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ABSTRACT
We explore with collisional gravitational N-body models the evolution of binary stars in initially
fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy
configurations so as to match the observed distributions of the field-binary-stars’ semimajor
axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very
high at the start of the simulations, and is much reduced once the clumps are eroded by the
global infall. The transition between the two regimes is sharper as the number of stars N is
increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only
mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the
calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3

(high). We found that the longer free-fall time of the low-density runs allows for prolonged
binary–binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries
by exchange collisions. This is an indication that the statistics of such compact binaries bear
a direct link to their environment at birth. We also explore the formation of wide (a � 5 ×
104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star
cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells
or streams.

Key words: methods: numerical.

1 IN T RO D U C T I O N

The properties of stellar populations at birth hold a key to their long-
term evolution as clusters or associations. Whether a stellar system
will remain bound or undergo rapid dissolution hinges on the global
star formation efficiency, the phase-space statistics of the stars, and
the demographics of the type of stars involved (single or multiple;
see e.g. Portegies Zwart, McMillan & Gieles 2010 for a synthetic
review). The properties of binary stars in dense stellar associa-
tions in particular may shed light on the discovery of multiple star-
formation episodes in rich stellar clusters (Anderson et al. 2009).
For instance, binary stars enhance strong dynamical interactions
which in turn may speed-up evolution off the main sequence and
thus boost enrichment of the interstellar medium through winds
(e.g. Tailo et al. 2015). Tight binaries of short-lived massive stars

� E-mail: julien.dorval@astro.unistra.fr (JD); christian.boily@astro.unistra.
fr (CMB)

may evolve to produce exotic stellar remnants including black hole
progenitors (Bacon, Sigurdsson & Davies 1996; Davies et al. 2009).

That gravitational dynamics should play a role early-on in the life
of a star cluster is often illustrated by comparison of a low-density
environment of irregular geometry such as the Taurus Aurigae re-
gion, to the more symmetrically shaped and denser Orion Nebula
Cluster (ONC, e.g. Da Rio, Tan & Jaehnig 2014). Another exam-
ple comes from APO Galactic Evolution Experiment spectroscopic
observations of NGC1333 showing that main-sequence stars have
much larger velocity vectors than candidate stellar cores, a strong in-
dication that the velocity field develops on the same Myr time-scale
as star formation (Foster et al. 2015). Thus the assembly of a cluster
as a whole may proceed over time in a hierarchical fashion, and
undergo a phase of dynamical relaxation to virial equilibrium. The
rapid, global merging of substructures would bring stars together
at a different stage of their formation (as in NGC1333), while in-
ducing a shift from a clumpy Taurus-like profile to a more regular
one. A simple but important question is how the internal dynamics
of such complex configurations may affect the characteristics of a
population of binary stars.
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Binary dynamical evolution in young clusters 2199

Figure 1. Left-hand panel: spatial distribution of a Hubble–Lemaı̂tre fragmented model. Right-hand panel: evolution of the half-mass radius over time. The
times labelled as t0–t3 are the system configurations used in Section 4 for analysis. The model presented here is scaled for the lowest of the two initial stellar
densities, 6 stars per pc3, has an initial half-mass radius of 7 pc, and is evolved up to 18 Myr. The denser model, starting with 400 stars per pc3, has the same
aspect and evolution, with an initial half-mass radius of 1.8 pc and is evolved up to 2.3 Myr.

Many authors have explored this question through optimized ini-
tial conditions (Kroupa & Burkert 2001; Marks & Kroupa 2012)
or fractal configurations evolved with N-body integrators (Good-
win & Whitworth 2004; Allison et al. 2009; Parker, Goodwin &
Allison 2011; Parker & Meyer 2014). A recurring feature of all
these studies is that the binary fraction drops over time regardless
of their components (masses), due, e.g., to close star–star encounters
or heating from the external galactic tidal field (though in specific
cases, such as supervirial substructured systems, the binary frac-
tion may be constant, see e.g. Moeckel & Clarke 2011). Another
common result is that large-separation, weakly bound binaries are
preferentially destroyed during dynamical evolution. Vesperini &
Chernoff (1996) explored the fate of binaries in violently relaxing
uniform systems. Comparing the internal velocity dispersion of the
pairs and that of the cluster, they showed their soft binaries were de-
stroyed, though it had no significant impact on the global structure
of the cluster.

Parker & Meyer (2014) pointed out that the distribution of semi-
major axes a of the field population is a strong function of the
primary’s mass: at fixed a, low-mass binaries carry less binding
energy so the distribution cuts off at shorter separation (∼20 au)
than for binaries with a more massive primary (∼300 au). Their
study of fractal initial conditions shows that gravitational dynam-
ics enhances the dissolution of low-mass systems. This then pro-
vides a clue to account for the larger relative fraction of heavy
stars in binaries, such as seen in a compilation by Raghavan
et al. (2010).

We note that hydrodynamical calculations of star formation have
found young heavy stars to be preferentially hosted in dense clumps
(Maschberger et al. 2010). Furthermore, it is not clear yet whether
binary populations should be tailored according to the system total
mass because of the limited range of M ∼ 102 to ∼103 M� of
these studies (Kroupa & Burkert 2001; Parker et al. 2011; Parker &
Meyer 2014). Recall that the intensity of the tidal field is a prime
agent of binary heating. A trend with mass may be expected on the
ground that the drive to equilibrium of more massive systems leads
to deeper potential wells (e.g. Aarseth, Lin & Papaloizou 1988;
Boily, Athanassoula & Kroupa 2002). A steep potential will give
rise to strong tidal fields which may disrupt bound subsystems
(Boily et al. 2004; Renaud, Gieles & Boily 2011). A definitive
assessment of this effect is difficult to reach because the results are a
strong function of the system’s initial-mass distribution and kinetic-

energy content (Boily et al. 2002; Caputo, de Vries & Portegies
Zwart 2014).

In this contribution, we revisit this issue but through initial con-
ditions built from the self-consistent Hubble–Lemaı̂tre (HL) frag-
mentation of a star cluster (Dorval et al. 2016). The clumpy mass
profile has both a self-consistent velocity field and built-in mass seg-
regation (more massive stars on average in more massive clumps).
We ask how the characteristics of the binaries evolved from such
models compared with those of the well-sampled field-binary pop-
ulation (Duquennoy & Mayor 1991; Raghavan et al. 2010). A basic
expectation is that evolution of massive binaries in dense clumps
will enhance mass segregation while boosting the dissolution of the
wider binaries on a very short time-scale (e.g. Bacon et al. 1996;
Aarseth 2003; Marks, Kroupa & Oh 2011).

In Sections 2 and 3, we recall the basic procedure to obtain initial
conditions for stellar dynamics and how the binary population was
created. We present our data sets and main results in Section 4. In
Section 5, we discuss the formation of very tight binaries (separation
a of the order of 10−2 au) on a few Myr time-scale. We sum up our
findings and address open questions in Section 6.

2 IN I T I A L C O N D I T I O N S FRO M
H U B B L E – L E M AÎ T R E F R AG M E N TAT I O N

2.1 Initial setup

Dorval et al. (2016) pointed out that fragmentation modes of self-
gravitation developed in expanding coordinates lead to substruc-
tured mass distributions that have characteristics similar to star-
forming regions (i.e. fragments mass function, stellar contents).
This ‘cosmological’ HL expansion phase is interpreted as global
pressure support mimicking the action of turbulence and magnetic
fields, which both delay the large-scale collapse of the self-bound
system (e.g. Mac Low & Klessen 2004), yet allow for small-scale
density enhancements to grow. A self-consistent fragmented state
is reached when the expansion stops (Dorval et al. 2016; see Fig. 1).
That configuration is then used as initial condition to explore the
stellar dynamical evolution. The initial HL expansion parameter
Ho > 0, so the vector field is simply v = Hox, with the positions x
drawn from a uniform sphere. For the current work, we performed
a large set of runs of HL fragmentation, listed in Table 1.
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Table 1. Summary of simulations. Starting from an HL fragmented con-
figuration, a binary population was injected to complete the spontaneous
binaries, reaching an overall binary fraction of 0.42. Densities within half-
mass radius are shown at t = 0 and time of deepest collapse.

