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A Langevin-Based Model With Moving
Posturographic Target to Quantify

Postural Control
Alice Nicolaï , Myrto Limnios, Alain Trouvé, and Julien Audiffren

Abstract— Falls are a major concern of public health,
particularly for older adults, as the consequences of falls
include serious injuries and death. Therefore, the under-
standing and evaluation of postural control is consid-
ered key, as its deterioration is an important risk factor
predisposing to falls. In this work we introduce a new
Langevin-basedmodel, local recall, that integrates the infor-
mation from both the center of pressure (CoP) and the
center of mass (CoM) trajectories, and compare its accu-
racy to a previously proposed model that only uses the
CoP. Nine healthy young participants were studied under
quiet bipedal standing conditions with eyes either open or
closed, while standing on either a rigid surface or a foam.
We show that the local recall model produces significantly
more accurate prediction than its counterpart, regardless
of the eyes and surface conditions, and we replicate these
results using another publicly available human dataset.
Additionally, we show that parameters estimated using the
local recall model are correlated with the quality of postural
control, providing a promising method to evaluate static
balance. These results suggest that this approach might
be interesting to further extend our understanding of the
underlying mechanisms of postural control in quiet stance.

Index Terms— Center of mass (CoM), center of pres-
sure (CoP), langevin model, postural control, stochastic
dynamics.

I. INTRODUCTION

IN OUR ageing societies, falls are a major concern of
public health [1]. This is especially true for older adults,

as the consequences of falls are more severe, including serious
injuries and death [2], and their prevalence is high, as each year
more than a third of population 65 years-old and older faces
a fall [3]. While strategies of prevention and rehabilitation
have been shown to be effective to reduce those falls and
their consequences [4], [5], they rely on an early detection
and accurate characterization of the individual balance related
deficiencies. In particular, the evaluation of postural control –
the ability to maintain equilibrium and orientation in a grav-
itational environment [6] – is considered key to this end [7]
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as its deterioration is an important risk factor predisposing
to falls [4].

Postural control results from the complex synergy between
the central nervous system, the musculoskeletal system and
the sensory entries (visual, somatosensory and vestibular)
[8]–[11]. A common approach to evaluate postural control
is to use protocols that inhibit visual (such as the Romberg
test [12]) or proprioceptive feedbacks (using e.g. foam [13])
while recording the position of the center of pressure (CoP) –
the point of application of the ground reaction forces resultant
under the feet [14] – over time using a force platform.
The recorded two-dimensional signal, which includes both
the medio-lateral (ML) and antero-posterior (AP) axes, can
be used to analyse the neuromuscular control involved, and
in particular the adjustments performed by the individual to
maintain balance, i.e. to keep the projection of the center of
mass (CoM) inside the base of support [15], [16].

In previous works, multiple descriptors derived from the
CoP have been shown to capture discriminatory character-
istics of postural control [16]–[18]. More precisely, they
were shown to present statistically significant different val-
ues among distinct populations such as older adults fallers,
athletes, or individuals with neurological disorders such as
Parkinson’s disease [19], [20]. Those descriptors can be gen-
eral statistics of the signals, such as mean velocity or sway
density [21], or parameters derived from dynamic mod-
els [11], [22], [23]. A significant benefit of the later approach
is that it enables an interpretable parametrization of trajectories
that arises directly from the formulation of the dynamic
model.

Interestingly, several of these aforementioned models have
assumed the presence of randomness in the CoP trajectory,
due to either self-induced perturbations of postural control
or external perturbations such as respiration [24], as well
as the inaccuracy of the sensorimotor system. Consequently,
these previous studies have proposed to model the CoP sig-
nal as a stochastic process [22], [25]. For instance, it has
been suggested that the CoP displays a mean quadratic
displacement similar to the one of a fractional brownian
motion with two regimes [22]. Other works have proposed to
model the CoP dynamic using Langevin differential equations
[26]–[29]. This model has shown to be promising to reproduce
intrinsic characteristics of the trajectory [26]. In this setting,
the acceleration of the CoP is expressed as the combina-
tion of several of the following forces: a spring restoring
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force, also called recall, a damping force and a Brownian
motion.

Possible interpretations have been proposed for these forces.
For instance, the recall force has been used to express the
corrective force acting on the CoP to pull it back towards a
reference position [23], [29].

