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Abstract 

Omics technologies offer great promises for improving our understanding of diseases. The 

integration and interpretation of such data pose major challenges, calling for adequate 

knowledge models. Disease maps provide curated knowledge about disorders’ 

pathophysiology at the molecular level adapted to omics measurements. However, the 

expressiveness of disease maps could be increased to help avoiding ambiguities and 

misinterpretations and to reinforce their interoperability with other knowledge resources. 

Ontologies are an adequate framework to overcome this limitation, through their axiomatic 

definitions and logical reasoning properties. We introduce the Disease Map Ontology (DMO), 

an ontological upper model based on systems biology terms. We then propose to apply DMO 

to Alzheimer’s disease (AD). Specifically, we use it to drive the conversion of AlzPathway, a 

disease map devoted to Alzheimer’s disease, into a formal ontology: AD Map Ontology 

(ADMO). We demonstrate that it allows one to deal with issues related to redundancy, 

naming, consistency, process classification and pathway relationships. Furthermore, we show 

that it can store and manage multi-omics data. Finally, we expand the model using elements 

from other resources, such as clinical features contained in the ADO (AD Ontology), resulting 

in an enriched model called ADMO-plus. The current versions of DMO, ADMO and ADMO-

plus are freely available at http://bioportal.bioontology.org/ontologies/ADMO. 

 

Keywords: 

Ontology; Systems Medicine Disease Map; Knowledge model; Data integration; Alzheimer's 

disease. 
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Introduction 

Systems medicine disease maps (DM) provide curated and integrated knowledge on 

pathophysiology of disorders at the molecular and phenotypic levels [1]. Based on a systems 

biology approach, they describe all biological physical entities (i.e. gene, mRNA, protein, 

metabolite) in their different states (e.g. phosphorylated protein, molecular complex, degraded 

molecule) and the interactions between them. Their relations are represented as molecular 

interactions (as well as covalent modifications) organized in pathways, which encode the 

transitions between participants’ states as processes [1][2]. Most advanced DM projects focus 

on Parkinson’s disease [3], cancer [4], rheumatoid arthritis [5][6], asthma [7], atherosclerosis 

[8], macrophage activation transduction signaling [9] and Alzheimer’s disease (AD) [10]. 

AD is a progressive neurodegenerative disorder of the brain, which was first described 

in 1906. The intense activity of AD research constantly generates new data and knowledge on 

AD-specific molecular and cellular processes (a Medline search for “Alzheimer’s disease” 

results in over 115,000 articles, as of December 2019). However, the complexity of AD 

pathophysiology is still imperfectly understood [11]. These 110 years of efforts have 

essentially resulted in one dominant paradigm to underline the causes of AD: the amyloid 

cascade [12]. Nevertheless, therapeutics targeting this pathway failed to lead to curative 

outcome for humans, leading to the need for additional hypotheses [13]. Briefly, several 

approaches have been pursued in order to target the amyloid metabolic cascade for treatment 

of AD [14]. Among them, there have been treatments targeting BACE-1 that proved to lower 

Aβ production and brain amyloid load in animal models [15], but did not show any 

improvement in cognition in clinical trials [16] (lanabecestat), or even worsened symptoms 

[17]. Similar results were found for drugs that targeted the -secretase, for immunization 

approaches, or for treatment with monoclonal antibodies. This could be explained by the fact 

that Aβ accumulation is a gradual process that takes many years to occur, and is linked to 
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changes in the macro- and microenvironment of the brain and the neurons, including 

neuroinflammation, alterations in endolysosomal trafficking, tau accumulation, membrane 

cholesterol changes. Therefore, stopping the amyloid cascade when the environment is 

already altered might not be sufficient to improve cognitive deficits or to stop of the cognitive 

decline. In conclusion, treatments should potentially start before the apparition of cognitive 

signs and should likely be combined with treatments targeting other mechanisms. 

Since the turn of the century, omics technologies (genomics, transcriptomics, 

proteomics, phosphorylomics, metabolomics…) lead to a more comprehensive 

characterization of biological systems and diseases. The production of omics data in AD 

research thereby opens promising perspectives to identify alternatives to the amyloid cascade 

paradigm. There is a clear need to integrate the amyloid cascade as a component of the whole 

organ-wide dysregulation occurring in AD, rather than treating it as an isolated component. 

