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Michael E. Sander 1 2 Pierre Ablin 1 2 Mathieu Blondel 3 Gabriel Peyré 1 2

Abstract
The training of deep residual neural networks
(ResNets) with backpropagation has a memory
cost that increases linearly with respect to the
depth of the network. A way to circumvent this is-
sue is to use reversible architectures. In this paper,
we propose to change the forward rule of a ResNet
by adding a momentum term. The resulting net-
works, momentum residual neural networks (Mo-
mentum ResNets), are invertible. Unlike previous
invertible architectures, they can be used as a drop-
in replacement for any existing ResNet block. We
show that Momentum ResNets can be interpreted
in the infinitesimal step size regime as second-
order ordinary differential equations (ODEs) and
exactly characterize how adding momentum pro-
gressively increases the representation capabili-
ties of Momentum ResNets: they can learn any
linear mapping up to a multiplicative factor, while
ResNets cannot. In a learning to optimize setting,
where convergence to a fixed point is required,
we show theoretically and empirically that our
method succeeds while existing invertible archi-
tectures fail. We show on CIFAR and ImageNet
that Momentum ResNets have the same accuracy
as ResNets, while having a much smaller memory
footprint, and show that pre-trained Momentum
ResNets are promising for fine-tuning models.

1. Introduction
Problem setup. As a particular instance of deep learning
(LeCun et al., 2015; Goodfellow et al., 2016), residual neu-
ral networks (He et al., 2016, ResNets) have achieved great
empirical successes due to extremely deep representations
and their extensions keep on outperforming state of the art
on real data sets (Kolesnikov et al., 2019; Touvron et al.,

1Ecole Normale Supérieure, DMA, Paris, France 2CNRS,
France 3Google Research, Brain team. Correspondence
to: Michael Sander <michael.sander@ens.fr>, Pierre
Ablin <pierre.ablin@ens.fr>, Mathieu Blondel <mblon-
del@google.com>, Gabriel Peyré <gabriel.peyre@ens.fr>.
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2019). Most of deep learning tasks involve graphics process-
ing units (GPUs), where memory is a practical bottleneck in
several situations (Wang et al., 2018; Peng et al., 2017; Zhu
et al., 2017). Indeed, backpropagation, used for optimizing
deep architectures, requires to store values (activations) at
each layer during the evaluation of the network (forward
pass). Thus, the depth of deep architectures is constrained
by the amount of available memory. The main goal of this
paper is to explore the properties of a new model, Momen-
tum ResNets, that circumvent these memory issues by being
invertible: the activations at layer n is recovered exactly
from activations at layer n + 1. This network relies on a
modification of the ResNet’s forward rule which makes it
exactly invertible in practice. Instead of considering the
feedforward relation for a ResNet (residual building block)

xn+1 = xn + f(xn, θn), (1)

we define its momentum counterpart, which iterates{
vn+1 = γvn + (1− γ)f(xn, θn)
xn+1 = xn + vn+1,

(2)

where f is a parameterized function, v is a velocity term and
γ ∈ [0, 1] is a momentum term. This radically changes the
dynamics of the network, as shown in the following figure.
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Figure 1. Comparison of the dynamics of a ResNet (left) and
a Momentum ResNet with γ = 0.9 (right) with tied weights
between layers, θn = θ for all n. The evolution of the activations
at each layer is shown (depth 15). Models try to learn the mapping
x 7→ −x3 in R. The ResNet fails (the iterations approximate the
solution of a first-order ODE, for which trajectories don’t cross, cf.
Picard-Lindelof theorem) while the Momentum ResNet leverages
the changes in velocity to model more complex dynamics.

In contrast with existing reversible models, Momentum
ResNets can be integrated seamlessly in any deep architec-
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ture which uses residual blocks as building blocks (cf. in
Section 3).

Contributions. We introduce momentum residual neural
networks (Momentum ResNets), a new deep model that
relies on a simple modification of the ResNet forward rule
and which, without any constraint on its architecture, is
perfectly invertible. We show that the memory requirement
of Momentum ResNets is arbitrarily reduced by changing
the momentum term γ (Section 3.2), and show that they can
be used as a drop-in replacement for traditional ResNets.

On the theoretical side, we show that Momentum ResNets
are easily used in the learning to optimize setting, where
other reversible models fail to converge (Section 3.3). We
also investigate the approximation capabilities of Momen-
tum ResNets, seen in the continuous limit as second-order
ODEs (Section 4). We first show in Proposition 3 that
Momentum ResNets can represent a strictly larger class
of functions than first-order neural ODEs. Then, we give
more detailed insights by studying the linear case, where
we formally prove in Theorem 1 that Momentum ResNets
with linear residual functions have universal approximation
capabilities, and precisely quantify how the set of repre-
sentable mappings for such models grows as the momentum
term γ increases. This theoretical result is a first step to-
wards a theoretical analysis of representation capabilities of
Momentum ResNets.

Our last contribution is the experimental validation of Mo-
mentum ResNets on various learning tasks. We first show
that Momentum ResNets separate point clouds that ResNets
fail to separate (Section 5.1). We also show on image
datasets (CIFAR-10, CIFAR-100, ImageNet) that Momen-
tum ResNets have similar accuracy as ResNets, with a
smaller memory cost (Section 5.2). We also show that
parameters of a pre-trained model are easily transferred to a
Momentum ResNet which achieves comparable accuracy in
only few epochs of training. We argue that this way to ob-
tain pre-trained Momentum ResNets is of major importance
for fine-tuning a network on new data for which memory
storage is a bottleneck. We provide a Pytorch package with a
method that takes a torchvision ResNet model and returns its
Momentum counterpart that achieves similar accuracy with
very little refit. We also experimentally validate our theoret-
ical findings in the learning to optimize setting, by confirm-
ing that Momentum ResNets perform better than RevNets
(Gomez et al., 2017). Our code is available at https:
//github.com/michaelsdr/momentumnet.

2. Background and previous works.
Backpropagation. Backpropagation is the method of
choice to compute the gradient of a scalar-valued function.
It operates using the chain rule with a backward traversal of
the computational graph (Bauer, 1974). It is also known as

reverse-mode automatic differentiation (Baydin et al., 2018;
Rumelhart et al., 1986; Verma, 2000; Griewank & Walther,
2008). The computational cost is similar to the one of eval-
uating the function itself. The only way to back-propagate
gradients through a neural architecture without further as-
sumptions is to store all the intermediate activations during
the forward pass. This is the method used in common deep
learning libraries such as Pytorch (Paszke et al., 2017), Ten-
sorflow (Abadi et al., 2016) and JAX (Jacobsen et al., 2018).
A common way to reduce this memory storage is to use
checkpointing: activations are only stored at some steps and
the others are recomputed between these check-points as
they become needed in the backward pass (e.g., Martens &
Sutskever (2012)).

Reversible architectures. However, models that allow
backpropagation without storing any activations have re-
cently been developed. They are based on two kinds of
approaches. The first is discrete and relies on finding ways
to easily invert the rule linking activation n to activation n+1
(Gomez et al., 2017; Chang et al., 2018; Haber & Ruthotto,
2017; Jacobsen et al., 2018; Behrmann et al., 2019). In this
way, it is possible to recompute the activations on the fly dur-
ing the backward pass: activations do not have to be stored.
However, these methods either rely on restricted architec-
tures where there is no straightforward way to transfer a well
performing non-reversible model into a reversible one, or do
not offer a fast inversion scheme when recomputing activa-
tions backward. In contrast, our proposal can be applied to
any existing ResNet and is easily inverted. The second kind
of approach is continuous and relies on ordinary differential
equations (ODEs), where ResNets are interpreted as contin-
uous dynamical systems (Weinan, 2017; Chen et al., 2018;
Teh et al., 2019; Sun et al., 2018; Weinan et al., 2019; Lu
et al., 2018; Ruthotto & Haber, 2019). This allows one to im-
port theoretical and numerical advances from ODEs to deep
learning. These models are often called neural ODEs (Chen
et al., 2018) and can be trained by using an adjoint sensi-
tivity method (Pontryagin, 2018), solving ODEs backward
in time. This strategy avoids performing reverse-mode au-
tomatic differentiation through the operations of the ODE
solver and leads to a O(1) memory footprint. However,
defining the neural ODE counterpart of an existing residual
architecture is not straightforward: optimizing ODE blocks
is an infinite dimensional problem requiring a non-trivial
time discretization, and the performances of neural ODEs
depend on the numerical integrator for the ODE (Gusak
et al., 2020). In addition, ODEs cannot always be numeri-
cally reversed, because of stability issues: numerical errors
can occur and accumulate when a system is run backwards
(Gholami et al., 2019; Teh et al., 2019). Thus, in practice,
neural ODEs are seldom used in standard deep learning
settings. Nevertheless, recent works (Zhang et al., 2019;
Queiruga et al., 2020) incorporate ODE blocks in neural
architectures to achieve comparable accuracies to ResNets

https://github.com/michaelsdr/momentumnet
https://github.com/michaelsdr/momentumnet
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on CIFAR.

