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ABSTRACT
We consider the problem of jointly estimating the location
and scatter matrix of a Compound Gaussian distribution with
unknown deterministic texture parameters. When the loca-
tion is known, the Maximum Likelihood Estimator (MLE) of
the scatter matrix corresponds to Tyler’s M -estimator, which
can be computed using fixed point iterations. However, when
the location is unknown, the joint estimation problem remains
challenging since the associated standard fixed-point proce-
dure to evaluate the solution may often diverge. In this paper,
we propose a stable algorithm based on Riemannian optimiza-
tion for this problem. Finally, numerical simulations show the
good performance and usefulness of the proposed algorithm.

Index Terms— Compound Gaussian, Robust location
and scatter estimation, Riemannian optimization

1. INTRODUCTION

Many signal processing and machine learning tasks require
estimates of the first and second order statistical moments of
the sample set {xi}ni=1 [1–4]. Classically, these parameters
are estimated using the empirical mean and the sample covari-
ance matrix (SCM). However, these estimates tend to perform
poorly in the context of heavy-tailed distributions or when the
set contains outliers, which motivates the use of robust esti-
mation methods. Notably, M -estimators [5], raised increas-
ing interest in the past decades (see e.g. [6]). These estimators
are expressed through the two joint fixed point equations

µ =
( n∑
i=1

u1(ti)
)−1 n∑

i=1

u1(ti)xi , Hµ(µ,Σ)

Σ =
1

n

n∑
i=1

u2(ti)(xi − µ)(xi − µ)H , HΣ(µ,Σ) ,

(1)

where ti , (xi−µ)HΣ−1(xi−µ), u1 and u2 are functions
that respect Maronna’s conditions1 [5]. Under certain condi-

1Notice that [5] rather uses a formulation of (1) involving “u1(ti)” and

“u2(t2i )”, with ti =
√

(xi − µ)HΣ−1(xi − µ). Without loss of general-

tions [5], these estimators can be computed with fixed-point
iterations

µk+1 = Hµ(µk,Σk)

Σk+1 = HΣ(µk+1,Σk)
(2)

that converge towards a unique solution satisfying (1). Inter-
estingly, someM -estimators also appear as Maximum Likeli-
hood Estimators when u1(t) = u2(t) is linked to the p.d.f. of
an elliptical distribution [6]. Expressing these estimators as
the solution of an optimization problem drove a recent line of
work leveraging optimization theory allowing, e.g., for gen-
eralizations to structured scatter matrix matrices [7–9] or reg-
ularized location and scatter matrix estimation [10].

In the context of scatter matrix estimation, Tyler’s M -
estimator [11] (obtained for µ = 0 and u2(t) = p/t) is es-
pecially interesting thanks to its “distribution-free” properties
over the elliptical distributions family. However this estima-
tor cannot trivially be transposed to the case of joint mean-
scatter matrix estimation by using u1(t) = u2(t) = p/t,
that does not satisfy Maronna’s conditions [5], and for which
the fixed-point iterations (2) generally diverge. Thus, Tyler’s
M -estimator of the scatter matrix is usually applied on de-
meaned data (where the mean is estimated in a prior step).
A closely related estimator proposed by Tyler in [11] uses
u1(t) =

√
p/t and u2(t) = p/t, which yields converging

fixed-point iterations in practice despite being a limit case of
Maronna’s conditions.

In this paper, we consider a statistical model for which
a counterpart of Tyler’s M -estimator (i.e., using u1(t) =
u2(t) = p/t) for joint location-scatter matrix appears as
MLE (specifically, non-centered compound Gaussian with
unknown deterministic textures distribution). We then lever-
age the framework of Riemannian optimization in order to
propose a gradient-type algorithm that converges to this so-
lution, even when the fixed-point iterations (2) diverge. The
performance of this approach is then illustrated in simula-
tions.

ity, this paper uses the present notation in order to simplify some discussions.