Therefore, a model should be built that integrates tau, neuroinflammation, cholesterol 

metabolism, insulin resistance, neuronal degeneration, and all the other known pathways 

involved in Alzheimer’s disease. The current challenge is to connect and integrate these data 

in an appropriate way. 

AlzPathway is a DM developed for AD [10]. Although very rich in AD-specific 

pathophysiology information (it describes 1,347 biological physical entities, 129 phenotypes, 

1,070 biochemical reactions and 26 pathways), this resource does not provide sufficient 

formalism to adequately interlink current knowledge and omics data: it would thus benefit 

from a refined level of description, able to cope with the complex modeling of disease 

systems and the diversity of measurements from biomedical experiments. This lack of 

formalism is inherent to all disease maps. 

The information contained in DM is stored in syntactic formats developed for systems 

biology: the Systems Biology Graphical Notation (SBGN) [19], the modified Edinburg 
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Pathway Notation (mEPN) [20] and the Systems Biology Markup Language (SBML) [21]. 

While syntactic formats are able to index information and can be managed by different 

applications such as MINERVA [22] or NaviCell [23], they are not expressive enough to 

define explicit relationships and formal descriptions, leading to possible errors and 

misinterpretations (e.g. reaction “re1178” is describing the translation of the IL1B gene into 

IL1B mRNA; this description does not allow to interpret whether re1178 is a transcription 

instead of a translation or whether IL1B gene is a transcript instead of a gene). For 

AlzPathway, this defect in expressiveness results in a lack of: a) hierarchy and disjunction 

between species (e.g. between “Protein” and  “phosphorylated Protein” or between “Protein” 

and “RNA”, respectively), b) formal definition of entities (such as phenotypes), c) formal 

relationships between reactions and pathways, d) uniformity of entities’ naming (e.g. 

complexes that are labelled by their molecular components or by a common name) and e) 

consistency between reactions and their participants (e.g. translation of genes instead of 

transcripts). 

Compared to syntactic formats, the Web Ontology Language (OWL), a semantic 

format used in ontologies, has higher expressiveness [24] and was designed to support 

knowledge and data integration. Moreover, OWL combines high expressivity and logical 

constraints to ensure the consistency of the resource [25]. It is thus a good candidate to 

overcome the previous limitations. An ontology is an explicit specification of a set of 

concepts and their relationships, represented in a knowledge graph in semantic format. 

Ontologies provide a formal naming and definition of the types (i.e. the classes) and 

interrelationships between entities (i.e. the properties) that exist for a particular domain. 

Moreover, knowledge and data managed by an ontology benefit from their logical semantics 

and axiomatic properties (e.g. class disjunction, cardinality, existentiality, universality), which 
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supports automatic control of consistency and additional information inferences (including 

hierarchy and relationships) [26]. 

In the biomolecular domain, the Gene Ontology (GO) provides the community with 

the largest set of controlled vocabulary to index and share data [27]. WikiPathways [28] and 

the Systems Biology Ontology (SBO [29]) also provide controlled vocabulary hierarchies. 

But none of these ontologies provide enough specificity for AD pathophysiology. In the AD 

domain, the Alzheimer’s Disease Ontology (ADO) [30] organizes information describing 

clinical, experimental and molecular features in OWL format for text mining. However, the 

description of the molecular systems of ADO is less specific than that of AlzPathway. 

In this paper, we propose the Disease Map Ontology (DMO), an ontological upper 

model able to drive the conversion of a disease map into a formal ontology. We then apply it 

to convert AlzPathway into an OWL ontology which we call the Alzheimer Disease Map 

Ontology (ADMO). Finally, we show that ADMO can be connected with ADO into ADMO-

plus, a resource able to store and interconnect biomedical data. These different steps are 

summarized in Figure 1. 

 

Ontological upper model: Disease Map Ontology 

The first task (Figure 1A) aimed at designing a generic ontological upper model able to drive 

the conversion of the specific content of a disease map (in our case AlzPathway). In an 

expressive ontology, the relationships are not only links between classes, but also logical 

constraints (i.e. axioms) that are inherited by all their descendants (subclasses). Thus, the 

choices of axioms that support high level classes and their properties are key elements for the 

usefulness of the model. 

