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We introduce an analog of the Dirichlet-to-Neumann map for the Maxwell equation in a bounded domain. We show that it can be approximated by a pseudodifferential operator on the boundary with a matrix-valued symbol and we compute the principal symbol. As a consequence, we obtain a parabolic region free of the transmission eigenvalues associated to the Maxwell equation.

Introduction

Let Ω ⊂ R 3 be a bounded, connected domain with a C ∞ smooth boundary Γ = ∂Ω, and consider the Maxwell equation

(1.1)      ∇ × E = iλµ(x)H in Ω, ∇ × H = -iλε(x)E in Ω, ν × E = f on Γ,
where λ ∈ C, |λ| ≫ 1, ν = (ν 1 , ν 2 , ν 3 ) denotes the Euclidean unit normal to Γ, µ, ε ∈ C ∞ (Ω) are scalar-valued strictly positive functions. The functions E = (E 1 , E 2 , E 3 ) ∈ C 3 and B = (B 1 , B 2 , B 3 ) ∈ C 3 denote the electric and magnetic fields, respectively. The equation (1.1) describes the propagation of electromagnetic waves in Ω with a frequency λ moving with a speed (εµ) -1/2 . Recall that given two vectors a = (a 1 , a 2 , a 3 

× E = (∂ x 2 E 3 -∂ x 3 E 2 , ∂ x 3 E 1 -∂ x 1 E 3 , ∂ x 1 E 2 -∂ x 2 E 1
) and similarly for ∇ × H. Throughout this paper, given s ∈ R we will denote by H s (Γ) the Sobolev space H s (Γ; C 3 ). Introduce the spaces H t s (Γ) := {f ∈ H s (Γ) : ν(x), f (x) = 0}, s = 0, 1, where ν, f := ν 1 f 1 + ν 2 f 2 + ν 3 f 3 . In view of Theorem 3.1 we can introduce the operator N (λ) : H t 1 (Γ) → H t 0 (Γ) defined by N (λ)f = ν × H| Γ , which can be considered as an analog of the Dirichlet-to-Neumann map. Set h = |Re λ| -1 if |Re λ| ≥ |Im λ| and h = |Im λ| -1 if |Im λ| ≥ |Re λ|, z = hλ and θ = |Im z| ≤ 1. Clearly, in the first case we have z = 1 + iθ, while in the second case we have θ = 1. We would like to approximate the operator N (λ) by a matrix-valued h -ΨDO. It is proved in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF] that the 1 Dirichlet-to-Neumann operator associated to the Helmholtz equation with refraction index εµ can be approximated by Op h (ρ), where ρ(x ′ , ξ ′ , z) = -r 0 (x ′ , ξ ′ ) + z 2 (ε 0 µ 0 )(x ′ ), Im ρ > 0, (x ′ , ξ ′ ) ∈ T * Γ, where ε 0 = ε| Γ , µ 0 = µ| Γ , and r 0 ≥ 0 is the principal symbol of the operator -∆ Γ . Here ∆ Γ denotes the negative Laplace-Beltrami operator on Γ with Riemannian metric induced by the Euclidean one. It is well-known (see Section 2) that r 0 = β, β , where β = β(x ′ , ξ ′ ) ∈ R 3 is a vector-valued homogeneos polynomial of order one in ξ ′ , which is perpendicular to the normal ν(x ′ ), that is, β, ν = 0. Set m = (zµ 0 ) -1 ρI + ρ -1 B , where I is the identity 3 × 3 matrix, while the matrix B is defined by Bg = β, g β, g ∈ R 3 .

Our main result is the following Theorem 1.1. Let θ ≥ h 2/5-ǫ , where 0 < ǫ ≪ 1 is arbitrary. Then for every f ∈ H t 1 we have the estimate

(1.2) N (λ)f -Op h (m + h m)(ν × f ) H 0 hθ -5/2 f H -1
where m ∈ C ∞ (T * Γ) is a matrix-valued function independent of h, belonging to the space S 0 0,1 uniformly in z and such that µ 0 m is independent of ε and µ.

Hereafter the Sobolev spaces are equipped with the h-semiclassical norm. Clearly, the estimate (1.2) provides a good approximation of the operator N (λ) as long as θ ≥ h 2/5-ǫ . It also implies the following improvement upon the estimate (3.4).

Corollary 1.2. Let θ ≥ h 2/5-ǫ . Then for every f ∈ H t 1 we have the estimate

(1.3) N (λ)f H 0 θ -1/2 f H 1 .
Note that analog estimates for the Dirichlet-to-Neumann operator associated to the Helmholtz equation are proved in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF] for θ ≥ h 1/2-ǫ , in [START_REF] Vodev | Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map[END_REF] for θ ≥ h 2/3-ǫ and in [START_REF] Vodev | Transmision eigenvalues for strictly concave domains[END_REF] for θ ≥ h 1-ǫ , 0 < ǫ ≪ 1 being arbitrary. In the last case it is assumed that the boundary is strictly concave. In all these papers the approximation of the Dirichlet-to-Neumann map is used to get parabolic regions free of transmission eigenvalues.

To prove Theorem 1.1 we build in Section 4 a semiclassical parametrix near the boundary for the solutions to the equation (1.1). It takes the form of oscilatory integrals with a complexvalued phase function ϕ satisfying the eikonal equation mod O(x N 1 ) (see (4.5)), where N ≫ 1 is arbitrary and 0 < x 1 ≪ 1 denotes the normal variable near the boundary, that is, the distance to Γ. The amplitudes satisfy some kind of transport equations mod O(x N 1 ) (see (4.2)). Thus the parametrix satisfies the Maxwell equation modulo an error term which is given by oscilatory integrals with amplitudes of the form O(x N 1 ) + O(h N ). To estimate the difference between the exact solution to equation (1.1) and its parametrix we use the a priori estimate (3.5). Note that there exists a different approach suggested in [START_REF] Colombini | Eigenvalues for the Maxwell's equations with dissipative boundary conditions[END_REF] which could probably lead to (1.2) as well. It consists of using the results in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF] to approximate the normal derivatives -ih∂ ν E| Γ and -ih∂ ν H| Γ by Op h (ρ)E| Γ and Op h (ρ)H| Γ . Thus the equation (1.1) can be reduced to a system of h -ΨDOs on Γ by restricting the equations in (1.1) on the boundary.

In analogy with the Helmholtz equation, Theorem 1.1 can be used to study the location on the complex plane of the transmission eigenvalues associated to the Maxwell equation (see Section 5). It can also be used to study the complex eigenvalues associated to the Maxwell equation with dissipative boundary conditions like that one considered in [START_REF] Colombini | Eigenvalues for the Maxwell's equations with dissipative boundary conditions[END_REF].

Preliminaries

We will first introduce the spaces of symbols which will play an important role in our analysis and will recall some basic properties of the h -ΨDOs. Given k ∈ R, δ 1 , δ 2 ≥ 0, we denote by S k δ 1 ,δ 2 the space of all functions a ∈ C ∞ (T * Γ), which may depend on the semiclassical parameter h, satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ , h) ≤ C α,β ξ ′ k-δ 1 |α|-δ 2 |β|
for all multi-indices α and β, with constants C α,β independent of h. More generally, given a function ω > 0 on T * Γ, we denote by S k δ 1 ,δ 2 (ω) the space of all functions a ∈ C ∞ (T * Γ), which may depend on the semiclassical parameter h, satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ , h) ≤ C α,β ω k-δ 1 |α|-δ 2 |β|
for all multi-indices α and β, with constants C α,β independent of h and ω.

Thus S k δ 1 ,δ 2 = S k δ 1 ,δ 2 ( ξ ′
). Given a matrix-valued symbol a, we will say that a ∈ S k δ 1 ,δ 2 if all entries of a belong to S k δ 1 ,δ 2 . Also, given k ∈ R, 0 ≤ δ < 1/2, we denote by S k δ the space of all functions a ∈ C ∞ (T * Γ), which may depend on the semiclassical parameter h, satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ , h) ≤ C α,β h -δ(|α|+|β|) ξ ′ k-|β|
for all multi-indices α and β, with constants C α,β independent of h. Again, given a matrixvalued symbol a, we will say that a ∈ S k δ if all entries of a belong to S k δ . The h -ΨDO with a symbol a is defined by

(Op h (a)f ) (x ′ ) = (2πh) -2 e -i h x ′ -y ′ ,ξ ′ a(x ′ , ξ ′ , h)f (y ′ )dξ ′ dy ′ . If a ∈ S k 0,1 , then the operator Op h (a) : H k h (Γ) → L 2 (Γ) is bounded uniformly in h, where u H k h (Γ) := Op h ( ξ ′ k )u L 2 (Γ)
.

