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SEMICLASSICAL PARAMETRIX FOR THE MAXWELL EQUATION AND
APPLICATIONS TO THE ELECTROMAGNETIC TRANSMISSION
EIGENVALUES

GEORGI VODEV

ABSTRACT. We introduce an analog of the Dirichlet-to-Neumann map for the Maxwell equation
in a bounded domain. We show that it can be approximated by a pseudodifferential operator
on the boundary with a matrix-valued symbol and we compute the principal symbol. As a
consequence, we obtain a parabolic region free of the transmission eigenvalues associated to the
Maxwell equation.

Key words: Maxwell equation, semiclassical parametrix, transmission eigenvalues.

1. INTRODUCTION

Let © C R? be a bounded, connected domain with a C* smooth boundary I' = 9, and
consider the Maxwell equation

VxE=i\(x)H in $,
(1.1) VxH=—iXe(x)E in £,
vxE=f on T,

where A € C, |A| > 1, v = (v1,19,v3) denotes the Euclidean unit normal to T', p,e € C°(Q)
are scalar-valued strictly positive functions. The functions £ = (E1, By, E3) € C? and B =
(B1, Ba, B3) € C? denote the electric and magnetic fields, respectively. The equation (1.1)
describes the propagation of electromagnetic waves in ) with a frequency A moving with a
speed (1) ~1/2. Recall that given two vectors a = (a1, az,as) and b = (by, by, b3), a x b denotes
the vector (agbs — asba, agby — aibs, a1by — azby) and it is perpendicular to both a and b. Thus
we have
VxFE= (&TQE?, — 8:,33E2,613E1 — 8;,31E3,6$1E2 — 8:,32E1)

and similarly for V x H. Throughout this paper, given s € R we will denote by H(I') the
Sobolev space H*(T'; C3). Introduce the spaces

Hi(T) = {f € Hs(T) : (v(2), f(2)) =0}, s=0,1,
where (v, f) := 11 f1 + vafa + v3fs. In view of Theorem 3.1 we can introduce the operator
N HU(T) — HE(D)
defined by
N()\)f:I/ XH‘F,

which can be considered as an analog of the Dirichlet-to-Neumann map. Set h = |[Re \|~! if
[ReA| > [ImA| and h = |[ImA|~! if [ImA| > |Re)|, z = kX and § = [Imz| < 1. Clearly, in
the first case we have z = 1 + 46, while in the second case we have § = 1. We would like to

approximate the operator A'(\) by a matrix-valued h — ¥DO. It is proved in [8], [10] that the
1



2 G. VODEV

Dirichlet-to-Neumann operator associated to the Helmholtz equation with refraction index eu
can be approximated by Opy,(p), where

p(a' &, 2) =/ =ro(a', &) + 22(eopo) ('), Tmp>0, (a',¢) € T'T,
where €9 = €|, po = plr, and rg > 0 is the principal symbol of the operator —Arp. Here Ap
denotes the negative Laplace-Beltrami operator on I' with Riemannian metric induced by the
Euclidean one. It is well-known (see Section 2) that rq = (83, 3), where 8 = B(z/,¢') € R? is a
vector-valued homogeneos polynomial of order one in &, which is perpendicular to the normal

v(a'), that is, (8,v) = 0. Set

m = (zp0) " (pI + p~'B),
where [ is the identity 3 x 3 matrix, while the matrix B is defined by

Bg = {(8,9)8, g€R.

Our main result is the following

Theorem 1.1. Let 6 > h?/5=¢ where 0 < € < 1 is arbitrary. Then for every f € H we have
the estimate

(1.2) IN(A)f = Oy (m+ i) (v x f)llgg, S B0~ £l

where m € C°(T*T") is a matriz-valued function independent of h, belonging to the space 5871
uniformly in z and such that uom is independent of € and .

Hereafter the Sobolev spaces are equipped with the h-semiclassical norm. Clearly, the estimate
(1.2) provides a good approximation of the operator N'()) as long as 6 > h%/5=¢_ Tt also implies
the following improvement upon the estimate (3.4).

Corollary 1.2. Let 0 > h*/5~¢. Then for every f € H! we have the estimate
(1.3) INO) Fllage S 07211 f 134y -

Note that analog estimates for the Dirichlet-to-Neumann operator associated to the Helmholtz
equation are proved in [8], [10] for § > h'/27¢ in [12] for § > h%/3~€ and in [9] for § > R~
0 < € < 1 being arbitrary. In the last case it is assumed that the boundary is strictly concave.
In all these papers the approximation of the Dirichlet-to-Neumann map is used to get parabolic
regions free of transmission eigenvalues.

To prove Theorem 1.1 we build in Section 4 a semiclassical parametrix near the boundary
for the solutions to the equation (1.1). It takes the form of oscilatory integrals with a complex-
valued phase function ¢ satisfying the eikonal equation mod O(x) (see (4.5)), where N > 1 is
arbitrary and 0 < 7 < 1 denotes the normal variable near the boundary, that is, the distance
to I'. The amplitudes satisfy some kind of transport equations mod O(x}) (see (4.2)). Thus
the parametrix satisfies the Maxwell equation modulo an error term which is given by oscilatory
integrals with amplitudes of the form O(z) + O(hV). To estimate the difference between the
exact solution to equation (1.1) and its parametrix we use the a priori estimate (3.5). Note that
there exists a different approach suggested in [2] which could probably lead to (1.2) as well. It
consists of using the results in [8], [10] to approximate the normal derivatives —ihd, E|r and
—ihd, H|r by Opy,(p)E|r and Opy,(p)H|r. Thus the equation (1.1) can be reduced to a system
of h — UDOs on I" by restricting the equations in (1.1) on the boundary.

In analogy with the Helmholtz equation, Theorem 1.1 can be used to study the location on the
complex plane of the transmission eigenvalues associated to the Maxwell equation (see Section
5). It can also be used to study the complex eigenvalues associated to the Maxwell equation
with dissipative boundary conditions like that one considered in [2].
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2. PRELIMINARIES

We will first introduce the spaces of symbols which will play an important role in our analysis
and will recall some basic properties of the h — YDOs. Given k € R, d1,d2 > 0, we denote by
S (];““1, 5, the space of all functions a € C*° (T"T"), which may depend on the semiclassical parameter
h, satisfying

3?3?’ ( /75/,h)‘ < Ca7ﬁ<é-l>k751|a‘752‘6|

for all multi-indices a and 3, with constants C, g independent of h. More generally, given a
function w > 0 on T"T", we denote by Sg“l 5,(w) the space of all functions a € C°°(T*T"), which
may depend on the semiclassical parameter h, satisfying

0 00a(x' €', 1)| < C gt DIel=0217

for all multi-indices o and 8, with constants C, g independent of h and w. Thus S§1752 =
S§1752(<§’ )). Given a matrix-valued symbol a, we will say that a € S§1752 if all entries of a
belong to S§1, 5, Also, given k € R, 0 <4 < 1 /2, we denote by S(? the space of all functions
a € C*°(T*T"), which may depend on the semiclassical parameter h, satisfying

02 0pa(x’, € ,h)| < Cogh0etHIAD &)kl

for all multi-indices o and 3, with constants C, g independent of h. Again, given a matrix-
valued symbol a, we will say that a € Sg‘ if all entries of a belong to Sg“. The h — ¥DO with a
symbol a is defined by

(Opp(a)f) (') = (2mh) / / ool & )y ) dy.