This is in line with previous works that have advocated for
the existence of a mechanism that produces a corrective ankle
joint moment, which can be modeled as a spring restoring
force, eventually damped [11], [15], [30]. Since the parameters
of each force can be estimated using e.g. ordinary least-square
method applied on transformations of the signal, such as
the mean squared displacement [27], or directly on the CoP
signal [26], it is possible to evaluate the relative importance
of each force, hence giving insights about the characteristics
of balance control. It has been claimed for instance that this
model enables the evaluation of individual stiffness [29].

However, we argue that these Langevin-based models can be
significantly improved by including the center of mass (CoM)
as part of the system. Indeed, one popular hypothesis states
that the CoM trajectory operates as a moving reference posi-
tion, from which any deviation results in the activation of
appropriate restoring forces [31], [32]. This assumption has
been strengthened by previous studies which have shown that
during quiet stance, the CoP oscillates in phase with the
CoM with higher amplitudes [15]. Moreover, this hypothesis
has been successfully applied to continuous linear feedback
controllers with time delay system such as PID (Proportional,
Integral, Derivative) systems to model the control of body
deviations [11], [33], [34].

In line with these results, in the present study we introduce
a new Langevin model that includes a recall force pulling
the CoP toward the CoM, in addition to a damping force
and a Brownian noise. Our experiments show that this model
significantly improves the quality of the CoP trajectory pre-
dictions, compared to a commonly used Langevin model,
including when subjects’ vision and/or standing surface were
manipulated. Additionally, we show that the same results can
be obtained on another publicly available dataset of postural
control [35]. We also used this new model to estimate the
relative importance of each force, and our results show that
these parameters can be used to differentiate between distinct
populations and experimental conditions, highlighting their
possible use to improve the understanding of several aspects
of postural control. Overall, the present study supports the
hypothesis that the CoP dynamic is intrinsically and deeply
intertwined with the CoM dynamic, and that the Langevin
model has the potential to quantify interesting components
of postural control and can greatly benefit from encoding
joint dynamic of the CoP and CoM instead of their marginal
behavior.

II. METHOD

A. Participants and Protocol

In this study we analysed our model using two different
populations. For the first population (hereafter referred to as
population 1), 9 healthy young participants were recruited

specifically for this study (age: 27.6 ± 7.1 years, weight:
73.0 ± 6.5 kg, height: 170.0 ± 10.1 cm, three females).
All participants were right-hand dominant with normal or
corrected to normal vision. All participants signed an informed
consent document approved the 22 July 2020 by the IRB of
the Fribourg University, Switzerland, ref. 583R3.

Participants were asked to stand still with feet at pelvis
width, arms laying at the side. For each acquisition, this quiet
stance was recorded for 50 seconds, using a force platform and
a kinematic system. Each participant was recorded twice for
each possible combination of the following conditions: eyes
open or closed, and standing on a surface that was either rigid
or foam. During trials with eyes open, participants were asked
to fix a target which was located at eyes height, at two meters
distance. Trials were acquired in blocks of two consecutive
recordings, in order to reduce confounding factors, such as
fatigue or learning [23]. In between blocks, subjects were
allowed to rest by sitting or walking around.

We replicated our results by using the public dataset [35]
(hereafter referred to as population 2), which contains
three-dimensional kinematics and the ground reaction forces
of 49 subjects (27 young individuals – 15 males, 12 females –
between 18 and 40 years old; 22 older adults – 11 males and
11 females – 60 years old or older). The database contains
588 recordings in total, among which 17 were removed as
their kinematics time series were missing. All subjects were
recorded in similar conditions as the first population, and
both subjects’ vision and the standing surface were identically
manipulated.

B. Hardware

For our study, CoP data were collected using a ground-level
six-channel force plateform (AccuSway, AMTI, Watertown,
MA, USA), which sampled the three-dimensional ground reac-
tion forces and moments at 100 Hz. A poster was used to pro-
vide a 5-cm fixation target that was displayed approximately
two meters in front of the participant, at eye level, during
eyes open conditions. In order to standardise the shoe–platform
interface, participants were recorded while wearing standard-
ised socks. Kinematic data were collected using an OptiTrack
system (NaturalPoint, Corvallis, OR, USA) at a sampling rate
of 100 Hz using 18 cameras. Each participant wore a full
body suit, on which markers were placed to track the position
of key anatomical locations, which were used to compute the
position and trajectory of the CoM during the recording. More
specifically, markers were positioned following the model
defined in [36], [37]. The detailed position of the markers
can be found in Table I.