 

 Design of DMO classes  
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SBO [29] is a terminology that provides a set of classes commonly used to index 

information in SBML format. These classes conceptualize biological entities with a suitable 

balance between genericity and specificity in order to improve the genericity of representation 

despite the diversity of reactions: thus systemic models can be adequately represented using 

few classes, while preserving a satisfactory level of accuracy, similarly to the BioModels 

representation [31]. To build the DMO ontological model, we first selected SBO terms from 

“process” or “material entity” classes that fit with DM content, specifically those 

corresponding to the reaction types present in the map legend. This resulted in 54 terms: 37 

reaction types and 17 molecule types, respectively. Then, we relied on the vocabulary used to 

define components’ shapes in the graphical format mEPN, to complete the SBO class set with 

molecular states that fit with DM knowledge (e.g. phosphorylated or truncated). Following 

class selection from SBO and mEPN, we designed a class hierarchy between them. Classes 

related to participants were separated in two hierarchies: one describing their biochemical 

properties such as polypeptide chains, simple chemicals, genes or non-covalent complexes, 

one describing the state of participants such as native form, phosphorylated or truncated. We 

systematically added disjointness constraints between the generic sibling subclasses of 

participants in the biochemical property hierarchy in order to ensure that process participants 

belong to only one set (e.g. a gene cannot be a protein and reciprocally). We did not apply the 

same rule to the state hierarchy as, for instance, a truncated protein could also be 

phosphorylated. Classes related to processes were also hierarchized without disjointness 

constraints as a reaction may refer to different processes (e.g. a transfer is an addition and a 

removal). 

 

Design of DMO properties  
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Properties consistent with a systems approach (i.e. has_part, has_component, 

has_component_process, has_participant, has_input, has_output, has_active_participant and 

their respective inverse properties) were selected from the upper-level Relation Ontology 

(RO) [32]. Then, we enriched the formal definition of our set of process classes with these 

properties and associated cardinalities to link processes and participants with relationships in 

description logic (e.g. a transcription has at least one gene as input and at least one mRNA as 

output; a protein complex formation has at least two proteins as input and at least one protein 

complex as output). 

Finally, four other properties were added: occurs_in (a property selected from RO) to 

link a process to its respective location, derives_from to link a modified protein to its initial 

form, has_template (sub-property of derives_from) to link a mRNA to its related gene or a 

protein to its related mRNA, and has_mutation (sub-property of has_part) to link a gene to its 

possible mutations. 

 

DMO design results 

The design of the DMO upper ontological model based on SBO, mEPN, RO and de 

novo additions resulted in 143 classes (43 processes’ subclasses and 83 participants’ 

subclasses) and 14 properties formally defined by 188 logical axioms in description logic 

(Figure 2). This model is based on a simple pattern as our knowledge graph involves only 

four types of properties (and their inverse properties): 1) the is_a (subclass_of) standard 

property, 2) the has_part standard property and its sub-properties has_component, 

has_component_process and has_mutation 3) the has_participant property and its sub-

properties has_input, has_output and has_active_participant and 4) the location property 

occurs_in. 
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AlzPathway conversion driven by DMO: the Alzheimer Disease 

Map Ontology 

DMO was designed to integrate DM knowledge as subclasses and manage its consistency and 

formalism. Here, we demonstrate its use in the case of the conversion of the AlzPathway DM 

into a formal ontology, ADMO (Alzheimer Disease Map Ontology; Figure 1B). 

 

 Extraction of AlzPathway contents  

AlzPathway information, contained in the original SBML file [33], was exported using 

CellDesigner [34] in a tabular format, which was further restructured using home-made 

Python scripts (suppl. Fig 1). This step involved both manual and automatic transformations. 

We thus created a table (suppl. Table 1) in which each biological entity was indexed by one of 

the DMO participants’ subclasses and all processes were matched with their input, output or 

active participants. In AlzPathway, reactions have no naming: they are labeled from r1 to 

r1070. To facilitate human readability, processes were labelled with a concatenation of the 

type of the reactions and the names of the participants. The table was also supplemented with 

class annotations corresponding to other information contained in AlzPathway such as the 

AlzPathway identifier (ID), and IDs from other knowledge bases like UniProt [35] for 

participants and KEGG [36] for processes. The table was structured to integrate component 

information in case of multiplex entities (e.g. protein complexes) or the initial (native) entity 

in case of modified entities (e.g. phosphorylated or truncated proteins), and location 

information for processes (e.g. cell type or cell part). The table was then manually curated as 

described below. 