Ifa e SO 1, then the operator Opy(a) : HF(I') — L2(T') is bounded uniformly in h, where

— Nk
Jullg ey = [OpatiE) ],
It is also well-known (e.g. see Section 7 of [3]) that, if a € S, 0 < § < 1/2, then Opy(a) :
H;(T') — Hj(T") is bounded uniformly in h. More generally, we have the following (see Section
2 of [8]):

Proposition 2.1. Let hf*a* ¢ Sgtk, 0<d<1/2, where 1 >0 are some numbers. Assume in
addition that the functions a* satisfy

(2'1) a?’l 3?'1 a+ (xlv 5/)39?’2 866’2 a (xlv 5/) < K’CCVI 751,02,52h_(‘a1 B FeslHB2))/2

for all multi-indices o, B1, oo, Ba such that |o|+|5;] > 1, j = 1,2, with constants Cy, 8, 09,8, >
0 independent of h and k. Then we have

(2'2) HOph(a-i_)Oph( ) Oph(a a HLQ I)—L2(T )S h+ k.

Let n € C°°(T*I") be such that n = 1 for ry < Cy, n = 0 for o > 2Cj, where Cy > 0 does
not depend on h. It is easy to see (e.g. see Lemma 3.1 of [8]) that taking Cy big enough we can
arrange

C10"2 < |p| < Oy, Tmp > C3l6]|p|™" > Culf)]
on supp 7, and
ol > Tmp > C5[¢|



4 G. VODEV

on supp(1l — n) with some constants C; > 0. We will say that a function a € C*°(T*I") belongs
to Sfll 5, (W1) + Sg; 5, (we) if na € Sfll 5, (w1) and (1 —n)a € Sg; 5, (w2). It is shown in Section 3 of
[8] (see Lemma 3.2 of [8]) that

k 2
(23)  p* e SEallol) + S5i(p) © S/20) + Sy c 0FPSN + sk, c oS,

as long as 6 > h'/?2=¢_uniformly in 6 and h, where k=0if k> 0, k=-kifk<0and N>>1
is arbitrary. Proposition 2.1 implies the following

Proposition 2.2. Let h1/27¢ <0, <1, {4 >0, and let
a* € ST (02) + S§T C 0L S,
Then we have
—1—6y ;—1—(_
(2.4) |Opy,(a™)Opy(a™) — Opy(ata” HHk DLy S ShO O ,
where k = ky + k_ —

Proof. Let ng,n1,m2 € C§(T*I") be such that n; = 1 on suppn, 72 = 1 on suppn;, n =1 on
supp ng- Then we have

Opy,(a™a™) — Opy,(na™ma™)Opy(n2) — Op,((1 —n)a* (1 —no)a™)
= Opy,(na*ma™)Op,(1 —12) = O(h™) : H{(T') — L*(I),
Opy,(a™)Opy(a™) — Opy(na™)Opy(na™)Opy (12) — Op,((1 —n)a™)Opy((1 —m0)a”)
= Opy,(na*)Opy,((1 —m)a”) + Opy((1 —n)a™)Opy(noa™)
+0py,(na™)Opy,(ma™)Opy (1 = 12) = O(h™) : H () — L*(I).
By assumption, na™ € S;f+(9+), ma- € S;f* (6_), which implies that the functions na™ and
na~ satisfy the condition (2.1) with kK = h@;”*@:”*. Therefore, by (2.2) we have
1(Opn(na*ma) — Opy(na*)Opy(ma™)) Opn(2)f| 2
S hOT 0T T Opy () fll e S POTTTHOTT S g

On the other hand, (1—7n)a™ € ng, (I—mp)a™ € Sgﬁ- The standard pseudodifferential calculas
gives that, mod O(h*), the operator

Op,((1 = n)a™ (1 —mo)a™) — Op,((1 —n)a™)Opy((1 —no)a”)
is an h — DO with symbol hw, w € S{il uniformly in h, where k = k. 4+ k_ — 1. Therefore,
|0pA((1 = n)a* (1 = mo)a™) f = Opu((1 = m)a*)Opy((1 = mo)a™ ) f| 2 < 2l fll -

Clearly, (2.4) follows from the above estimates. O

We also have
Proposition 2.3. Let hl/2—e < g < 1, £>0, and let
a€51(0)+ S5, CO'SE,
Then we have

(2.5) 10pR (@)l i ()= L2(r) S 0"
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Note that these propositions remain valid for matrix-valued symbols.

We will next write the gradient V in the local normal geodesic coordinates near the boundary
(see also Section 2 of [2]). Fix a point y° € T and let # C R3 be a small neighbourhood of 7°.
Let Uy be a small neighbourhood of 2 = 0 in R? and let 2’ = (x2,23) be local coordinates in
Uy. Then there exists a diffeomorphism s : Uy — U NT. Let y = (y1,92,y3) € U N Q, denote
by 3 € T the closest point from y to I' and let v/(y') be the unit inner normal to I" at y'. Set
r1 = dist(y, ), 2’ = s71(y/) and v(2') = ' (s(z')) = (v1(2'), vo(2), v3(z")). We have

y = s(a’) +a1v(2’)
and hence

0
Ay il 3$1+Z k(@ 5$k

where o j, = a k provided z is small enough. Note that the matrix (%) 1<k, j <3, isthe

inverse of <6L> 1 < k,j <3. In particular, this implies the identities

3
> vi(a)aje(z) =0, k=23
7=1

Set ¢1 = (1,0,0), ¢2 = (0,1,0), {3 = (0,0,1). Clearly, we can write the Euclidean gradient
V= y1aay2a Jy,) in the coordinates x = (x1,2’) as

