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Yann Monerie, Jean-Marie Gatt

CE Cadarache CEA/DEN/DEC, 13108 Saint-Paul lez Durance, France

This paper deals with the overall behavior of nonlinear viscous and porous nuclear ceramics. Bi-viscous isotropic por-ous
materials are considered: the matrix is subjected to two power-law viscosities with different exponents related to two
stationary temperature-activated creeping mechanisms (scattering-creep and dislocation-creep), and this matrix contains a
low porosity volume fraction. The overall behavior of these types of composite materials is obtained with the help of qua-
dratic strain-rate potentials combined with experimental-based coupling function depending on stress and temperature. For
each creeping mechanism, the hollow sphere model of [Michel, J.-C., Suquet, P., 1992. The constitutive law of non-linear
viscous and porous materials. Journal of the Mechanics and Physics of Solids 40, 783–812] is used. Mechanical parameters
of the resulting model are identified and validated in the particular case of non-irradiated uranium dioxide nuclear ceramics.
This model predicts, under pure thermo-mechanical loading, a variation of the material volume and a variation of the
porosity volume fraction (the so-called densification or swelling).
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1. Introduction

This paper examines the overall nonlinear behav-
ior of nuclear ceramics. In particular, our attention
focuses on an elastoviscoplastic mechanical model
for the stationary creep of porous non-irradiated
UO2 nuclear fuel.

The main mechanism of interest is the change of
cavities volume under mechanical loading. These

cavities are due to fabrication process and could
be considered as voids (porosities without internal
pressure). This change of porosity volume fraction
plays a determinant role in the creep of crystalline
materials at high temperature.

A viscoplastic model is proposed which depends
on the porosity volume fraction and is coupled with
the evolution of this porosity under mechanical load-
ing. This model is obtained with the help of microm-
echanics. The macroscopic strain-rate potential is
deduced from microstructure and from microscopic
strain-rate potentials corresponding to each non-
linear viscous behaviors of the UO2 matrix: scatter-
ing-creep and dislocation-creep. For each creeping
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mechanism at the microscale, a quadratic macro-
scopic strain-rate potential denoted by Wi (for
i = 1, 2) is chosen (each creeping mechanism is con-
sidered as an independent phase). Both potentials
are coupled using a function denoted by h. The final
macroscopic strain-rate potential has the following
form:

W ¼ ð1� hÞW1 þ hW2; ð1Þ
where the coupling function h depends on the tem-
perature and on the stress (scattering-creep acts for
low temperatures and small stresses, dislocation-
creep acts for high temperatures and high stresses).

In the first part, after the presentation of the
models corresponding to each strain-rate potential
Wi (i = 1, 2), the coupling function is determined
and the numerical implementation of the final
model is given.

In the second part, the mechanical parameters of
the model are identified on uniaxial compressive
creeping tests and validated on uniaxial compressive
tests at prescribed strain-rate for various tempera-
tures and microstructrures (various porosity volume
fractions and various grain sizes).

2. Constitutive law of nonlinear viscous and porous

non-irradiated UO2 material

2.1. Micro–macro approach

2.1.1. Methodology

At high temperature (typically TP 1000 �C), the
evolution of porosity volume fraction has a signifi-
cant role in the creep of ceramics. A stationary creep
model for UO2 material has to take into account the
influence of the evolution of porosity in a strong
way. Concerning the UO2 nuclear fuel this evolu-
tion of initial porosity has three main causes: accu-
mulation of vacancies at the grain boundaries,
deformation of the matrix by mechanical loading,
and evolution of bubbles of fission products for irra-
diated nuclear fuel. This paper focuses on the sec-
ond point: evolution of porosity volume fraction
by mechanical effects.

Using a micromechanical approach, a model for
the elastoviscoplastic behavior of the porous ceram-
ics is proposed. This model is devoted to the UO2

nuclear fuel considering porosities as voids without
internal pressure (the atmospheric pressure corre-
sponding to the compaction process is neglected).
The overall behavior of this material is governed
by a strain-rate potential deduced from the micro-

struture and from the microscopic potentials related
to nonlinear viscosities identified at this microscale.
The proposed model is written in the context of con-
tinuum thermodynamics.

The considered microstructure and the microme-
chanical parameters are presented in the following
section.