Name N Sampling ρh,0 (pc−3) ρh,max (pc−3)

R1.5h 1500 40 400 1.7 × 103

R5h 5000 10 400 4.0 × 103

R20h 20 000 10 400 1.4 × 104

R80h 80 000 1 400 7.1 × 104

R1.5l 1500 40 6 13
R5l 5000 10 6 79
R20l 20 000 10 6 192
R80l 80 000 1 6 103

2.2 Simulations

Each model was set up with stars drawn from the L3 single star initial
mass function (IMF) of Maschberger (2013). The L3 IMF matches
the better-known Kroupa (2001) and Chabrier (2003) functional
forms but with fewer free parameters. We set a lower truncation
mass of 0.1 M� and a maximum of 30 M�, for an average mass
of 0.5 M�. This choice of truncation values allows us to take
into account the impact of massive stars on the dynamics, while
keeping the vast majority of stars on the main sequence for up to
18 Myr, the maximum simulation runtime. Simulations were there-
fore performed without stellar evolution. All phase-space coordi-
nates were scaled to standard Hénon N-body computational units
(Heggie 1975; Heggie & Mathieu 1986). In those units, G is set
to unity, the total system energy E = −1/4, system mass M = 1,
and global 1D velocity dispersion σ = 1/

√
3 (exact for single-mass

models). The initial velocity field of the HL fragmentation was set
to H̃o = 1.2 (dimensionless computational units). All simulations
were run for t = 30 units of time.

The crossing time tcr sets a reference time-scale with which to
apprehend the state of the models. If we define rh as the three-
dimensional half-mass radius of a self-bound structure of internal
velocity dispersion σ , its crossing time tcr reads

tcr ≡ 2rh

σ
, (1)

and the two-body relaxation time-scale, tr, follows from (e.g.
Meylan & Heggie 1997)

tr

tcr
� 0.138

2

(
rh

rg

)1/2
N

ln(0.4N )
. (2)

Here, rg = 2 ≈ few × rh is the gravitational radius of the structure
of N stars. Importantly, these definitions apply equally to the system
as a whole as to substructures inside it. This will be useful later,
when we discuss the early evolution of binaries (Section 4). With
equations (1) and (2), a cluster of N = 1.5 k single-mass stars has a
relaxation time of ≈34 units. However, collisional effects of star–
star interactions are much enhanced by the presence of a mass
function. Then, the effective time for mass segregation, tms, scales
roughly with 〈m〉/mmax × tr � tr/60 for the current mass function.
Therefore in such a small N = 1.5 k model, diffusion effect cannot
be neglected over the course of the integration. We may reduce
the impact of mass segregation by increasing N by a factor of
≈60 to N = 80 k. In doing so, we aim to catch the global dynamics
more adequately, and highlight differences with systems that evolve
collisionally throughout. We cover this range of membership from
1.5 k to 80 k with two intermediate values of 5 k and 20 k.

All integrations were done with the stellar dynamics code NBODY6
(Aarseth 2003; Renaud et al. 2011; Nitadori & Aarseth 2012) for the
efficient treatment of tight binaries. We analyse in the next section
the population of binary stars in HL configurations before turning
to their time evolution.

3 T H E B I NA RY P O P U L AT I O N

In this section, we first introduce our binary-detection algorithm. We
then address the origin of spontaneous binaries, before adding ‘by
hand’ a second population, with the aim to create a global popula-
tion that recovers important characteristics of binaries (separations,
binary fractions) observed in the galactic field.

3.1 Detecting the binaries

Binaries are detected as bound pairs satisfying a density criterion.
For each star, the closest neighbours are found using a KD tree
(Press et al. 2007), a data structure that allows neighbour searches
with algorithmic complexity ∝log (N). Bound pairs are identified
from the list of neighbours and the binary parameters derived for a
subset of the pairs with the largest binding energy. The mean density
of the two components, defined as

ρbinary ≡ m1 + m2

4πa3/3
,

where a is the binary semimajor axis, is then compared to the
local neighbour density obtained through the KD tree for 6–10
neighbours1 (Casertano & Hut 1985). If the density ratio exceeds a
threshold D,
ρbinary

ρlocal
> D, (3)

the pair is registered as a binary. If D is chosen too low, a lot of
ephemeral binaries are found, while a high value picks only the clos-
est binaries, ignoring wider, yet stable, systems. After testing with
reference ensembles of binaries, we settled for D = 10 as yielding
the best compromise. Other authors, e.g. Parker et al. (2009) and
Lomax et al. (2015), have used close hybrids of the criteria that we
have implemented.

Stars can be found to be part of several binaries at once, which
happens more often for massive stars as they clear the density
threshold more easily. When this happens, the algorithm selects
from such connected systems only the pairs exhibiting the lowest
(most negative) binding energy.

Star–star interactions which take place during the HL expansion
phase speed up the internal evolution of small substructures (or
clumps). The global expansion, on the other hand, brings about
correlations in phase-space coordinates due to the predominantly
radial motion of the stars. As a result, stars may pair up in the
time-dependent potential if their mutual binding energy becomes
negative (see Appendix A and Kouwenhoven et al. 2010; Moeckel
& Clarke 2011 who discuss this in the context of dissolving clusters).
We refer to this population as spontaneous binaries. There is a trade-
off between the creation of spontaneous binaries during expansion,
and their destruction/heating when they sit near or inside a clump.
Wide binaries may survive for several internal periods if they form
in low-density regions where the tidal field is weaker. Inspection
of several simulations suggests that roughly 10 per cent of stars

1 Varying the number of neighbours in this range has no strong effect on the
detection rate.
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Figure 2. Observational data of binary fractions (dots with uncertainties)
as a function of primary mass. The data are taken in increasing primary mass
from the following: Close et al. (2003); Basri & Reiners (2006); Fischer &
Marcy (1992); Ward-Duong et al. (2015); Raghavan et al. (2010); Patience
et al. (2002); Preibisch et al. (1999); Mason et al. (1998). The red line is a
best-fitting linear relation. The thin curves and 1σ dispersion shaded area
are the results for a population of spontaneous binaries obtained from HL
models. The bins have a logarithmic width of about log(2).

end up in wide binaries. Their properties as a subpopulation will be
addressed statistically through numerical experiments.

In the analysis of the computer models, we refer to the binary
fraction fb as the ratio

fb ≡ B

S + B

where S is the number of single stars, B the number of binary
stars, and we will not consider multiple stars of higher rank (triples,
quadruples, . . . : see e.g. Goodwin, Whitworth & Ward-Thomson
2004 and Hubber & Whitworth 2005 for a general extension to an
arbitrary rank).

3.2 Spontaneous binary fraction versus primary mass

Several studies have found a strong correlation between the bi-
nary fraction fm and the primary mass m of a binary system
(for compilations, see e.g. fig. 17 of Bate 2012 and fig. 12 of
Raghavan et al. 2010).2 Since heavy stars tend to drive the for-
mation of clumps in HL models, by attracting stars to themselves,
it is natural to expect the HL procedure to give rise to a correlation
of that nature.