 

AlzPathway content modification and addition 
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In AlzPathway, native and modified proteins (e.g. phosphorylated or activated) have 

the same name and differ only in their graphical shapes. In order to specify these different 

states, we added a suffix to modified protein labels (e.g. “_P” or “_a” for phosphorylated or 

activated, respectively). 

In AlzPathway, phenotypes are participants. But several of them are named with a 

process name, pathway label or molecule type (e.g. microglial activation, apoptosis or 

cytokines, respectively). In order to deal with these ambiguities, 26 phenotypes were 

reclassified as molecules (e.g. cytokine) or cellular components (e.g. membrane) and 14 

names that referred to processes or pathways were changed into processes’ participant names 

(e.g. ‘apoptosis’ that refers to a process was changed into ‘apoptotic signal’ that refers to a 

participant). In addition, 5 phenotypes that were named with a pathway name (e.g. apoptosis) 

were added to the initial set of the 26 AlzPathway’s pathways. 

AlzPathway describes a subset of genes, mRNAs and proteins, but not always the 

whole combination of one given gene, its related mRNAs and proteins. As omics technology 

can capture data at the genome, transcriptome or proteome levels, we added missing genes, 

mRNAs or proteins in order to always have the description of the gene, the mRNA and the 

protein for a same entity described in AlzPathway. Additional entities were linked with the 

has_template relationships but not linked to reactions when no corresponding knowledge was 

found in AlzPathway. In such a way, we avoided overinterpretations. This resulted in the 

addition of 407 genes, 416 mRNAs and 191 proteins.  

 

AlzPathway conversion in OWL format 

Then, using the Protégé ontology editor (a free, open-source, software that provides a 

convenient interface to edit OWL files, widely used in research and supported by an 

international community) [37], the content of the structured table was imported into DMO and 
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converted in OWL using the Protégé Cellfie plugin. AlzPathway’s molecular and phenotypic 

entities were integrated as subclasses of DMO “participant” classes without redundancies 

(172 redundant participants were identified). Reactions extracted from AlzPathway were 

integrated as independent subclasses of the “process” class, without hierarchy. Then, 

automatic reasoning was used to classify them as subclasses of the DMO upper model process 

classes depending on their formal definition (see Figure 3a*), independently of their initial 

types in AlzPathway. The 1,065 inferred SubClassOf axioms were added to the ontology.  

In the original paper, AlzPathway is described as a resource containing reactions and 

their corresponding pathways. Nevertheless, in AlzPathway, the reactions are not formally 

linked to corresponding pathways because the pathways are described as free text. We created 

classes corresponding to pathways by transforming the free text information into formal 

classes. Thus, we manually created classes corresponding to these pathways. Then, they were 

automatically linked to relevant reactions using description logic: for each pathway class, a 

class “reaction involved in pathway x” was created and defined both as a “reaction that 

has_participant the molecules of interest in x” and as a “component_process_of pathway x”. 

For example, the class “reaction involved in WNT signaling pathway” has_participant 

“WNT” and is a component_process_of “WNT signaling pathway”. Then, using automatic 

reasoning, all reactions having participants involved in pathway x were classified as 

subclasses of the “component_process_of pathway x” classes and were linked to the pathway 

by subsumption with the component_process_of property. For example, “SFRP-WNT 

association” is automatically classified as subclass of “reaction involved in WNT signaling 

pathway” (see Figure 3b*) and inherits from its property: component_ process_of “WNT 

signaling pathway” (see Figure 3b**). The 355 inferred SubClassOf axioms corresponding to 

reactions involved in one of the 22 pathways were added to the ontology. This resulted in an 

extended version of DMO, specific to AD physiopathology: ADMO. 
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Finally, in order to catch Single Nucleotide Polymorphisms (SNPs) measurements, we 

also added 7,523 classes corresponding to SNPs from the NeuroChip SNP microarray [38], 

which are related to genes described in AlzPathway.  

