and the root mean square
(RMS) of the residuals. The RMS is as a proxy for the estimated
noise level, and thus the width of the error bars. The latter is the
maximum likelihood estimate of the noise level for an i.i.d. noise
model.

The average values of those on the 10 times 1000 realizations are
reported in Table D1. Note that we take the square root of the MSE.
We find that the mean error on eccentricity for non-Gaussian noise

is within 2 per cent of the value of the mean error for a Gaussian
noise, and the estimated jitter is within 5 per cent of the value of the
mean jitter for a Gaussian noise. Only the MSE varies by 10 per cent
between the Gaussian and Student T distribution with 3 degrees of
freedom. Such results are remarkable, since for instance the Poisson
noise takes discrete values and is non-symmetrical.

The cumulative distribution function of the error and the es-
timated noise levels (the standard deviation of the residuals) are
shown in Fig. D1. Note that the jitter estimates have a slightly
greater dispersion for the Student distributions, but as in the case
of the average values we do not see striking differences. We simply
note that for noise distributions with heavy tails (here Student), as
expected, there is a higher fraction of cases where the noise level is
severely underestimated or overestimated. We conclude that non-
Gaussianity does not play a significant role, except for an increased
variability of the noise level estimation when the noise distribution
has heavy tails.

D2 Distribution of the bias and the jitter

In this section, we state and prove some mathematical results on
the estimate of eccentricity obtained via a linear model. We assume
as in Section 2.2.2 that the eccentricity estimate is given by the
linear model, y = Mx + ε where the first four columns of M are
such that the i-th line is evaluated at observation time ti, Mi =
(cos(nti) sin(nti) cos(2nti) sin(2nti)) and x = (A B C D)T . The
remaining columns M are such that M is of maximal rank. The
eccentricity estimate is

ê =
√

Ĉ2 + D̂2

Â2 + B̂2
. (D1)

We denote by K̂ =
√

Â2 + B̂2. The only assumption on the noise ε

is that a vanishing mean and a non-degenerate covariance matrix V.
The model just described is supposed to be the true model, which

is unknown by the data analyst. We assume that the model with
which the analysis is done is y = Mx + ε where ε is a Gaussian
noise identically distributed of variance σ 2, that is a free parameter.
In that model, for a data set y0 the maximum likelihood estimates
of x and σ are respectively

x̂ = (MT M)−1MT y0 (D2)

σ̂ 2 = ‖y0 − Mx̂‖2

N
= ‖(I − M(MT M)−1MT )y0‖2

N
= ‖Qy0‖2

N
,

(D3)

where we denote by I the N × N identity matrix and by Q =
I − M(MT M)−1MT .

The question we address is the dependence of the estimate (D1)
on the noise nature. We show that several quantities relevant to
our purposes are only determined by the covariance of the noise.
Assertion iv below shows that the bias on e2 depends only on the
covariance structure of the noise to order 2 in 1/K. More precisely,

THEOREM 1.

(i) E{σ̂ 2} = 1
N

tr(QVQT ) where tr is the sum of the diagonal
terms of a matrix (the trace).

(ii) E{x̂} = xt

(iii) Cov{x̂} = (MT M)−1MT VM(MT M)−1

(iv) E{ê2} − e2
t = f (V) + o

(
1
̂K3

)
.

MNRAS 489, 738–762 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/1/738/5529403 by guest on 28 M
ay 2023



762 N. C. Hara et al.

Table D1. Error, MSE, and noise level estimate of the eccentricity estimates for Gaussian and non-Gaussian noises.

Noise type Gaussian Student T 3 Student T 4 Uniform Exponential Poisson

Mean error 0.067 0.066 0.0672 0.067 0.066 0.067√
MSE 0.084 0.094 0.090 0.085 0.083 0.084

Noise level 0.951 0.904 0.938 0.952 0.940 0.947

Figure D1. Left: cumulative distribution function of the error on eccentric-
ity for six different types of noise: Gaussian, Student T with 3 and 4 degrees
of freedom, uniform, exponential, and Poisson. Right: standard deviation of
the residuals after a Keplerian fit.

Proof.