It is also well-known (e.g. see Section 7 of [START_REF] Dimassi | Spectral Asymptotics in Semi-classical Limit[END_REF]) that, if a ∈ S 0 δ , 0 ≤ δ < 1/2, then Op h (a) :

H s h (Γ) → H s h (Γ) is bounded uniformly in h.
More generally, we have the following (see Section 2 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]):

Proposition 2.1. Let h ℓ ± a ± ∈ S ±k δ , 0 ≤ δ < 1/2
, where ℓ ± ≥ 0 are some numbers. Assume in addition that the functions a ± satisfy (2.1)

∂ α 1 x ′ ∂ β 1 ξ ′ a + (x ′ , ξ ′ )∂ α 2 x ′ ∂ β 2 ξ ′ a -(x ′ , ξ ′ ) ≤ κC α 1 ,β 1 ,α 2 ,β 2 h -(|α 1 |+|β 1 |+|α 2 |+|β 2 |)/2 for all multi-indices α 1 , β 1 , α 2 , β 2 such that |α j | + |β j | ≥ 1, j = 1, 2, with constants C α 1 ,β 1 ,α 2 ,β 2 > 0 independent of h and κ. Then we have (2.2) Op h (a + )Op h (a -) -Op h (a + a -) L 2 (Γ)→L 2 (Γ) h + κ.
Let η ∈ C ∞ (T * Γ) be such that η = 1 for r 0 ≤ C 0 , η = 0 for r 0 ≥ 2C 0 , where C 0 > 0 does not depend on h. It is easy to see (e.g. see Lemma 3.1 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]) that taking C 0 big enough we can arrange

C 1 θ 1/2 ≤ |ρ| ≤ C 2 , Im ρ ≥ C 3 |θ||ρ| -1 ≥ C 4 |θ| on supp η, and |ρ| ≥ Im ρ ≥ C 5 |ξ ′ |
on supp(1η) with some constants C j > 0. We will say that a function a

∈ C ∞ (T * Γ) belongs to S k 1 δ 1 ,δ 2 (ω 1 ) + S k 2 δ 3 ,δ 4 (ω 2 ) if ηa ∈ S k 1 δ 1 ,δ 2 (ω 1 ) and (1 -η)a ∈ S k 2 δ 3 ,δ 4 (ω 2 )
. It is shown in Section 3 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF] (see Lemma 3.2 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]) that

(2.3) ρ k ∈ S k 2,2 (|ρ|) + S k 0,1 (|ρ|) ⊂ S -k/2 1,1 (θ) + S k 0,1 ⊂ θ -k/2 S -N 1/2-ǫ + S k 0,1 ⊂ θ -k/2 S k 1/2-ǫ
as long as θ ≥ h 1/2-ǫ , uniformly in θ and h, where k = 0 if k ≥ 0, k = -k if k ≤ 0 and N ≫ 1 is arbitrary. Proposition 2.1 implies the following Proposition 2.2. Let h 1/2-ǫ ≤ θ ± ≤ 1, ℓ ± ≥ 0, and let

a ± ∈ S -ℓ ± 1,1 (θ ± ) + S k± 0,1 ⊂ θ -ℓ ± ± S k ± 1/2-ǫ . Then we have (2.4) Op h (a + )Op h (a -) -Op h (a + a -) H k h (Γ)→L 2 (Γ) hθ -1-ℓ + + θ -1-ℓ - -
,

where k = k + + k --1. Proof. Let η 0 , η 1 , η 2 ∈ C ∞ 0 (T * Γ) be such that η 1 = 1 on supp η, η 2 = 1 on supp η 1 , η = 1 on supp η 0 . Then we have Op h (a + a -) -Op h (ηa + η 1 a -)Op h (η 2 ) -Op h ((1 -η)a + (1 -η 0 )a -) = Op h (ηa + η 1 a -)Op h (1 -η 2 ) = O(h ∞ ) : H k h (Γ) → L 2 (Γ), Op h (a + )Op h (a -) -Op h (ηa + )Op h (η 1 a -)Op h (η 2 ) -Op h ((1 -η)a + )Op h ((1 -η 0 )a -) = Op h (ηa + )Op h ((1 -η 1 )a -) + Op h ((1 -η)a + )Op h (η 0 a -) +Op h (ηa + )Op h (η 1 a -)Op h (1 -η 2 ) = O(h ∞ ) : H k h (Γ) → L 2 (Γ). By assumption, ηa + ∈ S -ℓ + 1,1 (θ + ), η 1 a -∈ S -ℓ - 1,1 (θ -)
, which implies that the functions ηa + and η 1 a -satisfy the condition (2.1) with κ = hθ

-1-ℓ + + θ -1-ℓ - -
. Therefore, by (2.2) we have

Op h (ηa + η 1 a -) -Op h (ηa + )Op h (η 1 a -) Op h (η 2 )f L 2 hθ -1-ℓ + + θ -1-ℓ - - Op h (η 2 )f L 2 hθ -1-ℓ + + θ -1-ℓ - - f H k h . On the other hand, (1 -η)a + ∈ S k + 0,1 , (1 -η 0 )a -∈ S k - 0,1 . The standard pseudodifferential calculas gives that, mod O(h ∞ ), the operator Op h ((1 -η)a + (1 -η 0 )a -) -Op h ((1 -η)a + )Op h ((1 -η 0 )a -) is an h -ΨDO with symbol hω, ω ∈ S k 0,1 uniformly in h, where k = k + + k --1. Therefore, Op h ((1 -η)a + (1 -η 0 )a -)f -Op h ((1 -η)a + )Op h ((1 -η 0 )a -)f L 2 h f H k h .
Clearly, (2.4) follows from the above estimates. ✷

We also have

Proposition 2.3. Let h 1/2-ǫ ≤ θ ≤ 1, ℓ ≥ 0, and let a ∈ S -ℓ 1,1 (θ) + S k 0,1 ⊂ θ -ℓ S k 1/2-ǫ . Then we have (2.5) Op h (a) H k h (Γ)→L 2 (Γ) θ -ℓ .
Note that these propositions remain valid for matrix-valued symbols. We will next write the gradient ∇ in the local normal geodesic coordinates near the boundary (see also Section 2 of [START_REF] Colombini | Eigenvalues for the Maxwell's equations with dissipative boundary conditions[END_REF]). Fix a point y 0 ∈ Γ and let U ⊂ R 3 be a small neighbourhood of y 0 . Let U 0 be a small neighbourhood of x ′ = 0 in R 2 and let x ′ = (x 2 , x 3 ) be local coordinates in U 0 . Then there exists a diffeomorphism s : U 0 → U ∩ Γ. Let y = (y 1 , y 2 , y 3 ) ∈ U ∩ Ω, denote by y ′ ∈ Γ the closest point from y to Γ and let ν ′ (y ′ ) be the unit inner normal to Γ at y ′ . Set

x 1 = dist(y, Γ), x ′ = s -1 (y ′ ) and ν(x ′ ) = ν ′ (s(x ′ )) = (ν 1 (x ′ ), ν 2 (x ′ ), ν 3 (x ′ )). We have y = s(x ′ ) + x 1 ν(x ′ ) and hence ∂ ∂y j = ν j (x ′ ) ∂ ∂x 1 + 3 k=2 α j,k (x) ∂ ∂x k ,
where α j,k = ∂x k ∂y j , provided x 1 is small enough. Note that the matrix ∂x k ∂y j , 1 ≤ k, j ≤ 3, is the inverse of ∂y k ∂x j , 1 ≤ k, j ≤ 3. In particular, this implies the identities

3 j=1 ν j (x ′ )α j,k (x) = 0, k = 2, 3.
Set

ζ 1 = (1, 0, 0), ζ 2 = (0, 1, 0), ζ 3 = (0, 0, 1)
. Clearly, we can write the Euclidean gradient

∇ = (∂ y 1 , ∂ y 2 , ∂ y 3 ) in the coordinates x = (x 1 , x ′ ) as ∇ = γ(x)∇ x = ν(x ′ ) ∂ ∂x 1 + 3 k=2 γ(x)ζ k ∂ ∂x k ,
where γ is a smooth matrix-valued function such that γ(x)

ζ 1 = ν(x ′ ), γ(x)ζ k = (α 1,k , α 2,k , α 3,k ), k = 2, 3.
Notice that the above identities can be rewritten in the form

(2.6) ν(x ′ ), γ(x)ζ k = 0, k = 2, 3.
Let (ξ 1 , ξ ′ ), ξ ′ = (ξ 2 , ξ 3 ), be the dual variable of (x 1 , x ′ ). Then the symbol of the operator -i∇| x 1 =0 in the coordinates (x, ξ) takes the form ξ 1 ν(x ′ ) + β(x ′ , ξ ′ ), where

β(x ′ , ξ ′ ) = 3 k=2 ξ k γ(0, x ′ )ζ k .
Thus we get that the principal symbol of -∆| x 1 =0 is equal to

ξ 2 1 + β(x ′ , ξ ′ ), β(x ′ , ξ ′
) . This implies that the principal symbol, r 0 (x ′ , ξ ′ ), of the positive Laplace-Beltrami operator on Γ is equal to

β(x ′ , ξ ′ ), β(x ′ , ξ ′ ) . Note also that (2.6) implies the identity (2.7) ν(x ′ ), β(x ′ , ξ ′ ) = 0 for all (x ′ , ξ ′ ).
In what follows in this section we will solve the linear system (2.8)