3
0 0
V =7(z)V, = V(x,)a—wl + ZV(m)CkB—wk’
=2

where 7 is a smooth matrix-valued function such that v(z)¢1 = v(2), v(z)( = (15, @2k, a3 1),
k = 2,3. Notice that the above identities can be rewritten in the form

Let (&1,¢), & = (&,&3), be the dual variable of (x1,2'). Then the symbol of the operator
—iV|z, =0 in the coordinates (z,§) takes the form & v (') + (2, &), where

3
= > &7(0,2))G
k=2
Thus we get that the principal symbol of —A|,,—¢ is equal to

&+ (B, €), B, €)).
This implies that the principal symbol, ro(2/,£’), of the positive Laplace-Beltrami operator on
I' is equal to

(B, &), B, €)).
Note also that (2.6) implies the identity
(2.7) (v(a'),8(z',€)) =0
for all (2/,&").
In what follows in this section we will solve the linear system
Yo X a — zpgh = a?,
(2.8) Yo X b+ zega = bE,

vXa=g,
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where g = pv — 8 and (g,v) = 0. To this end, we rewrite it in the form

B x a+ zpuob = pg — d,
(2.9) pv X b— B x b+ zega = bF,

vXa=g.
Using the identity —f x (8 x a) = (8, 8)a — (B, a)B, we obtain
zppov X b = zupB x b — 22eopoa + zuobt
= —B x (B x a) — 22eopoa + B x (pg — a*) + zpob?
= ((8,8) — Zeopo)a — (B,a)B + B x (pg — a¥) + zpob®
= (ro — 2*copo)a — (B,a)8 + B x (pg — a*) + zpuob*

= —p*a— (B,a)B + B x (pg — a*) + zpb".

Taking the scalar product of this identity with v and using that (v, 5) = 0 and (v,v x b) = 0,
we get

(vya) = p~ (v, Bx g) = p~2(B x a*,v) + zpop 2 (VF,v).
On the other hand, a; = a — (v, a)v satisfies v X a; = v X a = g. Hence,
vxg=vXx(Vxa)=—(v,v)ar + (Va1 )v = —ay.
Thus we find

0= v x gt p (o B x gy — 2B X ab ) + zpop 2, v,
ziob = pg+ B x (v x g) = p~ v, Bx g)B x v
—a* + p72(B x d* V) B x v — zpop 2V, v) B X v,
zpov x b= —pa+ B x g+ p (Bv x g)B —p 1B x at+ zp~ ! pob?
=prxg+Bxg—(vBxgw+p (Bvxg)B

—p "B xat+ p (B x at, v)v + zp”  pob® — zpT o (bF v
Since (v,g) =0 and (v, ) = 0, we have
Bxg— (v, x gv =0.
Thus we obtain

2pov X b=pv X g+ p~ B,V x g)3

—p B x a4 p TN (B x af vy + z2p ot — zp o (B, v
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3. A PRIORI ESTIMATES

Let f € H! and let the functions Uy, Us € L?(2;C3) be such that divUi,divU; € L?(9),
uy := (v,Uy|r) € L*(T"). In this section we will prove a priori estimates for the restrictions on
the boundary of the solutions F and H to the Maxwell equation

hV x E =izu(x)H+U; in Q,
(3.1) hV x H = —ize(x)E+ Uy in Q,
vx E= ]7 on TI.

Since (V,V x E) = 0, the solutions to (3.1) must satisfy the equation

(3.2) (V,E) = (ize) YV, U3) — e Ve, E) in Q,
. (V. H) = —(izp) "V, U1) = p~H(Vp, H) in Q.
To simplify the notations, in what follows we will denote by || - || (resp. || - |lo) the norm on

L2(£;C3) (vesp. L*(I';C?)) or on L%(Q) (resp. L*(I')). We also set Y = (E, H), U = (U, Us),
and define the norms ||Y|, ||U|| and ||div U|| by

Y12 =1EI*+ [HI?, U =007+ [1U2]?, lldivU|* = [[div U]|* + [|div Us .

By the Gauss divergence theorem we have the identity

(3.3) /<E,Vxﬁ>-/<ﬁ,VxE>:/(ﬁxE,u>.
) Q r
We will use (3.3) to prove the following

Theorem 3.1. Let 6 > 0 and 0 < h < 1. Suppose that E and H satisfy equation (3.1) with
Uy = Uy =0. Then the functions f = E|r, g = H|r satisfy the estimate
(3.4) £ 1130 + lgllro S 07 I Fllaey -

Suppose that E and H satisfy equation (3.1) with f: 0. Then the functions f = E|r, g = H|p
satisfy the estimate

(3:5) 1 70 + Mgl < luallo +R=267 U] + B2 div U]

Proof. We decompose the vector-valued functions f and g as f = f; + fn, ¢ = gt + gn, Where
fn = v, /v, gn = (v, g)v. Clearly, we have the idenities (ft, fn) = (gt,9n) = 0and v X f = v X fi,
vXg=UvXg, fr=-vxWwxf),g=—vx(vxg). Applying (3.3) to the solutions of equation
(3.1) leads to the idenity

z'?/gs|E|2 —iz/ﬂ,u|H|2 :/Qm, Uy —/Q<E,U2>+h/r<§t < f ).

Taking the real part yields the estimate

(3.6) Y12 < 0721017 + ho~ lgello]l fello-
By equation (3.2) we also have
(3.7) [V, E) + [(V, H)| < [divU[ +[Y].

Restricting the first equation of (3.1) on I' and taking the scalar product with v leads to the
estimate

(3.8) lgnllo = [I{v, 9l < [[{v, BV > E)r[lg + [[urllo-
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In the normal coordinates (z1,2’), 2’ € T, the gradient takes the form V = ~vd,, + W%m/, where
v =(1,0,0) and V,» = (0, V,/). So, we have

v‘m:O = '70;83[:1 + 7061/ = Vaau + 7061/7 70('%',) - '7(07-%',)'

Hence B
(v, hV x E)|r = h(v,v X 0y, E|zy—0) + (¥, AoV X E|z—0)

= <V7 h’)’oem/ X f> - <V7 h’YO%m/ X ft> + h<”77061'/ X fn>
On the other hand,

<V7'70%:B’ X fn> = <V7f><y7'706$/ X V>+ <V7706$/(<V7f>) X V>

= <V7f><y7'70€m’ X V>'
Therefore (3.8) gives

(3.9) lgnllo < [1£ 112 + lluallo + Al fllo-

We will now bound the norms of f,, and g;. Let the function ¢g € C§°(R) be such that ¢g(c) =1
for |o| <1, ¢g(c) = 0 for |o| > 2, and set ¢(0) = ¢po(c/J), where 0 < § < 1. Then the functions
Y’ := (E°, H") = (¢(z1)E, ¢(z1) H) satisfy equation