The spontaneous binary fractions found in HL models for loga-
rithmic primary-mass bins are plotted as light grey lines on Fig. 2.
The shaded area shows the 1σ dispersion for these distributions.
The fraction increases rapidly with primary mass, and is in close
agreement with the data for primaries of mass higher than 2 M�,
when fm exceeds 50 per cent. However, the HL models show a
significant deficit of low-mass primary binaries in comparison to
observational data.

2 It should be noted that selection effects may at least in part explain such
correlations; see e.g. De Rosa et al. (2014).

The high binary fraction for heavy primaries can be explained,
at least in part, by considering the mass segregation occurring in
the clumps during their formation. Dorval et al. (2016) have shown
that massive stars tend to sink to the centre of clumps. These high-
mass stars are more likely to capture another star to form a binary
through a three-body interaction as they sit in denser environments
(Spitzer 1987). A heavy star also creates a deeper potential well
wherein to trap a fly-by star at the onset of HL fragmentation. There
is indirect evidence for the three-body binary formation process to
draw from mass-segregated clumps, because these binaries have
a mean mass ratio q = m2/m1 that is significantly larger than
expected from random pairing. The mean value of q for binaries
with a primary star in the range 15–30 M� is indeed 0.21 ± 0.11,
whereas random pairing yields a mass ratio of 0.02 ± 0.02 for that
mass range. Due to mass segregation inside clumps, massive stars
are more likely to pair up with moderately heavy companions rather
than light ones.

3.3 Spontaneous semimajor axis distribution

The distributions of semimajor axes a and orbital periods are the
main parameters used to characterize binary populations. Up to this
point, the distances were given in computational N-body units. To
convert the models to physical scales, we matched their stellar num-
ber density within the half-mass radius to that of observed clusters.
King et al. (2012) compiled data for several young clusters and
gave their stellar densities within half-mass radii, with high values
reaching 400 stars per pc3, typical of the ONC, and low densities of
∼6 stars per pc3, more akin to the Taurus region. These are the two
reference values used to build up our data set of numerical mod-
els. The time conversion gives a total duration of the simulations of
2.3 Myr for the high-density clusters and 18 Myr for the low-density
ones.

In practice, the spontaneous binaries develop a bell-shaped dis-
tribution of separation centred on ∼2000 au for a high-density HL
model, and ∼7000 au for a low-density one (see the broken curve
on Fig. 4). This is much wider than the averaged value of ∼50 au
for the Galactic field population (Duquennoy & Mayor 1991;
Raghavan et al. 2010), where separations of ∼1 au or lower are
not uncommon. It is none the less shorter than the 104–105 au peak
found in N-body simulations of dissolving clusters (Kouwenhoven
et al. 2010; Moeckel & Clarke 2011; see also the discussion in
Appendix A).

Hydrodynamical calculations by Bate (2012) show that orbital
energy dissipated in the early stages of formation may cause bi-
naries with an ∼10 au separation to shrink to a ∼ 0.5 au in the
course of t ∼ 1 Myr. Analytical arguments by Stahler (2010) and
Korntreff, Kaczmarek & Pfalzner (2012) would have external drag
forces from residual gas drive a tight binary to merge completely.
Kroupa & Burkert (2001) have shown that stellar collisions alone
cannot bring a narrow distribution of semimajor axes to the full
width of observed values. Other authors, such as Parker & Meyer
(2014) investigated the evolution of a binary population identical
to the field but embedded in clumpy, fractal clusters (Goodwin &
Whitworth 2004) to test the robustness of the field population, while
Vesperini & Chernoff (1996) introduced binaries with a binding en-
ergy inverse power-law, favouring weakly bound pairs.

A full spectrum of separations is desirable for comparison with
data and theoretical models but is not a natural outcome of the HL
fragmentation.

A trick was used to add binaries to the fragmented HL initial
conditions. We follow Parker & Meyer (2014) to ease comparison
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with their setup, by supplementing the population of spontaneous
binaries with one that matches the field galactic populations at small
a. In doing so, we should also constrain the statistical weights with
mass so as to redress the deficit of small-mass primaries (Fig. 2).

3.4 Complete separation distribution: procedure

The addition of new binaries to the HL distribution is not straightfor-
ward, as the phase space coordinates of stars in an HL fragmented
system are the consequence of the numerical evolution during the
expansion (no known functional distribution function). A practical
and coherent method builds the extra binary population before the
HL expansion phase.

3.4.1 Binary parameter distributions

When introducing binaries in the system, primary masses are picked
to account for the observed decrease in binary fraction with decreas-
ing primary mass (see Fig. 2). Secondary masses are then randomly
chosen in the remainder of the population. The resulting mass-ratio
distribution is generally flat, slightly peaking at high mass ratios,
mostly from low-mass stars paired with other low-mass stars. This
has no bearing on our study, as the mass-ratio distribution has a neg-
ligible impact on the processing of a binary population (see Parker
& Reggiani 2013).

Eccentricities are drawn from a flat distribution, which is con-
sistent with observed populations; see section 5.1.4 of Duchêne &
Kraus (2013). This distribution is not expected to be substantially
affected over a few Myr of dynamical evolution (Kroupa 1995b)
and evolves to a thermalized profile on a longer time-scale (e.g.
Kroupa 2008).

Finally, binary separations and periods are drawn from Raghavan
et al. (2010). To account for the excess of (spontaneous) binaries
at large separations, a reduced statistical weight is used to lower
their impact on the final distribution. For simplicity and to limit
the number of parameters in this work, we chose to apply the same
distribution of separations to all binaries. In future work, one would
like to factor in the fact that observations show that the distribution
changes with the primary mass (see Duchêne & Kraus 2013; Parker
& Meyer 2014).

A binary is generated by a Monte Carlo method, then replaced
by a point mass equal to the sum of its components, and the HL
expansion carried out with a subset of such fused binaries. Once the
system has fragmented, the fused binaries are split and their two
components recovered along with their set internal parameters. The
barycenter of the new binary follows the orbit of the original point
mass.

There are drawbacks to the implementation of the method; the
main ones are as follows: (1) The HL fragmentation develops with
fewer stars than in the final system, after the splitting. Therefore,
fewer spontaneous pairs may form than might have otherwise. (2)
Some spontaneous pairs form at the end of the HL phase with one
fused binary as a component. Many of these spontaneous binaries
(we found ≈50 per cent) are no longer classified as bound pairs
once the massive point mass is split into the binary. Thus, the value
of a and the amplitude of the peak of the statistics for spontaneous
binaries after the split is hard to fix or predict. These two caveats
make the insertion of binaries a complex statistical process, which
leaves some freedom in the final distribution at the characteristic
scale of the spontaneous population (few 103 au). Nevertheless, the
final distribution comes close to the one sought, with differences

Figure 3. Binary fraction as a function of primary mass. The results dis-
played are the average of 20 realizations for 20 k particles models; the shade
indicates 1σ deviations. Short semimajor axis binaries were injected to
complete the spontaneous population (compare with Fig. 2).The bins have
a logarithmic width of about log(2).

(i.e. a relative excess of wide binaries) we may attribute to the
formation history of the system.

