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MATING OF DISCRETE TREES AND WALKS IN THE QUARTER-PLANE

PHILIPPE BIANE

Abstract. We give a general construction of triangulations starting from a walk in the quarter
plane with small steps, which is a discrete version of the mating of trees. We use a special
instance of this construction to give a bijection between maps equipped with a rooted spanning
tree and walks in the quarter plane. We also show how the construction allows to recover several
known bijections between such objects in a uniform way.

1. Introduction

Mating of polynomials originates in complex dynamics, where one can match two Julia sets
in order to build a topological sphere or a surface, see e.g. [2] and
https://www.math.univ-toulouse.fr/ cheritat/MatMovies/ for nice pictures and movies.
This includes in particular the case of Julia sets which are topologically real trees. It has been
introduced in probability by Le Gall and Paulin [11] for studying the topology of the Brownian
map and then used, under the name �mating of trees" by Duplantier, Miller and She�eld [8]
in quantum gravity, followed by many others. A discrete version of this construction already
appears in Mullin's bijection (see [13]) and has been further used recently by several authors, see
e.g. Gwynne, Holden and Sun [9] for a recent overview. The basic idea is to consider a walk in
the quarter plane, with steps in the set {(1, 0), (−1, 0), (0, 1), (0,−1)} and to write the vertical
and horizontal coordinates of the walk as two opposite Motzkin paths running vertically. See
below, with one Motzkin path on the left for the horizontal coordinate and one on the right for
the vertical coordinate:
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then mate the two Motzkin paths by drawing horizontal lines between vertices:
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The Motzkin paths are then contracted into trees in the usual way, while the upper and lower
boundaries of the rectangle are identi�ed. The resulting map is a planar triangulation. I will
give a more detailed explanation in the following sections.

In this note I use a generalization of these ideas to walks with small steps, i.e. with steps
taken in the set {(1, 0), (−1, 0), (0, 1), (0,−1), (−1,−1), (1,−1), (−1, 1), (1, 1)}, which involves
constructing a map with faces of degrees three and four then contracting the faces of degree four.
As we shall see, the generality of the construction and the many variants one can produce from
it make it a versatile tool for producing bijections between speci�c classes of walks and of maps.
Again, the precise de�nitions will be given in the next section. Using this I give a bijection
between walks in the quarter plane and maps equipped with a rooted spanning tree in which the
degrees of the vertices are encoded by the length of the steps of the walk. This bijection is quite
di�erent from Mullin's bijection but bears some connection with �blossoming bijections". These
ideas also allow us to reinterpret several known bijections between walks and triangulations, or
more general planar maps. In particular we will show how the following bijections �t into this
framework:

• The bijection of Mullin, between walks in the quarter plane with straight steps and
triangulations having a Hamiltonian cycle.
• A bijection of Bernardi between Kreweras walks and triangulations with a spanning tree.
• A bijection of Kenyon, Miller, She�eld and Wilson between walks and maps with a
bipolar orientation.
• A bijection of Li, Sun and Watson between tandem walks satisfying some further condi-
tions and Schnyder woods.

Rather than the particular results which are obtained, we think that the main interest of this
paper relies on its general philosophy, and its potential to produce a wealth of bijections between
walks and maps.

This paper is organized as follows. In the next section I give a general algorithm for producing
planar triangulations, starting from a walk with small steps in the quarter plane. In order to
obtain precise bijections one needs to specify a number of parameters in this construction. I
illustrate this in section 3 by giving a new bijection between some classes of walks and planar
maps equipped with a spanning tree. Then, in section 4, I show how to recover the bijections
listed above using these considerations.

2. Associating a triangulation to a walk in the quarter plane

2.1. Trees and Dyck paths. There is a well known way to associate a rooted planar tree to a
Dyck path by matching up and down steps:
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One can think that one cuts out the striped area from the plane and sews the up and down
steps to produce the tree embedded into the plane. One can generalize this construction to
Motzkin paths by shrinking each horizontal step to a point.
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2.2. One can also consider paths which do not start or end at 0 and build a forest of trees,
rooted on a V -shaped path:
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Some down steps (before the minimum of the path is reached) or upward steps (after the
minimum) are left unmatched and are indicated in red on the picture. They form the �V " on
which the forest is rooted.

2.3. The basic construction. We consider paths in the quarter plane with small steps: the
coordinates of the steps belong to {−1, 0, 1}, thus we get 8 distinct non zero steps:
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We can distinguish straight steps: (1, 0), (0, 1), (−1, 0), (0,−1)
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from oblique steps:
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The problem of enumerating such walks has been considered in many papers, starting from
the seminal work [7].