2.1.2. Representative Volume Element (RVE),

microstructure and macroscopic variables

The so-called homogenization methods do not
lead to the exact behavior of a multiphase material
but allow to establish convenient approximations
such as bounds or estimates (see Milton (2002) for
a recent overview). In most cases, effective lower
and upper bounds are very far apart because of
the lack of information on the microstructure or
because it is not possible to model all microstruc-
tural information. In the particular case of porous
materials, the difference between lower and upper
bounds is maximal, and estimates are used to
approximate the effective behavior of porous mate-
rials (with respect to the bounds).

The UO2 nuclear fuel is fabricated by com-
paction process. It could be considered as a
porous ceramic matrix which includes porosities
randomly distributed in space and shape. In order
to use homogenization approaches a Representative
Volume Element (RVE), denoted by V, is chosen.
This volume is large enough to consider the UO2

nuclear fuel as an isotropic matrix including porosi-
ties only characterized by their volume fraction (see
definition of f in a following paragraph). It should
be noticed that the assumptions of a continuous
matrix requires perfect grain boundaries (no sliding)
and suggests that the material properties could be
measured independently of grain orientations.

Macroscopic variables using volume averages
should be defined carefully in the presence of cavities
(see e.g., Zaoui, 2001, and references therein).P rep-
resents the domain occupied by porosities, jxj the vol-
ume of any part x of R3, r the microscopic Cauchy
stress, and _e the microscopic Eulerian strain-rate in
V�P. The macroscopic stresses R and the macro-
scopic strain rates _E are defined as volume averages
of the correspondingmicroscopic quantities in the fol-
lowing generalized sense (Michel and Suquet, 1992):

R ¼ hri ¼ 1

jVj

Z

V�P

rdx and

_E ¼ 1

jVj

Z

oV

_u�Svds;

ð2Þ
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where oV denotes the outer boundary of the RVE,
m the outer unit vector on oV, u the displacement
field, and a�Sb ¼ 1

2
ðaibj þ ajbiÞ for any vector a

and b.
The strain-rate potential of the nonlinear viscous

UO2 matrix is taken as Newtonian viscous
potential:

wðrÞ ¼ r0 _e0

nþ 1

req

r0

� �nþ1

; ð3Þ

where req represents the second invariant of the

stress req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rD : rD

q
(rD being the stress devia-

tor), n represents the so-called Norton exponent
(1 6 n 6 +1), and r0 and _e0 represent material con-
stants. The microscopic behavior associated to this
type of potential is given by

_e ¼ ow

or
ðrÞ ¼ _e0

req

r0

� �n�1
3

2

rD

r0

. ð4Þ

The extreme cases of a linear Newtonian viscosity
and of a rigid-plastic behavior correspond respec-
tively to the cases n = 1 and n = +1. As it will be
shown in a next section, physical considerations
lead to consider two (4)-type strain-rates for the
UO2 matrix behavior.

A description of the UO2 fuel material could be
found in Nogita and Une (1995). From this work,
the only retained parameter for describing its micro-
structure is the porosity volume fraction defined as

f ¼ jPj
jVj . ð5Þ

Due to the incompressibility of the UO2 matrix (see
Eq. (4)), the porosity growth rate is governed by the
macroscopic mass balance equation obtained using
(5) and (2):

_f ¼ ð1� f ÞTrð _EÞ. ð6Þ

2.1.3. Macroscopic potential of nonlinear viscous

and porous materials

In this section, the general quadratic form of the
macroscopic strain-rate potential corresponding to
a nonlinear viscous matrix including porosities is
presented. The specific dependence of the model
parameters on the porosity volume fraction is
explained through a short bibliographic overview.

For a given viscous mechanism, the macroscopic
strain-rate potential respects the following average
relation:

WðRÞ ¼ hwðrÞi. ð7Þ

As mentioned above, the UO2 fuel microstructure is
characterized by randomly distributed porosities in
space and size. The UO2 fuel material could be then
considered as isotropic at the macroscale and a
scalar parameter (the porosity volume fraction f)
is sufficient for a convenient description of the
microstructure. The macroscopic potential W is thus
a function of f and of the three invariants of the
macroscopic stress R, namely Rm (the hydrostatic
stress Rm ¼ 1

3
TrðRÞ), Req and det(R). In what fol-

lows, the classical assumption that W does not de-
pend on det (R) is made:

W ¼ WðR; f Þ ¼ WðRm;Req; f Þ. ð8Þ

This last assumption was checked by Duva and
Hutchinson (1984) for nonlinear materials including
low porosity volume fraction (typically f 6 10%). In
addition, relations (3) and (7) imply that W, as the
local strain-rate potential, is a convex function of
R positively homogeneous of degree n + 1:

WðkR; f Þ ¼ jkjnþ1
WðR; f Þ 8k 2 R. ð9Þ

Using properties (8) and (9), W could be written in
the following form:

WðR; f Þ ¼ r0 _e0

nþ 1
Aðf Þ 3

2

Rm

r0

� �2

þ Bðf Þ Req

r0

� �2
!nþ1

2

.