3.4.2 Results for N = 20 k models

The procedure outlined in the previous subsection was tested on a
set of 20 identical low-density models (≈6 stars per pc3; see Sec-
tion 3.3) of 20 k stars. The resulting binary fraction is plotted on
Fig. 3 as a function of the primary mass. The deficit of low-mass
primaries was bridged, while the fraction for high-mass primaries
was slightly reduced (from 0.85 down to 0.75 for a primary mass of
≈20 M�; note the increased scatter). This is the effect mentioned in
Section 3.4 of splitting fused spontaneous binary components with
a heavy primary. (Several of these heavy spontaneous binaries with
large separation no longer satisfy equation 3). A few massive bina-
ries were introduced to compensate for this effect, which remains
relatively small. The values derived for this range of primary masses
remain in complete agreement with observational data. Extensive
numerical exploration of binary tidal heating has been performed
by one of us (Roos 2013). Binaries were put on highly eccentric
orbits in cuspy Dehnen (1993) potentials, thus experiencing large
variations in the tidal force. It was found that the binary binding en-
ergy varied by ≈50 per cent or more only when the semimajor axis
a > 100 au. No binary–single stars or binary–binary interactions
were included. The conclusion from this study is that binaries with
axis a shorter than 100 au should rarely unbind due to tidal heating.
Further tests with NBODY6, and the results of the next section, largely
confirm this. With that in mind, and in view of the computational
costs, we truncated the binary population at a = 1 au. This choice
allows us to recover the range found in the SPH calculations of Bate
(2012), so a closer parallel can be made with his setup.

We show on Fig. 4 in short-dashed red the full spontaneous
binary population (with a peak value at a ≈ 7000 au), prior to the
procedure to split fused binaries. The distribution of separations for
the fused binaries is shown as the long-dashed curve, with a dip
around a ≈ 10 000 au. Finally, the splitting procedure is carried
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Figure 4. Distribution of binary separations for the completion of a popula-
tion in a low-density model. Spontaneous binaries before splitting are shown
in short-dashed red, the population injected in the system in long-dashed
blue, and the resulting measured distribution in the completed system in
green. The observational separation distribution from Raghavan et al. (2010)
is shown as a grey area, taking into account Poisson dispersion.

out, and the result shown as the solid curve. The grey shade is
the expectation value for the parametrized Gaussian distribution
of Raghavan et al. (2010). Discrepancies with this distribution are
only significant for binaries with a > 4000 au. The peak of the
spontaneous population, still visible after the splitting procedure,
introduces an excess of binaries for (roughly) 4000 < a < 20 000 au.
Note how the excess of binaries in that range has been halved by
the splitting procedure, dropping from a maximum of ≈370 to
≈170. For separations larger than a > 106 au, the binaries are not
identified by the density threshold algorithm and are dropped from
consideration. Since none of them are likely to survive for a long
period of time given the density of the system, this will have no
bearing on our conclusions.

4 EVO L U T I O N O F B I NA RY P O P U L AT I O N S

A system bound gravitationally will resist external tidal forces if it
sits within its Roche radius (Binney & Tremaine 2008, section 8;
Renaud et al. 2011). For binary stars, the condition for boundedness
is given by equation (3) with D = 3 and setting the mean density
ρbin over the full Jacobi volume. Thus, the question of how much the
mean background density rises and compares to the mean density of
the binary has important consequences for the further evolution of
the binary. The situation is made more complicated if the host’s po-
tential changes rapidly, on the dynamical time-scale tcr of equation
(1).

Let us first recall the results of the collapse of a homogeneous
sphere of N identical stars. In this case, the sphere collapses by a fac-
tor C before it rebounds and evolves towards equilibrium (Aarseth
et al. 1988; Boily et al. 2002). The ratio of minimum radius achieved
during collapse, to the initial system radius, is a 1/3 power-law of
N, so C ∝ N−1/3. If the total mass is conserved during the collapse,
the mean background density scales as ρ ∝ C−3 and so reaches a
peak value max (ρ) ∝ N. Based on this analysis, one would expect a
strong relation between the system total mass M = Nm and the rate
of destruction of binary stars, especially those of large semimajor
axis a, if and when a cluster undergoes a phase of collapse.

Figure 5. Top panels: total binary fraction over time for different cluster
memberships. Lower panels: total number of binary over time compared
to initial number in each system, in percentage. The vertical dashed line
indicates the time of deepest collapse.

Various simulations were performed: their parameters are sum-
marized in Table 1. Runs with N ranging from 1500 to 80 000 were
sampled in such a way that ensemble-averaging gave roughly the
same Poissonian standard deviations in each case.

4.1 Results

We show on Fig. 5 the evolution of the binary fraction in HL frag-
mented systems as a function of time. The time when the systems
rebound from the global infall, t ≈ 10 units, is marked with a ver-
tical dotted line on each frame. The binary fraction decays in each
case during the course of evolution, regardless of their membership
N or initial density. All systems display two different regimes of bi-
nary destruction, before and after the bounce from global collapse.
Before the bounce, binaries are destroyed at a higher average rate,
more so for the more massive systems (large N). After the bounce
(t > 10), the slopes all flatten out and binaries are continuously
destroyed, but at a lower rate. For example, the high-density N =
80 k simulation removes 2.5 per cent of its binaries per time unit
before the collapse; this rate goes down to 0.25 per cent afterwards.
Similarly, the low-density N = 80 k run has 1.7 per cent before the
collapse and 0.16 per cent thereafter.

We interpret these findings as follows. In the first stages of evolu-
tion, the rate of binary destruction is driven by the two-body relax-
ation in the small clumps of the HL configuration. To see this, Fig. 5,
bottom row, graphs the relative fraction of surviving binaries for
each model. The linear slope is virtually identical up to t ≈ 5 units.
The internal dynamics of clumps is independent of the larger system
in which they are embedded. As collapse proceeds, larger N systems
develop a deeper global potential well: this is easier to see for t →
10 as the curves fan out. The range, of about 10 per cent, accrued at
t = 10 between runs of different N, is almost unchanged at the end
of the simulations, at t = 30 units. The rate of binary destruction
post-bounce is practically the same for all N, though note that it
remains higher for the high-density calculations (the final count of
binaries drops from �80 per cent at low density to �70 per cent at
high density).

There is a clear tendency for the pre- and post-collapse transition
to be sharper as N increases. We interpret this in the light of equa-
tions (1) and (2). We note that the N = 1.5 k models are dominated
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Figure 6. Top panels: the binary fraction in logarithmic bins for the primary masses. The dotted line is the linear fit to observations shown on Fig. 2. Bottom
panels: the number of binaries in each primary-mass bin is shown as a percentage of the initial number (t = 0). The horizontal dashed line is 100 per cent. The
data are from low-density models.

by two-body interactions, when the mass-segregation time-scale
drops to ∼1 time units, and not by the overall collapse motion that
drives density upwards, destroying binaries. At the other end of the
spectrum, the N = 80 k models have a global mass-segregation time-
scale >30 time units. These models, like all the others, are initially
dominated by two-body interactions in their clumpy substructures.
However, the later evolution sees the overall collapse motion take
over. It is the imprint of that global infall which allows the density
to peak at higher values (cf. Table 1) and laminate binaries more
efficiently around that time. Since the rebound is of short duration,
the strong tidal field drops quickly as we shift in the post-bounce
phase.

To determine whether the evolution affects binaries differently
according to their mass, we show on Figs 6 and 7 the binary fraction
in relation to the primary mass. Results are shown at four different
times, and for all runs of N. The top row of each figure is the
binary fraction fm and the bottom row the percentage of binaries
with respect to the initial distribution.

This representation highlights which binaries are the most pro-
cessed in the system. The panels for t = t1 and t2 are for times
immediately before and after the bounce (cf. Fig. 1). The dynam-
ical evolution within the clumps and during the collapse impacts
preferentially light-primary binaries; binaries with a more massive
primary (say, >5 M�) survive better. We stress that the trends are
indicative and at the ∼20 per cent level in all cases. Bearing this
caveat in mind, inspection of the different cases does suggest that
the results for low-N runs are more the result of the internal dynam-
ics of clumps, where star–star interactions would favour the ejec-
tion/destruction of low-mass binaries. Note how the low-N models
in fact form additional high-mass binaries during infall, since the
binary fraction exceeds 100 per cent at t = t1 and t2. This is not
so for the N = 20 k and 80 k models, which we interpret as being
due to the stronger tidal fields in these models which stops new

binaries from forming. It is interesting that despite the deeper infall
achieved by these large-N models, the trend of increased survival
with primary mass is not eradicated: this would have been the case
had the external (global) tidal field clearly dominated the binary de-
struction. Instead, we find that the strong fields do not erase memory
of the early evolution phase of the clumpy distribution.