Consider a two-dimensional walk with small steps, starting and ending at the origin, which
remains in the quarter plane x, y ≥ 0. Here is an example with twelve steps, ten of which are
straight and two oblique:

(1, 0); (0, 1); (−1, 1); (1, 0); (0,−1); (1, 0); (0,−1); (0, 1); (−1, 0); (−1, 0); (1, 0); (−1,−1).
The walk is shown below:
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The projections of this walk on the coordinate axes are two Motzkin paths with respective steps
1; 0;−1; 1; 0; 1; 0; 0;−1;−1; 1;−1 and 0; 1; 1; 0;−1; 0;−1; 1; 0; 0; 0;−1:
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We draw the two paths vertically in an opposite way, with the horizontal coordinate on the
left and the vertical coordinate on the right, the paths running from bottom to top.
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The mating consists in drawing horizontal lines between the vertices of the two paths, as
below:
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Between the two Motzkin paths we have then a succession of quadrilaterals, each one cor-
responding to a step of the walk. These quadrilaterals have several types, some of them, cor-
responding to straight steps, have one of their side vertical, while the others, corresponding to
oblique steps, have tilted sides. Here are the straight steps, numbered from bottom to top, and
the shaded oblique steps.
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We now contract the two Motzkin paths into two trees as in section 2.1. Again we can imagine
that we cut out the area below each Motzkin path and sew the boundaries. In this contraction
the quadrilaterals corresponding to straight steps become triangles as, for example:

�
→ `````�

Once we have made these contractions we obtain a planar map whose faces are triangles
(corresponding to straight steps), quadrilaterals (corresponding to oblique steps) and an external
face with two sides, the two horizontal sides of the initial rectangle. If we identify these two sides
by contracting the external face, we obtain a planar map, with a distinguished edge, the one
corresponding to the two sides of the rectangle, on which two trees are drawn, namely the images
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Figure 1. Contraction of the Motzkin paths.
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of the two Motzkin paths. Figure 1 shows the map obtained from the above path, where the
triangles are numbered and the two quadrilaterals are shaded, while the two trees are depicted
in red and blue and the distinguished edge (corresponding to the upper and lower boundaries of
the rectangle) is dashed.

In order to obtain a planar triangulation we will contract the quadrilaterals corresponding to
oblique steps: again imagine that one cuts out one of these quadrilaterals from the plane, then
identi�es two opposite vertices, pairs the edges correspondingly and sews them. More precisely,
consider such a quadrilateral:

�@

There are two ways to contract this quadrilateral along one of its diagonals to produce two
segments, either like this by identifying opposite vertices v and w and accordingly sewing the
edge uv with uw and the edge vz with wz:

w z

u v

�@ → u v
w

z

or like this, identifying u and z:

w z

u v

�@ → w u
z

v

Let o be the number of oblique steps in the walk. From the map corresponding to the walk
we can obtain 2o triangulations by removing the quadrilaterals and, for each one, sewing its
boundaries according to the two possibilites. Figure 2 shows the result of a choice of such
contractions on the map of Figure 1.

The construction presented above is very general, but not one-to-one. Indeed one can associate
to each path 2o triangulations, moreover some triangulations may be obtained by more than one
of these constructions.

In the following I will consider speci�c instances of the construction, where one restricts the
class of steps which are available for the walk and one gives an explicit algorithm to decide,
for each quadrilateral, which of the two contractions is made. In order to visualize the maps
obtained by these constructions we will �nd it useful to depict also the dual map as in Figure 3,
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Figure 2. Contracting the quadrilaterals of Figure 1.
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Figure 3. The triangulation and its dual cubic map

where we indicate the way we contract the quadrilateral by drawing a dashed line between the
opposite vertices which have been identi�ed, then draw edges connecting the dual vertices.

Before going into the description of the examples, I describe some possible variations on this
construction.

2.4. Variations.

2.4.1. Changing the end point. It is possible to generalize the construction to paths which do
not start or end at zero. Also one can relax the condition that the walk remains in the quarter
plane. In this case the two paths are contracted as explained in section 2.2 and there remain
edges which are not matched. Together with the upper and lower horizontal sides, they form an
external boundary. Here is an example, where we show vertical lines between matched edges of
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the paths. There remains three unmatched edges on the left and two on the right:

At this point, one can either keep the unmatched edges and consider that they bound an
exterior face, or iden�ty these edges pairwise, if there is an even number of them. We will see
some examples in the following.