Representation capabilities. Studying the representation
capabilities of such models is also important, as it gives in-
sights regarding their performance on real world data. It
is well-known that a single residual block has universal ap-
proximation capabilities (Cybenko, 1989), meaning that on
a compact set any continuous function can be uniformly
approximated with a one-layer feedforward fully-connected
neural network. However, neural ODEs have limited repre-
sentation capabilities. Teh et al. (2019) propose to lift points
in higher dimensions by concatenating vector fields of data
with zeros in an extra-dimensional space, and show that the
resulting augmented neural ODEs (ANODEs) achieve lower
loss and better generalization on image classification and
toy experiments. Li et al. (2019) show that, if the output of
the ODE-Net is composed with elements of a terminal fam-
ily, then universal approximation capabilities are obtained
for the convergence in Lp norm for p < +∞, which is
insufficient (Teshima et al., 2020). In this work, we consider
the representation capabilities in L∞ norm of the ODEs de-
rived from the forward iterations of a ResNet. Furthermore,
Zhang et al. (2020) proved that doubling the dimension of
the ODE leads to universal approximators, although this
result has no application in deep learning to our knowledge.
In this work, we show that in the continuous limit, our ar-
chitecture has better representation capabilities than Neural
ODEs. We also prove its universality in the linear case.

Momentum in deep networks. Some recent works (He
et al., 2020; Chun et al., 2020; Nguyen et al., 2020; Li et al.,
2018) have explored momentum in deep architectures. How-
ever, these methods differ from ours in their architecture
and purpose. Chun et al. (2020) introduce a momentum to
solve an optimization problem for which the iterations do
not correspond to a ResNet. Nguyen et al. (2020) (resp. He
et al. (2020)) add momentum in the case of RNNs (differ-
ent from ResNets) where the weights are tied to alleviate
the vanishing gradient issue (resp. link the key and query
encoder layers). Li et al. (2018) consider a particular case
where the linear layer is tied and is a symmetric definite
matrix. In particular, none of the mentioned architectures
are invertible, which is one of the main assets of our method.

Second-order models We show that adding a momentum
term corresponds to an Euler integration scheme for integrat-
ing a second-order ODE. Some recently proposed architec-
tures (Norcliffe et al., 2020; Rusch & Mishra, 2021; Lu et al.,
2018; Massaroli et al., 2020) are also motivated by second-
order differential equations. Norcliffe et al. (2020) introduce
second-order dynamics to model second-order dynamical
systems, whereas our model corresponds to a discrete set of
equations in the continuous limit. Also, in our method, the
neural network only acts on x, so that although momentum
increases the dimension to 2d, the computational burden

of a forward pass is the same as a ResNet of dimension
d. Rusch & Mishra (2021) propose second-order RNNs,
whereas our method deals with ResNets. Finally, the for-
mulation of LM-ResNet in Lu et al. (2018) differs from our
forward pass (xn+1 = xn + γvn + (1− γ)f(xn, θn)), even
though they both lead to second-order ODEs. Importantly,
none of these second-order formulations are invertible.
Notations For d ∈ N∗, we denote by Rd×d, GLd(R) and
DC
d (R) the set of real matrices, of invertible matrices, and

of real matrices that are diagonalizable in C.

3. Momentum Residual Neural Networks
We now introduce Momentum ResNet, a simple transfor-
mation of any ResNet into a model with a small memory
requirement, and that can be seen in the continuous limit as
a second-order ODE.

3.1. Momentum ResNets

Adding a momentum term in the ResNet equations.
For any ResNet which iterates (1), we define its Momentum
counterpart, which iterates (2), where (vn)n is the velocity
initialized with some value v0 in Rd, and γ ∈ [0, 1] is the
so-called momentum term. This approach generalizes gradi-
ent descent algorithm with momentum (Ruder, 2016), for
which f is the gradient of a function to minimize.

Initial speed and momentum term. In this paper, we
consider initial speeds v0 that depend on x0 through a sim-
ple relation. The simplest options are to set v0 = 0 or
v0 = f(x0, θ0). We prove in Section 4 that this dependency
between v0 and x0 has an influence on the set of mappings
that Momentum ResNets can represent. The parameter γ
controls how much a Momentum ResNet diverges from a
ResNet, and also the amount of memory saving. The closer
γ is to 0, the closer Momentum ResNets are to ResNets,
but the less memory is saved. In our experiments, we use
γ = 0.9, which we find to work well in various applications.

Invertibility. Procedure (2) is inverted through{
xn = xn+1 − vn+1,
vn = 1

γ (vn+1 − (1− γ)f(xn, θn)) ,
(3)

so that activations can be reconstructed on the fly during
the backward pass in a Momentum ResNet. In practice, in
order to exactly reverse the dynamics, the information lost
by the finite-precision multiplication by γ in (2) has to be
efficiently stored. We used the algorithm from Maclaurin
et al. (2015) to perform this reversible multiplication. It
consists in maintaining an information buffer, that is, an
integer that stores the bits that are lost at each iteration, so
that multiplication becomes reversible. We further describe
the procedure in Appendix C. Note that there is always a
small loss of floating point precision due to the addition of
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the learnable mapping f . In practice, we never found it to be
a problem: this loss in precision can be neglected compared
to the one due to the multiplication by γ.

Table 1. Comparison of reversible residual architectures
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Closed-form inversion 3 7 3 3 3

Same parameters 7 3 7 7 3

Unconstrained training 3 7 3 3 3

Drop-in replacement. Our approach makes it possible
to turn any existing ResNet into a reversible one. In other
words, a ResNet can be transformed into its Momentum
counterpart without changing the structure of each layer.
For instance, consider a ResNet-152 (He et al., 2016). It is
made of 4 layers (of depth 3, 8, 36 and 3) and can easily be
turned into its Momentum ResNet counterpart by changing
the forward equations (1) into (2) in the 4 layers. No further
change is needed and Momentum ResNets take the exact
same parameters as inputs: they are a drop-in replacement.
This is not the case of other reversible models. Neural ODEs
(Chen et al., 2018) take continuous parameters as inputs. i-
ResNets (Behrmann et al., 2019) cannot be trained by plain
SGD since the spectral norm of the weights requires con-
strained optimization. i-RevNets (Jacobsen et al., 2018) and
RevNets (Gomez et al., 2017) require to train two networks
with their own parameters for each residual block, split the
inputs across convolutional channels, and are half as deep
as ResNets: they do not take the same parameters as inputs.
Table 1 summarizes the properties of reversible residual
architectures. We discuss in further details the differences
between RevNets and Momentum ResNets in sections 3.3
and 5.3.

3.2. Memory cost

Instead of storing the full data at each layer, we only need
to store the bits lost at each multiplication by γ (cf. “intert-
ibility”). For an architecture of depth k, this corresponds
to storing log2(( 1

γ )k) values for each sample (k(1−γ)ln(2) if
γ is close to 1). To illustrate, we consider two situations
where storing the activations is by far the main memory
bottleneck. First, consider a toy feedforward architecture
where f(x, θ) = WT

2 σ(W1x + b), with x ∈ Rd and
θ = (W1,W2, b), where W1,W2 ∈ Rp×d and b ∈ Rp,
with a depth k ∈ N. We suppose that the weights are the
same at each layer. The training set is composed of n vec-
tors x1, ..., xn ∈ Rd. For ResNets, we need to store the
weights of the network and the values of all activations for
the training set at each layer of the network. In total, the

memory needed is O(k × d× nbatch) per iteration. In the
case of Momentum ResNets, if γ is close to 1 we get a
memory requirement of O((1− γ)× k× d× nbatch). This
proves that the memory dependency in the depth k is arbi-
trarily reduced by changing the momentum γ. The memory
savings are confirmed in practice, as shown in Figure 2.

0 200 400 600 800

Depth

102

103

M
em

or
y

(M
iB

)

ResNet

Momentum ResNet

Figure 2. Comparison of memory needed (calculated using a
profiler) for computing gradients of the loss, with ResNets (acti-
vations are stored) and Momentum ResNets (activations are not
stored). We set nbatch = 500, d = 500 and γ = 1 − 1

50k
at

each depth. Momentum ResNets give a nearly constant memory
footprint.

As another example, consider a ResNet-152 (He et al., 2016)
which can be used for ImageNet classification (Deng et al.,
2009). Its layer named “conv4 x” has a depth of 36: it
has 40 M parameters, whereas storing the activations would
require storing 50 times more parameters. Since storing
the activations is here the main obstruction, the memory
requirement for this layer can be arbitrarily reduced by
taking γ close to 1.