ð10Þ

This quadratic form was initially proposed by Berg
(1970) and by other authors in various contexts (Mi-
chel, 1994; Olevsky and Skorohod, 1988; Shima and
Oyane, 1976; Sofronis and McMeeking, 1992). This
form meets those obtained by Cocks (1989) with the
help of variational estimate, the form of nonlinear
bounds of Suquet (1992) and Ponte Castañeda
(1991), and the form obtained by Talbot and Willis
(1992) using new variational principles.

The complete writting of the model is given with
parameters A(f) and B(f). In the next section, the
choice for these parameters and a review of existing
models are presented.

2.1.4. Parameters of the quadratic strain-rate

potential

Without porosity, the macroscopic behavior is
identical to the local behavior:

W ¼ w; ð11Þ

which leads readily to the following conditions on
parameters A(f) and B(f):
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Aðf Þ !f!0
0 and Bðf Þ !f!0

1. ð12Þ
The variational estimate of Cocks (1989) leads to
the specific choice:

Aðf Þ ¼ f

f þ 1

2n

nþ 1
ð1� f Þ�2n

nþ1 and

Bðf Þ ¼ 1þ 2

3
f

� �
ð1� f Þ�2n

nþ1;

ð13Þ

where B(f) is not exactly deduced from the direct
variational estimate but corrected to closer meet
some analytical solutions.

The rigorous lower nonlinear bound, initially
introduced by Ponte Castañeda and Willis (1988),
redefined by Ponte Castañeda (1991) and Talbot
and Willis (1992) with help of new variational prin-
ciples, and deduced again by Michel and Suquet
(1992) with simpler arguments, corresponds to

Aðf Þ ¼ f ð1� f Þ�2n
nþ1 and

Bðf Þ ¼ 1þ 2

3
f

� �
ð1� f Þ�2n

nþ1.
ð14Þ

We emphazise that the parameter B(f) of this rigor-
ous lower bound meets exactly the expression pro-
posed by Cocks (1989).

As underlined by Michel and Suquet (1992),
none of these models gives the exact solution of a
hollow sphere made of nonlinear incompressible vis-
cous material under hydrostatic loading. This exact
solution, first given by Budiansky et al. (1982), reads

Aðf Þ ¼ n f
�1
n � 1

� �� ��2n
nþ1

. ð15Þ

The model (10) corresponding to this parameter is
exact on the simplest elementary porous cell: the
hollow sphere.

The self-consistent scheme proposed by Michel
and Suquet (1992) gives the ratio D = A(f)/B(f)
solving the equation:

bCðn2Þ logðf Þ ¼ �bCðnÞ logðbCðnÞÞ þ nþ 1

2n2D
logðbCð1ÞÞ

þ n� 1

n
ffiffiffiffi
D

p arctanð
ffiffiffiffi
D

p
Þ � p

2

� �
; ð16Þ

where

bCðxÞ ¼ 1þ 1

xD
8x 2 R. ð17Þ

Assuming that the strain-rate deviator tensor could
be correctly approximated by an averaged norm in
the stress potential (i.e. the conjugate of the strain-
rate potential in (3)), Michel (1994) proposes a com-

plete self-consistent estimate, which gives the
parameters A(f) and B(f) solving the set of equations
(16) and (17) and the following equation:

Bðf Þ ¼ 1

~l
ð1� f Þ�2n

nþ1; where

~l ¼ 1� f =�f ðnÞ
ð1� f Þ 1� f =3nð Þ 1� n�1

2n
f

� �
ð18Þ

with values of �f ðnÞ given in Table 1 for spherical
porosities.