     ψ 0 × a -zµ 0 b = a ♯ , ψ 0 × b + zε 0 a = b ♯ , ν × a = g,
where ψ 0 = ρνβ and g, ν = 0. To this end, we rewrite it in the form (2.9)

     β × a + zµ 0 b = ρg -a ♯ , ρν × b -β × b + zε 0 a = b ♯ , ν × a = g.
Using the identity -β × (β × a) = β, β aβ, a β, we obtain

zρµ 0 ν × b = zµ 0 β × b -z 2 ε 0 µ 0 a + zµ 0 b ♯ = -β × (β × a) -z 2 ε 0 µ 0 a + β × (ρg -a ♯ ) + zµ 0 b ♯ = ( β, β -z 2 ε 0 µ 0 )a -β, a β + β × (ρg -a ♯ ) + zµ 0 b ♯ = (r 0 -z 2 ε 0 µ 0 )a -β, a β + β × (ρg -a ♯ ) + zµ 0 b ♯ = -ρ 2 a -β, a β + β × (ρg -a ♯ ) + zµ 0 b ♯ .
Taking the scalar product of this identity with ν and using that ν, β = 0 and ν, ν × b = 0, we get

ν, a = ρ -1 ν, β × g -ρ -2 β × a ♯ , ν + zµ 0 ρ -2 b ♯ , ν .
On the other hand,

a t = a -ν, a ν satisfies ν × a t = ν × a = g. Hence, ν × g = ν × (ν × a t ) = -ν, ν a t + ν, a t ν = -a t .
Thus we find

a = -ν × g + ρ -1 ν, β × g ν -ρ -2 β × a ♯ , ν ν + zµ 0 ρ -2 b ♯ , ν ν, zµ 0 b = ρg + β × (ν × g) -ρ -1 ν, β × g β × ν -a ♯ + ρ -2 β × a ♯ , ν β × ν -zµ 0 ρ -2 b ♯ , ν β × ν, zµ 0 ν × b = -ρa + β × g + ρ -1 β, ν × g β -ρ -1 β × a ♯ + zρ -1 µ 0 b ♯ = ρν × g + β × g -ν, β × g ν + ρ -1 β, ν × g β -ρ -1 β × a ♯ + ρ -1 β × a ♯ , ν ν + zρ -1 µ 0 b ♯ -zρ -1 µ 0 b ♯ , ν ν.
Since ν, g = 0 and ν, β = 0, we have

β × g -ν, β × g ν = 0.
Thus we obtain

zµ 0 ν × b = ρν × g + ρ -1 β, ν × g β -ρ -1 β × a ♯ + ρ -1 β × a ♯ , ν ν + zρ -1 µ 0 b ♯ -zρ -1 µ 0 b ♯ , ν ν.

A priori estimates

Let f ∈ H t 1 and let the functions

U 1 , U 2 ∈ L 2 (Ω; C 3 ) be such that div U 1 , div U 2 ∈ L 2 (Ω), u 1 := ν, U 1 | Γ ∈ L 2 (Γ).
In this section we will prove a priori estimates for the restrictions on the boundary of the solutions E and H to the Maxwell equation

(3.1)      h∇ × E = izµ(x)H + U 1 in Ω, h∇ × H = -izε(x)E + U 2 in Ω, ν × E = f on Γ.
Since ∇, ∇ × E = 0, the solutions to (3.1) must satisfy the equation

(3.2) ∇, E = (izε) -1 ∇, U 2 -ε -1 ∇ε, E in Ω, ∇, H = -(izµ) -1 ∇, U 1 -µ -1 ∇µ, H in Ω.
To simplify the notations, in what follows we will denote by

• (resp. • 0 ) the norm on L 2 (Ω; C 3 ) (resp. L 2 (Γ; C 3 )) or on L 2 (Ω) (resp. L 2 (Γ)). We also set Y = (E, H), U = (U 1 , U 2 ),
and define the norms Y , U and div U by

Y 2 = E 2 + H 2 , U 2 = U 1 2 + U 2 2 , div U 2 = div U 1 2 + div U 2 2 .
By the Gauss divergence theorem we have the identity

(3.3) Ω E, ∇ × H - Ω H, ∇ × E = Γ H × E, ν .
We will use (3.3) to prove the following Theorem 3.1. Let θ > 0 and 0 < h ≪ 1. Suppose that E and H satisfy equation (3.1) with

U 1 = U 2 = 0. Then the functions f = E| Γ , g = H| Γ satisfy the estimate (3.4) f H 0 + g H 0 θ -1 f H 1 .
Suppose that E and H satisfy equation (3.1) with f = 0. Then the functions f = E| Γ , g = H| Γ satisfy the estimate

(3.5) f H 0 + g H 0 u 1 0 + h -1/2 θ -1 U + h 1/2 div U .
Proof. We decompose the vector-valued functions f and g as f = f t + f n , g = g t + g n , where

f n = ν, f ν, g n = ν, g ν. Clearly, we have the idenities f t , f n = g t , g n = 0 and ν ×f = ν ×f t , ν × g = ν × g t , f t = -ν × (ν × f ), g t = -ν × (ν × g). Applying (3.3) to the solutions of equation (3.1) leads to the idenity iz Ω ε|E| 2 -iz Ω µ|H| 2 = Ω H, U 1 - Ω E, U 2 + h Γ g t × f t , ν .
Taking the real part yields the estimate

(3.6) Y 2 θ -2 U 2 + hθ -1 g t 0 f t 0 .
By equation (3.2) we also have

(3.7) | ∇, E | + | ∇, H | |div U | + |Y |.
Restricting the first equation of (3.1) on Γ and taking the scalar product with ν leads to the estimate

(3.8) g n 0 = ν, g 0 ν, h∇ × E | Γ 0 + u 1 0 .
In the normal coordinates (x 1 , x ′ ), x ′ ∈ Γ, the gradient takes the form ∇ = γ ν∂ x 1 + γ ∇ x ′ , where ν = (1, 0, 0) and ∇ x ′ = (0, ∇ x ′ ). So, we have

∇| x 1 =0 = γ 0 ν∂ x 1 + γ 0 ∇ x ′ = ν∂ x 1 + γ 0 ∇ x ′ , γ 0 (x ′ ) = γ(0, x ′ ). Hence ν, h∇ × E | Γ = h ν, ν × ∂ x 1 E| x 1 =0 + ν, hγ 0 ∇ x ′ × E| x 1 =0 = ν, hγ 0 ∇ x ′ × f = ν, hγ 0 ∇ x ′ × f t + h ν, γ 0 ∇ x ′ × f n . On the other hand, ν, γ 0 ∇ x ′ × f n = ν, f ν, γ 0 ∇ x ′ × ν + ν, γ 0 ∇ x ′ ( ν, f ) × ν = ν, f ν, γ 0 ∇ x ′ × ν . Therefore (3.8) gives (3.9) g n 0 f H 1 + u 1 0 + h f 0 .
We will now bound the norms of f n and g t . Let the function φ 0 ∈ C ∞ 0 (R) be such that φ 0 (σ) = 1 for |σ| ≤ 1, φ 0 (σ) = 0 for |σ| ≥ 2, and set φ(σ) = φ 0 (σ/δ), where 0 < δ ≪ 1. Then the functions

Y ♭ := (E ♭ , H ♭ ) = (φ(x 1 )E, φ(x 1 )H) satisfy equation (3.10) h(γ ν∂ x 1 + γ ∇ x ′ ) × E ♭ = izµH ♭ + U ♭ 1 in Ω, h(γ ν∂ x 1 + γ ∇ x ′ ) × H ♭ = -izεE ♭ + U ♭ 2 in Ω, where U ♭ := (U ♭ 1 , U ♭ 2 ) satisfy U ♭ 0 U 0 + h Y 0 . By (3.7) the functions p = γ ν, ∂ x 1 E ♭ + γ ∇ x ′ , E ♭ , q = γ ν, ∂ x 1 H ♭ + γ ∇ x ′ , H ♭ , satisfy (3.11) |p| + |q| |div U | + |Y |. Denote by •, • 0 the scalar product in L 2 (Γ; C 3 ) or in L 2 (Γ), that is, a, b 0 = Γ a, b if a, b ∈ L 2 (Γ; C 3 ), a, b 0 = Γ ab if a, b ∈ L 2 (Γ).
Introduce the functions

F 1 (x 1 ) = γ ν × E ♭ 2 0 -γ ν, E ♭ 2 0 , F 2 (x 1 ) = γ ν × H ♭ 2 0 -γ ν, H ♭ 2 0 . Since ν = γ 0 ν = γ ν| x 1 =0 , we have F 1 (0) = f t 2 0 -f n 2 0 , F 2 (0) = g t 2 0 -g n 2 0
. Using equation (3.10) we will calculate the first derivatives