3.3. The role of momentum

When γ is set to 0 in (2), we recover a ResNet. Therefore,
Momentum ResNets are a generalization of ResNets. When
γ −→ 1, one can scale f → 1

1−γ f to get in (2) a symplectic
scheme (Hairer et al., 2006) that recovers a special case of
other popular invertible neural network: RevNets (Gomez
et al., 2017) and Hamiltonian Networks (Chang et al., 2018).
A RevNet iterates

vn+1 = vn+ϕ(xn, θn), xn+1 = xn+ψ(vn+1, θ
′

n), (4)

where ϕ and ψ are two learnable functions.

The usefulness of such architecture depends on the task.
RevNets have encountered success for classification and
regression. However, we argue that RevNets cannot work
in some settings. For instance, under mild assumptions,
the RevNet iterations do not have attractive fixed points
when the parameters are the same at each layer: θn = θ,
θ′n = θ′. We rewrite (4) as (vn+1, xn+1) = Ψ(vn, xn) with
Ψ(v, x) = (v + ϕ(x, θ), x+ ψ(v + ϕ(x, θ), θ′)).

Proposition 1 (Instability of fixed points). Let (v∗, x∗) a
fixed point of the RevNet iteration (4). Assume that ϕ (resp.
ψ) is differentiable at x∗ (resp. v∗), with Jacobian matrix
A (resp. B) ∈ Rd×d. The Jacobian of Ψ at (v∗, x∗) is
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J(A,B) =
(
Idd A
B Idd+BA

)
. If A and B are invertible, then

there exists λ ∈ Sp (J(A,B)) such that |λ| ≥ 1 and λ 6= 1.

This shows that (v∗, x∗) cannot be a stable fixed point. As a
consequence, in practice, a RevNet cannot have converging
iterations: according to (4), if xn converges then vn must
also converge, and their limit must be a fixed point. The
previous proposition shows that it is impossible.

This result suggests that RevNets should perform poorly in
problems where one expects the iterations of the network
to converge. For instance, as shown in the experiments in
Section 5.3, this happens when we use reverible dynamics
in order to learn to optimize (Maclaurin et al., 2015). In
contrast, the proposed method can converge to a fixed point
as long as the momentum term γ is strictly less than 1.
Remark. Proposition 1 has a continuous counterpart. In-
deed, in the continuous limit, (4) writes v̇ = ϕ(x, θ), ẋ =
ψ(v, θ′). The corresponding Jacobian in (v∗, x∗) is

(
0 A
B 0

)
.

The eigenvalues of this matrix are the square roots of those
of AB: they cannot all have a real part < 0 (same stability
issue in the continuous case).

3.4. Momentum ResNets as continuous models

Figure 3. Overview of the four different paradigms.

Neural ODEs: ResNets as first-order ODEs. The
ResNets equation (1) with initial condition x0 (the input
of the ResNet) can be seen as a discretized Euler scheme of
the ODE ẋ = f(x, θ) with x(0) = x0. Denoting T a time
horizon, the neural ODE maps the input x(0) to the output
x(T ), and, as in Chen et al. (2018), is trained by minimizing
a loss L(x(T ), θ).

Momentum ResNets as second-order ODEs. Let ε =
1

1−γ . We can then rewrite (2) as

vn+1 = vn +
f(xn, θn)− vn

ε
, xn+1 = xn + vn+1,

which corresponds to a Verlet integration scheme (Hairer
et al., 2006) with step size 1 of the differential equation
εẍ+ ẋ = f(x, θ). Thus, in the same way that ResNets can
be seen as discretization of first-order ODEs, Momentum
ResNets can be seen as discretization of second-order ones.
Figure 3 sums up these ideas.

4. Representation capabilities
We now turn to the analysis of the representation capabil-
ities of Momentum ResNets in the continuous setting. In
particular, we precisely characterize the set of mappings
representable by Momentum ResNets with linear residual
functions.

4.1. Representation capabilities of first-order ODEs

We consider the first-order model

ẋ = f(x, θ) with x(0) = x0. (5)

We denote by ϕt(x0) the solution at time t starting at initial
condition x(0) = x0. It is called the flow of the ODE. For
all t ∈ [0, T ], where T is a time horizon, ϕt is a homeomor-
phism: it is continuous, bijective with continuous inverse.

First-order ODEs are not universal approximators.
ODEs such as (5) are not universal approximators. In-
deed, the function mapping an initial condition to the flow
at a certain time horizon T cannot represent every map-
ping x0 7→ h(x0). For instance when d = 1, the map-
ping x → −x cannot be approximated by a first-order
ODE, since 1 should be mapped to −1 and 0 to 0, which
is impossible without intersecting trajectories (Teh et al.,
2019). In fact, the homeomorphisms represented by (5) are
orientation-preserving: if K ⊂ Rd is a compact set and
h : K −→ Rd is a homeomorphism represented by (5), then
h is in the connected component of the identity function on
K for the topology of the uniform convergence (see details
in Appendix B.5).

4.2. Representation capabilities of second-order ODEs

We consider the second-order model for which we recall
that Momentum ResNets are a discretization:

εẍ+ ẋ = f(x, θ) with (x(0), ẋ(0)) = (x0, v0). (6)

In Section 3.3, we showed that Momentum ResNets gen-
eralize existing models when setting γ = 0 or 1. We now
state the continuous counterparts of these results. Recall
that 1

1−γ = ε. When ε −→ 0, we recover the first-order
model.

Proposition 2 (Continuity of the solutions). We let x∗ (resp.
xε) be the solution of (5) (resp. (6)) on [0, T ], with initial
conditions x∗(0) = xε(0) = x0 and ẋε(0) = v0. Then
‖xε − x∗‖∞ −→ 0 as ε −→ 0.

The proof of this result relies on the implicit function theo-
rem and can be found in Appendix A.1. Note that Proposi-
tion 2 is true whatever the initial speed v0. When ε −→ +∞,
one needs to rescale f to study the asymptotics: the so-
lution of ẍ + 1

ε ẋ = f(x, θ) converges to the solution of
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ẍ = f(x, θ) (see details in Appendix B.1). These results
show that in the continuous regime, Momentum ResNets
also interpolate between ẋ = f(x, θ) and ẍ = f(x, θ).

Representation capabilities of a model (6) on the x
space. We recall that we consider initial speeds v0 that
can depend on the input x0 ∈ Rd (for instance v0 = 0
or v0 = f(x0, θ0)). We therefore assume ϕt : Rd 7→
Rd such that ϕt(x0) is solution of (6). We emphasize
that ϕt is not always a homeomorphism. For instance,
ϕt(x0) = x0 exp (−t/2) cos (t/2) solves ẍ+ ẋ = − 1

2x(t)
with (x(0), ẋ(0)) = (x0,−x0

2 ). All the trajectories inter-
sect at time π. It means that Momentum ResNets can learn
mappings that are not homeomorphisms, which suggests
that increasing ε should lead to better representation capa-
bilities. The first natural question is thus whether, given
h : Rd −→ Rd, there exists some f such that ϕt asso-
ciated to (6) satisfies ∀x ∈ Rd, ϕ1(x) = h(x). In the
case where v0 is an arbitrary function of x0, the answer
is trivial since (6) can represent any mapping, as proved
in Appendix B.2. This setting does not correspond to the
common use case of ResNets, which take advantage of their
depth, so it is important to impose stronger constraints on
the dependency between v0 and x0. For instance, the next
proposition shows that even if one imposes v0 = f(x0, θ0),
a second-order model is at least as general as a first-order
one.

Proposition 3 (Momentum ResNets are at least as general).
There exists a function f̂ such that for all x solution of (5), x
is also solution of the second-order model εẍ+ ẋ = f̂(x, θ)
with (x(0), ẋ(0)) = (x0, f(x0, θ0)).

Furthermore, even with the restrictive initial condition v0 =
0, x 7→ λx for λ > −1 can always be represented by a
second-order model (6) (see details in Appendix B.4). This
supports the claim that the set of representable mappings
increases with ε.

4.3. Universality of Momentum ResNets with linear
residual functions

As a first step towards a theoretical analysis of the universal
representation capabilities of Momentum ResNets, we now
investigate the linear residual function case. Consider the
second-order linear ODE

εẍ+ ẋ = θx with (x(0), ẋ(0)) = (x0, 0), (7)

with θ ∈ Rd×d. We assume without loss of generality that
the time horizon is T = 1. We have the following result.

Proposition 4 (Solution of (7)). At time 1, (7) defines the
linear mapping x0 7→ ϕ1(x0) = Ψε(θ)x0 where

Ψε(θ) = e−
1
2ε

+∞∑
n=0

(
1

(2n)!
+

1

2ε(2n+ 1)!

)(
θ

ε
+

Idd
4ε2

)n
.

Characterizing the set of mappings representable by (7) is
thus equivalent to precisely analyzing the range Ψε(Rd×d).