C. Data Preprocessing

Data from the force platform and the Optitrack system were
collected and synchronised using Motive (NaturalPoint, Cor-
vallis, OR, USA). Data preprocessing and analysis software
were written using Python (v3.7, Python Software Foundation,
OR, USA). Raw force plateform data were processed with
a fourth-order, zero-lag, low-pass Butterworth filter with a
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TABLE I
MARKER POSITIONS USED FOR COM
TRACKING, SORTED BY BODY PART

Fig. 1. Representative CoP / CoM trajectories. The figure shows the
CoP excursion (blue) and the CoM excursion (red) from a representative
participant with either eyes open (top) or eyes closed (bottom) on a rigid
surface (left) and on a foam (right).

10 Hz cutoff frequency, in accordance to [23]. CoP position
was calculated with the usual formula [38]:

CoPx = −Fx c − My

Fz
and CoPy = −Fyc + Mx

Fz
,

where CoPx (respectively CoPy), Fx (resp. Fy), Mx (resp. My )
denote the coordinates of the CoP, the ground reaction forces
and the moments on the medio-lateral, resp. antero-posterior
axis, Fz denotes the ground reaction force coordinates in
the vertical axis, and c is the calibration parameter of
the force platform. The resulting CoP trajectory was then
centered.

Similarly, the COM trajectory was derived from the
markers positions using the mass ratio coefficient defined
in [36, Table 3.II]. The resulting three dimensional trajec-
tory was then projected to the ground plane, centered, and
processed with a fourth-order, zero-lag, low-pass Butterworth
filter with a 10 Hz cutoff frequency. Finally, both the CoP
and CoM trajectory were resampled at 20 Hz, corresponding
to a Nyquist frequency of 10 Hz. Example of the resulting
trajectories can be found in Figure 1.

D. Mathematical Model: Local Recall

As noted by previous works, the behaviour of the CoP
trajectory shares important characteristics with a Wiener
process [22]. However, representing the CoP by a Brownian
motion implies that the CoP would exit the base of support in
finite time, leading to a fall, which is in contradiction with the
purpose of postural control. Therefore, previous studies have
built on this remark by formulating the system as a Langevin
model with additional forces, such as a damping or a spring
restorative force [23]. In these works, the reference position
for the spring restorative force is assumed to be static, and
equal to the center of the base of support [29], or piecewise
constant to model the shifting of weight between the feet [23].

However, it has been observed that the CoP tends to oscillate
around the CoM, instead of a fixed central point. Consequently,
in this study, we are interested in studying and evaluating the
following model, called local recall, where the CoP is assumed
to be solution of the stochastic differential equation:

dVCoP
t =

⎡⎢⎣�
(
CoMt − CoPt

)︸ ︷︷ ︸
Recall

+� (−VCoP
t )︸ ︷︷ ︸

Damping

⎤⎥⎦ dt

+ � d Bt︸︷︷︸
Perturbations

(1)

where CoMt , CoPt and VCoP
t are respectively the two dimen-

sional coordinates of the CoM, the CoP and the velocity of
the CoP at time t , �, �, � ∈ R

2×2 are the coefficients
matrices that characterize respectively the recall, damping and
perturbations of the dynamic and Bt is a two dimensional
Wiener process. Note that (1) is similar to the classical
Langevin equation.

Also, (1) simultaneously defines the dynamic of the CoP
along the ML and the AP axes. The resulting dynamics in
each axis can significantly differ, a well known phenomenon
in postural control [16]. In this model, the ML and AP
dynamics are assumed independent, thus �, � and � are

diagonal. Therefore we can write � =
(

�ML 0
0 �AP

)
where

�ML and �AP represent the components of the local recall
force applying respectively on the ML and AP axis. �ML,
�AP, �ML and �AP are defined similarly.