W00y, + V) X B> = izpH’ +U? in Q,
W00y, + V) X H = —ize B’ + Uy in Q,

where U := (U?, U3) satisfy |[U|lo < ||U]lo + R||Y [lo- By (3.7) the functions
p=07,00 )+ (WVar, EY),  q= (10,0, H") + (7Vaur, H’),

(3.10)

satisfy
(3.11) Pl + gl S |divU| + [Y].
Denote by (-, )¢ the scalar product in L*(T;C3) or in L?*(T), that is,

(0, bo = /<a,5> i abe LATCH,
I

<a,b>0:/a5 if a,be L*(T).
r

Introduce the functions )

)

0
bty = e - o

Fi(z1) = HW X Esz - HW?, Eb>‘

Since v = YU = YV|z,—0, we have
2 2 2 2
F1(0) = [[fello = [Ifallg,  F2(0) = [lgellg — llgnllg -

Using equation (3.10) we will calculate the first derivatives Fj(z1) = ZTFf' In view of (3.11), we
get

Fi(z1) = 2Re <*yﬁ X 8y, B, 4D X EI’>O + 2Re <*y'§ x B, 4D x EI’>O
—2Re (17,0, '), (17, ') = 2Re (47, E), (19, E") )

= —2Re <761/ x B, 4D x EI’> +2h 'Re <(iz,qu + U2, 4¥ x EI’>
0 0
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+2Re (1Var, B%), (47, E")) —2Re (p, (37, E")) +O (|IE°})
= —2Re <’y€m/ X B’ 41 X Eb>0 + 2Re <(’y€m/, E’), (v, Eb>>0 +R
with a remainder term R satisfying the estimate
RIS h7HIYIE + A7HIUNG + [ Ellolldiv Ut lo.
Clearly, we have a similar expression for Fj(x1) as well. Let us see now that

(3.12) Re <N$, x B’ 47 x Eb>0 —Re <<N$,,Eb>, (7, Eb>>0 o) <\|Eb||§) .

It suffices to check (3.12) at a symbol level. Let & = (0,£’) denote the symbol of —iV,. We
have the identity

(1200 ()BT (88) (. ) - () )
where we have used that <7§’,7§> 0 (see (2.6)). Hence
Im <7§’ x B’ vi x Eb> —Im <<’yg/,Eb>, <7§,Eb>> =0

which clearly implies (3.12). Thus we conclude

(3.13) |Fi(z1)] + |Fy(z1)| S B7HIY NG+ A UG + Rl|div U5
Since
25
F(0) = - ; Fj(z1)dzy,

we deduce from (3.13),
(3.14) [F1(0)] + [F2(0)] S A7HIYIP + RH|UP + hlldiv U 2.
By (3.6) and (3.14),
1£all§ + geld < 1FelIE + lgnll + 07| £ellollgello + AT 072 UI* + hlldiv UJJ?,
which implies
(3.15) 1£all§ + Nlgeld S 0721 fell§ + gl + A1 072U + Alldiv U1
Clearly, the estimates (3.4) and (3.5) follow from (3.9) and (3.15) by taking h small enough. O

4. PARAMETRIX CONSTRUCTION

We keep the notations from the previous sections and will suppose that 6 > h2/57€, 0 < e < 1.
Let (z1,2") be the local normal geodesic coordinates introduced in Section 2. Clearly, it suffices
to build the parametrix locally. Then the global parametrix is obtained by using a suitable
partition of the unity on I' and summing up the corresponding local parametrices. We will be
looking for a local parametrix of the solution to equation (1.1) in the form

(2rh)~ / / W@ D (2, ala, o, € 2, h)de'dy

27Th // 75 +90 (CL‘ é‘ ) (ﬂf, y/, é—/, z, h)dé-ldy/’
where

X = ¢o(x1/8)¢o(1/|pI>9),
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the function ¢ being as in the previous section and 0 < ¢ < 1 is a parameter independent
of h and 6, which is fixed in Lemma 4.1. We require that E satisfies the boundary condition
vx E = fonz; =0, where f € H}{. The phase function is of the form
N-1
p=> afor, wo=—(,¢), o1 =0p,
k=0

where N > 1 is an arbitrary integer and the functions ¢y, k > 2, are determined from the
eikonal equation (4.5). The amplitudes are of the form

N-1 ' N-1 '
a=> hla;, b=> Wb,
§=0 §=0

In what follows we will determine the functions a; and b; in terms of f so that (ENJ,}NI ) satisfy
the Maxwell equation modulo an error term. We have

e~io/h (hV x (e/hq) — izuei‘p/hb> =1(YVap) X a —izub+ h(7vVy) X a

=

W (i(7Vap) X aj — izubj + (YVa) X aj1) + WV (7Vs) X an 1,

<.
Il
o

e~ie/h <hV x (e¥/1p) +izee?/hq, ) =1i(YVap) X b+izea+ h(yVy) X b

H

W (i(yVap) X bj +izea; + (YVa) x bj_1) + hN (7V4) x by_1,
§=0
where a_; = b_1 = 0. We let now the functions a; and b; satisfy the equations
(YVap) X ag — zpbg = x7 Wy,
(4.1) (YVzp) X by + zeag = N Uy,
vxXayg=g¢g on x1 =0,
where v = v(2') = (v1(2'), v2(2’), v3(2’)) is the unit normal vector at 2’ € T,
g=—v() x ((y) x f(y) = F) = @) —vy)) x (v(y) x fy)),
and
(YVap) X aj — zpb; = i(yVaz) X aj—1 + 2V ¥,
(4.2) (YVap) X bj + zeaj = i(yVy) x bj—1 + 2V,
vxa;j=0 on x1 =0,

for 1 < j < N —1. We will be looking for solutions of the form

N-—1
§ k

a] = xlajvk’
k=0

Let us expand the functions y, € and v as

k
xlbj,k.

I
M7

N—

H

¥ pg(2’) + 2 M(),
k=0
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N-1
e(@) = afer(@’) + Y (),
k=0
N—1
Y(z) =) afyp@) + 21 0(x)
k=0
Observe that
N-1
Vep = Z zVey,
k=0
with €y = (p? _525 _53)? €k = (Spk-i-l,axz@kaamg@k), k Z 1. Hence
N-1 _
VWep =Y afiy +a1'6,
k=0

where o = 0e0 = pv — B,

k
Yk =Y Wk, k>1,
=0

2IN—2
6= 2 Ny + (V..
k=N
We will first solve equation (4.1). We let the functions ag o and by o satisfy the equation
Yo X ago — zpoboo = 0,
(4.3) 1o X bo,o + zgpap,p = 0,
v X ago = g.
The equation (4.3) is solved in Section 2 and we have
ago = —v x g+p (v,Bx gy,
boo = p(zh0) g+ (2p0) '8 x (v x g) = (zp0) " p~ v, B % g) B x v,

(4.4) zpov X bog = pv X g+ p (B, v x g)B.
Next we let ¢ satisfy the eikonal equation mod O(xd):
(4.5) (VVaip, YVaip) — 2°copo = 27 ®.