Representable mappings of a first-order linear model.
When ε −→ 0, Proposition 2 shows that Ψε(θ) −→ Ψ0(θ) =
exp θ. The range of the matrix exponential is indeed the set
of representable mappings of a first order linear model

ẋ = θx with x(0) = x0 (8)

and this range is known (Andrica & Rohan, 2010) to be
Ψ0(Rd×d) = exp (Rd×d) = {M2 | M ∈ GLd(R)}. This
means that one can only learn mappings that are the square
of invertible mappings with a first-order linear model (8).
To ease the exposition and exemplify the impact of increas-
ing ε > 0, we now consider the case of matrices with real
coefficients that are diagonalizable in C, DC

d (R). Note that
the general setting of arbitrary matrices is exposed in Ap-
pendix A.4 using Jordan decomposition. Note also that
DC
d (R) is dense in Rd×d (Hartfiel, 1995). Using Theorem 1

from Culver (1966), we have that if D ∈ DC
d (R), then D

is represented by a first-order model (8) if and only if D
is non-singular and for all eigenvalues λ ∈ Sp(D) with
λ < 0, λ is of even multiplicity order. This is restrictive
because it forces negative eigenvalues to be in pairs. We
now generalize this result and show that increasing ε > 0
leads to less restrictive conditions.

ε = + ∞
ε = 0.5

ε = 0

−1−

−1
|

λ1

λ2

ε

λε

Figure 4. Left: Evolution of λε defined in Theorem 1. λε is non
increasing, stays close to 0 when ε � 1 and close to −1 when
ε ≥ 2. Right: Evolution of the real eigenvalues λ1 and λ2 of
representable matrices in DC

d(R) by (7) when d = 2 for different
values of ε. The grey colored areas correspond to the different
representable eigenvalues. When ε = 0, λ1 = λ2 or λ1 > 0 and
λ2 > 0. When ε > 0, single negative eigenvalues are acceptable.

Representable mappings by a second-order linear
model. Again, by density and for simplicity, we focus
on matrices in DC

d (R), and we state and prove the gen-
eral case in Appendix A.4, making use of Jordan blocks
decomposition of matrix functions (Gantmacher, 1959)
and localization of zeros of entire functions (Runckel,
1969). The range of Ψε over the reals has for form
Ψε(R) = [λε,+∞[. It plays a pivotal role to control
the set of representable mappings, as stated in the theo-
rem bellow. Its minimum value can be computed con-
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veniently since it satisfies λε = minα∈RGε(α) where
Gε(α) , exp (− 1

2ε )(cos(α) + 1
2εα sin(α)).

Theorem 1 (Representable mappings with linear residual
functions). Let D ∈ DC

d (R). Then D is represented by a
second-order model (7) if and only if ∀λ ∈ Sp(D) such
that λ < λε, λ is of even multiplicity order.

Theorem 1 is illustrated in Figure 4. A consequence of
this result is that the set of representable linear mappings
is strictly increasing with ε. Another consequence is that
one can learn any mapping up to scale using the ODE (7):
if D ∈ DC

d (R), there exists αε > 0 such that for all λ ∈
Sp(αεD), one has λ > λε. Theorem 1 shows that αεD is
represented by a second-order model (7).

5. Experiments
We now demonstrate the applicability of Momentum
ResNets through experiments. We used Pytorch and Nvidia
Tesla V100 GPUs.

5.1. Point clouds separation
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Figure 5. Separation of four nested rings using a ResNet (upper
row) and a Momentum ResNet (lower row). From left to right,
each figure represents the point clouds transformed at layer 3k.
The ResNet fails whereas the Momentum ResNet succeeds.

We experimentally validate the representation capabilities
of Momentum ResNets on a challenging synthetic classi-
fication task. As already noted (Teh et al., 2019), neural
ODEs ultimately fail to break apart nested rings. We experi-
mentally demonstrate the advantage of Momentum ResNets
by separating 4 nested rings (2 classes). We used the same
structure for both models: f(x, θ) = WT

2 tanh(W1x + b)
with W1, W2 ∈ R16×2, b ∈ R16, and a depth 15. Evolution
of the points as depth increases is shown in Figure 5. The
fact that the trajectories corresponding to the ResNet panel
don’t cross is because, with this depth, the iterations approxi-
mate the solution of a first order ODE, for which trajectories
cannot cross, due to the Picard-Lindelof theorem.

5.2. Image experiments

We also compare the accuracy of ResNets and Momen-
tum ResNets on real data sets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2010) and ImageNet (Deng et al., 2009).

We used existing ResNets architectures. We recall that
Momentum ResNets can be used as a drop-in replacement
and that it is sufficient to replace every residual building
block with a momentum residual forward iteration. We
set γ = 0.9 in the experiments. More details about the
experimental setup are given in Appendix D.

Table 2. Test accuracy for CIFAR over 10 runs for each model

Model CIFAR-10 CIFAR-100
Momentum ResNet, v0 = 0 95.1± 0.13 76.39± 0.18
Momentum ResNet, v0 = f(x0) 95.18± 0.06 76.38± 0.42
ResNet 95.15± 0.12 76.86± 0.25

Results on CIFAR-10 and CIFAR-100. For these data
sets, we used a ResNet-101 (He et al., 2016) and a Momen-
tum ResNet-101 and compared the evolution of the test error
and test loss. Two kinds of Momentum ResNets were used:
one with an initial speed v0 = 0 and the other one where
the initial speed v0 was learned: v0 = f(x0). These experi-
ments show that Momentum ResNets perform similarly to
ResNets. Results are summarized in Table 2.

Effect of the momentum term γ. Theorem 1 shows the
effect of ε on the representable mappings for linear ODEs.
To experimentally validate the impact of γ, we train a Mo-
mentum ResNet-101 on CIFAR-10 for different values of
the momentum at train time, γtrain. We also evaluate Mo-
mentum ResNets trained with γtrain = 0 and γtrain = 1
with no further training for several values of the momen-
tum at test time, γtest. In this case, the test accuracy never
decreases by more than 3%. We also refit for 20 epochs
Momentum ResNets trained with γtrain = 0 and γtrain = 1.
This is sufficient to obtain similar accuracy as models trained
from scratch. Results are shown in Figure 6 (upper row).
This indicates that the choice of γ has a limited impact on
accuracy. In addition, learning the parameter γ does not
affect the accuracy of the model. Since it also breaks the
method described in 3.2, we fix γ in all the experiments.

Results on ImageNet. For this data set, we used a ResNet-
101, a Momentum ResNet-101, and a RevNet-101. For the
latter, we used the procedure from Gomez et al. (2017) and
adjusted the depth of each layer for the model to have ap-
proximately the same number of parameters as the original
ResNet-101. Evolution of test errors are shown in Figure 6
(lower row), where comparable performances are achieved.

Memory costs. We compare the memory (using a mem-
ory profiler) for performing one epoch as a function of the
batch size for two datasets: ImageNet (depth of 152) and
CIFAR-10 (depth of 1201). Results are shown in Figure 7
and illustrate how Momentum ResNets can benefit from in-
creased batch size, especially for very deep models. We also
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Figure 6. Upper row: Robustness of final accuracy w.r.t γ when training Momentum ResNets 101 on CIFAR-10. We train the networks
with a momentum γtrain and evaluate their accuracy with a different momentum γtest at test time. We optionally refit the networks
for 20 epochs. We recall that γtrain = 0 corresponds to a classical ResNet and γtrain = 1 corresponds to a Momentum ResNet with
optimal memory savings. Lower row: Top-1 classification error on ImageNet (single crop) for 4 different residual architectures of
depth 101 with the same number of parameters. Final test accuracy is 22% for the ResNet-101 and 23% for the 3 other invertible models.
In particular, our model achieve the same performance as a RevNet with the same number of parameters.

show in Figure 7 the final test accuracy for a full training
of Momentum ResNets on CIFAR-10 as a function of the
memory used (directly linked to γ (section 3.2)).
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Figure 7. Upper row: Memory used (using a profiler) for a ResNet
and a Momentum ResNet on one training epoch, as a function of
the batch size. Lower row: Final test accuracy as a function of
the memory used (per epoch) for training Momentum ResNets-101
on CIFAR-10.

Ability to perform pre-training and fine-tuning. It has
been shown (Tajbakhsh et al., 2016) that in various medi-
cal imaging applications the use of a pre-trained model on
ImageNet with adapted fine-tuning outperformed a model
trained from scratch. In order to easily obtain pre-trained
Momentum ResNets for applications where memory could
be a bottleneck, we transferred the learned parameters of
a ResNet-152 pre-trained on ImageNet to a Momentum
ResNet-152 with γ = 0.9. In only 1 epoch of additional
training we reached a top-1 error of 26.5% and in 5 addi-
tional epochs a top-1 error of 23.5%. We then empirically

compared the accuracy of these pre-trained models by fine-
tuning them on new images: the hymenoptera1 data set.
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Figure 8. Accuracy as
a function of time on
hymenoptera when fine-
tuning a ResNet-152 and
a Momentum ResNet-152
with batch sizes of 2 and 4,
respectively, as permitted
by memory.