 

Results: ADMO content 

Building ADMO resulted in a consistent network containing 2,132 classes (1,175 

disjoint participants, including 88 phenotypes or signals, 1,038 reactions and 22 pathways) 

linked with 10,964 logical axioms before and 12,373 logical axioms after automatic 

reasoning. The conversion of AlzPathway benefited from the DMO simple pattern of 

relationships (Figure 4A). Specific efforts were dedicated to the formal definition of the 

network with description logic axioms, leading to explicit relationships between processes, 

biological entities and pathways. These axiomatic definitions resulted in an increase of 

formalism compared to the initial representation of AlzPathway information. Following 

automatic reasoning, only 15 out of 643 AlzPathway’s reactions generically considered as 

‘transition’ or ‘unknown transition’ remained unassigned to a specific process of the DMO 

upper model (e.g. ‘metabolic reaction’, ‘phosphorylation’ or ‘activation’). Moreover, 41 

processes in AlzPathway were consistently assigned to a specific process different from their 

initial consideration (such as translation instead of transcription) and were, therefore, 

manually corrected. In addition, 355 reactions were formally defined as subprocesses of 

pathways thanks to automatic reasoning. 

 

Connection with ADO and use for storage of biomedical data: 

ADMO-plus 

Mapping of ADMO with ADO 
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ADMO is a formal representation of AD pathophysiology at the molecular scale. It was 

designed to store and link omics biomedical data. Nevertheless, it would be interesting to also 

link data from other scales such as brain imaging or clinical scores (Figure 1C). ADO [30] 

describes knowledge not only about molecular processes (as in AlzPathway) but also about 

clinical assessments. By converting and integrating AlzPathway in OWL format, the resulting 

ontology and ADO are represented in the same format, and thus can be connected with each 

other. In the first step, we selected ADO classes that correspond to ADMO ones. ADO classes 

were imported into ADMO independently of their initial hierarchy. Then, they were defined 

either a) as equivalent classes of ADMO “process”, “pathway”, “phenotype” or “gene” 

classes (e.g. ADO: “Abeta-RAGE interaction” class is equivalent to ADMO: “AB-

RAGE_complexation” class) or b) with DMO relationships towards ADMO classes (e.g. 

ADO: “macrophage activation” class is equivalent to has_output ADMO: “activated 

microglia” class or ADO: “neuron process” class is equivalent to occurs_in ADMO: “neuron” 

or “neuron compartment” classes). Thus, for equivalent classes, ADO imported classes 

inherited from ADMO definition (e.g. ADO: “Abeta RAGE interaction” class inherits the 

ADMO “AB-RAGE_complexation” class definition: ‘protein-protein complexation’ that has 

for input ADMO: ‘RAGE’ and ADMO: ‘Amyloid decamere’ and has for output ADMO: 

‘AB-RAGE’). For newly defined classes, automatic reasoning made it possible to build a new 

hierarchy between ADO and ADMO classes. All in all, 32 ADO classes were imported into 

ADMO (suppl. Table 1-ADO) resulting in ADMO-plus. 

  

 Biomedical data integration 

Ontologies’ classes can be filled by representative individual instances (a task called 

“instantiation”), which allows them to be used as resources for data storage. Thus, the next 

step consisted in instantiating ADMO-plus with biomedical omics data. As a proof of 
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principle, SNP, gene expression (transcriptomic) and metabolomic data from the INSIGHT-

PreAD study were used as instances to fill ADMO-plus classes (Figure 4B). The INSIGHT-

PreAD is an ongoing prospective monocentric cohort with the objective to determine factors 

that increase the risk of progression of cognitively normal old adults to clinical AD. The study 

was approved by the local ethical committee (ANSM 130134B-31) and all participants signed 

a written informed consent. More information on the study is available in Supplementary text 

1. As a proof of concept, we selected INSIGHT-PreAD genotypic, transcriptomic and 

metabolomic data that presented significant score variation. Among these data, only 16 SNPs 

corresponding to 11 genes (out of 53 SNPs corresponding to 44 genes), 23 mRNA relative 

expression (out of 145) and 25 metabolomic data (out of 53) could be integrated as classes’ 

instances in ADMO-plus. They were typed by their corresponding classes (for instance SNP, 

RNA or metabolite, see Figure 4B), and inherited from classes’ properties and thus from 

reaction and pathway information contained in the ADMO-plus network. 