The results for the later time t = t3 displayed coincides with the
end-time of the simulations. At that point, all models have reached
equilibrium and the binaries have been processed dynamically in
such a way that the binary fraction decreased monotonically for
all primary masses. It is worth noting that the low-density models
(Fig. 6) have evolved for a physical time t ≈ 18 Myr, while the high-
density ones (Fig. 7) up to t ≈ 3 Myr only. This may explain the
greater scatter among the different runs for these models (they have
more intense tidal fields but have less time to act on the binaries).
We also note that the peak at high primary mass, clearly visible at t
= t2, is still apparent at t = t3, except for the case N = 80 k, which is
the model with the highest density and the strongest tidal field. We
interpret this as indicating that the wide binaries have had time to be
split, while this process is yet incomplete in the other models. This
view is backed up from inspection of the low-density runs at t = t3

on Fig. 6, where all the peaks seen at t = t2 have been flattened, save
the runs with N = 1.5 k. We believe that the more stochastic low-N
runs may have produced more wide-binary escapers due to their
shallower potential well. These would therefore not be processed
collisionally in the final cluster and survive in isolation.

4.2 Semimajor axis distributions

The evolution of the distribution of semimajor axes a in a binary
population hinges on its dynamical environment. Several analytical
and numerical studies (Heggie 1975; Kroupa 1995a,c; Vesperini &
Chernoff 1996; Heggie, Trenti & Hut 2006; Parker et al. 2009, 2011)

MNRAS 465, 2198–2211 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/465/2/2198/2544343 by guest on 18 February 2021



Binary dynamical evolution in young clusters 2205

Figure 7. Same key as Fig. 6. The data are from high-density models.

Figure 8. Histograms of semimajor axes for the binary population at four different times and for four different cluster membership. The dotted black line
shows the distribution of N = 1.5 k models at t = 0 as a reference for the initial distributions. High-density models are in the top row, while low-density models
are in the bottom row. The reference times are taken from Fig. 1.

have shown that wide, weakly bound binaries are preferentially dis-
rupted, thus sculpting the distribution towards tighter, more bound
binaries. This evolution is shown on Fig. 8, which graphs the distri-
bution histograms as a function of semimajor axis a. The distribu-
tions are plotted for four various times, membership N and both the
values of initial density. The averaged distribution computed from
the models with N = 1.5 k is shown as a dotted line and serves as
reference. To ease the comparison between models with different

N, all histograms were normalized to the reference initial profile at
t = 0 (e.g. the area under the curve is the same for all the models).

We first distinguish between high- and low-density models. The
overall behaviour of the models is the same, with a rapid dissolution
of large semimajor axis binaries, a ∼ 103 au or more. This takes
place prior to the bounce, when t < t1, but is a continued trend
from the start of the computations to the end. As anticipated, high-
density models (top row on Fig. 8) process the binary population
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Figure 9. Top panels: histogram of semimajor axis at four different times
for the N = 20 k models. Bottom panels show the erosion factor, the ratio
between the sizes of the initial binary population and the one at a given time,
in each primary-mass bin.

more efficiently, reaching deeper in the short-axis range, down to
a ∼ 20 au, compared to a ∼ 100 au for the low-density models.
This can be gauged qualitatively by the gap that opens up between
the dotted line and the histograms.

The system mass (or membership N) has little influence on the
evolution of the histograms; however, as the collapse factor C in-
creases with N, the larger N models process significantly wider a
∼ 103 au binaries; this is true regardless of the initial density (high
or low). Note that, here too, the N = 1.5 k models stand out, in the
sense that their wide binary population is less efficiently processed.

Having identified the mean initial density as the main driver
for binary population evolution, we wish to quantify the rate of
survival of binaries. We define the erosion factor as the ratio, in
each semimajor axis bin, of the current number of binaries to the
initial population. This allows us to asses easily the processing
power of the system at all separations. The idea was borrowed from
Marks et al. (2011) and Marks & Kroupa (2012) who introduced
an analytic operator acting on a binary population to mimic its
evolution in a host star cluster. The erosion factor is bound to the
interval [0, 1], and equals 1 when all binaries of a given semimajor
axis a are retained (zero when they are all destroyed).

We measure the quantities of binaries in separation bins over time
to define the erosion factor for our simulations. It is displayed for the
four reference times and for N = 20 k simulations on Fig. 9 (bottom
panels). The model with initially high density heats up and splits
binaries of (relatively) shorter semimajor axis during the collapse,
and beyond: the most dramatic phase of evolution between times t0

and t2. During that interval, nearly 80 per cent of binaries with a >

1000 au are split. There is comparatively little evolution from t2 to
t3, which covers the remaining half of the runtime. The run of the
erosion factor with a and its time-evolution are very similar when
comparing the runs of models with high- and low initial density.
The most striking difference is the shift of the minimum value of
the erosion factor, from a semimajor axis a ≈ 3000 au, to larger
axes a ≈ 10 000 au in the case of low-density models. The extent
of the shift, a factor of 4, is consistent with the scaling of the mean
separations between stars l ∝ ρ−1/3; we compute for high- and
low-density systems

llow

lhigh
=

(
ρhigh

ρlow

)1/3

= 3

√
400

6
� 4. (4)

This fact alone implies that the evolution of fragmented mass
profiles through a relaxation phase is driven mostly by stellar en-
counters. The same conclusion applies for the evolution of the fractal
models of Parker et al. (2011).

4.3 Tidal shocks

We noted how larger N simulations tend to iron out a larger fraction
of binaries (see Fig. 8). The weak trend with increasing N implies
that both star–star interactions (including multiple stars) and global
tidal forces both boost the heating up and unbinding of binaries.
The shift seen on Fig. 7 is small but systematic: from 15 per cent
for N = 1.5 k to 25 per cent for N = 80 k of all binary stars are
destroyed at the bounce (t ≈ 10 units). To get a better appreciation
for the trend (or lack thereof) with N, let us compute the energy
transferred to a binary star by the tidal field. At the end of the
collapse, the stars move on mostly radial orbits at high velocities.
Since they cross a dense region in a short time, we make use of
the tidal shock approximation developed by Spitzer (1958, see also
Boily et al. 2004; Binney & Tremaine 2008, section 8).