2.4.2. Changing the set of steps. It is also possible to use other types of steps. If one uses steps
of type (i, j) then one can consider the path obtained by replacing the step (i, j) by a sequence
of |i| steps of type (sgn(i), 0) and |j| steps of type (0, sgn(j)), then erase the horizontal lines in
the polygon thus formed to get a face with |i|+ |j|+2 edges on the boundary. For example here,
in the case i = 3, j = 4, we get the following picture:

When we erase the internal edges we get a face with nine edges

There are four edges on the right, three on the left, and two horizontal ones (remember that
vertical edges are contracted into points when we contract the paths). Observe that one can
change the order in which the |i|+ |j| steps are made without changing the resulting map.

One has to be careful that there is a potential con�ict between such rules and the contracting
rules for oblique paths. We will nevertheless see some interesting examples.

2.4.3. Other contractions. In this paper I consider only contractions of quadrilaterals, according
to one of the two non-crossing pairings of its sides. It would be possible to consider also contrac-
tions of larger faces, as constructed in section 2.4.2. Such contractions would be obtained from
pairings of faces with an even number of sides. With non-crossing pairings one obtains planar
maps, but it would be also possible to construct maps of higher genus by making more general
pairings. However, we will not explore such possibilities in this paper.

2.4.4. Pattern avoiding. If we consider the allowed steps of the walk as forming an alphabet then
the walk can be considered as a word on this alphabet. It is possible to consider families of walks
that are constrained to avoid certain patterns. Again we will encounter such examples.
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(a) (b) (c)

Figure 4. A cubic map with a complete spanning tree and a marked leaf

2.4.5. Symmetries. There are some obvious symmetries in this construction. For example one
can make a symmetry with respect to a vertical axis in pictures like Figure 3. This corresponds to
exchanging the horizontal and vertical directions of the walks, in other words to make a re�ection
with respect to the diagonal line x = y in the plane. Symmetry with respect to a horizontal axis
corresponds to considering walks with opposite steps, in reverse order.

3. Maps with a spanning tree

3.1. In this section we consider walks with steps in the set {(0, 1), (−1,−1), (1,−1)}.

@
@R
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�	

6

For convenience we will give a name to these walks and refer to them as �reversed Y -walks", or
rY -walks (note that, for typographical reasons, the walks with opposite steps deserve the name
of Y -walks).

It is easy to count the number of rY -walks in the quarterplane, starting and ending at 0.
Indeed the vertical coordinate of the walk gives a Dyck path, since the vertical coordinates of
steps are either 1 or −1. Choose a Dyck path of length 4n for the vertical coordinate and let
i1, . . . , i2n be the indices of the down steps. The horizontal coordinate moves only when a down
step in the vertical direction is made, therefore the walk is speci�ed by choosing another Dyck
path of length 2n, which describes the horizontal moves at times i1, . . . , i2n. It follows that the
number of such walks is C2nCn where Cl =

1
l+1

(
2l
l

)
, the number of Dyck paths of length 2l, a

Catalan number. There is a simple model of maps which is counted by this number. Consider a
cubic planar map (i.e. a map with vertices of degree three) with 2n vertices and thus 3n edges.
Take n+1 of the edges and cut them in two, in order to obtain a tree, with the half-edges being
the leaves of the tree. We call this tree a �complete" spanning tree. If we choose one of these
leaves to root the tree we get a planar binary tree with 2n internal vertices and 2n + 1 leaves,
plus the root leaf. This construction is reminiscent of so-called �blossoming bijections" (see [13],
or [1] for a recent reference), except that we do not orient the leaves of the tree. The map from
which we started can be recovered by pairing these 2n+2 leaves, to reconstruct the edges which
have been cut. In Figure 4(a) I show a cubic map and a complete spanning tree in 4(b). The
root half-edge is in blue, with an arrow pointing at it and the other half-edges are in red. In
Figure 4(c) I show the planar binary tree in standard representation, with the matching of the
leaves giving back the original map.

Such objects, planar cubic maps on 2n vertices, with a complete spanning tree with a marked
leaf, are thus in bijection with pairs (T, P ) where T is a binary tree with 2n internal vertices
and a leaf added to the root, and P is a pairing of the 2n+ 2 leaves. The leaves can be ordered
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cyclically from the root by going clockwise around the tree, thus the pairings are in bijection
with non-crossing pairings of [1, 2n + 2]. There are C2n planar binary trees. Since there are
Cn+1 non-crossing pairings we get C2nCn+1 pairs (T, P ). This is not quite C2nCn, but if we
add the constraint that the root leaf has to pair with its immediate successor then we get the
right number C2nCn. We call such an object a �special" planar cubic map on 2n vertices, with
a complete spanning tree with a marked leaf. For example the cubic map depicted in Figure
4 is special since the root leaf is paired with its successor. We will see that our construction
provides a geometric realization of this bijection between walks and such maps. We will also
extend it to a walk model for �non-special" cubic maps with a complete spanning tree rooted at
some half-edge.