F ′ j (x 1 ) = dF j dx 1 . In view of (3.11), we get F ′ 1 (x 1 ) = 2Re γ ν × ∂ x 1 E ♭ , γ ν × E ♭ 0 + 2Re γ ′ ν × E ♭ , γ ν × E ♭ 0 -2Re γ ν, ∂ x 1 E ♭ , γ ν, E ♭ 0 -2Re γ ′ ν, E ♭ , γ ν, E ♭ 0 = -2Re γ ∇ x ′ × E ♭ , γ ν × E ♭ 0 + 2h -1 Re (izµH ♭ + U ♭ 1 ), γ ν × E ♭ 0 +2Re γ ∇ x ′ , E ♭ , γ ν, E ♭ 0 -2Re p, γ ν, E ♭ 0 + O E ♭ 2 0 = -2Re γ ∇ x ′ × E ♭ , γ ν × E ♭ 0 + 2Re γ ∇ x ′ , E ♭ , γ ν, E ♭ 0 + R with a remainder term R satisfying the estimate |R| h -1 Y 2 0 + h -1 U 2 0 + E 0 div U 1 0
. Clearly, we have a similar expression for F ′ 2 (x 1 ) as well. Let us see now that

(3.12) Re γ ∇ x ′ × E ♭ , γ ν × E ♭ 0 -Re γ ∇ x ′ , E ♭ , γ ν, E ♭ 0 = O E ♭ 2 0 .
It suffices to check (3.12) at a symbol level. Let ξ ′ = (0, ξ ′ ) denote the symbol of -i ∇ x ′ . We have the identity

γ ξ ′ × E ♭ , γ ν × E ♭ = γ ξ ′ , γ ν E ♭ , E ♭ -E ♭ , γ ν γ ξ ′ , E ♭ = -E ♭ , γ ν γ ξ ′ , E ♭
where we have used that γ ξ ′ , γ ν = 0 (see (2.6)). Hence

Im γ ξ ′ × E ♭ , γ ν × E ♭ -Im γ ξ ′ , E ♭ , γ ν, E ♭ = 0
which clearly implies (3.12). Thus we conclude

(3.13) F ′ 1 (x 1 ) + F ′ 2 (x 1 ) h -1 Y 2 0 + h -1 U 2 0 + h div U 2 0 . Since F j (0) = - 2δ 0 F ′ j (x 1 )dx 1 ,
we deduce from (3.13),

(3.14) |F 1 (0)| + |F 2 (0)| h -1 Y 2 + h -1 U 2 + h div U 2 .
By (3.6) and (3.14),

f n 2 0 + g t 2 0 f t 2 0 + g n 2 0 + θ -1 f t 0 g t 0 + h -1 θ -2 U 2 + h div U 2 , which implies (3.15) f n 2 0 + g t 2 0 θ -2 f t 2 0 + g n 2 0 + h -1 θ -2 U 2 + h div U 2 .
Clearly, the estimates (3.4) and (3.5) follow from (3.9) and (3.15) by taking h small enough. ✷

Parametrix construction

We keep the notations from the previous sections and will suppose that θ ≥ h 2/5-ǫ , 0 < ǫ ≪ 1. Let (x 1 , x ′ ) be the local normal geodesic coordinates introduced in Section 2. Clearly, it suffices to build the parametrix locally. Then the global parametrix is obtained by using a suitable partition of the unity on Γ and summing up the corresponding local parametrices. We will be looking for a local parametrix of the solution to equation (1.1) in the form

E = (2πh) -2 e i h ( y ′ ,ξ ′ +ϕ(x,ξ ′ ,z)) χ(x, ξ ′ )a(x, y ′ , ξ ′ , z, h)dξ ′ dy ′ , H = (2πh) -2 e i h ( y ′ ,ξ ′ +ϕ(x,ξ ′ ,z)) χ(x, ξ ′ )b(x, y ′ , ξ ′ , z, h)dξ ′ dy ′ , where χ = φ 0 (x 1 /δ)φ 0 (x 1 /|ρ| 3 δ),
the function φ 0 being as in the previous section and 0 < δ ≪ 1 is a parameter independent of h and θ, which is fixed in Lemma 4.1. We require that E satisfies the boundary condition ν × E = f on x 1 = 0, where f ∈ H t 1 . The phase function is of the form

ϕ = N -1 k=0 x k 1 ϕ k , ϕ 0 = -x ′ , ξ ′ , ϕ 1 = ρ,
where N ≫ 1 is an arbitrary integer and the functions ϕ k , k ≥ 2, are determined from the eikonal equation (4.5). The amplitudes are of the form

a = N -1 j=0 h j a j , b = N -1 j=0 h j b j .
In what follows we will determine the functions a j and b j in terms of f so that ( E, H) satisfy the Maxwell equation modulo an error term. We have

e -iϕ/h h∇ × (e iϕ/h a) -izµe iϕ/h b = i(γ∇ x ϕ) × a -izµb + h(γ∇ x ) × a = N -1 j=0 h j (i(γ∇ x ϕ) × a j -izµb j + (γ∇ x ) × a j-1 ) + h N (γ∇ x ) × a N -1 , e -iϕ/h h∇ × (e iϕ/h b) + izεe iϕ/h a = i(γ∇ x ϕ) × b + izεa + h(γ∇ x ) × b = N -1 j=0 h j (i(γ∇ x ϕ) × b j + izεa j + (γ∇ x ) × b j-1 ) + h N (γ∇ x ) × b N -1 ,
where a -1 = b -1 = 0. We let now the functions a j and b j satisfy the equations (4.1)

     (γ∇ x ϕ) × a 0 -zµb 0 = x N 1 Ψ 0 , (γ∇ x ϕ) × b 0 + zεa 0 = x N 1 Ψ 0 , ν × a 0 = g on x 1 = 0, where ν = ν(x ′ ) = (ν 1 (x ′ ), ν 2 (x ′ ), ν 3 (x ′ )) is the unit normal vector at x ′ ∈ Γ, g = -ν(x ′ ) × (ν(y ′ ) × f (y ′ )) = f (y ′ ) -(ν(x ′ ) -ν(y ′ )) × (ν(y ′ ) × f (y ′ )), and (4.2)      (γ∇ x ϕ) × a j -zµb j = i(γ∇ x ) × a j-1 + x N 1 Ψ j , (γ∇ x ϕ) × b j + zεa j = i(γ∇ x ) × b j-1 + x N 1 Ψ j , ν × a j = 0 on x 1 = 0, for 1 ≤ j ≤ N -1.
We will be looking for solutions of the form

a j = N -1 k=0 x k 1 a j,k , b j = N -1 k=0 x k 1 b j,k .
Let us expand the functions µ, ε and γ as

µ(x) = N -1 k=0 x k 1 µ k (x ′ ) + x N 1 M(x), ε(x) = N -1 k=0 x k 1 ε k (x ′ ) + x N 1 E(x), γ(x) = N -1 k=0 x k 1 γ k (x ′ ) + x N 1 Θ(x).
Observe that

∇ x ϕ = N -1 k=0 x k 1 e k with e 0 = (ρ, -ξ 2 , -ξ 3 ), e k = (ϕ k+1 , ∂ x 2 ϕ k , ∂ x 3 ϕ k ), k ≥ 1.
Hence

γ∇ x ϕ = N -1 k=0 x k 1 ψ k + x N 1 Θ,
where

ψ 0 = γ 0 e 0 = ρν -β, ψ k = k ℓ=0 γ ℓ e k-ℓ , k ≥ 1, Θ = 2N -2 k=N x k-N 1 ψ k + Θ(∇ x ϕ).
We will first solve equation (4.1). We let the functions a 0,0 and b 0,0 satisfy the equation

(4.3)      ψ 0 × a 0,0 -zµ 0 b 0,0 = 0, ψ 0 × b 0,0 + zε 0 a 0,0 = 0, ν × a 0,0 = g.
The equation (4.3) is solved in Section 2 and we have

a 0,0 = -ν × g + ρ -1 ν, β × g ν, b 0,0 = ρ(zµ 0 ) -1 g + (zµ 0 ) -1 β × (ν × g) -(zµ 0 ) -1 ρ -1 ν, β × g β × ν, (4.4) zµ 0 ν × b 0,0 = ρν × g + ρ -1 β, ν × g β.
Next we let ϕ satisfy the eikonal equation mod O(x N 1 ): (4.5) γ∇ x ϕ, γ∇ x ϕz 2 ε 0 µ 0 = x N 1 Φ. This equation is solved in Section 4 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]. The functions ϕ k , k ≥ 2, are determined uniquely and have the following properties (see Lemma 4.1 of [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF]): Lemma 4.1. We have

(4.6) ϕ k ∈ S 4-3k 2,2 (|ρ|) + S 1 0,1 (|ρ|), k ≥ 1, (4.7) ∂ k x 1 Φ ∈ S 2-3N -3k 2,2 (|ρ|) + S 2 0,1 (|ρ|), k ≥ 0, uniformly in z and 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }. Moreover, if δ > 0 is small enough, independent of ρ, we have (4.8) Im ϕ ≥ x 1 Im ρ/2 for 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }.
Furthermore, there are functions ϕ ♭ k ∈ S 1 0,1 , independent of ε and µ, such that

(1 -η)ϕ k -ϕ ♭ k ∈ S -1 0,1 . Set ϕ = N -1 k=1 x k 1 ϕ k .
Using the above lemma we will prove the following Lemma 4.2. There exists a constant C > 0 such that we have the estimates

(4.9) ∂ α x ′ ∂ β ξ ′ e i ϕ/h ≤ C α,β θ -|α|-|β| e -Cx 1 θ/h on supp η, C α,β |ξ ′ | -|β| e -Cx 1 |ξ ′ |/h on supp(1 -η),
for 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 } and all multi-indices α and β with constants C α,β > 0 independent of x 1 , θ, z and h.