This equation is solved in Section 4 of [8]. The functions ¢y, k > 2, are determined uniquely
and have the following properties (see Lemma 4.1 of [8]):

Lemma 4.1. We have
(4.6) or € 8557 (o) + Soa(lel), k> 1,

(4.7) 5, @ € 555" (o) + 531 (10D, k=0,

uniformly in z and 0 < x1 < 26min{1,|p|3}. Moreover, if 5 > 0 is small enough, independent
of p, we have

(4.8) Img > x1Imp/2  for 0<z; <26min{l,|p*}.

Furthermore, there are functions LPI;C € Sé’l, independent of € and p, such that

(1= n)er — @1 € So1-
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Set
N

Q= Z xlf%-
k=1
Using the above lemma we will prove the following

1

Lemma 4.2. There exists a constant C' > 0 such that we have the estimates

ag (%) <{ Cagt 11 Ple= Gl on  supp,
' e =

1.9 ,
9 Copl€!| WleCmElMon  supp(1 — 1),

for 0 <z < 25min{l, |p*} and all multi-indices o and B with constants Cy 5 > 0 independent
of x1, 0, z and h.

Proof. Let us see that the functions
Cag = €050 (7)), Jal+ 18] > 1,

satisfy the bounds

(4.10) 9% 9% ¢ <\a|+\6|+\o/|+\6/| o ’ —2(laf+|B]+]a|+8'| )
. z! Ogr a,B‘ ~ ; <h\p‘> 1]
on suppn, and

Ly ||+ B+ [+] 8] eiN L
(4.11) woleas|s Y (F) ler D)

j=1
on supp(1l — n), for all multi-indices o and 3’. We will proceed by induction in |a| + |8]. Let
aq and f; be multi-indices such that |a;| 4+ 81| = 1 and observe that
Catan,B+61 = 8?’1 ag’lcaﬂ + ih_lcaﬁag’l 866’1 ¢
More generally, we have

(4.12) 0% 0 Carargrp = 05 O co g +ih 102 ) (ca,ga;j} og! &) .

xT
By Lemma 4.1 we have
(4.13) 21 € S35(|pl) +So.1(1o])

for 0 < z1 < 26 min{1, |p|*}. By (4.12) and (4.13), it is easy to see that if (4.10) and (4.11) hold
for cq 5, they hold for coya, g+s, as well. Using (4.10) together with (4.8) we obtain

- al+I8l ;N\ | B
ew/hcaﬁ‘g 3 (m) |p| -2l +181-1) g ~2C8z1 (hlo)

Jj=1

|48
< ST gi|p el ~Cord/h < g-lal=|3le=Car6/h
7j=1

Similarly, by (4.11) we obtain

la+18] .
i%/h ‘< (E)J 1=181+7 g=2Cz1[€|/h < |t ~1Bl ;—Ca11€/|/h
etea | S ; ) g e S g7
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We take ag r, = ag v for k > 1, where g are scalar functions to be determined such that

(4.14) (VWVap, ag) = 2N ®.
Using that (1o, ag0) = 0 we can expand the left-hand side as

oIN-2 k-1 R
Z y <Z<¢&V>5o,kz + <1/1k,a0,0>> + 20, ag).

k=1 ¢=0
Therefore, if
k-1
(Y, a0,0) +Z Yo, v)agp— =0, 1<k<N-1,
(=0

then (4.14) is satisfied with

2N—2 k-1
3 k=N
= > S W, v)aop—e + (O, ao).
k=N =0

Since (g, v) = p, we arrive at the relations
k—1

(4.15) ok = —p (ks a00) — p 1D (e, V)0 k-

(=1
which allow us to find all agj, and hence to find ag. To find by we will use the expansion

N-1
(YVzp) X aj = lewkx lea]k—i—ml@xa],

N-1 k 2N—2 k N
xlf Z¢k_g X aj o+ le\/ Z xlffNZzZ)k_g X aj o+ x{VG X a;
k=0 (=0 k=N =0
with 7 = 0. We take
(4.16) box = (210)~ Zwuxaog, 0<k<N-1.
(=0
Then the first equation of (4.1) is satisfied with
IN—2 k N
Uy = Z xlf_NZIbk,g X age + O X ap.
k=N (=0

On the other hand, we have the identity
(VVap) X (WVap) X a0) = =(VWVa, YVap)ao + (YVap, a0)yVaip.
Therefore, in view of (4.5) and (4.14), the second equation of (4.1) is satisfied with
o = (zp) (—<I>a0 + <T>’vaap) .

To solve equation (4.2) we will use the expansion

N-1 N-1
(YVz) X aj = Z ¥ (v V) x aha; + Y (OV,) x a;
k=0 k=0

13
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N-1 k
= fU]fZ(% ¢Var) X ajo+ €+ 1)y zVXa]zH)
k=0 =0
IN—2 k
—|—x{v x’f—Nz (Ve ZV 1) X aje+ (04 1)yp—ev X aj, Z+1) —i—xl (OV,) X aj,
k=N =0

where v = (1,0,0) and Vo = (0,V,). Clearly, we have similar expansions with a; replaced by
b;. We let the functions a;j satisfy the equations
k—1

Yo X ajr — zpobjp = — Z (Yr—r X aj o — zpgp—rbje)
=0

k
+Y i <(7k—zvx') X aj_1,04 (€+ 1) yp—ev X aj—u+1> =: ah,
=0
k-1

Yo X bjp + ze0ajk = — Z (Yr— X bj o + zep_gaj )
=0

+ Z ( Vi— gV X bj_10+ (L4 1),V X bj—1,€+1) = b?k’

vxajp=0,for1 S j S N —1and 0 <k < N — 1. Then the equation (4.2) is satisfied with

2N -2 k
\Ilj = Z .%'lf_N Z (wkff X aj g — z,u,k,gbj,g) + O x aj — ZMbj
k=N (=0

2N—-2 k
+ Z -N Z < ’)’k ZV X aj—1,0+ (6 + 1)’)/]?,@’1; X aj,Lngl) —+ (@Vx) X a1,
k=N

2N -2 k
Z xlf N Z (T/Jk_g X b]}f + ng—ﬁaj,ﬁ) + O X bj + zEaj
k=N =0
2N -2 k
+ Z x]f NZ('}% gv )ij 1g+(€+1)’yk gI/Xb] 1g+1> +(@Vx) ij_l,
(=
where a_1 = b, 0= O. The above equations are solved in Section 2 and we have the formulas
aj = p (B x &y v)v + zp0p” (V] 4 ),
bjw = (2p0) " ak = (zp0) L 2B x ab  w)B x v — p (b W)B x v,
(4.17) Zpopv X bjp = B x a;k — (B x ag’k, Vv + z,uobg’k - 2M0<b2,k7 v)v.