(i) As y0 = yt + ε and yt is in the image space of M, we have
Qy0 = Qε.
The estimate of the noise level is given by equa-

tion (D3). Since ‖Qy0‖2 = yT
0 Q

T Qy0 and Qy0 = Qε, E{σ̂ 2} =∑
i,j (QQT )ijE{εiεj }/N = ∑

i,j (QQT )ij Vij /N = 1
N

tr(QVQT ).
(ii) We have E{x̂} = E{(MT M)−1MT y0} = (MT M)−1MT (yt +

E{ε} and by hypothesis, E{ε} = 0, hence the result.
(iii) Cov{x̂} = Cov{(MT M)−1MT y0} = Cov{(MT M)−1MT ε}
(iv) We pose Â = Ā + a, B̂ = B̄ + b, Ĉ = C̄ + a, D̂ = D̄ + d .

Denoting by K̄ = √
C̄ + D̄. A Taylor expansion of the denominator

ê2 about Ā, B̄, C̄, D̄ at order two in 1/K̄ is

ê2 = C̄2 + D̄2 + 2C̄c + 2D̄d + c2 + d2

K̄2

×
(

1 − 2
Āa + B̄b

K̄2
− a2 + b2

K̄2
− 4

(Āa + B̄b)2

K̄4
+ ...

)

E{ê2} − e2
t =

∞∑
i=1

γi

K̄i
. (D4)

A simple development shows that γ 1 = 0 and that γ2 =
f (μ2) where μ2 is the vector of moments of order 2
of x, which is a function of the noise covariance as
shown in (iii). For completeness, we give the explicit ex-
pression γ2 = σ 2

c + σ 2
d + 4et(cos ψ cos φCac + sin ψ cos φCcb +

cos ψ sin φCad + sin ψ sin φCdb) + e2
t (σ 2

a + σ 2
b ), where Cij is the

covariance of Î and Ĵ and Ā = K̄ cos φ, B̄ = K̄ sin φ C̄ =
ēK̄ cos φ, C̄ = ēK̄ sin φ.

�
APPENDIX E: R ESIDUA L A NA LY SIS

In this section we compute the law followed by the residuals
of a linear least-squares fit. Let us suppose that we have a

model

y = Ax + ε, ε ∼ G(0,V),

where y is a vector of N observations, modelled as a linear
combination of the column of the N × p matrix A, and ε is a
Gaussian noise of covariance matrixV =: W−1. AssumingV andA
are known, the least square estimate of y is ŷ = A(AT WA)−1AT Wy
Therefore

W1/2(y − ŷ) = W1/2
(
Ax + ε − A(AT WA)−1AT W(Ax + ε)

)
= W1/2(IN − B)ε

= : rW ,

where IN is the identity matrix of size N and B :=
A (AT WA)−1AT W. The quantity rW , being a product of a matrix
(W1/2(In − B)) with a Gaussian random variable of covariance V
has a covariance U

U = W1/2(IN − BT )V(IN − B)W1/2

= W1/2(V − BV − VBT + BVBT )W1/2

since W1/2VBT = W−1/2BT W1/2 = W1/2BVBT W1/2,

U = IN − W1/2BT W−1/2

= IN − C(CT C)−1CT ,

where C = W1/2A. This notation is convenient because it shows
clearly that P = C(CT C)−1CT is a projection matrix on the space
generated by the columns of C. Finally

U = IN − P (E1)

is a projection on the space orthogonal to the one generated by C
columns. Therefore, there exists an orthonormal matrix Q such that

QT UQ = Jp

where Jp is a diagonal matrix whose first p elements are zero and the
others are equal to one. Finally, let us remark that rQW := QT rW

has a covariance matrix QT UQ = Jp , which shows the claim of
Section 4, QT W1/2(y − ŷ) has p vanishing components and the
others are Gaussian variables of mean 0 and variance 1.

Let us finally note that the covariance matrix U = IN − P of
rW = W1/2(y − ŷ) will be close to identity if there are many more
observations than parameters. This explains why the weighted
residuals rW almost behaves like independent Gaussian variables
and, for instance, why plotting rW (ti) − rW (tj ) as a function of ti −
tj gives hints on the correlations.
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