E. Parameters Estimation

Estimating the parameters �, �, � in (1) is key to the analy-
sis of this model. Indeed, different values of each parameters
will result in significantly different trajectories, and we do not
assume that every individual will share identical dynamics.
This is particularly important as the second population studied
in this work includes both older adults that have fallen multiple
times and healthy young individuals [35], two groups that
have been shown to have different postural controls [20], [39].
Therefore, in order the assess the relevance of the local recall
model, the task is double: first, the parameters of the model
are estimated for each trajectory, using the recordings; and
then the predictions of the model using these parameters are
compared to the observed dynamic.
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A significant difficulty regarding the parameter estimation
is that while the model defined by (1) is continuous, the CoP
and CoM trajectory are only observed at constant discrete time
interval �s (here �s = 0.05 s after resampling). To address
this issue, we approximate the dynamic of the discrete trajec-
tory of the CoP using (1) as follows:{

CoPt+�s
≈ CoPt + �sVCoP

t

VCoP
t+�s

≈ VCoP
t + N

(
�sμt,�s�

2
) (2)

with

μt = �
(
CoMt − CoPt

) + �(−VCoP
t ) (3)

Since CoMt , CoPt , and VCoP
t are known from the recording,

(2) and (3) define a linear model, where the unknown para-
meters are � and �. We use the Ordinary Least Square (OLS)
method to estimate their respective values. More precisely,
using the independence of the ML and AP dynamics,(

�ML
�ML

)
= F†

MLAML, (4)

where † denotes the Moore-Penrose pseudo-inverse,

FML = �s

⎛⎝ CoM�s ,ML − CoP�s ,ML −VCoP
�s ,ML

. . . . . .

CoMn�s ,ML − CoPn�s ,ML −VCoP
n�s ,ML

⎞⎠ ,

is the force matrix applied to the CoP, and

AML =
⎛⎝ VCoP

2�s ,ML − VCoP
�s ,ML

. . .

VCoP
n�s ,ML − VCoP

(n−1)�s ,ML.

⎞⎠ ,

is the vector of observed speed variations.
Once � and � have been computed, we are also interested

in estimating �, since this coefficient drives the perturbation
force in the Langevin model (1). We estimate � as the unique
positive square root of the empirical variance of the residuals
divided by the sampling interval, that is:

�ML =
√√√√ 1

n�s

n�s∑
t=�s

(Rt,ML − RML)2

where

ÂML = FML

(
�ML
�ML

)
is the predicted speed variation matrix,

Rt = At,ML − Ât,ML

is the residual of the model at time t , and RML is the average
value of the residuals. The same process can be repeated to
obtain �AP, �AP and �AP.

F. Model Analysis

All statistical analysis were performed following the recom-
mendations of [40]. When reported, p-values where obtained
using Mann-Whitney U-test with Bonferroni correction [41],
and 95% confidence intervals for estimators were obtained
using the 1.96 standard deviation half width.

1) Performance Evaluation: To evaluate the performance of
the model, we proceeded as follows. For any given trajectory
τ of length n, recall that At and Ât denote respectively the
observed speed change of the CoP at time t and the expected
speed change predicted by the linear model at time t . We
computed the root mean square error (RMSE) of the prediction
of speed variations EML(τ ), defined as

EML(τ ) =
√√√√1

n

n�s∑
t=�s

(At,ML − Ât,ML)2,

We also computed R̃2
ML(τ ), the adjusted coefficient of deter-

mination (adjusted R2) of the model [42]:

R2
ML(τ ) = 1 −

∑n�s
t=�s

(At,ML − Ât,ML)2∑n�s
t=�s

(At,ML − AML)2

R̃2
ML(τ ) = 1 − (1 − R2

ML(τ ))
n − 1

n − 1 − p
.

where AML is the average value of the observed speed change
of the CoP and p is the number of predictor variables in the
model. R̃2

AP(τ ) and EAP(τ ) are computed similarly. All the
aforementioned quantities are calculated at the trajectory level,
and we analysed the resulting distribution over trajectories.
Using these metrics, we compared the accuracy of the local
recall model to two others, to highlight the benefits of the local
recall approach. In the first one, called global recall, the CoP is
assumed to follow a Langevin dynamic similar to (1), except
that the recall force pulls the trajectory towards the center of
the base of support:

dVCoP
t =

[
�′(−CoPt ) + �′(−VCoP

t )
]

dt + �′d Bt

In the second one, called average model, we assume that the
CoP acceleration can be directly approximated by the CoM
acceleration:

dVCoP
t ≈ dVCoM

t + �′′d Bt

Note that �′, �′, �′ and �′′ were also estimated using the
OLS algorithm.