The model used in this paper is the so-called
‘‘hollow sphere model’’ (Michel and Suquet, 1992)
retaining for the parameter A(f) the exact solution
of an hollow sphere made of nonlinear incompress-
ible viscous material under hydrostatic loading
(15). This one predicts a porosity growth rate higher
than the rate corresponding to the lower bound (14)
and lower than the rate corresponding to the self-
consistent estimate of Michel (1994) (see Fig. 1),
and for parameter B(f) the lower bound (14), which
is equivalent for many presented models. The
retained model is at least defined by the following
parameters:

Aðf Þ ¼ n f
�1
n � 1

� �� ��2n
nþ1

and

Bðf Þ ¼ 1þ 2

3
f

� �
ð1� f Þ�2n

nþ1.

ð19Þ

Table 1

Numerical values of �f for various Norton exponents and

spherical porosities (from Michel, 1994)

n 1 3 5 10 1
�f ðnÞ 0.5 0.448 0.430 0.414 0.392

Fig. 1. Equipotential surfaces W ¼ ð1� f Þr0 _e0=ðnþ 1Þ for f =

0.1 and n = 10: [1] complete self-consistent scheme of Michel

(1994), [2] self-consistent scheme of Michel and Suquet (1992), [3]

model of Cocks (1989), [4] hollow sphere model, [5] lower

nonlinear bound of Ponte Castañeda (1991).
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Following Michel (1994), this model is compared in
Figs. 1 and 2 to others presented models. In Fig. 1,
equipotential surfaces W ¼ ð1� f Þr0 _e0=ðnþ 1Þ are
plotted for non-negative triaxiality ratio Rm/Req,
f = 0.1 and n = 10. In Fig. 2, corresponding evolu-
tions of the macroscopic normalized dilatation rate
are given as a function of triaxiality.

The hollow sphere model defined by (10) and (19)
corresponds to a power law matrix including poros-
ities described only by their volume fraction.
According to Figs. 1 and 2, this model predicts an
intermediate porosity growth rate between self-con-
sistent schemes (some other self-consistent esti-
mates, like those of Leblond and Perrin (1992),
lead to equivalent porosity growth rates versus tri-
axiality than those of Michel (1994) and Michel
and Suquet (1992)) and the rigorous nonlinear
lower bound of Ponte Castañeda (1991). This model
is coupled to an evolution of the microstructure by
(6). It is dedicated to the stationary creep of nonlin-
ear and porous materials and in particular to high
temperature porous ceramics like UO2 nuclear fuel.
In the next section, we focus on the two elementary
viscous mechanisms acting in the UO2 matrix.

2.2. Taking into account different stationary creeps

and elasticity

In this section, the generic model (10) and (19) is
particularized to the UO2 nuclear fuel.

For strain rates ranging between about 1.1 · 10�5

s�1 and 1.1 · 10�3 s�1, and temperatures ranging
between 870 K and 1970 K, compressive tests per-
formed on stoichiometric, sintered polycristalline

UO2 show that two different creeping mechanisms
have to be considered at the microscale (Guerin,
1975; Millet and Piconi, 1983): scattering-creep
and dislocation-creep. Each of these mechanisms
depends on temperature, stress and grain size. A
convenient description of these mechanisms is
obtained with a power-law involving an Arrhenius-
like temperature influence, and a power-law depen-
dence to the grain size d (i = 1, 2):

_e0i ¼ _~e0id
mie�

Qi
RT ; ð20Þ

where _~e0i represents a material constant, mi repre-
sents an exponent, Qi represents an activation en-
ergy for the ith mechanism, and R the perfect gas
constant. The corresponding macroscopic potentials
have the form obtained in the above section
(i = 1, 2):

WiðR; f Þ ¼ WiðRm;Req; f ; d; T Þ

¼ r0i
_~e0i

ni þ 1
Aðf Þ 3

2

Rm

r0i

� �2

þBðf Þ Req

r0i

� �2
!niþ1

2

dmie�
Qi
RT ; ð21Þ

where r0i represent constants and ni represent the
Norton exponents for each mechanism.

In a theoretical way, the existence at the micro-
scale of two separate dissipative mechanisms should
lead at the macroscale to a long-time memory effect
added to the separate effects of each mechanism
(Suquet, 1982). This effect is not directly taken into
account here, but a macroscopic model where the
separate effects of each mechanism are combined
through physical arguments is proposed.

As observed (for example by Guerin, 1975), the
scattering-creep acts for small stresses and at low
temperatures, and the dislocation-creep acts for
large stresses and at high temperatures. A coupling
of these two mechanisms is proposed (already
dependent on temperature within the term e�

Qi
RT ) by

a function depending on the macroscopic stress
and on the temperature.