3.2. The construction. The rY -walks have two types of oblique steps, so we must give the
rules for contracting the associated quadrilaterals. These rules are simple, we show them below.

Contraction Rules 3.1.

w z

u v

�� → w u
z

v

w z

u v

�@ → w u
z

v

i.e. in both cases identify the NW and SE corners.

3.3. Some bijections. There is a simple and well known bijection, which we shall denote by
T , between rooted planar binary trees with n vertices and Dyck paths with 2n steps, which is
best described recursively. Write a Dyck path as a sequence of up (u) and down (d) steps. Then
T (ud) is the unique rooted planar binary tree with one vertex. For any Dyck path D, of length
2n, write it uniquely as D = uD1dD2, where D1 and D2 are Dyck paths of lengths 2k − 2 and
2n− 2k, where 2k is the time of �rst return to 0 for D. Then T (D) is the binary tree whose left
branch is T (D1) and whose right branch is T (D2). This tree can be obtained easily from our
construction as follows: write the Dyck path on the right but leave the left extremities of the
quadrilaterals un�nished, so that we do not make the identi�cations on the left of the picture.
This is shown in Figure 5(a). The cut dual map is a tree and it is obvious that its construction
satis�es the same recursion as the bijection T . Observe that the leaves of the tree (in red in
the picture) appear ordered on the left of the picture (except the root leaf and its immediate
successor). There is also a simple and well known bijection between Dyck paths and noncrossing
pairings which consists in pairing up and down steps. For example, the non-crossing pairing
(1, 8), (2, 3), (4, 7), (5, 6) corresponds to the Dyck path uuduuddd;

1

2 3 4

5 6

7

8

When we complete the picture on the left, as in Figure 5(b) the Dyck path corresponding to
the horizontal coordinate determines the non-crossing pairing of the leaves. It remains to pair
the root leaf with the leaf going through the upper side of the rectangle to obtain a special cubic
map. Conversely, given a special cubic map with a complete, rooted spanning tree, the spanning
tree gives us the vertical coordinate of an rY -walk, while the pairing of the leaves gives us the
horizontal coordinate. Finally one has the following.

Theorem 3.2. The construction with Contraction Rules 3.1 gives a bijection between rY -walks
in the quarter plane, starting and ending at 0, with 4n steps, and special cubic maps with a
complete spanning tree, rooted at some half-edge, with 2n vertices.
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Figure 5. rY -walks and their associated maps.
(a) Construction of the spanning tree using the vertical coordinates.
(b) Matching the leaves using the horizontal coordinates.

(a) (b)

Figure 6. Non special maps.
(a) Map with four unpaired leaves.
(b) Matching the remaining leaves .

(a) (b)

We have seen that, in this construction, the root leaf is paired with its immediate successor.
In order to obtain all possible pairings, let us instead consider walks starting at 0 but ending
at the point (2, 0). Making the contractions of paths as in section 2.2 we end up with Figure
6(a), where there are four half-edges unmatched in the dual map: the half-edges corresponding
to the upper and lower sides of the rectangle and two half-edges coming from the two up steps
on the left which are not matched with a down step. We then pair these half-edges so that the
upper and lower horizontal sides are not matched, as in Figure 6(b) This gives a cubic map with
a complete spanning tree, in which the root is not paired with its immediate successor.

Putting this together with the preceding construction, we get:

Theorem 3.3. The construction with Contraction Rules 3.1 gives a bijection between rY -walks
on the quarter plane starting at 0 and ending at 0 or (2, 0), with 4n steps, and cubic maps with
a rooted complete spanning tree, with 2n vertices.

3.4. Variants. Instead of the step (0, 1) we could consider (0, 2). Again it is easy to enumerate
all walks with step set {(−1,−1), (1,−1), (0, 2)} which start and end at 0: in the vertical direction
we have a walk with steps 2 and −1 and an application of the cycle lemma give the number of

such walks with 3n steps, which is 1
2n+1

(
3n
n

)
= C

(2)
n , a Fuss-Catalan number (see e.g. [5]). On
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Figure 7. Quartic maps.

the set of 2n negative steps we have to choose a Dyck path of length 2 which gives a Catalan

number Cn. The �nal count is C
(2)
n Cn. Again our construction gives a bijection between walks

with step set {−1, 2} and ternary trees, as in Figure 7(a), which we can complete as in Figure
7(b).