2. MODEL

Let a set of n data points xi ∈ Cp distributed according to the
following model

xi =
d
µ+
√
τi Σ

1
2 ui , (3)

where ui ∼ CN (0, Ip) circular. The variables µ ∈ Cp
and Σ ∈ H++

p (set of Hermitian positive definite matrices)
are respectively named the location and scatter parameters.
τ ∈ (R∗+)n (set of strictly positive vectors) contains the un-
known deterministic texture parameters {τi}ni=1. Therefore,
xi follows a Compound Gaussian distribution, i.e

xi ∼ CN (µ, τi Σ) . (4)

One can observe the presence of an indetermination between
τ and Σ. A determinant constraint |Σ| = 1 is added to iden-
tify the texture and scatter matrix parameters. Hence, Σ is
defined on the set of unit determinant Hermitian positive def-
inite matrices called SH++

p .
To estimate the three parameters, we want to minimize

the negative log-likelihood. The latter is defined on the set
Mp,n = Cp × (R∗+)n × SH++

p . ∀θ = (µ, τ ,Σ) ∈ Mp,n,
the negative log-likelihood L is written as follow:

L(θ) =

n∑
i=1

[
log |τiΣ|+

(xi − µ)HΣ−1(xi − µ)

τi

]
. (5)

The MLE θ satisfies the following fixed point equations:

µ =

(
n∑
i=1

1

τi

)−1 n∑
i=1

xi
τi

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)H

τi

τi =
1

p
(xi − µ)HΣ−1(xi − µ) ,

(6)

which coincide with (1) for u1(t) = u2(t) = p/t, thus nat-
urally extends Tyler’s M -estimator to the case of unknown
mean. Unfortunately, the fixed-point iterations (2) cannot pro-
vide a valid estimation procedure in this context as they do not
satisfy Maronna’s conditions and generally diverge in prac-
tice. An intuitive pathological example can be constructed
with µ(k)

1 = x1, that leads τ (k)1 = 0 and causes a division
by 0 at the following update of Σ. Motivated by this issue,
we consider the use of Riemannian optimization in order to
inherently encode a constraint on the scale of Σ and the strict
positivity of the variables {τi}ni=1. This will result in the for-
mulation of stable algorithms to compute the solution (6).

3. RIEMANNIAN GEOMETRY AND
OPTIMIZATION ONMp,n

In this section, we begin by describing the main elements of
the manifold of interestMp,n which embeds the location, tex-

ture and scatter matrix parameters and its constraints. The ele-
ments of geometry presented are tangent spaces, Riemannian
metric, Riemannian exponential mapping and parallel trans-
port. We also introduce the Riemannian distance which is
exploited to measure the estimation error. For a full review
on this topic, see [12, 13].

Secondly, we present the tools used specifically for esti-
mating location, texture and scatter matrix through Rieman-
nian optimization. Three elements are exhibited: a retraction,
a vector transport and the Riemannian gradient of the negative
log-likelihood (5).

3.1. Riemannian manifoldMp,n

Mp,n is a product manifold of three well known Rieman-
nian manifolds: Cp, (R+

∗ )n and SH++
p [14–18]. Thus, the

proofs of the following results directly arise from properties
of product manifolds [12]. In the following, θ = (µ, τ ,Σ),
θ1 = (µ1, τ 1,Σ1), θ2 = (µ2, τ 2,Σ2), ξ = (ξµ, ξτ , ξΣ),
η = (ηµ,ητ ,ηΣ).

The tangent space of Mp,n at θ denoted TθMp,n is the
product of the tangent spaces of Cp, (R+

∗ )n and SH++
p i.e,

TθMp,n =
{
ξ∈Cp×Rn×Hp : Tr(Σ−1ξΣ)=0

}
. (7)

Hp denotes the set Hermitian matrices of size p. Then, we de-
fine a Riemannian metric (inner product on tangent spaces),
which turns Mp,n into Riemannian manifold. We choose it
as the sum of metrics on Cp, (R+

∗ )n and SH++
p whose associ-

ated geometries are already well known. Let ξ, η ∈ TθMp,n,
the Riemannian metric at θ is defined as,

〈ξ,η〉Mp,n

θ =〈ξµ,ηµ〉C
p

µ + 〈ξτ ,ητ〉
(R+

∗ )n

τ + 〈ξΣ,ηΣ〉
H++

p

Σ ,

(8)

with

• 〈ξµ,ηµ〉C
p

µ = Re{ξHµ ηµ},

• 〈ξτ ,ητ 〉
(R+

∗ )n

τ = (τ�−1 � ξτ )T (τ�−1 � ητ ), where
� and .�t denote the elementwise product and power
operators respectively,

• 〈ξΣ,ηΣ〉
H++

p

Σ = Tr
(
Σ−1ξΣΣ−1ηΣ

)
.