With the retained coupling the macroscopic
strain-rate potential reads:

W ¼ ð1� hÞW1 þ hW2. ð22Þ
The coupling function h is equal to zero when only
scattering-creep acts, and equal to 1 when only
dislocation-creep acts. The chosen coupling func-
tion is

Fig. 2. Evolution of the macroscopic normalized dilatation rate

versus triaxiality rate for f = 0.1 and n = 10: [1] complete self-

consistent scheme of Michel (1994), [2] self-consistent scheme of

Michel and Suquet (1992), [3] model of Cocks (1989), [4] hollow

sphere model, [5] lower nonlinear bound of Ponte Castañeda

(1991).
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hðT ;RÞ ¼ 1

2
1þ tanh

T � �T ð
ffiffiffiffiffiffiffiffiffiffiffi
R : R

p
Þ

h

� �� �
; ð23Þ

where h represents a constant and �T ðReqÞ a temper-
ature of transition which depends on the macro-
scopic equivalent von Mises stress.

The temperature of transition could be obtained
directly from experimental measurements as the
deformation-mechanisms maps of Frost and Ashby
(1982). According to these maps, a convenient
power law could be retained for �T :

�T ðxÞ ¼ xxq 8x > 0. ð24Þ
Using the following relations giving respectively the
macroscopic viscoplastic strain-rates corresponding
to each creeping mechanism (i = 1, 2):

_Evpi ¼ oWi; ð25Þ
the final model reads

_Evp ¼ ð1� hÞ _Evp1 þ h _Evp2 þ ðW2 �W1Þ
oh

oR
; ð26Þ

where, for i = 1, 2 (I denotes the 3 · 3 identity
matrix):

_Evpi ¼
_~e0i
2

Aiðf Þ
3

2

Rm

r0i

� �2

þ Biðf Þ
Req

r0i

� �2
!ni�1

2

� Aiðf Þ
3

2

Rm

r0i

� �
Iþ 3Biðf Þ

RD

r0i

� �� �
dmie�

Qi
RT .

ð27Þ
It should be underlined that the coupling from two
microscopic creeps (22) leads to three macroscopic
creeps (see (26)) as experimentally observed by
(Sladkoff et al., 2000). However, it should be noticed
that this class of coupling does not allow to couply
with the homogeneity rule (9).

This macroscopic viscoplastic model is completed
by taking into account the elastic behavior, assum-
ing after Leclercq (1998) the additivity of macro-
scopic strains (assumption of small strains for
nuclear pellet):

R ¼ Chom�1
: ðE� EvpÞ; ð28Þ

where Chom represents the effective elastic tensor of
the porous UO2 nuclear fuel. This effective elastic
tensor is supposed to be isotropic. This was checked
by three-dimensional numerical simulations involv-
ing spherical and ellipsoidal porosities (Gatt et al.,
2005), that the values of Chom given by Martin
(1989) based on experimental reviews are conve-
nient estimates for numerous elaborating process

of the UO2 nuclear fuel. Without additional infor-
mation on the particular microstructure of the stud-
ied UO2 nuclear fuel, the following overall Young
Ehom and bulk lhom moduli are retained:

Ehomðf ; T Þ ¼ ð226930� 15:339T � 9:597� 10�3T 2Þ
� ð1� 2:5f Þ; ð29Þ

lhomðf ; T Þ ¼ ð85830� 5:157T � 3:747� 10�3T 2Þ
� ð1� 2:25f Þ; ð30Þ

where Ehom and lhom are in MPa and temperature T
in Kelvin.

It should be emphasized that the overall elastovi-
scoplastic behavior defined in (28) does not account
for the evolution of porosity (6) based on the
assumption of the incompressibility of the matrix.
Following Chaboche et al. (2001), the classical
approximated mass balance is used:

_f ’ ð1� f ÞTrð _EvpÞ. ð31Þ

This model is obviously rigorous for pure creep con-
ditions, but approximated for other loadings.

2.3. Numerical implementation

The final model is constituted by a system of dif-
ferential equations. The constitutive law (26) is
solved by a H-method ðH ¼ 1

2
Þ and the equation of

evolution of the microstructure (31) is solved using
an implicit Euler scheme. The coupled system is
solved with the help of a fixed point method check-
ing that the partial derivative of Chom with respect
to T and f are neglectible in comparison to the other
terms. The convergence of this fixed point method is
ensured by a criterion on the unknown global vector
Y ¼ f _Evp;R; f g:

kY kþ1 � Y kk < akY kk; ð32Þ
where Yk denotes the value of Y at iteration k and
the parameter a is taken equal to 10�5. These solv-
ing methods and associated algorithms are imple-
mented on MATHEMATICA

�.
In the next section, the mechanical parameters of

the proposed model are identified and validated on
compressive tests.