Theorem 3.4. The construction with Contraction Rules 3.1 gives a bijection between walks on
the quarter plane with step set

{(0, 2), (−1,−1), (1,−1)}
starting and ending at 0, with 3n steps, and special quartic maps with a complete spanning tree,
with 3n vertices. When extending to walks ending at (2, 0), we get a bijection with quartic maps
with a complete rooted spanning tree.

Obviously this can be further extended to a bijection between planar maps equipped with a
spanning tree and a marked leaf, with walks whose steps belong to the in�nite set

{(−1,−1), (1,−1), (0, k); k ≥ 0}
starting at 0 and ending at 0 or (2, 0). Observe that the vertical component of such a walk
is a �ukasiewicz path. Applying the same algorithm as above recovers a well known bijection
between �ukasiewicz paths and trees (see e.g. [15]), which extends the bijection between Dyck
paths and binary trees.

Theorem 3.5. The construction with Contraction Rules 3.1 gives a bijection between walks on
the quarter plane with step set

{(−1,−1), (1,−1), (0, k), k ≥ 0}
starting at 0 and ending at 0 or (2, 0), and planar maps with vertices of degree ≥ 2, with a
complete spanning tree. In this bijection, steps of type (0, k) of the walk correspond to vertices of
degree k + 2 of the map.

Mullin's construction (as explained in Schae�er [14]) also provides a bijection between maps
equipped with a spanning tree and walks in the quarter plane but this is a quite di�erent bijection,
for example the set of steps allowed in Mullin's bijection is the set of straight steps.

4. Recovering other bijections

4.1. Triangulations with a Hamiltonian cycle on the faces. We consider a planar tri-
angulation equipped with a Hamiltonian cycle of its dual graph. This amounts to chosing an
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ordering f1, f2, . . . , fn of the faces of the triangulation such that, for all i, the faces fi and fi+1

are adjacent (where i+1 is taken modulo n) and for each i one chooses an edge ei in the common
boundary of fi and fi+1. Here is an example where the Hamiltonian cycle is in red, the faces are
numbered from 1 to 8 and the edges ei are the edges crossed by the red path.

5

1

2

6

7

8

4

3

The graph formed from the vertices of the triangulation and the edges which do not belong to
the set e1, e2, . . . , en is made of two disjoint trees and the Hamiltonian cycle goes around each of
them, one of them being on its right and the other one on its left. Here is the picture:

We go around the cycle and record the successive triangles. Each such triangle has exactly
one side in one of the trees. If this side is in the left tree we record a (1, 0) step, if the path
goes up in the tree and a (−1, 0) step if it goes down. If the side is in the right tree we record
similarly a (0,±1) step. The �nal picture is

2

3

5

6

7

8

4

1

where we draw the Hamiltonian cycle in red, but not the whole dual map. It is immediate to see
that we obtain in this way a walk in the quarter plane, with straight steps, starting and ending
at 0. This construction yields a bijection between walks with straight steps in the quarter plane,
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starting and ending at 0, and planar triangulations equipped with a Hamiltonian cycle of the
dual graph. This is well known and occurs in Mullin's bijection between maps with a spanning
tree and walks on the quarter plane, see e.g. [14], section 1.2. See also [9] for a recent overview of
applications of this kind of bijections to random maps. In the remaining sections we will obtain
examples with more �exibility by looking at classes of walks having oblique steps.

4.2. Kreweras walks and Bernardi's bijection. We now consider a bijection of Bernardi [5]
(also used in [6]). A Kreweras walk has steps in the set {a, b, c} where a = (1, 0), b = (0, 1) and
c = (−1,−1).

a
�
�

c

b

It can be shown that Kreweras walks with 3n steps, which remain in the quarter plane, starting
and ending at 0, are enumerated by the formula 2n

2n+1

(
3n
n

)
. This formula is explained in a bijective

way in Bernardi [5]. We will see how to recover his bijection using our construction.
We thus consider a Kreweras walk, which remains in the quarter plane, starting and ending

at 0, When we do the construction of section 2.3 the steps of types a or b give triangles when we
contract the Motzkin paths. The steps of type c give rise to quadrilaterals as below:

w z

u v

�@

Contraction Rules 4.1. Consider the sides uw and vz of the quadrilateral corresponding to a
step of type c. In the contraction of the two Motzkin paths, each of these sides is matched with
another segment below it, moreover this segment belongs to a step of type a (for the uw segment)
and to a step of type b (for the vz segment). In the enumeration x1, x2, . . . , xn of the steps of the
walk let i and j, respectively, be the indices of these steps, thus xi = a and xj = b . If i < j then
we identify u and z in the contraction of the quadrilateral uvwz. If i > j then we identify v and
w.