Taking inspiration from the tidal shock suffered by a cluster
crossing the galactic disc, we can get an estimation of tidal heating
on a binary crossing the dense centre of the system at the time of
deepest collapse. Binney & Tremaine (2008) define the change of
specific binding energy �Es of a self-gravitating system of size a,
mass μ, crossing a spherical volume of projected surface density
� ≈ rρ at radial velocity Vr, as

�Es = 14π2G2�2a2

3V 2
r

. (5)

We seek out the scaling of this relation with the number of stars
N, keeping the system’s initial mean density ρ(0) constant. This
implies that the total mass M ∝ N. The expectation from the analysis
of fragmentation modes is that the radius at the bounce r = Ro/N1/3.
The projected density at the bounce therefore scales as � ≈ M/πr2.
Ignoring mass-loss and the energy dissipated by binary disruption,
we can estimate the magnitude of the square radial velocity V 2

r from
the relation

3V 2
r ≈ 2GM

r
∝ N

N−1/3Ro
. (6)

Substituting in (5) and replacing r by the semimajor axis a, we
find

�Es = 14πG2(M/πr2)2a2

2GM/r
∝ GM a2

r3
∝ GM

R3
o

Na2 . (7)

The binding energy per unit mass of a binary star is Es =−Gμ/2a.
The relative energy imparted to the binary by the shock is therefore

�Es

Es
≈ 7πM

μR3
o

a3N . (8)

We chose to keep the initial mean system density constant, so that
the ratio M/(μR3

o) is independent of N. The final scaling reads

�Es

Es
∝ a3N . (9)

An increase in membership N implies more significant heating of
the binary star. If we set �Es/Es = 1, then an increase of N → 10 × N
should have the same relative effect on a binary of semimajor axis a
→ a/101/3 ≈ a/2.15. By implication, the peak of the distributions
seen on Fig. 8 should shift from a ≈ 40 au to a ≈ 40/3.76 =
10.64 au, as we work up from N = 1.5 k to 80 k calculations. This
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Figure 10. Left-hand panels: total binary mass (top) and distance to centre of the cluster (bottom) versus the semimajor axis for binaries tighter than 1 au at
the end of the simulation. Right-hand panels: same layout for binaries wider than 104 au. The greyed area in the top panels shows the 90 per cent probability
range of a binary total mass from random pairing given the present IMF. The red dashed line in the top-left panel shows the relation for constant v2∞σcoll ≡ σ0;
it is bounded by two dotted curves that have 10σ 0 (above) and 0.1σ 0 (below). The horizontal dotted line in the bottom panel indicates the boundary between
the ejecta (distance to centre >10 pc) and the central system. Open circles are binaries which already existed at t = 0. The data are from 10 simulations of N
= 20 k stars with initial mean density of 6 per pc3.

shift is not seen on the figure. What we see, on the other hand, is that
large-N systems tend to deplete more efficiently the wide binaries,
so that at the same stage of evolution, the richer systems have a
binary distribution that falls off more quickly at large separations.
We attribute the weak dependence on N to the approximation of a
static background mass distribution.3 In reality, the whole structure
moves on the same short dynamical time-scale of equation (1) and
hence the effective surface density � is much reduced if the system
as a whole begins to re-expand. We suspected that the choice of
fixed initial density may be the reason for the undetectable shift of
the peak on Fig. 8. Our choice of initial conditions implies that the
system size Ro ∝ M1/3; had we chose instead to use an empirical
relation such as Ro ∝ M1/5 for stellar clusters (Larsen 2004), we
would have found a scaling of �Es/Es ∝ a3N7/5. The same rise in
N as before would have produced a shift from ≈40 to 6.5 au in the
peak of the distribution, and this is still too large to go undetected.

5 EX T R E M E T I G H T A N D W I D E B I NA R I E S

As mentioned in Section 3.2, Bate (2012) has found several exam-
ples of binaries reducing their separation over time through stellar
encounters, from ∼10 au down to �0.5 au. Tighter systems were
hindered by numerical resolution issues. The regularized treatment
of close encounters (which allows us to integrate up to machine pre-
cision) of the code NBODY6 means that the same collisional process
will be at play in the calculations that we have performed. Since

3 The original treatment by Spitzer fixed a thin (vertically mixed) disc
crossed by a stellar cluster at high speed.

no binaries with semimajor axis a shorter than 1 au were inserted
in the initial conditions, we focus first on the statistics of binaries
that evolved to a < 1 au. In the second part of this section, we will
explore the formation and the evolution of very wide (a > 104 au)
binaries, many of which end up loosely bound to the stellar cluster
as a whole.

5.1 Tight binaries

Several binaries with a < 1 au were detected at the end of the low-
density simulations. By comparison, almost none developed in the
high-density runs. Their properties are summarized in the left-hand
panel of Fig. 10. The data are taken from N = 20 k runs but similar
statistics were obtained for the other setups. The top row shows the
binary’s mass as a function of semimajor axis, while the bottom row
on that figure graphs the distance of their barycentre to the centre
of the cluster. Open circles denote binaries that already existed at
t = 0, and became tighter over time, while filled circles are new
binaries that formed in the course of the simulation. Inspection of
these new, tight binaries shows that both of their components were
part of binaries originally inserted in the system. Thus all new tight
binaries shown on Fig. 10 are the results of strong binary–binary
interactions leading to splitting or exchange. (None of the original
binaries that survived to the end of the simulation had a < 1/2 au.)

The statistics of these events should be compared with expecta-
tions based on estimated collision rates. The time-scale for direct
collisions between particles in a self-gravitating system depends
on the degree of gravitational focusing of the colliding bodies
(Binney & Tremaine 2008, section 7.5.8, equation 7.195a). This

MNRAS 465, 2198–2211 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/465/2/2198/2544343 by guest on 18 February 2021



2208 J. Dorval et al.

is given quantitatively by the Safronov number � = v2
�/4σ 2 =

GM/(4σ 2a), where we have replaced the surface escape veloc-
ity v� of a single star by the unbinding velocity v2 = GM/a of
a binary of total mass M and separation a. To obtain an estimate
of �, we looked at typical clump parameters from the N = 20 k
R20l models: an average membership of Nc ∼ 50 stars and mean
half-mass radius rh ∼ 0.2 pc yield an internal velocity dispersion
(subtracting the binaries’ internal motion) σ ∼ 0.5 km s−1. Setting
a binary mass M > 2 M� and semimajor axis a = 1 au yields � �
3700 � 1. The collisional rate τ−1

coll for binary disruption is then

τ−1
coll = 16

√
πnσa2�

= 8 × 10−4 Myr−1 n

700 pc−3

0.5 km s−1

σ

a

au

M

2 M�
(10)

with n the stellar number density ∼700 pc−3. This rough estimate
of the collision rate should be interpreted as a lower limit because
in practice a > 1 au and many binaries have a total mass >2 M�.
We find τ−1

coll ∼ 8 × 10−4 collisions per clump per Myr. Since on
average � 150 clumps are formed in each R20l run, and assuming
that the collision rate is constant throughout the 6 Myr infall time,
we expect hard encounters of order O(1) per 104 stars. If most of
these interactions lead to the disruption of the binaries, some others
will result in exchange and tighter components.

These statistics are in good agreement with the identification in
the 10 N = 20 k runs of a total of 24 binaries with a < 0.6 au, for
an average of 2.4/5000 ≈ 0.05 per cent of all binary stars (fb ≈
1/3 at t = 0). The very tight binaries each have a combined mass
exceeding 2 M� with a low mass ratio q, ranging from 0.01 up
to 0.2. It is important to mention that main-sequence binary stars
with a separation a � 0.02 au would be contact binaries when
both members are solar-type or more massive stars. Clearly the
evolution of such objects (and in fact their formation process) calls
for hydrodynamical effects that were not included in our study. It
is therefore remarkable that contact binaries should form strictly
through gravitational scattering on such short time-scales.

These results apply to runs with initial mean number density of
6 per pc3. The same analysis carried out for the higher density
models give a different outcome. For these models, the initial density
is larger by a factor ∼60 and the velocity dispersion by a factor
∼2, for all stars. From equation (11), we find a collisional rate
∼30 times higher than previously. If direct collisions were the main
channel for the formation of tight binaries, the number of events
should increase in the same proportions. However, inspection of the
simulations yielded only four tight binaries, each with a semimajor
axis a � 0.1 au. Thus the rate of formation of tight binaries drops
to 0.4 per 5000 binaries, or 0.008 per cent, a six-fold decrease.
We argue that two factors hinder the formation of these objects in
high-density environment. First, Geller & Leigh (2015) pointed out
that exchange encounters between single stars and binaries are not
instantaneous (see also Hut & Bahcall 1983). The process can be
perturbed by other stars, so modifying the outcome of the collisions.
This is also true for binary–binary collisions: casual inspection
of the time series of (tight) binary stars showed that their mean
separation keeps evolving throughout the evolution of the model,
which suggests that the binaries are part of a small-N hierarchical
system. It is reasonable to expect that more hierarchical systems
will develop in a higher density environment (involving more stars)
and so the exchange process may never have time to take place.