The corresponding Riemannian exponential mapping at θ
(generalization of the concept of straight lines to Riemannian
manifolds), denoted exp

Mp,n

θ , is the following application
from TθMp,n ontoMp,n,

exp
Mp,n

θ (ξ)=(
expCp

µ (ξµ), exp
(R+

∗ )n

τ (ξτ ), exp
SH++

p

Σ (ξΣ)
)
, (9)

with

• expCp

µ (ξµ) = µ+ ξµ,



• exp
(R+

∗ )n

τ (ξτ ) = τ � exp
(
τ�−1 � ξτ

)
, where exp is

the element-wise exponential operator,

• exp
SH++

p

Σ (ξΣ) = Σ expm
(
Σ−1ξΣ

)
, where expm is

the matrix exponential.

Then, we present the associated parallel transport between
θ1 ∈ Mp,n and θ2 ∈ Mp,n, denoted TMp,n

θ1,θ2
. This appli-

cation moves vectors from the first tangent space Tθ1Mp,n

onto the second one Tθ2Mp,n while preserving the Rieman-
nian metric. For ξ ∈ Tθ1Mp,n,

TMp,n

θ1,θ2
(ξ) =(
T Cp

µ1,µ2
(ξµ), T (R+

∗ )n

τ1,τ2
(ξτ ), T SH

++
p

Σ1,Σ2
(ξΣ)

)
, (10)

with

• T Cp

µ1,µ2
(ξµ) = ξµ,

• T (R+
∗ )n

τ1,τ2
(ξτ ) = τ 2 � τ�−11 � ξτ ,

• T SH
++
p

Σ1,Σ2
(ξΣ) =

(
Σ2Σ

−1
1

) 1
2 ξΣ

((
Σ2Σ

−1
1

) 1
2

)H
.

Finally, the distance associated to the Riemannian metric (8)
for θ1, θ2 ∈Mp,n is

d2Mp,n
(θ1, θ2) =

d2Cp(µ1,µ2) + d2
(R+

∗ )n
(τ 1, τ 2) + d2SH++

p
(Σ1,Σ2), (11)

with

• d2Cp(µ1,µ2) = ‖µ1 − µ2‖
2
F ,

• d2
(R+

∗ )n
(τ 1, τ 2) = ‖log(τ 1)− log(τ 2)‖2F

where log is the element-wise logarithm operator,

• d2SH++
p

(Σ1,Σ2) =
∥∥∥logm

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)∥∥∥2
F

where logm is the matrix logarithm operator and ‖.‖F
is the Frobenius norm.

3.2. Riemannian optimization

As said before, to estimate θ we use the framework [12] to
minimize the negative log-likelihood (5). Here, the problem
of minimizing L under constraints (τi > 0, Σ � 0, and
|Σ| = 1) is reformulated as an unconstrained problem on the
Riemannian manifold Mp,n described in the previous sub-
section, i.e, we search θ̂ ∈Mp,n such that

θ̂ = arg min
θ∈Mp,n

L(θ). (12)

To perform gradient based Riemannian optimization on
Mp,n, we rely on the three following tools: (i) the Rieman-
nian gradient of (5), (ii) a retraction and (iii) a vector trans-
port. We compute the Riemannian gradient of (5) in Propo-
sition 1. Then, it remains to define a retraction R

Mp,n

θ :

TθMp,n →Mp,n. A natural choice is the exponential map-
ping (9). However, for numerical stability, we use a sec-
ond order approximation of exp and expm, i.e, exp(x) ≈
1p+x+ 1

2x
�2 and expm(X) ≈ Ip+X+ 1

2X
2. The vector

transport used is the parallel transport given in (10).

Proposition 1 (Riemannian gradient). The Riemannian gra-
dient L at θ ∈Mp,n is given by

gradL(θ) =(
−2Σ−1

n∑
i=1

x̃i
τi
, p τ − a, PΣ

(
−

n∑
i=1

x̃ix̃i
H

τi

))

where x̃i = xi − µ, a ∈ Rn such that ai = x̃i
HΣ−1x̃i.

PΣ is the orthogonal projection from Hp onto TΣSH++
p :

PΣ(ξΣ) = ξΣ −
1

p
Tr
(
Σ−1ξΣ

)
Σ. (See e.g [19]).

Proof. By definition of the Riemannian gradient [12], we
have DL(θ)[ξ] = 〈gradL(θ), ξ〉Mp,n

θ . Hence, we obtain the
directional derivative of L at θ in the direction ξ,

DL(θ)[ξ] =

n∑
i=1

[
p

(ξτ )i
τi
− (ξτ )i

τ2i
ai − 2

Re{x̃iHΣ−1ξµ}
τi

− x̃i
HΣ−1ξΣΣ−1x̃i

τi

]
= −2Re

{
n∑
i=1

x̃i
H

τi
Σ−1ξµ

}
+
(
(p τ − a)� τ�−1

)T (
ξτ � τ�−1

)
− Tr

(
Σ−1

n∑
i=1

x̃ix̃i
H

τi
Σ−1ξΣ

)
To get the Riemannian gradient gradL(θ) by identification,

it remains to project
n∑
i=1

x̃ix̃i
H

τi
on TΣSH++

p with PΣ.