Proof. Let us see that the functions

c α,β = e -i ϕ/h ∂ α x ′ ∂ β ξ ′ e i ϕ/h , |α| + |β| ≥ 1, satisfy the bounds (4.10) ∂ α ′ x ′ ∂ β ′ ξ ′ c α,β |α|+|β|+|α ′ |+|β ′ | j=1 x 1 h|ρ| j |ρ| -2(|α|+|β|+|α ′ |+|β ′ |-j)
on supp η, and

(4.11) ∂ α ′ x ′ ∂ β ′ ξ ′ c α,β |α|+|β|+|α ′ |+|β ′ | j=1 x 1 h j |ξ ′ | -(|β|+|β ′ |-j)
on supp(1η), for all multi-indices α ′ and β ′ . We will proceed by induction in |α| + |β|. Let α 1 and β 1 be multi-indices such that |α 1 | + |β 1 | = 1 and observe that

c α+α 1 ,β+β 1 = ∂ α 1 x ′ ∂ β 1 ξ ′ c α,β + ih -1 c α,β ∂ α 1 x ′ ∂ β 1 ξ ′ ϕ.
More generally, we have (4.12)

∂ α ′ x ′ ∂ β ′ ξ ′ c α+α 1 ,β+β 1 = ∂ α 1 +α ′ x ′ ∂ β 1 +β ′ ξ ′ c α,β + ih -1 ∂ α ′ x ′ ∂ β ′ ξ ′ c α,β ∂ α 1 x ′ ∂ β 1 ξ ′ ϕ .

By Lemma 4.1 we have (4.13)

x -1 1 ϕ ∈ S 1 2,2 (|ρ|) + S 1 0,1 (|ρ|) for 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }. By (4.12) and (4.13), it is easy to see that if (4.10) and (4.11) hold for c α,β , they hold for c α+α 1 ,β+β 1 as well. Using (4.10) together with (4.8) we obtain

e i ϕ/h c α,β |α|+|β| j=1 x 1 h|ρ| j |ρ| -2(|α|+|β|-j) e -2Cθx 1 (h|ρ|) -1 |α|+|β| j=1 θ -j |ρ| -2(|α|+|β|-j) e -Cx 1 θ/h θ -|α|-|β| e -Cx 1 θ/h .
Similarly, by (4.11) we obtain

e i ϕ/h c α,β |α|+|β| j=1 x 1 h j |ξ ′ | -|β|+j e -2Cx 1 |ξ ′ |/h |ξ ′ | -|β| e -Cx 1 |ξ ′ |/h .

✷

We take a 0,k = a 0,k ν for k ≥ 1, where a 0,k are scalar functions to be determined such that (4.14) γ∇ x ϕ, a 0 = x N 1 Φ. Using that ψ 0 , a 0,0 = 0 we can expand the left-hand side as

2N -2 k=1 x k 1 k-1 ℓ=0 ψ ℓ , ν a 0,k-ℓ + ψ k , a 0,0 + x N 1 Θ, a 0 . Therefore, if ψ k , a 0,0 + k-1 ℓ=0 ψ ℓ , ν a 0,k-ℓ = 0, 1 ≤ k ≤ N -1, then (4.14) is satisfied with Φ = 2N -2 k=N x k-N 1 k-1 ℓ=0 ψ ℓ , ν a 0,k-ℓ + Θ, a 0 .
Since ψ 0 , ν = ρ, we arrive at the relations

(4.15) a 0,k = -ρ -1 ψ k , a 0,0 -ρ -1 k-1 ℓ=1 ψ ℓ , ν a 0,k-ℓ
which allow us to find all a 0,k , and hence to find a 0 . To find b 0 we will use the expansion

(γ∇ x ϕ) × a j = N -1 k=0 x k 1 ψ k × N -1 k=0 x k 1 a j,k + x N 1 Θ × a j , = N -1 k=0 x k 1 k ℓ=0 ψ k-ℓ × a j,ℓ + x N 1 2N -2 k=N x k-N 1 k ℓ=0 ψ k-ℓ × a j,ℓ + x N 1 Θ × a j
with j = 0. We take

(4.16) b 0,k = (zµ 0 ) -1 k ℓ=0 ψ k-ℓ × a 0,ℓ , 0 ≤ k ≤ N -1.
Then the first equation of (4.1) is satisfied with

Ψ 0 = 2N -2 k=N x k-N 1 k ℓ=0 ψ k-ℓ × a 0,ℓ + Θ × a 0 .
On the other hand, we have the identity

(γ∇ x ϕ) × ((γ∇ x ϕ) × a 0 ) = -γ∇ x ϕ, γ∇ x ϕ a 0 + γ∇ x ϕ, a 0 γ∇ x ϕ.
Therefore, in view of (4.5) and (4.14), the second equation of (4.1) is satisfied with

Ψ 0 = (zµ) -1 -Φa 0 + Φγ∇ x ϕ .
To solve equation (4.2) we will use the expansion

(γ∇ x ) × a j = N -1 k=0 x k 1 (γ k ∇ x ) × N -1 k=0 x k 1 a j,k + x N 1 (Θ∇ x ) × a j = N -1 k=0 x k 1 k ℓ=0 (γ k-ℓ ∇ x ′ ) × a j,ℓ + (ℓ + 1)γ k-ℓ ν × a j,ℓ+1 +x N 1 2N -2 k=N x k-N 1 k ℓ=0 (γ k-ℓ ∇ x ′ ) × a j,ℓ + (ℓ + 1)γ k-ℓ ν × a j,ℓ+1 + x N 1 (Θ∇ x ) × a j ,
where ν = (1, 0, 0) and ∇ x ′ = (0, ∇ x ′ ). Clearly, we have similar expansions with a j replaced by b j . We let the functions a j,k satisfy the equations

ψ 0 × a j,k -zµ 0 b j,k = - k-1 ℓ=0 (ψ k-ℓ × a j,ℓ -zµ k-ℓ b j,ℓ ) + k ℓ=0 i (γ k-ℓ ∇ x ′ ) × a j-1,ℓ + (ℓ + 1)γ k-ℓ ν × a j-1,ℓ+1 =: a ♯ j,k , ψ 0 × b j,k + zε 0 a j,k = - k-1 ℓ=0 (ψ k-ℓ × b j,ℓ + zε k-ℓ a j,ℓ ) + k ℓ=0 i (γ k-ℓ ∇ x ′ ) × b j-1,ℓ + (ℓ + 1)γ k-ℓ ν × b j-1,ℓ+1 =: b ♯ j,k , ν × a j,k = 0, for 1 ≤ j ≤ N -1 and 0 ≤ k ≤ N -1.
Then the equation (4.2) is satisfied with

Ψ j = 2N -2 k=N x k-N 1 k ℓ=0 (ψ k-ℓ × a j,ℓ -zµ k-ℓ b j,ℓ ) + Θ × a j -zMb j + 2N -2 k=N x k-N 1 k ℓ=0 (γ k-ℓ ∇ x ′ ) × a j-1,ℓ + (ℓ + 1)γ k-ℓ ν × a j-1,ℓ+1 + (Θ∇ x ) × a j-1 , Ψ j = 2N -2 k=N x k-N 1 k ℓ=0 (ψ k-ℓ × b j,ℓ + zε k-ℓ a j,ℓ ) + Θ × b j + zEa j + 2N -2 k=N x k-N 1 k ℓ=0 (γ k-ℓ ∇ x ′ ) × b j-1,ℓ + (ℓ + 1)γ k-ℓ ν × b j-1,ℓ+1 + (Θ∇ x ) × b j-1 ,
where a -1,ℓ = b -1,ℓ = 0. The above equations are solved in Section 2 and we have the formulas

a j,k = ρ -2 β × a ♯ j,k , ν ν + zµ 0 ρ -2 b ♯ j,k , ν ν, b j,k = (zµ 0 ) -1 a ♯ j,k -(zµ 0 ) -1 ρ -2 β × a ♯ j,k , ν β × ν -ρ -2 b ♯ j,k , ν β × ν, (4.17) zµ 0 ρν × b j,k = β × a ♯ j,k -β × a ♯ j,k , ν ν + zµ 0 b ♯ j,k -zµ 0 b ♯ j,k , ν ν.
Thus we can express all functions a j,k , b j,k in terms of g. More precisely, they are of the form

a j,k = A j,k (x ′ , ξ ′ ) f (y ′ ), b j,k = B j,k (x ′ , ξ ′ ) f (y ′ ), where f (y ′ ) = ν(y ′ ) × f (y ′ ) = ι ν (y ′ )f (y ′ )
, ι ν being a 3 × 3 matrix, and A j,k , B j,k are smooth matrix-valued functions whose main properties are given in Lemma 4.3 below. In what follows, given a vector-valued function a of the form A(x ′ , ξ ′ ) f (y ′ ), we will write a ∈ S k ℓ 1 ,ℓ 2 f if all entries of A belong to S k ℓ 1 ,ℓ 2 .