Secondly, the binary exchange cross-section is sensitive to the
impact velocity. The lack of a detailed theoretical framework on
binary–binary collisions makes it difficult to pin down statistical

expectations with precision. In the case of a disruptive encounter be-
tween a binary + single stars, extensive analytical work by Mikkola
(1983, 1984a,b) and numerical scattering experiments (e.g. Heggie,
Hut & McMillan 1996; Fregeau et al. 2004) lead to a rough estimate
of the effective scattering cross-section σ coll in relation to the mass
and separation of identical binaries:

σcoll ∝ mta

v2∞
. (11)

In this equation, σ coll is the effective collisional cross-section
for disruption in binary–single interactions, and v∞ is the relative
velocity at infinity (prior to the collision) ≈ the clump velocity
dispersion. Taking v∞ ≈ σ = constant independent of mass and
binary separation, we may use equation (11) to relate binary mass
M to separation a and cross-section σ coll. Hut & Bahcall (1983)
and Hut (1983) gave analytical expressions for the exchange cross-
sections, which scales as the above scattering cross-section at low
velocities, but becomes steeper for higher velocities:

σex ∝ mta

v6∞
. (12)

As the encounter velocity increases, it becomes harder and harder
to perform a successful exchange. The two initial mean densities
that we picked may therefore cover the transition from low- to high-
velocity regimes, and reduce the number of tight binaries created to
just a handful.

Going back to Fig. 10, we plot the relation v2
∞ σcoll ≡ σ0 of equa-

tion (11) as straight red lines on the top-left panel. Two dashed
curves bracket a curve in full type, each with a value of σ coll differ-
ing by a multiplicative factor of 10 (increasing from the lower curve,
up). The large separations between the curves and the clustering of
data points along the dashed curve indicate how a single value of σ 0

effectively cuts through the diagram in two well-delimited regions.
Thus, the trend of binary mass increasing as M ∝ 1/a for the most
tight binaries is consistent with a constant product of σ0 = v2

∞σcoll

at the time of formation.

5.2 Wide binaries

The formation of wide ‘spontaneous’ binaries during the HL frag-
mentation process naturally leads one to expect that more wide
binaries will form in the post-collapse evolution of the system,
when expanding streams of stars emerge from the compact bounce
to form a tenuous halo. We already noted how the erosion factor
on Fig. 9 shoots up for large semimajor axes, exceeding unity at
the later stages of evolution in both high- and low-density calcula-
tions. This implies either that a subset of wide binaries got softer
over time, or that new binaries of separation >104 au formed dur-
ing the virialization phase. If we compare the numbers for axes
a > 5.104 au � 0.25 pc and for all 10 R20l models, then there
were 120 binaries more in this range at the end of the simula-
tions, right after the bounce, at time t = t2. Of those 120, some
40 new binaries formed in the expanding volume, while 80 are
soft binaries that became softer as a result of collisional evolu-
tion, the well-known Heggie–Hills law (Heggie 1975; Hills 1975).
While these numbers of very wide binaries are very low indeed, a
ratio of 120 per 10 × 20 k stars (0.06 per cent), they are still sig-
nificant because they would be associated with neighbouring star-
forming regions, and may yet register as correlations in phase-space
coordinates.

The right-hand panels of Fig. 10 graph the basic properties of
this subset of extreme wide binaries. We selected all binaries with
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Figure 11. Evolution of individual binaries semimajor axis and distance
to centre over time in the low-density 20 k particles models. The vertical
dashed line marks the moment of deepest collapse t � (t1 + t2)/2.

separations exceeding 104 au, the largest semimajor axes that were
found in the initial conditions. Hence, all data points shown here are
the result of some evolutionary mechanism. The horizontal dotted
line on Fig. 10 marks a distance of 10 pc as the separation be-
tween the central equilibrium cluster and the volume where weakly
bound ejecta orbit. Close to ≈60 per cent of wide binaries are
escaping the main clusters or are very weakly bound to it. There-
fore, most of them would be lost to the tidal field in a real cluster
environment.

We stress that the semimajor axis a of an individual binary star
is not a monotonous function of time. Fig. 11 graphs the evolu-
tion of six perturbed binaries, three tight and three wide binaries.
Tight binaries mostly suffer strong interactions early on, before the
collapse, inside a clump. This would take place most likely at the
centre of the clump, where the density is higher. What happens
next is hard to predict, as the pair can then be ejected from the
system by this interaction (e.g. the first binary, top panel); or sink
at the centre of the cluster and remain there (second binary, middle
frame); or follow the bulk of the ejecta, falling once through the
core and then leaving the system without further strong interactions
(third binary, bottom row). Most wide binaries experience several
strong interactions. Many of these take place around the time of the
collapse, as they orbit through the dense core of the cluster. These
repeated strong interactions will lead to heating and result in binary
splitting. That is also why no (spontaneous) wide binary was found
in the dense clump cores of the initial HL configuration; instead,
they form in the low-density interclump space. Practically all wide
binaries had a first strong interaction during the densest phase of
the infall (t1 < t < t2).

6 D I S C U S S I O N A N D C O N C L U S I O N S

6.1 Discussion

In this paper, we have shown with numerical experiments that the
dissolution of binary stars proceeds at a much higher rate in initially
clumpy configurations. The two-body relaxation time of clumps of
typical membership Nc = 50 is about six times shorter than the
global free-fall time of the subvirial star-forming volume. As a
result, binaries are destroyed at a rate ≈10 times higher in clumps
than in the later stages of evolution, when clumps have merged
and a cluster of stars achieves dynamical equilibrium. We have
also highlighted that the transition between clumpy and equilibrium
states is much sharper when N � 104: in such rich star-forming
regions, the binary dissolution rate is well approximated with a
linear relation in both the regimes. When N � 104, we find a more
gradual transition (Fig. 5). These findings compare well with those
from e.g. Parker et al. (2011) based on fractal models, where the
mass segregation by collisional evolution was found also to be very
significant early-on.

We presented in Section 4 an argument suggesting that the deeper
gravitational potentials achieved through infall by larger N models
should lead to the destruction of tighter binaries and hence a shift in
the peak of the distribution of separations (see Figs 6 and 7). The net
effect of increasing N from 1500 to 80 000, however, results mainly
in a factor of ≈2 increase in the fraction of wide (a > 300 au)
binaries being destroyed. Tighter binaries are largely unaffected.
In particular, the peak in the initial distribution of separations at
a � 50 au is essentially unchanged. Consequently, the slope of the
separation distribution for wide binaries steepens with N (i.e. the
Gaussian shape is more skewed in richer models) in the early stages
of the life of a cluster. This effect is offset slightly by the formation of
new very wide binaries in the post-collapse evolution, when several
stars move on radial, weakly bond orbits (see also Kouwenhoven
et al. 2010; Moeckel & Clarke 2011). We have found the formation
of wide a > 104 au binaries to be statistically very similar regardless
of the initial system density or membership, when set at the same
evolutionary stage. One important difference is the higher speed
achieved by outflowing wide binaries formed in denser systems.
Runs with initial mean number density of 6 per pc3 developed
outflows of velocities ≈2–3 km s−1; denser runs with 400 per pc3

reached velocities twice as large. Proper motion studies may pick
up this bulk motion. In terms of distance D, proper motion p, and
timeline �tp, one finds a minimal velocity for detection vp such
that

vp � 1

2
× 10−3 p

1μ′′
D

100 pc

yr

�tp
km s−1 . (13)

The Gaia spacecraft’s resolution reaches down to ≈26 μas at
magnitude 15 (V band), with a five-year timeline and could de-
tect such outflows out to a distance of ∼600 pc. Well-known star-
forming regions such as the Orion Nebula or ρOphiucus are possible
targets for such outflows. Brighter, young stars should allow a more
precise determination of vp and possibly set new constraints on the
formation history of rich open clusters.