2) Parameters Distribution: In a second part, we compared
the distributions of the estimated parameters �, �, � of the
local recall model for different groups of individual (such
as healthy young individuals and older adults), as well as
for different balance conditions (open eyes and closed eyes),
to show that the values of these parameters may be indicative
of different postural control profiles.

III. RESULTS

A. Model Evaluation

In all our analyses, the local recall model produced signif-
icantly larger values of explained variance (see Figure 2). As
shown in Figure 2a, this improvement was observed for every
recording condition of our experiment (p < 10−8 compared
to the global recall model, p < 10−10 compared to the
average model). Similar results were obtained on the larger
population 2, which is the public dataset of [35] (Figure 2b,
all respective p-values are < 10−40). This is particularly
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Fig. 2. Distribution of values of the adjusted R2 for the local recall model (green), the global recall model (blue) and the average recall model (red) on
both populations. The whiskers indicate the 95% confidence interval. In every case, the adjusted R2 values for the local recall model are significantly
larger than for the global recall model.

Fig. 3. Difference of the adjusted R2 between the local recall model
minus respectively the global recall model (blue) and the average
model (red) for each trajectory of both populations (left: population 1,
right: population 2). The whiskers indicate the 95% confidence intervals.
For every trajectory, the adjusted R2 difference is positive, highlighting the
fact that the local recall model consistently produces better predictions.

interesting as the population included in this second dataset
is larger and far more diverse, including young individuals
and older adults, as well as individuals with a history of
falls. It is also interesting to note that the average model,
which tries to infer the acceleration of the CoP using solely
the acceleration of the CoM, achieves adjusted coefficients
of determination closed to zero, and significantly lower than
the other models. This tends to show that while the CoP and
CoM are closely related together, the CoP possesses its own
dynamic that cannot be fully expressed by the CoM dynamic.

Fig. 4. Difference of the RMSE between respectively the global recall
model (blue) and the average model (red) minus the local recall model, for
each trajectory of both populations (left: population 1, right: population 2).
The whiskers indicate the 95% confidence intervals. For every trajectory,
the RMSE difference is positive, indicating a lower RMSE for the local
recall model.

Further analyses show that this improvement occurs for
every trajectory (Figure 3, p < 10−20). Similar improvements
were observed for the RMSE metric (see Figure 4,
p < 10−20). This confirms that the local recall model provides
better predictions of the CoP dynamics, for every recording
condition (open/closed eyes, rigid surface and foam) and for
every individual.

B. Estimated Parameters Distribution

Table II reports the average and standard deviation of the
estimated values of the parameters of the local recall model
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TABLE II
AVERAGE (± STANDARD DEVIATION) OF THE ESTIMATED PARAMETERS FOR THE LOCAL RECALL MODEL FOR DIFFERENT EXPERIMENTAL

CONDITIONS AND FOR DIFFERENT POPULATIONS: (TOP) POPULATION 1, (MIDDLE AND BOTTOM) POPULATION 2

– �, � and � – for different recording conditions and different
groups of individuals. Interestingly, the perturbation coefficient
� generally increases as the expected quality of the postural
control decreases. For instance, AP perturbations for young
individuals on rigid surface with open eyes 2.05(±0.27) are
significantly lower than the values for young individuals on
foam surface with closed eyes 5.82(±1.65) (p < 10−20),
which in turn are lower than the values for older adults on
foam surface with closed eyes 9.51(±3.59) (p < 10−8).
This relation is further explored in Figure 5, where it can be
seen that this phenomenon is observable on both populations.
Moreover, while no significant variations of �AP are observed,
�ML shows an important decrease on Pop 2. for individuals
on foam surfaces compared to individuals on rigid surfaces
(p < 10−10). Note however that this difference is not observed
on Pop 1 (see Figure 6). Conversely, the local recall coefficient
� does not vary significantly between recording conditions.
While a mild increase is observed on the AP axis between
individuals on rigid surfaces and foam surfaces for Pop. 2 (p <
0.01), further analyses show strong overlap of the confidence
intervals (see Figure 7). Therefore, these observations are
insufficient to conclude in either direction.