3. Identification of mechanical parameters and

validation of the model

Some mechanical parameters of the model are taken
equal to their theoretical values corresponding

6



to physical mechanisms (e.g., exponents of each
creeping mechanism), and others mechanical
parameters are identified on compressive creeping
tests. The model is validated on compressive tests
at various prescribed macroscopic strain-rates and
various temperatures.

3.1. Identification

As already mentioned, the evolution of the tran-
sition temperature �T with the macroscopic stress is
estimated using the diagrams of Frost and Ashby
(1982). A convenient approximate of this evolution
is given by (24) with parameters x and q given in
Table 3.

The other parameters of the model are identified
on the experimental data base presented in (Sladkoff
et al., 2000). The concerned experiments are com-
pressive tests on non-irradiated and non-doped
UO2 pellet. The range of identification is given in
Table 2, both for external loadings and micro-
structural parameters. The identified mechanical
parameters (for each creeping mechanism: energies
of activation Qi, Norton exponents ni, exponents
on grain size mi and multiplicative constants
_~e0i=ðr0iÞni ; i ¼ 1; 2) and the parameter h are given
in Table 3. The agreement between experimental
data and numerical simulations are plotted in
Fig. 3.

3.2. Comments on the identified parameters of the

model

The following comments on the identified para-
meters hold:

(1) About the coupling function: the parameters
of the function h are identified apart from oth-
ers parameters (on the experimental data base
of Frost and Ashby (1982)). For this function,
only the parameter h was considered as a fit-
ting parameter.

(2) About the scattering-creep mechanism: since
this mechanism seems to be well understood
at the microscale, we retain for the identifica-
tion the most classical values for the para-
meters n1, Q1 and m1. Most of the authors
agrees with the values:
• n1 = 1 (Bohaboy et al., 1969),
• Q1 = 377 · 103 J mol�1 which is the theo-

retical values of grain boundary diffusion
energy (Bohaboy et al., 1969; Knorr et al.,
1989),

• m1 = �2 for 4 lm 6 d 6 40 lm (Bohaboy
et al., 1969; Armstrong and Irvine, 1963).

It should be noticed that recent works of Dher-
bey et al. (2002) proposed a larger value of n1
(n1 = 2.6), a value of Q1 between 359 ·

103 J mol�1 for a power law ðrn1Þ and 380 ·

103 J mol�1 for an exponential law (er), and a
value of m1 about �1.3. The review by Wang
(2000) proposed Q1 = 368 · 103 J mol�1,
n1 = 1 and m1 2 [�2, �3]. This range for m1

is also obtained by Chung and Davies (1979)
and confirmed by Knorr et al. (1989)
(m1 ’ �2.67 for 2 lm 6 d 6 55 lm) and
Burton et al. (1973) (m1 ’ �3). Concerning

Table 2

Identification range of mechanical parameters listed in Table 3

External loading

20 MPa 6 R11 6 100 MPa 1570 K 6 T 6 1950 K

Microstructural parameters

0.81% 6 f 6 7% 4.5 lm 6 d 6 26 lm

Table 3

Mechanical parameters of the model

Scattering-creep

n1 m1 Q1
_~e01=ðr01 Þn1

1 �2 377 · 103 J mol�1 7:57� 10�14 s�1 N�n1 m2n1�m1

Dislocation-creep

n2 m2 Q2
_~e02=ðr02 Þn2

8 2 462 · 103 J mol�1 2:54� 10�44 s�1 N�n2 m2n2�m2

Temperature of transition

h x q

600 K 47350.4 K N�q m2q �0.189

Fig. 3. Macroscopic uniaxial strain-rate: comparison between

numerical simulations and experimental data during creeping

compressive tests.
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this first creep mechanism, the mechanical
parameters of the present model agree well
with usual values of scattering-creep elemen-
tary mechanisms.