 

Discussion 

We proposed the DMO ontological upper model in order to drive the conversion and 

integration of disease maps into formal ontologies. We demonstrated its utility by converting 

AlzPathway [10] into an ontological model, called ADMO. It provides an increase in 

formalism, makes it interoperable with other ontologies (such as ADO [30], GO [27], the 

Protein Ontology [39]) and makes it able to integrate biomedical data. Based on a systems 

biology paradigm [40], all ADMO entities are formally defined as classes and interconnected 

within a consistent network. While AlzPathway contained several ambiguities, our efforts on 

formalism using description logic in the definition of ADMO classes allowed us to solve 

inconsistencies and provide a precise specification of processes and biological entities within 



Page 15 / 33 

 
 

 

the system. To our knowledge there is no previous work on DM conversion to OWL and this 

idea of converting an existing resource into an ontology is new. 

 

 

Formalization of the fine description provided by DM. 

The increased formalism requires to assert a participant as a subclass of the most 

representative class and thus clarifies the status of the entities. In several standard 

bioinformatics knowledge resources (e.g. UnitProt [35], KEGG [36]), a same ID refers to a 

gene or a protein and in fine to a set of information, such as interactions, regulations and post-

translation modifications (PTM), which are thus not specifically discriminated. However, 

omics technologies are able to generate data focused on specific elements of the systems 

(gene mutation, relative gene expression, protein concentration, ubiquitination ratio, 

phosophorylation ratio, etc.). When compared to other graph resources [14][19][41] that focus 

on genes and reactions only, DM take each part of the system into consideration from genes 

expression to PTM [1]. Our ADMO proposition goes one step further by formally defining 

the different elements of the system. By providing disjoint classes for different molecular 

states, DMO breaks ambiguities between genes, genes product and their modified states [28]. 

ADMO can be instantiated with omics data within the specific corresponding classes, 

resulting in an ontology that explicitly integrates each type of omics data despite the 

complexity of the AD pathophysiology system. 

 

Automatic reasoning facilitated by the systems paradigm 

Taking advantage of a systems biology approach and reasoning properties, DMO can 

automatically ensure satisfiability of ADMO, and provides inferences of hierarchy and new 

relationships (such as the link between a pathway and its process components) [26]. Other 
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ontologies provide generic models in the field of molecular biology, such as BioPax [42]. 

BioPax is a well-established framework to share information between knowledge bases. 

However, it was essentially designed to manage knowledge sharing, and logical reasoning is 

limited to satisfiability check. While DMO presents a level of genericity similar to that of 

BioPax, it is designed to manage subclasses (e.g. ADMO) that in turn manage data as their 

instances. Moreover, due to its management by automatic logical reasoning and its model 

based on systems paradigm, ADMO is particularly flexible. If reaction, participant or pathway 

classes are removed or added, automatic reasoning is able to rebuild the modified network in 

a consistent way. In addition, class instantiation facilitates this task and instanced data take 

advantage of an up-to-date network. In existing resources, biological entities are mainly 

annotated by the cellular component, molecular function or biological process classes from 

GO [43]. While this provides the largest set of data indexed by a controlled vocabulary [27], 

this is also limited by the fact that genes are not gene products, nor functions or processes. 

Thus, genes cannot be assigned as individual instances of GO classes, leading to an underuse 

of the reasoning ability provided by ontologies. With the classical annotation methods, a 

knowledge change, such as the addition or the removal of a new molecular reaction, involves 

a verification of all annotated entities that were implicitly related to the process concerned. 

With instantiation methods, relationships between participants and processes are explicitly 

expressed as axioms and a modification in the ontology directly applies to instanced entities.  

Finally, automatic reasoning also provides formal relationships between reactions and 

their related pathways, which did not exist in AlzPathway. The formal specification  of 

pathways and their relationships with reactions in ADMO opens new promises for mapping 

ADMO with widely-used ontologies such as GO or the Human Phenotype Ontology (HPO) 

[44]. 

 

Connection with other resources and potential extensions 
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Converted in OWL format, AlzPathway’s knowledge is now interoperable with other 

ontologies such as ADO [30]. This results in a mutual enrichment: ADMO is linked with 

clinical knowledge and ADO benefits from more specific knowledge about AD 

pathophysiology. Here, we present a first attempt to connect ADMO/ADO into ADMO-plus, 

as a proof of concept. Going further would necessitate a revision of ADO, which is designed 

for text mining and which is not adapted to logical reasoning and systems biology. The OWL 

format also opens perspectives to integrate other knowledge resources. Here, we relied on 

AlzPathway, but additional resources could be used. In the domain of AD, the knowledge 

graph neuroRDF [45] would increase current knowledge provided by AlzPathway and ADO. 