With all the tools presented, we optimize (5) with a Rie-
mannian conjugate gradient, briefly summarized in Algorithm
1 (see [12] for more details).

4. NUMERICAL EXPERIMENTS

The purpose of this section is to illustrate the performance of
our Riemannian geometry based algorithm.

We estimate location µ ∈ Cp and scatter matrix Σ ∈
SH++

p from simulated data. Each component of µ is gen-
erated with a complex Normal distribution CN (10, 1). The
scatter matrix matrix is generated as Σ = UΛUH where U
is a random unitary matrix drawn from a complex Normal dis-
tribution and Λ is a diagonal matrix with each element sam-
pled from a continuous uniform distribution between 1 and 2.
Then Σ is normalized to have |Σ| = 1. The texture are ran-
domly generated with positive constraint. In practice, we use



Algorithm 1: Riemannian conjugate gradient [12]
Input : Initial iterate θ1 ∈Mp,n.
Output: Sequence of iterates {θk}
k := 1;
ξ1 := − gradL(θ1);
while no convergence do

Compute a step size αk (e.g see [12, §4.2]) and
set θk+1 := R

Mp,n

θk
(αkξk);

Compute βk+1 (e.g see [12, §8.3]) and set
ξk+1 := − gradL(θk+1) + βk+1 T

Mp,n

θk,θk+1
(ξk);

k := k + 1;
end

a Γ(0.1, 10) distribution to illustrate a non-Gaussian case but
other generation processes can be used. The dimension p of
data is here equal to 10 and sets {xi}ni=1, with n ∈ J20, 500K,
are drawn from CN (µ, τiΣ).

The different estimators we compare are the following:

1. Gaussian estimators: sample mean µG and SCM de-
noted ΣG.

2. Two-step estimation: the sets {xi}ni=1 are centered
with µG and then we estimate Σ using Tyler’s M -
estimator [11]. The estimator is denoted ΣTy,µG

.

3. Tyler’s joint estimators of location and scatter matrix
[11] denoted µTy and ΣTy. These estimators corre-
sponds to (1) with u1(t) =

√
p/t and u2(t) = p/t.

It converges in practice unlike fixed-point equations of
the MLE.

4. Tyler’s M -estimator with location known [11]. The
sets {xi}ni=1 are centered with µ and then we estimate
Σ. The estimator is denoted ΣTy,µ.

5. Our estimators µCG and ΣCG: a Riemannian conjugate
gradient to minimize (5) onMp,n performed with the
library Pymanopt [20].

To measure the performance of the considered estimators, we
compute the mean squared error (MSE) on location and scat-
ter matrix between the estimators and the real parameters.
Figure 1 displays these MSE. The MSE for the estimation of
τ is irrelevant and omitted since the latter vector size grows as
the number of samples increases. Our estimators outperform
the Gaussian, two-steps and Tyler estimators. This result was
expected since our estimators optimize directly the negative
log-likelihood (5) which is not the case of Tyler’s joint esti-
mators of location and scatter matrix.

Furthermore, we note that for n ≥ 3p, ΣCG matches the
performance of ΣTy,µ. The latter is known to be globally con-
vergent, consistent, and corresponds to the MLE of the Com-
pound Gaussian for µ known [11, 21]. This illustrates the
good performance of our algorithm that has to estimate both
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Fig. 1. MSE over 200 simulated sets {xi}ni=1 (p =
10) with respect to the number n of samples for the
considered estimators µ̂ ∈ {µG,µTy,µCG} and Σ̂ ∈
{ΣG,ΣTy,µG

,ΣTy,µ,ΣTy,ΣCG}.

location and scatter matrix. For n large enough, the MSE on
µCG reaches the machine numerical precision limit and hence
becomes negligible, which also illustrates the good perfor-
mance of our algorithm.

5. CONCLUSIONS

This paper has proposed an efficient Riemannian optimization-
based procedure to jointly estimate the location and scatter
matrix of a Compound Gaussian distribution. A Riemannian
geometry of the parameter manifoldMp,n has been described
in order to derive a Riemannian conjugate gradient optimizer.
This algorithm reaches performance close to the MLE of the
“known location” case, which illustrates the interest of the
proposed approach.
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