(3) About the dislocation-creep mechanism: the
obtained value for the Norton exponent n2 =
8has to be considered as anupper value of those
involved in the literature. Javed (1975) proposes
n2 = 4.3, Bohaboy et al. (1969) retain n2 = 4.5
for 1723 K 6 T 6 2023 K, Dherbey et al.
(2002) find n2 = 6.2 and Guerin (1975) suggests
4.5 6 n2 6 17. Concerning the parameter Q2,
the identified value (Q2 = 462 · 103 J mol�1)
lies between the theoretical uranium self-diffu-
sion energy Q2 = 544 · 103 J mol�1 (Knorr
et al., 1989) or the value retained by Bohaboy
et al. (1969) (Q2 = 552 · 103 J mol�1) or by
Dherbey et al. (2002) (Q2 = 524 · 103 J mol�1),
and the value proposed by Javed (1975)
(Q2 = 338 · 103 J mol�1). The identified value
in this paper is in agreement with Guerin
(1975). Concerning the identified grain size
exponentm2 = 2, it is often considered that this
creeping mechanism has no grain size-depen-
dence (Bohaboy et al., 1969; Seltzer et al.,
1971; Wang and Nieh, 1996), but the works of
Burton et al. (1973) confirm that m2 > 0. The
Norton exponent n2 = 8 and the grain size
exponent m2 = 2 have to be considered as sig-
nificant results of this work.

3.3. Validation

3.3.1. Compressive tests

The results plotted in Figs. 4 and 5 show the abil-
ity of the proposed model to predict the behavior of
the UO2 pellet during various experiments. For
example, this model predicts with a good agreement
the ultimate steady stress, denoted by �R, during a
compressive test at prescribed strain-rate for various
temperatures and various initial microstructures
(porosity volume fraction and grain size).

On Fig. 6, a severe comparison is made between
the measured evolution of the macroscopic strain
during compressive creeping tests for various tem-
peratures and applied stress and the behavior pre-
dicted by the present model. These experiments
concern initial microstructures defined by a grain
size of 12.5 lm and a porosity about 0.6%. The
strain-rate predictions of the present model are very
accurate for the stationary creep.

3.3.2. Densification by mechanical loading

During compressive creeping tests, the densifica-
tion by mechanical loading predicted by the present
model is compared to the experimental data of
Sladkoff et al. (2000), where the density of the
nuclear pellet was measured before and after the
test, and for nuclear pellets presenting various grain
sizes (from 8.7 lm to 18.6 lm). The results are pre-
sented in Table 4 for a strain of approximately
�3.22%. The model gives a very good estimate of

Fig. 4. Macroscopic ultimate steady stress for various tempera-

tures during uniaxial compressive tests at different prescribed

strain-rates: comparison between experimental data of Guerin

(1975) and numerical simulations.

Fig. 5. Macroscopic ultimate steady stress for prescribed strain-

rate during uniaxial compressive tests for various prescribed

temperatures: comparison between experimental data of Guerin

(1975) and numerical simulations.

8



this evolution of microstructure (densification) by
mechanical loading.

In Fig. 7, the densification by mechanical loading
predicted by the proposed model is compared to the
experimental data of Paraschiv et al. (2002), where
the evolution of the fuel density was measured at
prescribed hydrostatic pressure and prescribed tem-
perature during 280 h. Two temperature levels are
studied: 1973 K and 2073 K; and the hydrostatic
pressure varies from zero to 100 MPa. The initial
porosity of the nuclear pellet is about 1.82% and
the grain size is 8.2 lm. Comparison is plotted for
the final density (t = 280 h).

3.3.3. Sensibility of the model to the grain size

In this section, a comparison of the sensitivity of
the model to the grain size against results obtained
during compressive tests at prescribed strain-rate
ð _E11 ’ �2:5� 10�5 s�1Þ (Sladkoff et al., 2000) is

Fig. 6. Evolution of uniaxial strain with time during compressive creeping tests: comparison between experimental data of Sladkoff et al.

(2000) and numerical simulations with the present model.

Table 4

Relative densification by mechanical loading during compressive

tests: comparison between numerical simulation with the pro-

posed model and experimental data of Sladkoff et al. (2000)

Numerical simulation with present model Experimental results

’0.14% ’0.12%

Fig. 7. Density of the nuclear fuel to theoretical density of UO2

versus hydrostatic pressure after 280 h of constant hydrostatic

loads at different prescribed temperatures: comparison between

numerical simulations and experimental data of Paraschiv et al.

(2002).
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made. The studied cases are described in Table 5,
and the comparison of experimental data and
numerical results predicted by the present model is
plotted in Fig. 8.