As a proof of concept, suppose we have a GPU with 3 Go
of RAM. The images have a resolution of 500× 500 pixels
so that the maximum batch size that can be taken for fine-
tuning the ResNet-152 is 2, against 4 for the Momentum
ResNet-152. As suggested in Tajbakhsh et al. (2016) (“if
the distance between the source and target applications is
significant, one may need to fine-tune the early layers as
well”), we fine-tune the whole network in this proof of
concept experiment. In this setting the Momentum ResNet
leads to faster convergence when fine-tuning, as shown
in Figure 8: Momentum ResNets can be twice as fast as
ResNets to train when samples are so big that only few
of them can be processed at a time. In contrast, RevNets
(Gomez et al., 2017) cannot as easily be used for fine-tuning
since, as shown in (4), they require to train two distinct
networks.

Continuous training. We also compare accuracy when
using first-order ODE blocks (Chen et al., 2018) and second-
order ones on CIFAR-10. In order to emphasize the in-
fluence of the ODE, we considered a neural architecture
which down-sampled the input to have a certain number of
channels, and then applied 10 successive ODE blocks. Two
types of blocks were considered: one corresponded to the
first-order ODE (5) and the other one to the second-order
ODE (6). Training was based on the odeint function imple-

1https://www.kaggle.com/ajayrana/hymenoptera-data
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mented by Chen et al. (2018). Figure 9 shows the final test
accuracy for both models as a function of the number of
channels used. As a baseline, we also include the final accu-
racy when there are no ODE blocks. We see that an ODE
Net with momentum significantly outperforms an original
ODE Net when the number of channels is small. Training
took the same time for both models.
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Figure 9. Accuracy
after 120 iterations
on CIFAR-10 with or
without momentum,
when varying the
number of channels.

5.3. Learning to optimize

We conclude by illustrating the usefulness of our Momen-
tum ResNets in the learning to optimize setting, where
one tries to learn to minimize a function. We consider
the Learned-ISTA (LISTA) framework (Gregor & LeCun,
2010). Given a matrix D ∈ Rd×p, and a hyper-parameter
λ > 0, the goal is to perform the sparse coding of a vec-
tor y ∈ Rd, by finding x ∈ Rp that minimizes the Lasso
cost function Ly(x) , 1

2‖y −Dx‖
2 + λ‖x‖1 (Tibshirani,

1996). In other words, we want to compute a mapping
y 7→ argminx Ly(x). The ISTA algorithm (Daubechies
et al., 2004) solves the problem, starting from x0 = 0, by it-
erating xn+1 = ST(xn− ηD>(Dxn− y), ηλ), with η > 0
a step-size. Here, ST is the soft-thresholding operator. The
idea of Gregor & LeCun (2010) is to view L iterations of
ISTA as the output of a neural network with L layers that it-
erates xn+1 = g(xn, y, θn) , ST(W 1

nxn+W 2
ny, ηλ), with

parameters θ , (θ1, . . . , θL) and θn , (W 1
n ,W

2
n). We call

Φ(y, θ) the network function, which maps y to the output xL.
Importantly, this network can be seen as a residual network,
with residual function f(x, y, θ) = g(x, y, θ) − x. ISTA
corresponds to fixed parameters between layers: W 1

n =
Idp− ηD>D and W 2

n = ηD>, but these parameters can be
learned to yield better performance. We focus on an “un-
supervised” learning setting, where we have some training
examples y1, . . . , yQ, and use them to learn parameters θ
that quickly minimize the Lasso function L. In other words,
the parameters θ are estimated by minimizing the cost func-
tion θ 7→

∑Q
q=1 Lyq (Φ(yq, θ)). The performance of the

network is then measured by computing the testing loss,
that is the Lasso loss on some unseen testing examples.

We consider a Momentum ResNet and a RevNet variant of
LISTA which use the residual function f . For the RevNet,
the activations xn are first duplicated: the network has twice
as many parameters at each layer. The matrixD is generated
with i.i.d. Gaussian entries with p = 32, d = 16, and its

columns are then normalized to unit variance. Training and
testing samples y are generated as normalized Gaussian i.i.d.
entries. More details on the experimental setup are added in
Appendix D. The next Figure 10 shows the test loss of the
different methods, when the depth of the networks varies.
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Figure 10. Evolution of the test loss for different models as a
function of depth in the Learned-ISTA (LISTA) framework.

As predicted by Proposition 1, the RevNet architecture fails
on this task: it cannot have converging iterations, which is
exactly what is expected here. In contrast, the Momentum
ResNet works well, and even outperforms the LISTA base-
line. This is not surprising: it is known that momentum can
accelerate convergence of first order optimization methods.

Conclusion
This paper introduces Momentum ResNets, new invertible
residual neural networks operating with a significantly re-
duced memory footprint compared to ResNets. In sharp
contrast with existing invertible architectures, they are made
possible by a simple modification of the ResNet forward
rule. This simplicity offers both theoretical advantages (bet-
ter representation capabilities, tractable analysis of linear dy-
namics) and practical ones (drop-in replacement, speed and
memory improvements for model fine-tuning). Momentum
ResNets interpolate between ResNets (γ = 0) and RevNets
(γ = 1), and are a natural second-order extension of neural
ODEs. As such, they can capture non-homeomorphic dy-
namics and converging iterations. As shown in this paper,
the latter is not possible with existing invertible residual net-
works, although crucial in the learning to optimize setting.
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Appendix

In Section A we give the proofs of all the Propositions and the Theorem. In Section B we give other theoretical results to
validate statements made in the paper. Section C presents the algorithm from Maclaurin et al. (2015). Section D gives details
for the experiments in the paper. We derive the formula for backpropagation in Momentum ResNets in Section E. Finally,
we present additional figures in Section F.

A. Proofs
Notations

• C∞0 ([0, 1],Rd) is the set of infinitely differentiable functions from [0, 1] to Rd with value 0 in 0.

• If f : U × V →W is a function, we denote by ∂uf , when it exists, the partial derivative of f with respect to u ∈ U .

• For a matrix A ∈ Rd×d, we denote by (λ− z)a the Jordan block of size a ∈ N associated to the eigenvalue z ∈ C .

A.0. Instability of fixed points – Proof of Proposition 1

Proof. Since (x∗, v∗) is a fixed point of the RevNet iteration, we have

ϕ(x∗) = 0

ψ(v∗) = 0

Then, a first order expansion, writing x = x∗ + ε and v = v∗ + δ gives at order one

Ψ(v, x) = (v∗ + δ +Aε, x∗ + ε+B(δ +Aε)) (9)

We therefore obtain at order one

Ψ(v, x) = Ψ(v∗, x∗) + J(A,B)

(
δ
ε

)
which shows that J(A,B) is indeed the Jacobian of Ψ at (v∗, x∗). We now turn to a study of the spectrum of J(A,B). We
let λ ∈ C an eigenvalue of J(A,B), and vectors u ∈ Cd, w ∈ Cd such that (u,w) is the corresponding eigenvector, and
study the eigenvalue equation

J(A,B)

(
u
w

)
= λ

(
u
w

)
which gives the two equations

u+Aw = λu (10)

w +Bu+BAw = λw (11)

We start by showing that λ 6= 1 by contradiction. Indeed, if λ = 1, then (10) gives Aw = 0, which implies w = 0 since A is
invertible. Then, (11) gives Bu = 0, which also implies u = 0. This contradicts the fact that (u, v) is an eigenvector (which
is non-zero by definition).

Then, the first equation (10) gives Aw = (λ− 1)u, and multiplying (11) by A on the left gives

λABu = (λ− 1)2u (12)

We also cannot have λ = 0, since it would imply u = 0. Then, dividing (12) by λ shows that (λ−1)2
λ is an eigenvalue of AB.
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Next, we let µ 6= 0 the eigenvalue of AB such that µ = (λ−1)2
λ . The equation can be rewritten as the second order equation

λ2 − (2 + µ)λ+ 1 = 0

This equation has two solutions λ1(µ), λ2(µ), and since the constant term is 1, we have λ1(µ)λ2(µ) = 1. Taking modulus,
we get |λ1(µ)||λ2(µ)| = 1, which shows that necessarily, either |λ1(µ)| ≥ 1 or |λ1(µ)| ≥ 1.

Now, the previous reasoning is only a necessary condition on the eigenvalues, but we can now prove the advertised result by
going backwards: we let µ 6= 0 an eigenvalue of AB, and u ∈ Cd the associated eigenvector. We consider λ a solution of
λ2 − (2 + µ)λ + 1 = 0 such that |λ| ≥ 1 and λ 6= 1. Then, we consider w = (λ − 1)A−1u. We just have to verify that
(u, v) is an eigenvector of J(A,B). By construction, (10) holds. Next, we have

A(w +Bu+BAw) = (λ− 1)u+ABu+ (λ− 1)ABu = (λ− 1)u+ λABu

Leveraging the fact that u is an eigenvector of AB, we have λABu = λµu, and finally:

A(w +Bu+BAw) = (λ− 1 + λµ)u = λ(λ− 1)u = λAw

Which recovers exactly (11): λ is indeed an eigenvalue of J(A,B).