Our DMO upper ontological model also provides an interesting framework to embed generic 

resources and thus harmonize AlzPathway and those resources. This offers new avenues for 

increasing the scale of representation of AD pathophysiology network in our framework. 

Indeed, our approach shall facilitate the future update of AlzPathway. Ontologies manage 

knowledge in a network as a directed graph. Thus, when reactions are added or removed, they 

are automatically integrated within or suppressed from the network. As ADMO is based on 

automatic reasoning for classification, any new reaction described with its reactants will 

automatically be described hierarchically by its type and linked to a previously described 

pathway. Nevertheless, the integration of biomedical data from the INSIGHT-PreAD study 

underlined the fact that the range of data identified as significant in this study is larger than 

the coverage of ADMO-plus (which reflects the current knowledge specific to AD 

pathophysiology). While AlzPathway currently provides the larger network in the domain, it 

is a compilation of knowledge from a reductionism approach. This suggests that the network 

has to be extended in order to generate new hypotheses about AD etiology [13]. 

Our strategy could be applied to other DM and increase their interoperability. The 

main limitation is the availability of DM of interests. Apart from that, we believe that this 
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work can be applied to other DM since DMO was designed to embed any DM and can easily 

be reused. In practice, there will be specific parts that will need to be adapted, specifically the 

extraction of the DM content and its possible modifications made by a domain expert. Then, 

other tasks can be easily done using the Protégé editor. 

Even though they are less specific than DM, considering generic systems resources, 

such as Reactome [2], would provide useful additional information through a wide range of 

generic curated biochemical reactions and pathways. The integration, in the same framework, 

of disease-specific and non-specific pathways is useful to build a more comprehensive view 

of the disease, in particular if these pathways are interconnected. When such integration is 

done, OWL format allows to tag pathways as disease-specific or not, so that the user can be 

clear about their status, leading to an enrichment without adding noise. In the same way, the 

genericity of processes and participants described in the DMO upper model opens the 

perspective to harmonize specific DM with an equivalent curation level from other 

neurodegenerative disorders, such as the Parkinson’s disease map [3]. 

 

Differences with DM 

Unlike DM [1], ontologies are not adapted to graphical visualization [46]. Thus, DM 

are better adapted to human reading. On the other hand, ontologies can store the network 

(classes and relationships) in a more consistent way and can thus be tested for logical 

consistency. Also, they present a higher flexibility to formally integrate new elements in the 

knowledge graph, as we did by adding 865 genes, related SNPs and mRNAs. Note that, 

during the conversion step, AlzPathway’s internal IDs were retained as class annotations, 

allowing interoperability and retrieval between the initial (graphical) and converted (formal) 

resource. Thus, DM and ontologies are complementary approaches. The combination of these 

two approaches will be beneficial for both the DM and bio-ontology communities. 
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In conclusion, we proposed a generic approach to transform disease maps into formal 

ontologies. We demonstrated its use through the conversion of an Alzheimer’s disease map. 

This enriches it with reasoning properties and makes it interoperable with other ontologies. 

This should constitute a useful resource for the community. The approach is generic and can 

be applied to other disease maps. 
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Figures 

 

Figure 1. Summary of the workflow for AlzPathway conversion in OWL, from the DMO 

design to ADO instantiation and data integration. A) DMO design. B) AlzPathway export into 

a structured table and its integration with DMO, resulting in ADMO. C) Integration of ADO 

and biomedical experiment data resulting in ADMO-plus. This is not a pipeline, but a step-by-

step process, in which manual and automatic steps are specified. Specifically, for each step 

we indicate whether it was done manually (Manual) or mention which tool was used to do it 

automatically (Protégé, Cell designer, Python script, Cellfie, Hermitt). 
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Figure 2 Disease Map Ontology (DMO) model design. Term of classes were extracted from 

the Systems Biology Ontology (SBO) and the modified Edinburg Pathway Notation format 

(mEPN) into Protégé. Classes were hierarchized as subclasses of process (A) or participant 

(B). Using property terms from the Relation Ontology (RO), classes were formally defined in 

description logic, as illustrated in the case of transcription (C) and protein complex formation 