Thus we can express all functions a;x, b;; in terms of g. More precisely, they are of the form
ajr =A@ &NV FW), bk = Bir(, &) (),

where f(y’) =v(y) x f(¥) = w)f(¥), v being a 3 x 3 matrix, and A, Bjj are smooth
matrix-valued functions whose main properties are given in Lemma 4.3 below. In what follows,
given a vector-valued function a of the form A(z/, &) f(y'), we will write a € SZ o, [ if all entries

of A belong to SZ 0
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Lemma 4.3. We have

(4.18) Aji € S35 (o) + So(lel), G2 0.k >0,
(4.19) Bk € Sy " (lol) + So1’ (I, 5 =0,k >0,
(4.20) w(@)Bik € 535" (o) + So (e, G2 1k =0,
(4.21) o w; € Sy T (o) F 3T () fL 20,
(4.22) O 05 € Sy NI (o) F S (oD FL G >0,

uniformly in z and 0 < 1 < 26 min{1, |p|*}.
Proof. By Lemma 4.1,
(4.23) Ui € S35 (1pl) + S5l © € S35°N (lol) + 541 (Il).

It is easy to see from (4.15) and (4.16) by induction in k that (4.23) implies (4.18) and (4.19) for
j =0 and all k£ > 0. To prove the assertion for all j > 1 and k > 0 we will proceed by induction
in j + k. Suppose it is fulfilled for all 0 < j < J, k > 0, as well as for j = J + 1 and k£ < K,
where J > 0, K > —1 are integers. This implies

(4.24) a1 i1 € San K () f 4+ Soi (o)) ],

(4.25) Vi1 € Soa K5 (1o f + Sa7” (1) F-

Recall that a?o = b?o = 0. Using (2.3) with £ = —2 and the formulas for a;; and b; in terms

of ag’k and bg‘,k’ we get from (4.24) and (4.25) that (4.18) and (4.19) hold with j = J + 1 and
k = K + 1, as desired. It is also clear that (4.20) follows from (4.24) and (4.25)(used with
K =k—-1,J =j—1) and (4.17) together with (2.3) with k£ = —1. Since the functions ¥;
and \I’j are expressed in terms of A;, Bj, 1 and O, one can derive (4.21) and (4.22) from
(4.18),(4.19) and (4.23). One just needs the following simple observation: if

a € S8 (|pl) + 554 (o)),

then
k 0143k ¢
wta € S5 (lol) + S (1ol), k> 0.

Clearly, we have v x E|y,—o = f and

N-1
v X H’m:O = LV(x,)H‘m:O = Z thph (LVBJ}O) f
j=0
= Opy, (,wBoo + h(1 —n)wBiyp) f+Kif,

where
N-1

K1 = hOpy, (new B1o) + Z hOpy, (1 Bj o) -
=2
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Lemma 4.4. There ezists a matriz-valued function B{O € 5871 such that
(4.26) (1—n)wBio— Big € Syt
and MOB?,Q is independent of € and p.

Proof. In view of (4.15) and (4.16) we have

—ia% =%V X ago+ v X ap1 ="V X agp,

—ib} o = %0V X boo + v X b1
= 0V X boo + (210) " (401 X ago + o X ag 1)
=70V % bog + (2100) (11 X ag — p~ (W1, a0 X v)
=50V X boo + (2000) " (%1 X ago + p~ {11, a00)B x v).
Thus by (4.17) we obtain
—izpoty Biof = —izpov x by
= p "B x (0Var x agp) — p (B x (0Var X an), v)v
+2p10p" 90V X boo — zhop~ {10V X bog, Vv
+pp1 X ago — pH (W1 X ag,0, v)v + p (11, a0,0) 8 X V.
Observe now that

p= i1 + 00y ) = i+ (

More generally, we have

1

Vo

> as rg— oo.

(1=n)(p —iv/ro) € Sy 1,
(=) (5F = (Vi) ™) e S5t k=12

Define al(’w and bl()),o by replacing in the formulas for ag o and by above the function p by /7.

Clearly, alfm and ,uoba0 are independent of € and p. Moreover, we have

(1= n)(aoo — ago) € So1f.  (L—mn)(boo—bho) € So1.f-

Define 1#? € 56,1 by replacing in the definition of i; the function (o by gpg and p by i,/rg. We
also define Eg,o by replacing in the formula for ¢, By g above the function p by /7o, 11 by 1/)'1,

ap,0 and bg o by a%,o and bl(’w. Set Bg,o =(1- n)§?70. With this choice one can easily check that

the conclusions of the lemma hold.

Clearly, we can write the matrix ¢, in the form 22:1 v;l;, where I; are constant matrices. In

view of (4.4) we have
3

LuBo,on v xboo=m(vxg)= mf+ mey Z(Vj(yl) - Vj@’))—’jf

j=1
where m = (zuo) ' (pI + p~'B). Set mg = i(zp0) "t /To(I — 7y B). We have

3
Opy, (tvBo,o) f: Oph(m)f‘i‘ Z [Opy,(men1;), v] f
j=1



SEMICLASSICAL PARAMETRIX FOR THE MAXWELL EQUATION 17

3
= Opy,(m Z [Opy((X = m)mow 1), vs] f

3
_|_Z Oph nm + 1_n)(m—m0))LyIj)7Vj]f
7j=1

3
= Opp(m + hn Z ([Opp((1 = m)ymot,1j),v;] — Opy(hny)) f

3
+Z [Opy,((nm + (1 — )(m—mo))Lqu)an]f,
7j=1

where n = 22:1 n;j with
nj=—i Y %08 ((1 - n)mo)u,I;.

la|=1
Thus we obtain

(4.27) v X Hl|y—o = Opy,(m + hin)f + Kf,
where we have put m = n + B 1.0 and K = K1 + Ky + K3 with