IV. DISCUSSION
In the first part of the analyses we compared the accuracy of

the predictions of three models: the global recall model, where
the CoP follows a Langevin dynamic whose sole equilibrium

point is the center of the force platform; the local recall model,
where the CoP is assumed to follow a Langevin dynamic
with the CoM position as non-static attachment point; and
the average model, which assumes that the CoP acceleration
is driven solely by the CoM acceleration.

The results of the analyses showed that the local recall
model provided significantly better predictions of the CoP
dynamic than its two counterparts. This is particularly true for
the average model, whose accuracy is the lowest, which tends
to show that the CoP acceleration cannot be approximated by
the CoM acceleration. However, the analyses also showed that
by adding information about the CoM position in the Langevin
model, the local recall model produces better estimates of the
CoP dynamic than the global recall model. This result suggests
that the trajectory of the CoM is important to understand
the CoP dynamic, and that the Langevin model may provide
relevant insights into the CoP behavior with respect to the
CoM. Crucially, the predictions accuracy improvement was
consistent, and occurred for each trajectory of both datasets,
regardless of the protocol or of individual characteristics.

This observation that the CoM is key to understand the
CoP dynamic is in line with the results discussed by previous
works. In [31] a method was proposed to decompose the
CoP trajectory in two components, rambling and trembling,
where the latter is assumed to reflect the oscillations of the
CoP around a reference point trajectory. In their findings,
the authors mentioned that this reference trajectory – computed
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Fig. 5. Distribution of the estimated perturbation coefficient in the local recall model for different conditions (green: open eyes rigid surface, cyan:
closed eyes rigid surface, blue: open eyes foam and red: closed eyes foam), different populations (left: Population 1, middle: young individuals of
population 2, right: older adults of population 2) and different axes (top: antero-posterior, bottom: medio-lateral. The whiskers indicate the 95%
confidence interval. Average values of the 6 parameter significantly increase as the expected balance deteriorates.

as the interpolation of the CoP points at which the horizontal
force resultant vanishes – is very close to the CoM trajectory,
and this result can be seen as hinting at the possibility that
the CoM might be a reference point around which the CoP
gravitates. In [15] the authors introduced a model based on the
inverted pendulum that relies on the assumption that muscles
of the ankle act as springs to cause the CoP to control the
body deviations from the vertical. This hypothesis has been
successfully applied to continuous linear feedback controllers
such as PID (Proportional, Integral, Derivative) systems [11],
[33], [34]. In these works the CoM is central to the model,
as the forces to maintain posture are modeled by springs
dependent on both body angle and body angular velocity,
which can be assumed approximatively proportional to the
CoM position and speed for small body angles.

In our model the mediolateral and anteroposterior compo-
nents are assumed to have distinct dynamics. This assumption
is important considering the significant differences in balance
control observed in each axis through the characteristics
of the CoP [16] or the different muscles involved [15].
However, we additionally assume that those dynamics are
independent. While this assumption is a commonly used

approximation [22], previous works [27] have proposed mod-
els where the dynamic of the postural control is influenced
by the radius, i.e. the distance between the CoP and the
center of the base of support. As the radius inherently depends
simultaneously on both the AP and ML coordinates, such
phenomenon cannot be captured by the local recall model,
and studying extensions of the model that can embed possible
axes interdependence seems an interesting research direction.

It should be noted that RMSE and R2, while providing
important information, are not perfect metrics to evaluate the
accuracy of one model. Indeed, the problem of measuring
goodness-of-fit is still an open research topic (see e.g. [43]).
Consequently, while observed results tend to show that the
local recall model is better than its two counterparts, i.e. at a
relative scale, it is significantly harder to assess how good the
model is on an absolute scale. For instance, model residuals
are ambivalent as they encompass both model errors, i.e.
inaccurate predictions, as well as the Brownian perturbations
that can be part of the postural control system. Previous works
have considered alternative approaches to validate models,
such as bootstrapping. This method uses a generative model
to assess the likelihood of the observed characteristics on
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Fig. 6. Distribution of the estimated damping coefficient in the local recall model for different conditions (green: open eyes rigid surface, cyan:
closed eyes rigid surface, blue: open eyes foam and red: closed eyes foam), different populations (left: Population 1, middle: young individuals of
population 2, right: older adults of population 2) and different axes (top: antero-posterior, bottom: medio-lateral. The whiskers indicate the 95%
confidence interval. While no significant variations are observed in Population 1, 0ML significantly decreases between the rigid and foam conditions
in Population 2.