A.1. Momentum ResNets in the limit ε −→ 0 – Proof of Proposition 2

Proof. We take T = 1 without loss of generality. We are going to use the implicit function theorem. Note that xε is solution
of (6) if and only if (xε, vε = ẋε) is solution of{

ẋ = v, x(0) = x0

εv̇ = f(x, θ)− v, v(0) = v0.

Consider for u = (x, v) ∈ (x0, v0) + C∞0 ([0, 1],Rd)2

Ψ(u, ε) =

(
x0 − x+

∫ t

0

v,

∫ t

0

(f(x, θ)− v)− εv + εv0

)
,

so that xε is solution of (6) if and only if uε = (xε, vε = ẋε) satisfies Ψ(uε, ε) = 0. Let u∗ = (x∗, ẋ∗). One has
Ψ(u∗, 0) = 0. Ψ is differentiable everywhere, and at (u∗, 0) we have

∂uΨ(u∗, 0)(x, v) =

(
(

∫ t

0

v)− x,
∫ t

0

(∂xf(x∗, θ).x− v)

)
.

∂uΨ(u∗, 0) is continuous, and it is invertible with continuous inverse because it is linear and continuous, and because
∂uΨ(u∗, 0)(x, v) = 0 if and only if {

∀t ∈ [0, 1], x(t) =
∫ t
0
v

∀t ∈ [0, 1], v(t) = ∂xf(x∗(t), θ(t)).x(t)

which is equivalent to 
ẋ = ∂f(x∗, θ).x

x(0) = 0

v = ẋ,

which is equivalent, because this equation is linear to (x, v) = (0, 0). Using the implicit function theorem, we know
that there exists two neighbourhoods U ⊂ R and V ⊂ (x0, v0) + C∞0 ([0, 1],Rd)2 of 0 and u∗ and a continuous function
ζ : U → V such that

∀(u, ε) ∈ U × V,Ψ(u, ε) = 0⇔ u = ζ(ε)

This in particular ensures that xε converges uniformly to x∗ as ε goes to 0
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A.2. Momentum ResNets are more general than neural ODEs – Proof of Proposition 3

Proof. If x satisfies (5) we get by derivation that

ẍ = ∂xf(x, θ)f(x, θ) + ∂θf(x, θ)θ̇

Then, if we define f̂(x, θ) = ε[∂xf(x, θ)f(x, θ) + ∂θf(x, θ)θ̇] + f(x, θ), we get that x is also solution of the second-order
model εẍ+ ẋ = f̂(x, θ) with (x(0), ẋ(0)) = (x0, f(x0, θ0)).

A.3. Solution of (7) – Proof of Proposition 4

(7) writes

{
ẋ = v, x(0) = x0

v̇ = θx−v
ε , v(0) = 0.

For which the solution at time t writes

(
x(t)
v(t)

)
= exp

(
0 Iddt
θt
ε − Iddt

ε

)
.

(
x0
0

)
.

The calculation of this exponential gives

x(t) = e−
t
2ε

(
+∞∑
n=0

1

(2n)!
(
θ

ε
+

Idd
4ε2

)nt2n +

+∞∑
n=0

1

2ε(2n+ 1)!
(
θ

ε
+

Idd
4ε2

)nt2n+1

)
x0.

Note that it can be checked directly that this expression satisfies (7) by derivations. At time 1 this effectively gives
x(1) = Ψε(θ)x0.

A.4. Representable mappings for a Momentum ResNet with linear residual functions – Proof of Theorem 1

In what follows, we denote by fε the function of matrices defined by

fε(θ) = Ψε(εθ −
I

4ε
) = e−

1
2ε

+∞∑
n=0

(
1

(2n)!
+

1

2ε(2n+ 1)!

)
θn.

Because Ψε(Rd×d) = fε(Rd×d), we choose to work on fε.

We first need to prove that fε is surjective on C.

A.4.1. SURJECTIVITY ON C OF fε

Lemma 1 (Surjectivity of fε). For ε > 0, fε is surjective on C.

Proof. Consider

Fε : C −→ C

z 7−→ e−
1
2ε (cosh(z) +

1

2εz
sinh(z)).

For z ∈ C, we have fε(z2) = Fε(z), and because z 7→ z2 is surjective on C, it is sufficient to prove that Fε is surjective
on C. Suppose by contradiction that there exists w ∈ C such that ∀z ∈ C, exp ( 1

2ε )Fε(z) 6= w. Then exp ( 1
2ε )Fε − w is

an entire function (Levin, 1996) of order 1 with no zeros. Using Hadamard’s factorization theorem (Conway, 2012), this
implies that there exists a, b ∈ C such that ∀z ∈ C,

cosh(z) +
sinh(z)

2εz
− w = exp (az + b).
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However, since Fε is an even function one has that ∀z ∈ C

exp (az + b) = exp (−az + b)

so that ∀z ∈ C, 2az ∈ 2iπZ. Necessarily, a = 0, which is absurd because Fε is not constant.

We first prove Theorem 1 in the diagonalizable case.

A.4.2. THEOREM 1 IN THE DIAGONALIZABLE CASE

Proof. Necessity Suppose that D can be represented by a second-order model (7). This means that there exists a real matrix
X such that D = fε(X) with X real and

fε(X) = e−
1
2ε (

+∞∑
n=0

aεnX
n)

with

aεn =
1

(2n)!
+

1

2ε(2n+ 1)!
.

X commutes with D so that there exists P ∈ GLd(C) such that P−1DP is diagonal and P−1XP is triangular. Because
fε(P

−1XP ) = P−1DP , we have that ∀λ ∈ Sp(D), there exists z ∈ Sp(X) such that λ = fε(z). Because λ < λε,
necessarily, z ∈ C− R. In addition, λ = fε(z) = λ̄ = fε(z̄). Because X is real, each z ∈ Sp(X) must be associated with
z̄ in P−1XP . Thus, λ appears in pairs in P−1DP .

Sufficiency Now, suppose that ∀λ ∈ Sp(D) with λ < λε, λ is of even multiplicity order. We are going to exhibit a X real
such that D = fε(X). Thanks to Lemma 1, we have that fε is surjective. Let λ ∈ Sp(D).

• If λ ∈ R and λ < λε or λ ∈ C− R then there exists z ∈ C− R by Lemma 1 such that λ = fε(z).

• If λ ∈ R and λ ≥ λε, then because fε is continuous and goes to infinity when x ∈ R goes to infinity, there exists
x ∈ R such that λ = fε(x).

In addition, there exist (α1, ..., αk) ∈ (C− R)k ∪ [−∞, λε[k, (β1, ..., βp) ∈ [λε,+∞]p such that

D = Q−1∆Q,

with Q ∈ GLd(R), and

∆ =



P−11 Dα1
P1 02 · · · · · · · · · 02

02
. . . · · · · · · · · · 02

...
... P−1k Dαk

Pk 02 · · · 02
0 · · · · · · β1 · · · 0

0 · · · · · · 0
. . . 0

0 · · · · · · · · · · · · βp


∈ Rd×d

with Pj ∈ GL2(C) and Dαj =

(
αj 0
0 ᾱj

)
.

Let (z1, ..., zk) ∈ (C − R)k and (x1, ..., xp) ∈ Rp be such that fε(zj) = αj and fε(xj) = βj . For 1 ≤ j ≤ k, one
has P−1j DzjPj ∈ R2×2. Indeed, writing αj = aj + ibj with aj , bj ∈ R, the fact that P−1j DαjPj ∈ R2×2 implies that
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i

(
1 0
0 −1

)
∈ iR2×2. Writing zj = uj + ivj with uj , vj ∈ R, we get that P−1j DzjPj ∈ R2×2. Then

X = Q



P−11 Dz1P1 02 · · · · · · · · · 02

02
. . . · · · · · · · · · 02

...
... P−1k DzkPk 02 · · · 02

0 · · · · · · x1 · · · 0

0 · · · · · · 0
. . . 0

0 · · · · · · · · · · · · xp


Q−1 ∈ Rd×d

is such that fε(X) = D, and D is represented by a second-order model (7).

We now state and demonstrate the general version of Theorem 1.

First, we need to demonstrate properties of the complex derivatives of the entire function fε.

A.4.3. THE ENTIRE FUNCTION fε HAS A DERIVATIVE WITH NO-ZEROS ON C− R.

Lemma 2 (On the zeros of f ′ε). ∀z ∈ C− R we have f ′ε(z) 6= 0.

Proof. One has

Gε(z) = e−
1
2ε (cos(z) +

1

2εz
sin(z)) = fε(−z2)

so that G′ε(z) = −2zf ′ε(−z2) and it is sufficient to prove that the zeros of G′ε are all real.

We first show that Gε belongs to the Laguerre-Pólya class (Craven & Csordas, 2002). The Laguerre-Pólya class is the set
of entire functions that are the uniform limits on compact sets of C of polynomials with only real zeros. To show that Gε
belongs to the Laguerre-Pólya class, it is sufficient to show (Dryanov & Rahman, 1999, p. 22) that:

• The zeros of Gε are all real.