Here is the case of the path with sequence of steps aabbccbac, with the dual cubic map in
green:

Observe that the triangulation (and the dual cubic map) are loopless. Indeed a loop in the
construction could be obtained only if, just after an a or b step, the c step is contracted so that
it has two sides in common with the preceding step:
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but the rules of contraction prevent this.
Each vertex of the dual map has three half-edges, which we orient so that the half-edge

corresponding to the base of the triangle is incoming and the ones corresponding to the other
sides of the triangle are outgoing:

sQQk 


�

6�
�HHH

H

If we keep only the edges of the dual map having half-edges with matching orientations we
obtain a spanning tree like this:

We will now see that the data of the loopless triangulation and the spanning tree of the dual
are exactly the ones obtained from Bernardi's bijection. The tree is a special kind of tree, called
depth tree in [5], but we will not need to go into this here. Let us sketch Bernardi's construction
and check that it is the same as this one. More details can be found in [5]. The construction is
done step by step, by growing the dual cubic map and a spanning tree, using three mappings
denoted ϕa, ϕb, ϕc. Observe that in [5] the Kreweras walk has in fact opposite steps as the ones
used in this paper, but since Bernardi scans the steps of the walk in reverse order, the result is
the same. The algorithm starts with a vertical arrow pointing outside the root:

At each step a growing map (which we depict by a circle) is constructed, with half-edges
pointing outside, one of them being endowed with an arrow pointing upwards:

growing

map

The mapping ϕa consists in transforming the half-edge containing the arrow into an edge and
adding on top of this edge a pair of half-edges, with the right half-edge carrying the arrow like
this:
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In case of a step b the mapping ϕb is similar but the arrow is on the left.

Among all half-edges pointing out of the growing map there exists some on the right of the arrow
and some on the left, in particular if there are at least one half-edge on each side we can single
out the ones which are closest to the arrow.

Bernardi shows that in his construction one of them is an ancestor of the other in the growing
tree. Let us call s this ancestor and t the other half-edge.

t

s

In case of a step c the mapping ϕc consists in joining the half-edge containing the arrow to s in
order to make an edge of the growing map and taking t to carry the new arrow.

After the last step has been made, the remaining arrow is linked to the root vertex. The
algorithm is illustrated below for the Kreweras walk aabbccbac. We denote the �nal step by f .

a a b b c c

b a c

f
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It is now a simple matter to check that Bernardi's bijection corresponds exactly to our con-
struction. Indeed by going up in the diagram associated to the walk we see that application of
ϕa corresponds to a step of type a, similarly for ϕb. For steps of type c we have to check that
our rule is the same as for Bernardi's map ϕc. This follows from the fact proved by Bernardi
that the two half-edges candidates for a pairing with the arrow are ordered in the tree: then the
one that is closest to the root must be the one that has lowest numbering in the walk.

4.3. Tandem walks, prographs and maps with a bipolar orientation.

4.3.1. A bijection between prographs and tandem walks. We consider oriented planar graphs made
of �products� with two inputs and one output (from bottom to top)

6

�
��

@
@I
•

and �coproducts� with one input and two outputs

6
�
��

@
@I

•

The terminology comes from the theory of operads, cf Borie [3]. One can use outputs as new
inputs and get in this way con�gurations which are oriented from bottom to top. Prographs
are such planar con�gurations with one input and one output. For example here is the only
con�guration with one product and one coproduct. A more complex example is given in Figure
8(a).

@
@

�
�

•

�
�

@
@

•

One can connect the input and the output to ∞ and one obtains in this way a planar cubic
graph, dual to a triangulation of the sphere. Prographs can be enumerated (see [3]), they are
equinumerous with tandem walks i.e. walks in the quarter plane, starting and ending at 0, with
steps in the set a = (0, 1), b = (1,−1), c = (−1, 0),

c �
@@R b

6

a

A tandem walk is a word in the alphabet a, b, c and the condition to stay in the quarter plane is
that ]a ≥ ]b ≥ ]c for any pre�x. This corresponds to the natural two dimensional generalization
of the ballot problem. There is a simple bijection going from tandem walks in the quarter plane,
starting and ending at 0, to the set of standard Young tableaux with rectangular shape, having
three rows of the same length, the numbers in the �rst line being the positions of the a letters in
the word, of the b letters in the second line and of the c letters in the third line. They can thus
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be counted using the hook formula: there are 2(3n)!
n!(n+1)!(n+2)! tandem walks, starting and ending at

0, with 3n steps. Tandem walks can be realized as a subset of rY -walks. Indeed, if in a tandem
walk we replace each occurence of the step c = (−1, 0) by a step (0, 1) immediately followed by
a step (−1,−1), we obtain an rY -walk. Thus we can refer to tandem walks as rY walks with
some forbidden patterns : no step (0, 1) is followed by a step (0, 1) or a step (−1, 1).