K2 = hOpy, <(1 —nwBio— B?,O) ;
3

Kz = ([Opy((1 = mymot,1;), 5] — Opy,(hn;))
=1

+ > _[Opy((mm + (1 = n)(m — mo))w 1), v5]

<.
= S

Furthermore, it is easy to see that
V x (xa) = xV x a + xa,
where X is a smooth matrix-valued function, which is a linear combinations of d,;x. Therefore

X is supported in 6 min{1,|p]*} < 21 < 20 min{1,|p|*}. We have

hV x E—zz,uqSH (2wh)™ // # (W€ ﬂ’)Vl(:U Y, & h,2)dE dy =: Uy,

hV x H + izedF = (2wh)~ // v'E ﬂ’)Vg(:U Y, & h,2)dE dy =: Uy,

where

N—-1
Vi = hXa+h"x(7Va) X an_1 + a1 Y WXy,
j=0

N-1
Vo = hxb+ WV x(vVa) x by1 + 27 Y WX
=0
Let a be a multi-index such that || < 1. Then we can write

((h0.)°Uy)(1,-) = Opy, (7)) T,
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where Vj(o) = V; and
Vi = 0oV + (h,)"V,
if |a| = 1. Since (E — E, H — H) satisfy equation (3.1) with f = 0, by (3.5) together with (4.27)
we get the estimate
IN(A)S = Opp(m + him)(v x )]l
(4.28) < hV20 U + B2 |di U+ fluaflo + 1K Flo-
We need now the following

Lemma 4.5. We have the estimates
(4.29) 1K Fllo < 20572 fllae_s,

(4.30) [uallo + 1T + [[div U] S BN fllaey,
with some constant £ > 0.
Proof. By (4.20),
nuBjot € S5 (Ipl) € STP(0), 5= 1,
1—j _ .
(1 —=n)wBj k. € So7lj(|p|) - So’ll, j>2.
Therefore Proposition 2.3 yields

N—-1 N—-1
1K1 Fllo <> B9 0Dy (e Bjow) Fllg + D W 110D, (1 = m)ew Bjow) £,
j=1 j=2
N-—1 A ‘ N—-1 ‘
S WO oy + D Wy ShOTPN f s
j=1 j=2

Furthemore (4.26) clearly implies Ko = O(h) : H_1 — Ho. To bound the norm of K3 we will
use Proposition 2.2 twice — with
a+:(nm+(1_n)(m_m0))Ll/Ija 9+:95 (]J*:yj’ 97:15

and with

at=v;, 0p=1, a =mm+(1—-n)(m-mo))lj, 6_=080.

Since
_ _ —~1/2 _
(m + (1= m)(m = mo))uw1j € Sy3(1p]) + S 1 (o]) € S117°(0) + 5.1,
by Proposition 2.2,
11Opy ((nm + (1 = n)(m = mo))ew 1), w5l gy S PO~
On the other hand, the standard pseudodifferential calculas gives that, mod O(h®®), the operator
[Opp((1 —n)mot,1;),v;] is an h — DO with a principal symbol hnj, n; € 58,1 being as above.
This implies that
[Opy, (1 = n)mor 1), vj] — Opy(hnj)
is an h — DO with a symbol h%w, with w € S&ll. Hence

1OPA((1 = mymotu 1), vi] = Opp(hng)lly_, zqy S H°,
which completes the proof of (4.29). Furthermore, since

!
x{VB—Cxlg/h 5 hNa—N’ x{VB—Cxl\f |/h 5 hN|£l|—N,
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we deduce from Lemma 4.2 that
(4.31) h Nl e e 5TV (0) + S5 1
uniformly in z1 and h. On supp X we have the bounds
e=Cmi0/h < o—Cdlp*0/h < 6—505/2/h < hNH—SN/Z’
e~ Crrl¢'|/h < e~ ColE'|/h < thfl\fN.
Therefore, by Lemma 4.2 we have
(4.32) hN%e?h e 5N(9) + S

Notice that h79=51/2 < 1 for j>1laslongasf > h2/5—¢, Taking this into account one can easily
check that (4.31) and (4.32) together with Lemma 4.3 imply

(4.33) WN Py ) @ g N () F oy 5y N f

with some Ea,za > 0 independent of N, whose exact values are not important in the analysis
that follows. Let N > ¢, + 1. By (4.33) and Proposition 2.3 we get

(4.34) H((hax)an)(xla ')HHO S hN6—5N/2—€a f”y_l S h56N/2—2€a/5 HfHH_l

as long as @ > h?/°~¢ uniformly in z;. Observe also that
W MVilei=0 = (V) X aN—1]z1=0 = (0Var) X an—10+ ¥ X an_1.1
= (Vo) X (An_10f) + v x (An_1.1f) =t wf.
By Lemma 4.3,
we Sy 0) + 51

which together with Proposition 2.3 yield
Opy(w) = O (9—5N/2> H_1 — Ho.
Since Ut |q,—o = hNOpy, (w) f, we get
(4.35) 102 ar=ollg, S BVON2 7| BN f

Clearly, (4.30) follows from (4.34) and (4.35). 0

Taking N big enough depending on e, it is easy to see that the estimate (1.2) follows from
(4.28) and Lemma 4.5.

5. ELECTROMAGNETIC TRANSMISSION EIGENVALUES

A complex number A is said to be an electromagnetic transmission eigenvalue if the following
boundary-value problem has a nontrivial solution:
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(( Vx Ey=i\u(z)H, in Q,
V x Hy = —idei(x)Ey in Q,
V X Ey =i ua(z)Ha in £,
V X Hy = —ideg(x)Ey in €,
vx(Ey—Ey)=0 on T,
vX (c1Hy —cagHy) =0 on T,

(5.1)

where pj,e; € C®(Q), ¢;j € C®(I'), j = 1,2, are scalar-valued strictly positive functions.
The most important question that arrises in the theory of the transmission eigenvalues is to
know the conditions on the coefficients under which they form a discreet set on the complex
plane. This question has been largely investigated in the context of the acoustic transmission
eigenvalues, that is, those associated to the Helmholtz equation. Several sufficient condition
have been found that guarantee not only the discreteness, but also Weyl asymptotics for the
counting function of the acoustic transmission eigenvalues (see [5], [6], [7]). In particular, it was
proved in [6] that the existence of parabolic eigenvalue-free regions implies the Weyl asymptotics.
On the other hand, such regions were obtained in [8], [9], [10], [11] and [12] under various
conditions, by approximating approprietly the Dirichlet-to-Neumann operator associated to the
Helmholtz equation with smooth refraction index. It was proved in [11] that, under quite general
conditions on the coefficients on the boundary, all transmission eigenvalues are located in a strip
|Im A| < C, which turns out to be optimal. The situation, however, is very different as far as the
electromagnetic transmission eigenvalues are concerned. In this context there are few results and
they are mainly concerned with the question of discreteness (e.g see [1], [4]). The most general
one is in [1], where the authors considered the case ¢; = ¢a = 1 and proved the discreteness
under the condition

e1 €
(5.2) e1#es m#tps, —#— on I
B1 o 2

They also proved that given any v > 0 there is C;y > 0 such that there are no electromagnetic
transmission eigenvalues in the region ImA| > y|Re M|, [A| > C,.
Our goal is to obtain a parabolic eigenvalue-free region under the condition

c1 €
(5.3) — =—, e Feapu2 on I
1o p2
Indeed, using Theorem 1.1 we will prove the following
Theorem 5.1. Under the condition (5.3), there exists a constant C > 0 such that there are no
electromagnetic transmission eigenvalues in the region

(5.4) IIm A| > C(|Re | + 1)7.