• If (zn)n∈N denotes the sequence of real zeros of Gε, one has
∑

1
|zn|2 <∞.

• Gε is of order 1.

First, the zeros of Gε are all real, as demonstrated in Runckel (1969). Second, if (zn)n∈N denotes the sequence of real zeros
of Gε, one has zn ∼ nπ + π

2 as n −→∞, so that
∑

1
|zn|2 <∞. Third, Gε is of order 1. Thus, we have that Gε is indeed in

the Laguerre-Pólya class.

This class being stable under differentiation, we get that G′ε also belongs to the Laguerre-Pólya class. So that the roots of
G′ε are all real, and hence those of fε as well.

A.4.4. THEOREM 1 IN THE GENERAL CASE

When ε = 0, we have in the general case the following from Culver (1966):

Let A ∈ Rd×d. Then A can be represented by a first-order model (8) if and only if A is not singular and each Jordan block
of A corresponding to an eigen value λ < 0 occurs an even number of time.

We now state and demonstrate the equivalent of this result for second order models (7).
Theorem 2 (Representable mappings for a Momentum ResNet with linear residual functions – General case). LetA ∈ Rd×d.

If A can be represented by a second-order model (7), then each Jordan block of A corresponding to an eigen value λ < λε
occurs an even number of time.

Reciprocally, if each Jordan block of A corresponding to an eigen value λ ≤ λε occurs an even number of time, then A can
be represented by a second-order model.
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Proof. We refer to the arguments from Culver (1966) and use results from Gantmacher (1959) for the proof.

Suppose that A can be represented by a second-order model (7). This means that there exists X ∈ Rd×d such that
A = fε(X ). The fact that X is real implies that its Jordan blocks are:

(λ− zk)ak , zk ∈ R
(λ− zk)bk and (λ− z̄k)bk , zk ∈ C− R.

Let λk = fε(zk) be an eigenvalue of A such that λk < λε. Necessarily, zk ∈ C− R, and f ′ε(zk) 6= 0 thanks to Lemma 2.
We then use Theroem 9 from Gantmacher (1959) (p. 158) to get that the Jordan blocks of A corresponding to λk are

(λ− fε(zk))bk and (λ− fε(z̄k))bk .

Since fε(z̄k) = fε(zk) = λk, we can conclude that the Jordan blocks of A corresponding λk < λε occur an even number of
time.

Now, suppose that each Jordan block of A corresponding to an eigen value λ ≤ λε occurs an even number of times. Let λk
be an eigenvalue of A.

• If λk ∈ C−R we can write, because fε is surjective (proved in Lemma 1), λk = fε(zk) with zk ∈ C−R. Necessarily,
because A is real, the Jordan blocks of A corresponding to λk have to be associated to those corresponding to λ̄k. In
addition, thanks to Lemma 2, f ′ε(zk) 6= 0

• If λk < λε, we can write, because fε is surjective, λk = fε(zk) = fε(z̄k) with zk ∈ C− R. In addition, f ′ε(zk) 6= 0.

• If λk > λε, then there exists zk ∈ R such that λk = fε(zk) and f ′ε(zk) 6= 0 because, if xε is such that fε(xε) = λε,
we have that f ′ε > 0 on ]xε,+∞[.

• If λk = λε, there exists zk ∈ R such that λk = fε(zk). Necessarily, f ′ε(zk) = 0 but f ′′ε (zk) 6= 0.

This shows that the Jordan blocks of A are necessarily of the form

(λ− fε(zk))bk and (λ− fε(z̄k))bk , zk ∈ C− R
(λ− fε(zk))ak , zk ∈ R, fε(zk) 6= λε

(λ− λε)ck and (λ− λε)ck .

Let Y ∈ Rd×d be such that its Jordan blocks are of the form

(λ− zk)bk and (λ− z̄k)bk , zk ∈ C− R, f ′ε(zk) 6= 0

(λ− zk)ak , zk ∈ R, fε(zk) 6= λε, f
′
ε(zk) 6= 0

(λ− zk)2ck , zk ∈ R, fε(zk) = λε.

Then again by the use of Theorem 7 from Gantmacher (1959) (p. 158), because if fε(zk) = λε with zk ∈ R, f ′′ε (zk) 6= 0, we
have that fε(Y ) is similar to A. Thus A writes A = P−1fε(Y )P = fε(P

−1Y P ) with P ∈ GLd(R). Then, X = P−1Y P
satisfies X ∈ Rd×d and fε(X) = A.

B. Additional theoretical results
B.1. On the convergence of the solution of a second order model when ε→∞

Proposition 5 (Convergence of the solution when ε −→ +∞). We let x∗ (resp. xε) be the solution of ẍ = f(x, θ) (resp.
ẍ + 1

ε ẋ = f(x, θ)) on [0, T ], with initial conditions x∗(0) = xε(0) = x0 and ẋ∗(0) = ẋε(0) = v0. Then xε converges
uniformly to x∗ as ε −→ +∞.
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Proof. The equation ẍ+ 1
ε ẋ = f(x, θ) with xε(0) = x0, ẋε(0) = v0 writes in phase space (x, v){

ẋ = v, x(0) = x0

v̇ = f(x, θ)− v
ε , v(0) = v0.

It then follows from the Cauchy-Lipschitz Theorem with parameters (Perko, 2013, Theorem 2, Chapter 2) that the solutions
of this system are continuous in the parameter 1

ε . That is xε converges uniformly to x∗ as ε −→ +∞.

B.2. Universality of Momentum ResNets

Proposition 6 (When v0 is free any mapping can be represented). Consider h : Rd −→ Rd, and the ODE

ẍ+ ẋ = 0

(x(0), ẋ(0)) = (x0,
h(x0)− x0

1− 1/e
)

Then ϕ1(x0) = h(x0).

Proof. This is because the solution is ϕt(x0) = x0 − v0(e−t − 1).

B.3. Non-universality of Momentum ResNets when v0 = 0

Proposition 7 (When v0 = 0 there are mappings that cannot be learned if the equation is autonomous.). When d = 1,
consider the autonomous ODE

εẍ+ ẋ = f(x)

(x(0), ẋ(0)) = (x0, 0)
(13)

If there exists x0 ∈ R+∗ such that h(x0) ≤ −x0 and x0 ≤ h(−x0) then h cannot be represented by (13).

This in particular proves that x 7→ λx for λ ≤ −1 cannot be represented by this ODE with initial conditions (x0, 0).

Proof. Consider such an x0 and h. Since ϕ1(x0) = h(x0) ≤ −x0, that ϕ0(x0) = x0 and that t 7→ ϕt(x0) is continuous,
we know that there exists t0 ∈ [0, 1] such that ϕt0(x0) = −x0. We denote x(t) = ϕt(x0), solution of

ẍ+
1

ε
ẋ = f(x)

Since d = 1, one can write f as a derivative: f = −E′. The energy Em = 1
2 ẋ

2 + E satisfies:

Ėm = −1

ε
ẋ2

So that

Em(t0)− Em(0) = −1

ε

∫ t0

0

ẋ2

In other words:
1

2
v(t0)2 +

1

ε

∫ t0

0

ẋ2 + E(−x0) = E(x0)

So that E(−x0) ≤ E(x0) We now apply the exact same argument to the solution starting at x1 = −x0. Since x0 ≤
h(−x0) = h(x1) there exists t1 ∈ [0, 1] such that ϕt1(x1) = x0. So that:

1

2
v(t1)2 +

1

ε

∫ t1

0

ẋ2 + E(x0) = E(−x0)

So that E(x0) ≤ E(−x0). We get that
E(x0) = E(−x0)

This implies that ẋ = 0 on [0, t0], so that the first solution is constant and x0 = −x0 which is absurd because x0 ∈ R∗.
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B.4. When v0 = 0 there are mappings that can be represented by a second-order model but not by a first-order one.

Proposition 8. There exits f such that the solution of

ẍ+
1

ε
ẋ = f(x)

with initial condition (x0, 0) at time 1 is

x(1) = −x0 × exp(− 1

2ε
)

Proof. Consider the ODE

ẍ+
1

ε
ẋ = (−π2 − 1

4ε2
)x (14)

with initial condition (x0, 0) The solution of this ODE is

x(t) = x0e
− t

2ε (cos(πt) +
1

2πε
sin(πt))

which at time 1 gives:
x(1) = −x0e−

1
2ε

B.5. Orientation preservation of first-order ODEs

Proposition 9 (The homeomorphisms represented by (5) are orientation preserving.). If K ⊂ Rd is a compact set and
h : K −→ Rd is a homeomorphism represented by (5), then h is in the connected component of the identity function on K for
the ‖.‖∞ topology.

We first prove the following:

Lemma 3. Consider K ⊂ Rd a compact set. Suppose that ∀x ∈ K, Φt(x) is defined for all t ∈ [0, 1]. Then

C = {Φt(x) | x ∈ K, t ∈ [0, 1]}

is compact as well.