the original signals compared to the characteristics of the
generated ones. Recently, this method of validation has been
applied on a Langevin equation of the CoP [26]. Unfortunately,
this approach requires the choice of specific characteristics of
the CoP, a choice which can have a significant influence on
the results, and also necessitates a joint generative model of
both the CoP and the CoM. Nevertheless, this is an interesting
future direction for this research.

Interestingly, the parameter �, which encodes the strength
of the recall force in the local recall model, does not sig-
nificantly vary between different groups and protocols in our
experiments. In previous works, the recall parameter has been
interpreted as related to the ankle joint stiffness [23], [29],
which is defined as the derivative of the torque applied at the
ankle with respect to the angle of deviation from the grav-
ity line [30]. However, Langevin models do not explicitely
incorporate ankle stiffness and further work is required
to link quantitatively the recall parameter to biomechanics
components.

Conversely, the parameter �, which measures the strength of
the damping, i.e. the force which opposes to the velocity of the

system, was shown in our experiments on Pop 2. to decrease in
the ML axis when going from a rigid surface to a foam surface.
This result shows that this force, preventing the velocity of the
body becoming too strong, is a component of postural control
that can be vulnerable to sensorial perturbations induced
by unstable surfaces [44], and thus be indicative of some
specificities in sensorimotor profile. The fact that this result is
not observed on Pop 1. could be explained by some differences
existing between the type of foam used in each dataset.

Finally, the parameter � appears to strongly increase when
the expected balance quality decreases in our experiments. The
interpretation of the perturbation force is more complicated,
as it can be representative of two distinct phenomena. On
the one hand, � corresponds to the coefficient of diffusion
associated with the Brownian process �Bt and therefore may
be associated with the strength of the stochastic activity in
the postural system, which has been suggested to increase
with ageing [45]. These perturbations may arise from various
sources such as breathing [24], [46] or from any errors in
sensori-motor integration or postural adjustments. On the other
hand, �d Bt also represents the noise in the formalization of
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Fig. 7. Distribution of the estimated recall coefficient in the local recall model for different conditions (green: open eyes rigid surface, cyan: closed eyes
rigid surface, blue: open eyes foam and red: closed eyes foam), different populations (left: Population 1, middle: young individuals of population 2,
right: older adults of population 2) and different axes (top: antero-posterior, bottom: medio-lateral. The whiskers indicate the 95% confidence interval.
No significant variations of Λ are observed in either populations.

the linear model, and therefore can include the fitting error
of the model. Consequently the parameter � may also reflect
a wrong adjustment to the local recall model. In both views,
large components of � for a trajectory in comparison to other
individual’s trajectories could be the sign of a bad balance,
either because of a perturbed postural control, or because the
individual does not share hlhe same postural control dynamics
as others, which could be explained by the existence of
age-dependent postural control strategies [45].

V. CONCLUSION

In conclusion, this study showed that the dynamic of the
CoP is strongly influenced by the trajectory of the CoM,
and that the spring restorative force that is part of Langevin
models for quiet stance should be aimed toward to the
CoM position, instead of the center of the base of support.
We showed that this modified model, called local recall,
significantly increased the accuracy of the prediction of the
CoP Langevin model, providing interesting research directions
for future postural control models. Additionally, we provided
a method to estimate the parameters of the local recall model,
and showed that key parameters (damping, perturbations) are

closely correlated with the quality of postural control. Finally,
these findings support the hypothesis that the Langevin model
has the potential to quantify interesting aspects of postural
control, and could be significantly improved by the embedding
of the CoM trajectory. Further work is needed to link precisely
the parameters of the local recall model to biomechanical
components of postural control as well as to investigate if
other improvements of the model, such as the addition of
nonlinearities [47] or intermittent postural adjustments [24],
could lead to a more realistic quantification of postural control.
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