Proof. Denote by N;()), j = 1,2, the operator introduced in Section 1 corresponding to
(g5, 15), and set T(A) = a1 N1 (A) — coNa(X). We define the functions p; by replacing in the
definition of p the function eu|r by e;u lr. Set f = v x E; = v x Ey € H{. Then X is an
electromagnetic transmission eigenvalue if f # 0 and 7 (A)f = 0. Therefore, to get the free
region (5.4) we need to show that the operator 7()) is invertible there. By Theorem 1.1 we
have

(5:5) 10PA(T) (v X F)llzgy = TS = OPu(T)(¥ X f)llzgy S hO~2I|f I3,
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for 0 > h2/5~¢, where

T:C1P1I+ C1 B—CZPQI— (&) B
M1 P11 M2 P22
C1 _
= E(pl - p2) (I = (p1p2) 13) :

Since
(p1 = p2)(p1 + p2) = pi — ph = 2°e1pn — 2eaps,
we have T' = wf, where
w = zQ%(&m — eap2) # 0,

T =(p1+p2)"" (I = (p1p2)~'B).
Using that B? = roB3, one can easily check the identity

(5.6) (I + (prp2 —10) ' B) (I = (p1p2)'B) = I.

Lemma 5.2. For all integers k > 1 and all multi-indices o and 5 we have the estimates

B Choa g 11=181 on  suppn,

(5.7) 8;‘,6?,(7@ — p1p2) k‘ < o 1|—2k—| 8|
Ch.apl€'] on supp(l —n),

~ Cha,p07 197181 on suppn,

(5.8) 0%95 (p1 + p2) ’“‘ < o
z'Ye Ck7a,5’51’7k7‘6| on supp(l —n),
Co,30~1/27121=181 on  suppn,
(5.9) 8205 ((prp2) (o1 + Pz)_l)‘ < ’
39, Cusl€/ 17 on supp(1 —1).

Proof. We will first prove the estimates on supp(l — 7). Since p; = i\/ro (1 + (9(7“0_1)) as
ro — 00, we have

ro—p1p2 = 2ro (1+0(rg 1)), p1+ p2 = 2i/ro (14 O(rg 1)) -
Therefore, |ro — p1p2| > 79 and |p1 + p2| > /7o on supp(l —n), provided the constant Cy in the
definition of 7 is taken large enough (what we can do without loss of generality). To prove (5.7)
for all @ and 8 we will proceed by induction in |a|+ |5]. Suppose that (5.7) holds on supp(1—n)
for a, B such that |a| + |f| < K and all integers k > 1. We will show that it holds for all «,
B such that |a| + |8| = K + 1 and all integers k > 1. Let o and (1 be multi-indices such that
lag| + |B1] = 1. We have

0% 05 (ro — p1p2) F = —k(ro — p1p2) F1021 9L} (ro — p1p2)
and more generally, if «, 8 are such that |a| 4 || = K, we have

050 (r — prpa) ™ = kO3 ((7“0 — i) F 1000 (o p1p2)> :

Recall now that g is a homogeneous polynomial of order two in . Hence 0%, (9?, ro = O((")> 181,

Furthermore, by (2.3) we have 8;‘/3?,@1/)2) = O((¢")?>181) on supp(1 — 7). Uisng this, one can
easily deduce from the above identity that (5.7) holds on supp(l — ) for a + a1, 8 + 1 and
all integers k& > 1. Clearly, the same argument also works for (5.8). The estimate (5.9) on
supp(1 — n) follows from (5.8).

To prove (5.7) on supp 7, we will use the identity

(ro + prp2)(ro — pip2) = 5 — pips = 2° (ro(e1pn + eapa) — Z°e1pneaps) =: wi(warg — 2°)



22 G. VODEV

which we rewrite in the form

(ro — p1p2) " = wiF(ro + p1p2)F (warg — 22) 7K.

By induction, in the same way as above, one can easily prove the estimates

%05 (warg — 2%) K| < Oy q,507F 1017171

on suppn. On the other hand, by (2.3) we have 3?,3?,(7”0 + p1p2)* = OO~ 1=181) on suppn.
Therefore (5.7) on suppn follows from the above estimates. The estimates (5.8) and (5.9) on
supp 7 can be obtained in the same way, using (2.3) and the identities

k

(p1 +p2) " = wg_k(m —pa)¥, w3 =22 (e1 1 — eapa),

1

(p1p2) o1+ p2) = wit (1Y)

We rewrite the identity (5.6) in the form
(5.10) TT = ()71,

where

Ty = (&) (o1 + p2)(I + (prp2 = 10) "' B).
It follows from Lemma 5.2 together with (2.3) that

Ty € S;1(6) + 50, C 9—159/2%,

TeS1%0)+ S5t 0712S )

as long as @ > h!/2=¢. Therefore, by Proposition 2.3 we get
(5.11) 10DA(T1) 13910 S 077

while Proposition 2.2 yields
(5.12) 10D (T T) — Opy(T1) Oy ()l 0 S 1072,

~

Combining (5.10), (5.11) and (5.12) leads to

10p, (&)™) Fllo S PO~ Flle + 0PA(T1)OP4(T) f 1340

(5.13) SO~ fllaey + 07 HIOp(T) f g

where f = v x f. Since the norms [|Op, ((€) ™) fllso. |/l and |[fll%_, are equivalent, by
(5.5) and (5.13) we obtain

(5.14) Il S PO Fllay-

Thus, if h0~7/? < 1 we deduce from (5.14) that f = 0. In other words, the region he~? <1
is free of transmission eigenvalues. It is easy to see that this region is equivalent to (5.4) on the
A— plane. a
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