Proof. We consider (Φtn(xn))n∈N a sequence in C. Since K × [0, 1] is compact, we can extract sub sequences (tϕ(n))n∈N,
(xϕ(n))n∈N that converge respectively to t0 and x0. We denote them (tn)n∈N and (xn)n∈N again for simplicity of the
notations. We have that:

‖Φtn(xn)− Φt(x)‖ ≤ ‖Φtn(xn)− Φtn(x)‖+ ‖Φtn(x)− Φt(x)‖.

Thanks to Gronwall’s lemma, we have

‖Φtn(xn)− Φtn(x)‖ ≤ ‖xn − x‖ exp (ktn),

where k is f ’s Lipschitz constant. So that ‖Φtn(xn) − Φtn(x)‖ −→ 0 as n −→ ∞. In addition, it is obvious that
‖Φtn(x)− Φt(x)‖ −→ 0 as n −→∞. We conclude that

Φtn(xn) −→ Φt(x) ∈ C,

so that C is compact.

Proof. Let’s denote by H the set of homeomorphisms defined on K. The application

Ψ : [0, 1] −→ H

defined by
Ψ(t) = Φt
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is continuous. Indeed, we have for any x0 in Rd that

‖Φt+ε(x0)− Φt(x0)‖ = ‖
∫ t+ε

t

f(Φs(x0))ds‖ ≤ εMf ,

where Mf bounds the continuous function f on C defined in lemma 3. Since Mf does not depend on x0, we have that

‖Φt+ε − Φt‖∞ −→ 0

as ε −→ 0, which proves that Ψ is continuous. Since Ψ(0) = IdK , we get that ∀t ∈ [0, 1], Φt is connected to IdK .

B.6. On the linear mappings represented by autonomous first order ODEs in dimension 1

Consider the autonomous ODE
ẋ = f(x), (15)

Theorem 3 (Linearity). Suppose d = 1. If (15) represents a linear mapping x 7→ ax at time 1, we have that f is linear.

Proof. If a = 1, consider some x0 ∈ R. Since Φ1(x0) = x0 = Φ0(x0), there exists, by Rolle’s Theorem a t0 ∈ [0, 1] such
that ẋ(t0) = 0. Then f(x(t0)) = 0. But since the constant solution y = x(t0) then solves ẏ = f(y), y(0) = x(t0), we get
by the unicity of the solutions that x(t0) = y(0) = x(1) = y(1− t0) = x0. So that f(x0) = f(x(t0)) = 0. Since this is
true for all x0, we get that f = 0. We now consider the case where a 6= 1 and a > 0. Consider some x0 ∈ R∗. If f(x0) = 0,
then the solution constant to x0 solves (3), and thus cannot reach ax0 at time 1 because a 6= 1. Thus, f(x0) 6= 0 if x0 6= 0.
Second, if the trajectory starting at x0 ∈ R∗ crosses 0 and f(0) = 0, then by the same argument we know that x0 = 0,
which is absurd. So that, ∀x0 ∈ R∗, ∀t ∈ [0, 1], f(Φt(x0)) 6= 0 . We can thus rewrite (3) as

ẋ

f(x)
= 1. (16)

Consider F a primitive of 1
f . Integrating (16), we get

F (ax0)− F (x0) =

∫ 1

0

F ′(x(t))ẋ(t)dt = 1.

In other words, ∀x ∈ R∗:
F (ax) = F (x) + 1.

We derive this equation and get:
af(x) = f(ax).

This proves that f(0) = 0. We now suppose that a > 1. We also have that

anf(
x

an
) = f(x).

But when n −→∞, f( x
an ) = x

an f
′(0) + o( 1

an ) so that

f(x) = f ′(0)x

and f is linear. The case a < 1 treats similarly by changing an to a−n.

B.7. There are mappings that are connected to the identity that cannot be represented by a first order autonomous
ODE

In bigger dimension, we can exhibit a matrix in GL+
d (R) (and hence connected to the identity) that cannot be represented by

the autonomous ODE (15).
Proposition 10 (A non-representable matrix). Consider the matrix

A =

(
−1 0
0 −λ

)
,

where λ > 0 and λ 6= 1. Then A ∈ GL+
2 (R)−GL2(R)2 and A cannot be represented by (15).
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Proof. The fact that A ∈ GL+
2 (R)−GL2(R)2 is because A has two single negative eigenvalues, and because det(A) =

λ > 0. We consider the point (0, 1). At time 1, it has to be in (0,−λ). Because the trajectory are continuous, there exists
0 < t0 < 1 such that the trajectory is at (x, 0) at time t0, and thus at (−x, 0) at time t0 + 1, and again at (x, 0) at time
t0 + 2. However, the particle is at (0, λ2) at time 2. All of this is true because the equation is autonomous. Now, we showed
that trajectories starting at (0, 1) and (0, λ2) would intersect at time t0 at (x, 0), which is absurd. Figure 11 illustrates the
paradox.

(0,1).
(x,0)

(0, − λ)

(−x,0)

(0,λ2)

..

.

.

Figure 11. Illustration of Proposition 10. The points starting at (0, 1) and (0, λ2) are distinct but their associated trajectories would have
to intersect in (x, 0), which is impossible.

C. Exact multiplication

Algorithm 1 Exactly reversible multiplication by a ratio, from Maclaurin et al. (2015)

1: Input: Information buffer i, value c, ratio n/d
2: i = i× d
3: i = i+ (c mod d)
4: c = c÷ d
5: c = c× n
6: c = c+ (i mod n)
7: i = i÷ n
8: return updated buffer i, updated value c

We here present the algorithm from Maclaurin et al. (2015). In their paper, the authors represent γ as a rational number,
γ = n

d ∈ Q. The information is lost during the integer division of vn by d in (2). The store this information, it is sufficient
to store the remainder r of this integer division. r is stored in an “information buffer” i. To update i, one has to left-shift the
bits in i by multiplying it by n before adding r. The entire procedure is illustrated in Algorithm 1 from Maclaurin et al.
(2015).
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D. Experiment details
In all our image experiments, we use Nvidia Tesla V100 GPUs.

For our experiments on CIFAR-10 and 100, we used a batch-size of 128 and we employed SGD with a momen-
tum of 0.9. The training was done over 220 epochs. The initial learning rate was 0.01 and was decayed by a factor 10 at
epoch 180. A constant weight decay was set to 5× 10−4. Standard inputs preprocessing as proposed in Pytorch (Paszke
et al., 2017) was performed.

For our experiments on ImageNet, we used a batch-size of 256 and we employed SGD with a momentum of 0.9.
The training was done over 100 epochs. The initial learning rate was 0.1 and was decayed by a factor 10 every 30 epochs. A
constant weight decay was set to 10−4. Standard inputs preprocessing as proposed in Pytorch (Paszke et al., 2017) was
performed: normalization, random croping of size 224× 224 pixels, random horizontal flip.

For our experiments in the continuous framework, we adapted the code made available by Chen et al. (2018) to
work on the CIFAR-10 data set and to solve second order ODEs. We used a batch-size of 128, and used SGD with a
momentum of 0.9. The initial learning rate was set to 0.1 and reduced by a factor 10 at iteration 60. The training was done
over 120 epochs.

For the learning to optimize experiment, we generate a random Gaussian matrix D of size 16× 32. The columns are then
normalized to unit variance. We train the networks by stochastic gradient descent for 10000 iterations, with a batch-size of
1000 and a learning rate of 0.001. The samples yq are generated as follows: we first sample a random Gaussian vector
ỹq, and then we use yq =

ỹq
‖D>ỹq‖∞ , which ensures that every sample verify ‖D>yq‖∞ = 1. This way, we know that the

solution x∗ is zero if and only if λ ≥ 1. The regularization is set to λ = 0.1.

E. Backpropagation for Momentum ResNets
In order to backpropagate the gradient of some loss in a Momentum ResNet, we need to formulate an explicit version of (2).
Indeed, (2) writes explicitly

vn+1 = γvn + (1− γ)f(xn, θn)

xn+1 = xn + (γvn + (1− γ)f(xn, θn)).
(17)

Writing z = (x, v), the backpropagation for Momentum ResNets then writes, for some loss L

∇zk−1
L =

[
I + (1− γ)∂xf(xk−1, θk−1) γI

(1− γ)∂xf(xk−1, θk−1) γI

]T
∇zkL

∇θk−1
L = (1− γ)

[
∂θf(xk−1, θk−1)
∂θf(xk−1, θk−1)

]T
∇zkL.

We implement these formula to obtain a custom Jacobian-vector product in Pytorch.

F. Additional figures
F.1. Learning curves on CIFAR-10

We here show the learning curves when training a ResNet-101 and a Momentum ResNet-101 on CIFAR-10.
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Figure 12. Test error and test loss as a function of depth on CIFAR-10 with a ResNet-101 and two Momentum ResNets-101.