(D) processes.  
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Figure 3. Example of automatic reasoning with Protégé. Asserted axioms are shown in 

uncolored lines and inferred axioms are highlighted in yellow. Following automatic 

reasoning, SFRP-WNT heterodimer association is classified as subclass of the “protein 

complex formation” (a*) and “reaction involved in WNT signaling pathway” classes (b*), 

thus it inherits the component_process_of “WNT_signaling pathway” property (b**). 
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Figure 4. Disease Map Ontology (DMO) pattern (A) and application to Alzheimer Disease 

Map Ontology (ADMO) (B). AlzPathway derived-classes (B; illustrated for the Nitric Oxide 

Synthase phosphorylation and NO production) are now subclasses of DMO classes (A). Each 

class of ADMO may be instantiated by the corresponding entities as individuals. As 

illustrated in B, for a subject, scores for SNP rs3851179, RELA mRNA expression and 

Arginine measurement are linked by biochemical reactions. 
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Appendix 1: list of abbreviations 

AB / Abeta: Amyloid  

AD: Alzheimer’s Disease 

ADMO: Alzheimer’s Disease Map Ontology 

ADO: Alzheimer’s Disease Ontology 

APOE: Apolipoprotein E 

DM: Systems medicine disease maps 

DMO: Disease Map Ontology 

GO: Gene Ontology 

HPO: Human Phenotype Ontology 

KEGG: Kyoto Encyclopedia of Genes and Genomes 

mEPN: modified Edinburg Pathway Notation 

(m)RNA: messenger RiboNucleic Acid 

OWL: Web Ontology Language 

PTM: post-translation modifications 

RAGE: receptor for advanced glycation endproducts 

RO: Relation Ontology 

SBML: Systems Biology Markup Language 

SBGN: Systems Biology Graphical Notation 

SBO: Systems Biology Ontology 

SFRP: Secreted frizzled-related protein 

SNP: single-nucleotide polymorphism 

WNT: Proto-oncogene protein Wnt 
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Appendix 2: glossary 

Accuracy: measures how close the measurements are to a specific value. 

 

Cardinality: the cardinality between two sets is the numerical constraint between individual 

instances of one set and individual instances of the other. 

 

Class disjunction: logical property which formally separates two (or more) classes. It means 

that if an individual is a member of a class, it can’t be member of the other classes. 

 

Existential restriction: an existential quantification is a type of quantifier which is interpreted 

as "there exists", "there is at least one", or "for some". 

 

Expressiveness: the expressive power of a language is the breadth of ideas that can be 

represented and communicated in that language. The more expressive a language is, the 

greater the variety and quantity of ideas it can be used to represent. 

  

Relationships: relationships (also known as relations) between objects in an ontology specify 

how objects are related to other objects. Typically, a relation is of a particular type (or class) 

that specifies in what sense the object is related to the other object in the ontology. 

 

Logical axioms: assertions (including rules) in a logical form that, together, comprise the 

overall theory that the ontology describes in its domain of application. 
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Types (i.e. the classes): collection of sets that can be unambiguously defined by a property 

that all its members share. 

 

Universality: a universal quantification is a type of quantifier which is interpreted as "given 

any" or "for all". It expresses that a propositional function is satisfied by every member of a 

domain of discourse. 
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Supplementary Text 1 

INSIGHT-PreAD enrolled participants (318) aged 70 to 85 years, with a subjective cognitive 

decline (SCD) and no objective cognitive disorders defined by a mini-mental state 

examination score (MMSE) ≥ 27 and total recall score in the free and cued selective 

reminding test (FCSRT) ≥ 41. Exclusion criteria included clinical dementia rating scale 

(CDR) > 0, visual and auditory functions insufficient for neuropsychological testing, the 

existence of a known neurological disease, recent stroke and illiteracy. SNP genotyping was 

performed with genomic DNA extracted from blood cells using the Illumina NeuroChip, a 

low-cost, custom-designed array containing a tagging variant backbone of about 306,670 

variants complemented with a manually curated custom content comprised of 179,467 

variants implicated in diverse neurological diseases, including Alzheimer's disease, 

Parkinson's disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal 

dementia, progressive supranuclear palsy, corticobasal degeneration, and multiple system 

atrophy. Transcriptomic, metabolomic and lipidomic data were obtained from 96 INSIGHT 

subjects as described previously (PMID31492558).  

 

Supplementary Figure 1 

 

Supplementary Table 1 

https://zenodo.org/record/4545641#.YC0cpi17SqQ 