Lemma 4.3. We have

(4.18) A j,k ∈ S -1-3k-5j 2,2 (|ρ|) + S -j 0,1 (|ρ|), j ≥ 0, k ≥ 0, (4.19) B j,k ∈ S -1-3k-5j 2,2 (|ρ|) + S 1-j 0,1 (|ρ|), j ≥ 0, k ≥ 0, (4.20) ι ν (x ′ )B j,k ∈ S -3k-5j 2,2 (|ρ|) + S 1-j 0,1 (|ρ|), j ≥ 1, k ≥ 0, (4.21) ∂ k x 1 Ψ j ∈ S -1-3(N +k)-5j 2,2 (|ρ|) f + S 1-j 0,1 (|ρ|) f , j ≥ 0, (4.22) ∂ k x 1 Ψ j ∈ S -1-3(N +k)-5j 2,2 (|ρ|) f + S 2-j 0,1 (|ρ|) f , j ≥ 0, uniformly in z and 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }. Proof. By Lemma 4.1, (4.23) ψ k ∈ S 1-3k 2,2 (|ρ|) + S 1 0,1 (|ρ|), Θ ∈ S 1-3N 2,2
(|ρ|) + S 1 0,1 (|ρ|). It is easy to see from (4.15) and (4.16) by induction in k that (4.23) implies (4.18) and (4.19) for j = 0 and all k ≥ 0. To prove the assertion for all j ≥ 1 and k ≥ 0 we will proceed by induction in j + k. Suppose it is fulfilled for all 0 ≤ j ≤ J, k ≥ 0, as well as for j = J + 1 and k ≤ K, where J ≥ 0, K ≥ -1 are integers. This implies

(4.24) a ♯ J+1,K+1 ∈ S -7-3K-5J 2,2 (|ρ|) f + S -J 0,1 (|ρ|) f , (4.25) b ♯ J+1,K+1 ∈ S -7-3K-5J 2,2 (|ρ|) f + S 1-J 0,1 (|ρ|) f .
Recall that a ♯ j,0 = b ♯ j,0 = 0. Using (2.3) with k = -2 and the formulas for a j,k and b j,k in terms of a ♯ j,k and b ♯ j,k , we get from (4.24) and (4.25) that (4.18) and (4.19) hold with j = J + 1 and k = K + 1, as desired. It is also clear that (4.20) follows from (4.24) and (4.25)(used with K = k -1, J = j -1) and (4.17) together with (2.3) with k = -1. Since the functions Ψ j and Ψ j are expressed in terms of A j,k , B j,k , ψ k and Θ, one can derive (4.21) and (4.22) from (4.18),(4.19) and (4.23). One just needs the following simple observation: if

a ∈ S ℓ 1 2,2 (|ρ|) + S ℓ 2 0,1 (|ρ|), then x k 1 a ∈ S ℓ 1 +3k 2,2 (|ρ|) + S ℓ 2 0,1 (|ρ|), k ≥ 0. ✷ Clearly, we have ν × E| x 1 =0 = f and ν × H| x 1 =0 = ι ν (x ′ ) H| x 1 =0 = N -1 j=0 h j Op h (ι ν B j,0 ) f = Op h (ι ν B 0,0 + h(1 -η)ι ν B 1,0 ) f + K 1 f ,
where

K 1 = hOp h (ηι ν B 1,0 ) + N -1 j=2 h j Op h (ι ν B j,0 ) .
Lemma 4.4. There exists a matrix-valued function

B ♭ 1,0 ∈ S 0 0,1 such that (4.26) (1 -η)ι ν B 1,0 -B ♭ 1,0 ∈ S -1 0,1
and µ 0 B ♭ 1,0 is independent of ε and µ. Proof. In view of (4.15) and (4.16) we have

-ia ♯ 1,0 = γ 0 ∇ x ′ × a 0,0 + ν × a 0,1 = γ 0 ∇ x ′ × a 0,0 , -ib ♯ 1,0 = γ 0 ∇ x ′ × b 0,0 + ν × b 0,1 = γ 0 ∇ x ′ × b 0,0 + (zµ 0 ) -1 (ψ 1 × a 0,0 + ψ 0 × a 0,1 ) = γ 0 ∇ x ′ × b 0,0 + (zµ 0 ) -1 (ψ 1 × a 0,0 -ρ -1 ψ 1 , a 0,0 ψ 0 × ν) = γ 0 ∇ x ′ × b 0,0 + (zµ 0 ) -1 (ψ 1 × a 0,0 + ρ -1 ψ 1 , a 0,0 β × ν).
Thus by (4.17) we obtain

-izµ 0 ι ν B 1,0 f = -izµ 0 ν × b 1,0 = ρ -1 β × (γ 0 ∇ x ′ × a 0,0 ) -ρ -1 β × (γ 0 ∇ x ′ × a 0,0 ), ν ν +zµ 0 ρ -1 γ 0 ∇ x ′ × b 0,0 -zµ 0 ρ -1 γ 0 ∇ x ′ × b 0,0 , ν ν +ρ -1 ψ 1 × a 0,0 -ρ -1 ψ 1 × a 0,0 , ν ν + ρ -2 ψ 1 , a 0,0 β × ν. Observe now that ρ = i √ r 0 (1 + O(r -1 0 )) = i √ r 0 + O 1 √ r 0 as r 0 → ∞.
More generally, we have

(1 -η)(ρ -i √ r 0 ) ∈ S -1 0,1 , (1 -η 
) ρ -k -(i √ r 0 ) -k ∈ S -k-2 0,1 , k = 1, 2. 
Define a ♭ 0,0 and b ♭ 0,0 by replacing in the formulas for a 0,0 and b 0,0 above the function ρ by i √ r 0 .

Clearly, a ♭ 0,0 and µ 0 b ♭ 0,0 are independent of ε and µ. Moreover, we have

(1 -η)(a 0,0 -a ♭ 0,0 ) ∈ S -1 0,1 f , (1 -η)(b 0,0 -b ♭ 0,0 ) ∈ S 0 0,1 f . Define ψ ♭
1 ∈ S 1 0,1 by replacing in the definition of ψ 1 the function ϕ 2 by ϕ ♭ 2 and ρ by i √ r 0 . We also define B ♭ 1,0 by replacing in the formula for ι ν B 1,0 above the function ρ by i √ r 0 , ψ 1 by ψ ♭ 1 , a 0,0 and b 0,0 by a ♭ 0,0 and b ♭ 0,0 . Set B ♭ 1,0 = (1η) B ♭ 1,0 . With this choice one can easily check that the conclusions of the lemma hold. ✷

Clearly, we can write the matrix ι ν in the form 3 j=1 ν j I j , where I j are constant matrices. In view of (4.4) we have

ι ν B 0,0 f = ν × b 0,0 = m(ν × g) = m f + mι ν 3 j=1 (ν j (y ′ ) -ν j (x ′ ))I j f where m = (zµ 0 ) -1 (ρI + ρ -1 B). Set m 0 = i(zµ 0 ) -1 √ r 0 (I -r -1 0 B). We have Op h (ι ν B 0,0 ) f = Op h (m) f + 3 j=1 [Op h (mι ν I j ), ν j ] f = Op h (m) f + 3 j=1 [Op h ((1 -η)m 0 ι ν I j ), ν j ] f + 3 j=1 [Op h ((ηm + (1 -η)(m -m 0 ))ι ν I j ), ν j ] f = Op h (m + hn) f + 3 j=1 ([Op h ((1 -η)m 0 ι ν I j ), ν j ] -Op h (hn j )) f + 3 j=1 [Op h ((ηm + (1 -η)(m -m 0 ))ι ν I j ), ν j ] f ,
where n = 3 j=1 n j with

n j = -i |α|=1 ∂ α x ′ ν j ∂ α ξ ′ ((1 -η)m 0 )ι ν I j .
Thus we obtain

(4.27) ν × H| x 1 =0 = Op h (m + h m) f + K f ,
where we have put m = n + B ♭ 1,0 and

K = K 1 + K 2 + K 3 with K 2 = hOp h (1 -η)ι ν B 1,0 -B ♭ 1,0 , K 3 = 3 j=1 ([Op h ((1 -η)m 0 ι ν I j ), ν j ] -Op h (hn j )) + 3 j=1 [Op h ((ηm + (1 -η)(m -m 0 ))ι ν I j ), ν j ] .
Furthermore, it is easy to see that