An other accurate sensitivity of the model to the
grain size is plotted Fig. 9. The present model is
compared to creeping compressive test data of
Dherbey et al. (2002) performed at T = 1738 K
and for 2.19% 6 f 6 2.70%. It should be underlined,
as noticed by Dherbey et al. (2002), that the first
regime is not visible for the d = 36 lm grain-sized
pellets. This particular behavior is predicted by the
present model.

4. Conclusion

An overall constitutive law for nonlinear viscous
porous ceramics at high temperature involving two
different Newtonian creeps at the microscale has
been proposed. This model was identified and vali-
dated for the particular case of non-irradiated
UO2 nuclear fuel.

The proposed model was established by coupling,
at the macroscale, two so-called hollow sphere mod-
els related to each microscopic creeping mechanism
in presence of porosities (Michel and Suquet, 1992).
Since microscopic creeping mechanisms are temper-
ature-activated and take place for different ranges of
temperature and stress, the effects of temperature
were incorporated both on each sphere model and
on the coupling function. This model could be sum-
marized in the following way.

Two nonlinear viscous strain-rate potentials are
considered at the microscale (i = 1, 2):

wiðrÞ ¼
r0i

_~e0i
ni þ 1

req

r0i

� �niþ1

dmie�
Qi
RT . ð33Þ

Involving porosity effects, two quadratic strain-rate
potentials are obtained at the macroscale (i = 1, 2):

WiðR; f Þ ¼
r0i

_~e0i
ni þ 1

Aðf Þ 3

2

Rm

r0i

� �2

þBðf Þ Req

r0i

� �2
!niþ1

2

dmie�
Qi
RT ; ð34Þ

where the ‘‘sphere model’’ terminology consists for
A(f) in the exact solution of an hollow sphere under
hydrostatic loading, and for B(f) in the rigorous non-
linear bound (see, e.g., Ponte Castañeda, 1991 or
Talbot and Willis, 1992). A simple macroscopic cou-
pling of both creeping mechanisms was proposed:

Table 5

Sample data form Sladkoff et al. (2000) for densification

experiments

Grain size [lm] Temperature [K] Initial porosity [%]

4.5 1731 2.97

8.7 1738 4.71

11 1735 1.59

18.6 1740 3.94

20 1738 1.19

26 1741 1.02

Fig. 8. Sensibility to grain size during compressive tests at

prescribed velocity: comparison between ultimate steady stress

predicted by the present model and experimentally measured.

Fig. 9. Sensitivity to grain size during creep compressive tests:

comparison between stationary strain-rate predicted by the

present model and experimentally measured by Dherbey et al.

(2002).
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W ¼ 1� hð ÞW1 þ hW2; ð35Þ
where the coupling function h depends on the tem-
perature and on the stress (scattering-creep acts
for lower temperatures and smaller stresses than dis-
location-creep). The evolution of porosity was
approximated by:

_f ¼ ð1� f ÞTrð _EvpÞ ¼
oW

oRm

. ð36Þ

This final model was coupled with the overall elastic
behavior, assuming the additivity of macroscopic
strains. A numerical semi-implicit solving scheme
was proposed.

Microscopic mechanical parameters were taken
equal to their theoretical estimates for the first
creeping mechanism, and were identified on com-
pressive creeping tests for the second creeping mech-
anism. The coupling function was identified on
(Frost and Ashby, 1982) diagrams.

The obtained model was very accurately vali-
dated on compressive tests at various temperatures
and at various prescribed strain-rates. This valida-
tion shows that the sensitivity to loading, tempera-
ture, and grain size is well taken into account, and
that the volume change due to porosity evolution
under mechanical loading (so-called swelling under
tension and densification under compression) are
conveniently predicted.

It should be noticed that the present model is the
first model devoted to the stationary creep of
nuclear ceramics based upon a micromechanical
approach and exhibiting clearly the dependence of
the UO2 nuclear fuel to its microstructure and to
elementary mechanisms acting in the UO2 matrix.
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changement d’échelle. In: Bornert, M., Bretheau, T., Gilor-
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de la déformation plastique du bioxyde d’uranium polycri-

stallin. Journal of Nuclear Materials 56, 61–75.

Javed, N., 1975. Thermodynamics of Nuclear Materials. IAEA,

Vienna.

Knorr, D., Cannon, R., Coble, R., 1989. An analysis of diffusion

and diffusional creep in stoichiometric and hyperstoichiomet-

ric uranium dioxide. Acta Metallurgica 37, 2103–2123.

Leblond, J.-B., Perrin, G., 1992. Un modèle de comportement
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