Consider a tandem walk in the quarter plane, starting and ending at 0. Using the construction
of section 2 there are three types of cells:

@

type a

��

type b

@

type c

Quadrilaterals such as a and c give triangles, while, in case b we will smash the quadrilateral
according to its natural bent:

Contraction Rules 4.2.

w z

u v
�� → w u

z
v

These rules form a subset of the Contraction Rules 3.1, moreover the other Contraction Rule
for rY -walks is compatible with the interpretation of a step c as formed by a step (0, 1) followed
by a step (−1,−1). The left hand of the following picture shows the steps (0, 1) and (−1,−1)
and the right hand shows the c step. Clearly the two are equivalent.

The construction using Contraction Rules 4.2 associates to a tandem walk in the quarter plane,
starting and ending at 0, a prograph, bobtained as the dual of the triangulation. Indeed it is easy
to see that in the construction each a step corresponds to a coproduct while a c-step corresponds
to a product. Here is an example with the word abacbc, which corresponds to the Young tableau
4 6
2 5
1 3

.

This correspondance is in fact a bijection and the inverse bijection is readily obtained from the
connection, referred to above, with rY -walks. It can be explicitly described as follows. Given a
prograph, cut the left input of each coproduct. The resulting graph is a complete spanning tree.
Let us call a corner the region just above a coproduct (between its two outputs). Make a depth
�rst search of the tree and order the vertices and corners according to their �rst appearance.



18 PHILIPPE BIANE

Figure 8. From prographs to tandem walks.
(a) A prograph.
(b) Cutting left inputs and exploring the tree.
(c) The resulting path, recovering the prograph as the dual of the triangulation.
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Make an a-step the �rst time you go through a coproduct, a b-step the �rst time you go through a
product, and a c-step for each corner, this gives the tandem walk corresponding to the prograph.
The construction is shown in Figure 8.

4.3.2. Connections with bipolar maps and the bijection of Kenyon, Miller, She�eld and Wilson.
As in section 2.4, one can extend the previous construction to walks which do not start or end
at zero and to walks with more general step set. Here we will consider walks starting at a point
of the type (0, n) and ending at (m, 0) for some m,n ≥ 0. We will also consider the in�nite step
set

S = {(1,−1), (−i, j); i, j ≥ 0, i+ j > 0}
The contruction using Contraction Rules 4.2 provides a map from walks with step set S to some
set of �generalized prographs", which are made of vertices with i inputs and j outputs, as shown
below, with 3 inputs and 2 outputs:

@
@I

�
��6
�
��

@
@I

•

Instead of looking at these generalized prographs and trying to characterize the ones that we
obtain, we will instead look at the dual maps. A vertex of a generalized prograph corresponds
to a face in the dual map. The face associated with a step of the form (−i, j) will have i+ j +2
sides. We will orient the sides of such a face from west to east, e.g. for i = 3, j = 2 :

-@@R

@
@R

@
@R

-
@
@R
@
@R

For a quadrilateral corresponding to a step (−1, 1) :
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Figure 9. (a) The example of [10] with steps
(1,−1);(0,2);(−1,0);(0,1);(1,−1);(1,−1);(−1,1);(0,1);(1,−1);(1,−1);(1,−1);(1,−1);(−1,0);(−2,1);(1,−1).
(b) After a re�ection through the main diagonal.
(c) The map drawn as in [10].

1 2 3 4 5

6
7

1

2 3

4
5

6
7

(a) (b) (c)

Source

Sink

1

4

2

3

5

6

7

Clearly these orientations are compatible with the identi�cations between sides made when con-
tracting the Motzkin paths or the quadrilaterals. The orientation of the map produced in this
way is acyclic, has a unique source (the east-most point) and a unique sink (the west-most point).
We claim that the oriented maps that we obtain are exactly the bipolar oriented maps as de�ned
in [10] and, up to some minor twists, our construction recovers their bijection with walks in the
quarter plane. In [10] this bijection proceeds inductively by looking at the steps of a walk and
building an associated map by sewing faces. More precisely a face with i+j+2 sides is associated
with every step of the form (−i, j). It is easy to check that the sewing algorithm corresponds
exactly to our construction. Instead of giving full proofs we will just check the example of [10],
section 2.2 and leave the details to the reader.

In Figure 9(a) the picture corresponding to this example is drawn. In order to recover the
map of [10], Figure 4, we make a re�ection with respect to the x = y axis, as shown in Figure
9(b). After contractions the result is shown in Figure 9(c).