∇ × (χa) = χ∇ × a + χa,
where χ is a smooth matrix-valued function, which is a linear combinations of ∂ x j χ. Therefore χ is supported in δ min{1, |ρ| 3 } ≤ x 1 ≤ 2δ min{1, |ρ| 3 }. We have

h∇ × E -izµφ H = (2πh) -2 e i h ( y ′ ,ξ ′ +ϕ) V 1 (x, y ′ , ξ ′ , h, z)dξ ′ dy ′ =: U 1 , h∇ × H + izεφ E = (2πh) -2 e i h ( y ′ ,ξ ′ +ϕ) V 2 (x, y ′ , ξ ′ , h, z)dξ ′ dy ′ =: U 2 ,
where

V 1 = h χa + h N χ(γ∇ x ) × a N -1 + x N 1 N -1 j=0 h j χΨ j , V 2 = h χb + h N χ(γ∇ x ) × b N -1 + x N 1 N -1 j=0 h j χ Ψ j .
Let α be a multi-index such that |α| ≤ 1. Then we can write

((h∂ x ) α U j )(x 1 , •) = Op h e i ϕ/h V (α) j f ,
where

V (0) j = V j and V (α) j = i∂ α x ϕV j + (h∂ x ) α V j if |α| = 1.
Since (E -E, H -H) satisfy equation (3.1) with f = 0, by (3.5) together with (4.27) we get the estimate

N (λ)f -Op h (m + h m)(ν × f ) H 0 (4.28) h -1/2 θ -1 U + h 1/2 div U + u 1 0 + K f 0 .
We need now the following Lemma 4.5. We have the estimates

(4.29) K f 0 hθ -5/2 f H -1 , (4.30 
)

u 1 0 + U + div U h 5ǫN/2-ℓ f H -1 ,
with some constant ℓ > 0.

Proof. By (4.20),

ηι ν B j,0 ι ν ∈ S -5j 2,2 (|ρ|) ⊂ S -5j/2 1,1 (θ), j ≥ 1, (1 -η)ι ν B j,k ι ν ∈ S 1-j 0,1 (|ρ|) ⊂ S -1 0,1 , j ≥ 2. Therefore Proposition 2.3 yields K 1 f 0 ≤ N -1 j=1 h j Op h (ηι ν B j,0 ι ν )f 0 + N -1 j=2 h j Op h ((1 -η)ι ν B j,0 ι ν )f 0 N -1 j=1 h j θ -5j/2 f H -1 + N -1 j=2 h j f H -1 hθ -5/2 f H -1 . Furthemore (4.26) clearly implies K 2 = O(h) : H -1 → H 0 .
To bound the norm of K 3 we will use Proposition 2.2 twice -with

a + = (ηm + (1 -η)(m -m 0 ))ι ν I j , θ + = θ, a -= ν j , θ -= 1,
and with

a + = ν j , θ + = 1, a -= (ηm + (1 -η)(m -m 0 ))ι ν I j , θ -= θ. Since (ηm + (1 -η)(m -m 0 ))ι ν I j ∈ S -1 2,2 (|ρ|) + S -1 0,1 (|ρ|) ⊂ S -1/2 1,1 (θ) + S -1 0,1 , by Proposition 2.2, [Op h ((ηm + (1 -η)(m -m 0 ))ι ν I j ), ν j ] H -1 →H 0 hθ -3/2 .
On the other hand, the standard pseudodifferential calculas gives that, mod O(h ∞ ), the operator [Op h ((1η)m 0 ι ν I j ), ν j ] is an h -ΨDO with a principal symbol hn j , n j ∈ S 0 0,1 being as above. This implies that

[Op h ((1 -η)m 0 ι ν I j ), ν j ] -Op h (hn j ) is an h -ΨDO with a symbol h 2 ω, with ω ∈ S -1 0,1 . Hence [Op h ((1 -η)m 0 ι ν I j ), ν j ] -Op h (hn j ) H -1 →H 0 h 2 ,
which completes the proof of (4.29). Furthermore, since

x N 1 e -Cx 1 θ/h h N θ -N , x N 1 e -Cx 1 |ξ ′ |/h h N |ξ ′ | -N ,
we deduce from Lemma 4.2 that (4.31)

h -N x N 1 e i ϕ/h ∈ S -N 1,1 (θ) + S -N 0,1
uniformly in x 1 and h. On supp χ we have the bounds

e -Cx 1 θ/h ≤ e -Cδ|ρ| 3 θ/h ≤ e -Cθ 5/2 /h h N θ -5N/2 , e -Cx 1 |ξ ′ |/h ≤ e -Cδ|ξ ′ |/h h N |ξ ′ | -N .
Therefore, by Lemma 4.2 we have

(4.32) h -N χe i ϕ/h ∈ S -5N/2 1,1 (θ) + S -N 0,1 .
Notice that h j θ -5j/2 ≤ 1 for j ≥ 1 as long as θ ≥ h 

) α U j )(x 1 , •) H 0 h N θ -5N/2-ℓα f H -1 h 5ǫN/2-2ℓα/5 f H -1
as long as θ ≥ h 2/5-ǫ , uniformly in x 1 . Observe also that

h -N V 1 | x 1 =0 = (γ∇ x ) × a N -1 | x 1 =0 = (γ 0 ∇ x ′ ) × a N -1,0 + ν × a N -1,1 = (γ 0 ∇ x ′ ) × (A N -1,0 f ) + ν × (A N -1,1 f ) =: ω f . By Lemma 4.3, ω ∈ S -5N/2 1,1 (θ) + S -N +1 0,1
, which together with Proposition 2.3 yield

Op h (ω) = O θ -5N/2 : H -1 → H 0 . Since U 1 | x 1 =0 = h N Op h (ω) f , we get (4.35) U 1 | x 1 =0 H 0 h N θ -5N/2 f H -1 h 5ǫN/2 f H -1 .
Clearly, (4.30) follows from (4.34) and (4.35). ✷

Taking N big enough depending on ǫ, it is easy to see that the estimate (1.2) follows from (4.28) and Lemma 4.5.

Electromagnetic transmission eigenvalues

A complex number λ is said to be an electromagnetic transmission eigenvalue if the following boundary-value problem has a nontrivial solution:

(5.1)

                     ∇ × E 1 = iλµ 1 (x)H 1 in Ω, ∇ × H 1 = -iλε 1 (x)E 1 in Ω, ∇ × E 2 = iλµ 2 (x)H 2 in Ω, ∇ × H 2 = -iλε 2 (x)E 2 in Ω, ν × (E 1 -E 2 ) = 0 on Γ, ν × (c 1 H 1 -c 2 H 2 ) = 0 on Γ, where µ j , ε j ∈ C ∞ (Ω), c j ∈ C ∞ (Γ), j = 1, 2,
are scalar-valued strictly positive functions. The most important question that arrises in the theory of the transmission eigenvalues is to know the conditions on the coefficients under which they form a discreet set on the complex plane. This question has been largely investigated in the context of the acoustic transmission eigenvalues, that is, those associated to the Helmholtz equation. Several sufficient condition have been found that guarantee not only the discreteness, but also Weyl asymptotics for the counting function of the acoustic transmission eigenvalues (see [START_REF] Nguyen | The Weyl law of transmision eigenvalues and the completeness of generalized transmision eigenvalues[END_REF], [START_REF] Petkov | Asymptotics of the number of the interior transmision eigenvalues[END_REF], [START_REF] Robbiano | Counting function for interior transmision eigenvalues[END_REF]). In particular, it was proved in [START_REF] Petkov | Asymptotics of the number of the interior transmision eigenvalues[END_REF] that the existence of parabolic eigenvalue-free regions implies the Weyl asymptotics. On the other hand, such regions were obtained in [START_REF] Vodev | Transmision eigenvalue-free regions[END_REF], [START_REF] Vodev | Transmision eigenvalues for strictly concave domains[END_REF], [START_REF] Vodev | Parabolic transmision eigenvalue-free regions in the degenerate isotropic case[END_REF], [START_REF] Vodev | High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmision eigenvalues[END_REF] and [START_REF] Vodev | Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map[END_REF] under various conditions, by approximating approprietly the Dirichlet-to-Neumann operator associated to the Helmholtz equation with smooth refraction index. It was proved in [START_REF] Vodev | High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmision eigenvalues[END_REF] that, under quite general conditions on the coefficients on the boundary, all transmission eigenvalues are located in a strip |Im λ| ≤ C, which turns out to be optimal. The situation, however, is very different as far as the electromagnetic transmission eigenvalues are concerned. In this context there are few results and they are mainly concerned with the question of discreteness (e.g see [START_REF] Cakoni | On the discreteness of transmision eigenvalues for the Maxwell equations[END_REF], [START_REF] Hadar | The spectral analysis of the interior transmision eigenvalue problem for Maxwell's equations[END_REF]). The most general one is in [START_REF] Cakoni | On the discreteness of transmision eigenvalues for the Maxwell equations[END_REF], where the authors considered the case c 1 ≡ c 2 ≡ 1 and proved the discreteness under the condition (5.2)

ε 1 = ε 2 , µ 1 = µ 2 , ε 1 µ 1 = ε 2 µ 2 on Γ.
They also proved that given any γ > 0 there is C γ > 0 such that there are no electromagnetic transmission eigenvalues in the region |Im λ| ≥ γ|Re λ|, |λ| ≥ C γ . Our goal is to obtain a parabolic eigenvalue-free region under the condition

(5.3) c 1 µ 1 = c 2 µ 2 , ε 1 µ 1 = ε 2 µ 2 on Γ.
Indeed, using Theorem 1.1 we will prove the following Theorem 5.1. Under the condition (5.3), there exists a constant C > 0 such that there are no electromagnetic transmission eigenvalues in the region

(5.4) |Im λ| ≥ C(|Re λ| + 1) 5 7 
.