We also noted that very tight binaries (a � 0.01 au) formed as a
result of binary–binary exchange collisions, when a new binary is
formed as a result of the collision between two existing ones. The
process begins in the clumps at the start, and carries on throughout
the duration of the runs. Statistically we found that ≈0.05 per cent
of all binaries end up with a semimajor axis a < 0.6 au. While
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these are low-number statistics, these events are important because
they involve the most massive stars of the models, and their rapid
formation (on a time-scale of ∼1 Myr) has direct implication for
the formation by merger of very massive stars/contact binaries. The
shortest axis system that we found had a � 0.01 au and a total
mass of 18 M� (see Fig. 10). We observed similar trends in all the
simulations, but noted that virtually no such tight binaries form in
high-density runs. One important factor contributing to this situ-
ation is the increased collision velocities and (therefore) reduced
effective interaction cross-sections in denser regions (the Safronov
number � drops by a factor of ≈4). Another possibility comes from
inspection of the time series of events from a subset of the runs,
when we observe that the semimajor axis of very tight (a < 0.1 au)
binaries continues to evolve right until the end of the simulations.
This is a strong indication that these binaries are members of a com-
pact hierarchical system. The very formation of the tight binaries
may involve not just a pair of binaries, but a more complex situation
involving a small number of stars (see e.g. Leigh & Geller 2013;
Geller & Leigh 2015). We feel unable to disentangle the web of pos-
sible formation channels with confidence given the limited statistics
of our sample of simulations. All calculations reported here where
performed with a stellar IMF truncated at 30 M� and without stel-
lar evolution. This brings up issues for the later stages of evolution
when the system age exceeds 10 Myr. It will be important in future
investigations of that formation scenario to include a full stretch of
the stellar IMF and perform the time evolution of the stars simulta-
neously with the dynamics.

6.2 Conclusions

The main findings of this paper are as follows.

(i) The HL fragmented systems host a population of ‘sponta-
neous’ wide binaries that form from phase-space correlations. The
distribution of separations a of that population is bell-shaped with a
peak shifting from a � 2000 to 8000 au as the system mean density
is decreased. The multiplicity fraction of that population increases
with the mass of the primary, and matches the trend observed in the
field for primaries of mass >2 M�.

(ii) We presented a method allowing us to add to the spontaneous
population a subpopulation of binaries in such a way that the final,
total distribution of semimajor axis a and multiplicity fraction fb

matches targeted trends. We have implemented a version recovering
the field distribution of Raghavan et al. (2010).

(iii) The clumps process binaries up to 10 times faster than a
relaxed spherical configuration, while the deeper potential of large-
N runs reached during the merging and relaxation phase means that
about twice as many binaries are dissolved in rich open clusters as
there are in small N � 5000 systems.

(iv) Very tight and massive binaries, with semimajor axis a down
to 0.01 au, and total mass up to 15 M�, are formed first inside the
clumps through exchange binary–binary interactions (cf. Fig. 10).
Such tight binaries continue to form and evolve as the clumps merge
and the star cluster relaxes to equilibrium. These binaries would
form contact systems on a time-scale ∼1 Myr with an occurrence
frequency of 0.2 binaries per 10 k stars per Myr.

(v) Very wide binaries, of separation a up to 2.105 au, are formed
in the low-density volumes of ejected stars during the relaxation
phase of the runs. The mean velocities of ≈2–6 km s−1 of these
stars mean that they are ideal targets for proper-motion studies by
the Gaia programme.
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A P P E N D I X A : PH A S E - S PAC E C O R R E L AT I O N S

The global, isotropic expansion of a uniform self-gravitating body is
found by integrating the equations of motion with an initial velocity
field

v = H x, (A1)

where H is the HL parameter, a monotonically decreasing function
of time. We want to show that the two-body correlation function
defined around phase-space coordinates dx3dv3 must peak when
the HL expansion nears H → 0. Let m1 and m2 be two stars of
coordinates x1, x2, respectively; their relative velocity follows from
(A1) as

v1,2 = H(x1 − x2) ≡ H l.

With the definition of the reduced mass μ = m1m2/M and total
mass M = m1 + m2, the binding energy per mass of the stars reads

E = − Gμ

||x1 − x2|| + 1

2
v2

1,2 = −Gμ

l
+ 1

2
H2l2 . (A2)

The binding energy E < 0 provided that l3 < 2 Gμ/H2. If we use
as characteristic separation the mean distance in the homogeneous

sphere of radius R(t) (which encloses all the stars), then for a total of
N stars one may write l ≈ R/N1/3 and take m1 = m2 = m = M/N ;
then μ = m2/N and the condition E < 0 becomes

R(t)3 <
2Gm

H2
.

In practice, R(t) reaches a maximum value in a finite time interval
since the system as a whole is bound. Because H → 0, there must
be a time interval during which the inequality is (on average) ev-
erywhere satisfied. We anticipate most ‘spontaneous’ binary stars
to form during that time interval.

The calculation presented above predicts that virtually all stars
should end up in binaries of separation ≈l = R(τ )/N1/3 (t = τ

being the time when H = 0). This is not so in practice because
the velocity field around t = τ is not the Hubble flow of equation
(A1), but is approximately a Gaussian field due to the formation of
clumps (cf. Dorval et al. 2016). Because of density enhancements,
where the tidal field would be stronger, only a subfraction of stars
eventually form wide binaries; we found about 10 per cent in a
typical simulations.

This situation is different from the one addressed by Kouwen-
hoven et al. (2010) and Moeckel & Clarke (2011). These authors
found very wide binaries to form in the tenuous haloes of dissolv-
ing supervirial star clusters. Kouwenhoven et al. (2010) found a
formation rate of a few per cent for these wide binaries and a sepa-
ration distribution peaking at about 105 au. We also found a peaked
distribution but with a peak value of about 104 au or less (see Sec-
tion 3.3). Inspection of HL fragmented configurations showed that
the interclump distance is typically of the order of 105 au or more,
which may explain why binary stars of such wide separations do
not form (they are disrupted by the tidal field of clumps).

We want to outline the basic procedure that would lead to the
identification of all bound pairs (including multiple stars) for a gen-
eral case. Let us work with the one-body phase-space distribution
function f (x, v, t); the game, then, is to ride one of the stars (say,
mi) and seek out any other one that may lead to E < 0. To do so,
one may define a Heaviside operator, He(x − xi , v − vi) such that
He = 1 whenever E < 0 and He = 0 otherwise. For instance, if we
set t = τ (no time integration or averaging) and sum over all pairs
once only, we compute Nb pairs, so

Nb =
N∑

j=1

∑
i>j

He(xj − xi , vj − vi)f (xi , vi − vj , t).

In integral form, this formalism would allow us to perform Monte
Carlo draws from any functional form for the distribution function
f. Binney & Tremaine (2008), section 7.5.8, give a numerical ex-
ample for the case when f = ρ(x, t)/m f̃ (v, t), with ρ(x, t)/m =
constant and the velocity d.f. f̃ (v, t) is a Maxwellian.
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