4.4. Schnyder woods. We now describe a bijection betwen walks and Schnyder woods, origi-
nated in Li,Sun and Watson [12]. A Schnyder wood is a planar triangulation in which the three
vertices of the external face are coloured, in clockwise order, in green, red and blue. The internal
edges are also coloured so that they form three trees, one of each colour, rooted on the external
vertex of its own colour and containing all internal vertices. These trees are oriented towards
their roots. The edges have to satisfy the Schnyder condition at each internal vertex: in clock-
wise order around the vertex, we have successively the outgoing blue edge, incoming red edges,
outgoing green edge, incoming blue edges, outgoing red edge and incoming green edges.

It will be convenient for us to also colour in blue the external edge between the blue and red
vertices. Here I take as running example the same as Bernardi and Bonichon [4], see Figure 10
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Figure 10. A Schnyder wood.

below. To such a Schnyder wood I will associate a tandem walk in the quarter plane, closely
related to the one described in [12]. Since the bijection is studied in extensively in [12], I will
only sketch the proof and leave the details to the reader.

We start from a Schnyder wood and construct a tandem walk. Recall that the steps of a
tandem walk belong to the set {a = (1, 0), b = (−1, 1), c = (0,−1)} and the condition to remain
in the quarter plane is that ]a ≥ ]b ≥ ]c for all pre�x. We make a contour exploration of the
blue tree, from left to right, starting from the root. The �rst time we encounter a blue edge we
make a a-step in the walk and when we go down this blue edge we make a b step. At each vertex
we may cross several red edges. Each time we cross an incoming red edge we make a c-step in
the walk. Finally, after we went up the last blue edge, we do not go back to the origin, so we
do not make the last b-step. Observe that, by the Schnyder condition, a c step can never occur
immediately after a b step. The word obtained in the running example is:

aabbacabaccabacbbaacbbbacccc

Let us check that the walk that we obtain is a tandem walk, starting from (0, 0) and ending
at (1, 0). Consider the subword of a and b letters. If we replace the a and b letters by u and v
respectively, we obtain the Dyck path corresponding to the blue tree (with its last step missing),
therefore, for any pre�x in the word the number of a's is larger than the number of b's. Consider
the map obtained by erasing the green edges and the green vertex. In this map construct the
tree dual to the red tree and root it on the external face. It is shown in black in Figure 11. One
can see that the subword formed by the b and c letters gives, upon substituting u for b and v
for c, the Dyck path of the exploration of this tree from left to right, therefore, for each pre�x
in the word, the number of b's is larger than the number of c's. It follows that the word on the
letters a, b, c that we obtain from the Schnyder wood gives a tandem walk, from (0, 0) to (1, 0).

Conversely, let p be a tandem walk on the quarter plane from (0, 0) to (1, 0) satisfying the
condition on steps b and c that the pattern bc is forbidden. We associate to this walk the mating
of trees, as in section 2.1, using Contraction Rules 4.2, but we do not identify the top and bottom
sides of the rectangle. These two sides, together with the last a-step, which has not been matched
with a b-step, form the boundary of the external triangle. The blue tree is obtained from the
right blue path. It remains to construct the red and green trees. They are obtained by colouring
some horizontal edges. We colour red the bottom edge of each triangle of type c. Some of the
other horizontal edges are sewed to some blue edges and therefore will be coloured in blue. The
remaining horizontal edges are coloured in green. We orient the red edges from west to east and
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10

Figure 11. A dual tree

the green edges from east to west. Here is the diagram we obtain in our example.
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We have to check that the coloured triangulation that we have constructed is a Schnyder wood.
We can identify the vertices of the triangulation, namely they are either the vertices of the
blue tree, the green vertex corresponding to the left side of the picture and the red vertex
corresponding to the last c steps. The three external edges are the blue edge from the path,
corresponding to the last a step and the upper and lower sides of the picture, as depicted below:

@@green vertex

blue vertex

external side

external side

blue external side

red vertex

The vertices of the left tree which are not the root are all matched to a vertex of the blue tree
by the contraction of a quadrangle. It remains to check the Schnyder condition at each internal
vertex. In �gure 12 we consider a typical such vertex. The blue points all correspond to the
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Figure 12. The Schnyder condition around an internal vertex.

incoming green edges

outgoing red edge

incoming blue edges

outgoing green edge

incoming red edges

outgoing 

blue edge

vertex and the successive edges and faces traversed when going clockwise around the vertex
are shown on the path with arrows. It is easy to check, using the fact that the pattern bc is
forbidden, that these edges follow the Schnyder condition. Finally, here is the picture of the
original Schnyder wood, with the faces numbered as above.
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