Proof. Denote by N j (λ), j = 1, 2, the operator introduced in Section 1 corresponding to (ε j , µ j ), and set T (λ) = c 1 N 1 (λ)c 2 N 2 (λ). We define the functions ρ j by replacing in the definition of ρ the function εµ| Γ by ε

j µ j | Γ . Set f = ν × E 1 = ν × E 2 ∈ H t 1 .
Then λ is an electromagnetic transmission eigenvalue if f = 0 and T (λ)f = 0. Therefore, to get the free region (5.4) we need to show that the operator T (λ) is invertible there. By Theorem 1.1 we have (5.5) Op (5.9)

h (T )(ν × f ) H 0 = T (λ)f -Op h (T )(ν × f ) H 0 hθ -5/2 f H -1 for θ ≥ h 2/5-ǫ , where T = c 1 ρ 1 µ 1 I + c 1 ρ 1 µ 1 B - c 2 ρ 2 µ 2 I - c 2 ρ 2 µ 2 B = c 1 µ 1 (ρ 1 -ρ 2 ) I -(ρ 1 ρ 2 ) -1 B . Since (ρ 1 -ρ 2 )(ρ 1 + ρ 2 ) = ρ 2 1 -ρ 2 2 = z 2 ε 1 µ 1 -z 2 ε 2 µ 2 , we have T = w T , where w = z 2 c 1 µ 1 (ε 1 µ 1 -ε 2 µ 2 ) = 0, T = (ρ 1 + ρ 2 ) -1 I -(ρ 1 ρ 2 ) -1 B . Using that B 2 = r 0 B, one can easily check the identity (5.6) (I + (ρ 1 ρ 2 -r 0 ) -1 B) I -(ρ 1 ρ 2 ) -1 B = I.
∂ α x ′ ∂ β ξ ′ (ρ 1 ρ 2 ) -1 (ρ 1 + ρ 2 ) -1 ≤ C α,β θ -1/2-|α|-|β| on supp η, C α,β |ξ ′ | -3-|β| on supp(1 -η).
Proof. We will first prove the estimates on supp(1η). Since ρ j = i √ r 0 1 + O(r -1 0 ) as r 0 → ∞, we have 

∂ α 1 x ′ ∂ β 1 ξ ′ (r 0 -ρ 1 ρ 2 ) -k = -k(r 0 -ρ 1 ρ 2 ) -k-1 ∂ α 1 x ′ ∂ β 1
ξ ′ (r 0ρ 1 ρ 2 ) and more generally, if α, β are such that |α| + |β| = K, we have

∂ α+α 1 x ′ ∂ β+β 1 ξ ′ (r 0 -ρ 1 ρ 2 ) -k = -k∂ α x ′ ∂ β ξ ′ (r 0 -ρ 1 ρ 2 ) -k-1 ∂ α 1 x ′ ∂ β 1 ξ ′ (r 0 -ρ 1 ρ 2 ) .
Recall now that r 0 is a homogeneous polynomial of order two in ξ ′ . Hence ∂ α x ′ ∂ β ξ ′ r 0 = O( ξ ′ 2-|β| ). Furthermore, by (2.3) we have ∂ α

x ′ ∂ β ξ ′ (ρ 1 ρ 2 ) = O( ξ ′ 2-|β| ) on supp(1η). Uisng this, one can easily deduce from the above identity that (5.7) holds on supp(1η) for α + α 1 , β + β 1 and all integers k ≥ 1. Clearly, the same argument also works for (5.8). The estimate (5.9) on supp(1η) follows from (5.8).

To prove (5.7) on supp η, we will use the identity

(r 0 + ρ 1 ρ 2 )(r 0 -ρ 1 ρ 2 ) = r 2 0 -ρ 2 1 ρ 2 2 = z 2 r 0 (ε 1 µ 1 + ε 2 µ 2 ) -z 2 ε 1 µ 1 ε 2 µ 2 =: w 1 (w 2 r 0 -z 2 )
which we rewrite in the form (r 0ρ 1 ρ 2 ) -k = w -k 1 (r 0 + ρ 1 ρ 2 ) k (w 2 r 0z 2 ) -k . By induction, in the same way as above, one can easily prove the estimates

∂ α x ′ ∂ β ξ ′ (w 2 r 0 -z 2 ) -k ≤ C k,α,β θ -k-|α|-|β|
on supp η. On the other hand, by (2.3) we have ∂ α x ′ ∂ β ξ ′ (r 0 + ρ 1 ρ 2 ) k = O(θ -|α|-|β| ) on supp η. Therefore (5.7) on supp η follows from the above estimates. The estimates (5.8) and (5.9) on supp η can be obtained in the same way, using (2.3) and the identities

(ρ 1 + ρ 2 ) -k = w -k 3 (ρ 1 -ρ 2 ) k , w 3 := z 2 (ε 1 µ 1 -ε 2 µ 2 ), (ρ 1 ρ 2 ) -1 (ρ 1 + ρ 2 ) -1 = w -1 3 ρ -1 2 -ρ -1 1 .

✷

We rewrite the identity (5.6) in the form (5.10)

T 1 T = ξ ′ -1 I,
where

T 1 = ξ ′ -1 (ρ 1 + ρ 2 )(I + (ρ 1 ρ 2 -r 0 ) -1 B).
It follows from Lemma 5.2 together with (2.3) that where f = ν × f . Since the norms Op h ( ξ ′ -1 ) f H 0 , f H -1 and f H -1 are equivalent, by (5.5) and (5.13) we obtain (5.14) f H -1 hθ -7/2 f H -1 .

T 1 ∈ S -1 1,1 (θ) + S 0 0,1 ⊂ θ -1 S 0 1/2-ǫ , T ∈ S -1/2 1,1 (θ) + S -1 0,1 ⊂ θ -1/2 S -
Thus, if hθ -7/2 ≪ 1 we deduce from (5.14) that f = 0. In other words, the region hθ -7/2 ≪ 1 is free of transmission eigenvalues. It is easy to see that this region is equivalent to (5.4) on the λ-plane. ✷

  ) and b = (b 1 , b 2 , b 3 ), a × b denotes the vector (a 2 b 3a 3 b 2 , a 3 b 1a 1 b 3 , a 1 b 2a 2 b 1 ) and it is perpendicular to both a and b. Thus we have ∇

Lemma 5 . 2 .

 52 For all integers k ≥ 1 and all multi-indices α and β we have the estimates(5.7) ∂ α x ′ ∂ β ξ ′ (r 0ρ 1 ρ 2 ) -k ≤ C k,α,β θ -k-|α|-|β| on supp η, C k,α,β |ξ ′ | -2k-|β| on supp(1η), (5.8) ∂ α x ′ ∂ β ξ ′ (ρ 1 + ρ 2 ) -k ≤ C k,α,β θ -|α|-|β| on supp η, C k,α,β |ξ ′ | -k-|β| on supp(1η),

r 0 -

 0 ρ 1 ρ 2 = 2r 0 1 + O(r -1 0 ) , ρ 1 + ρ 2 = 2i √ r 0 1 + O(r -1 0 ) . Therefore, |r 0ρ 1 ρ 2 | ≥r 0 and |ρ 1 + ρ 2 | ≥ √ r 0 on supp(1η), provided the constant C 0 in the definition of η is taken large enough (what we can do without loss of generality). To prove (5.7) for all α and β we will proceed by induction in |α| + |β|. Suppose that (5.7) holds on supp(1η) for α, β such that |α| + |β| ≤ K and all integers k ≥ 1. We will show that it holds for all α, β such that |α| + |β| = K + 1 and all integers k ≥ 1. Let α 1 and β 1 be multi-indices such that |α 1 | + |β 1 | = 1. We have

  1 1/2-ǫ , as long as θ ≥ h 1/2-ǫ . Therefore, by Proposition 2.3 we get(5.11) Op h (T 1 )H 0 →H 0 θ -1 , Op h (T 1 )Op h ( T ) H -1 →H 0 hθ -7/2 .Combining (5.10), (5.11) and (5.12) leads toOp h ( ξ ′ -1 ) f H 0 hθ -7/2 f H -1 + Op h (T 1 )Op h ( T ) f H 0 (5.13) hθ -7/2 f H -1 + θ -1 Op h ( T ) f H 0

	while Proposition 2.2 yields
	(5.12)	Op

h (T 1 T ) -