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Abstract

This paper analyzes the vulnerability of scoring run-off rules to abstention and
participation paradoxes when voters preferences are single-peaked. These paradoxes
occur when the size of the electorate varies (grows or diminishes). In particular, the
Abstention or No-show paradox occurs when a voter is better off by not casting his
ballot in the election. First, we show that all the scoring run-off rules that always elect
the Condorcet winner on this domain are immune to the different forms of Abstention
and Participation paradoxes. Secondly, when these paradoxes are still possible, we
compute their likelihood in three-candidate elections under the Impartial Anonymous
Culture assumption. We conclude that considering the single-peaked domain drasti-
cally reduces, and even sometimes eliminates the impact of No-show paradoxes, for
scoring run-off rules.
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1 Introduction

In an election, a voting paradox is a counterintuitive result a ballot can lead to. The social
choice literature describes a large number of voting paradoxes. The reader can refer to
Nurmi (1999, 1989), Saari (1995) and Felsenthal (2012) for a non exhaustive review of these
paradoxes. In general, voting paradoxes are gathered by families or classes. For example,
the family of Condorcet paradoxes (Condorcet, 1785, Gehrlein, 2006) deals with the selection
or not of the Condorcet winner and of the Condorcet loser. The Condorcet winner (resp.
Condorcet loser) is a candidate that beats (resp. is beaten by) all the other candidates in
pairwise comparisons. Borda (1781) and Condorcet (1785) were the first authors to describe
such paradoxes, as they depicted voting situations where the Plurality rule may fail to pick
the Condorcet winner, and even select the Condorcet loser.

When defining voting paradoxes, most of them assume a fixed size of the electorate. For
example, a monotonicity paradox occurs whenever some voters improve the ranking of a
candidate in their preferences while its position falls in the social ordering. When the size
of the electorate varies i.e an increase or a decrease in the number of voters, we enter the
realm of paradoxes of variable electorate. The most famous paradox in this family is the
No-show paradox also called the Abstention paradox (AP): it occurs when a voter or a group
of voters can get better off by not showing up at the pooling station. A voting method would
seem perverse if by abstaining, one could see the victory of a preferred candidate while this
wouldn’t have been the case if his vote has been casted. Symmetrically, the Participation
property states that it is always beneficial for a voter (or a group of voters) to cast his
ballot. When it is not the case, a Participation paradox (PP) occurs; that is, a voter or
a group of voters is harmed when joining the voting population. However, widely used
voting methods suffer from this default. Doron and Kronick (1977) and Fishburn and Brams
(1983) provide examples where these phenomena happen for the Plurality run-off method1

and three candidates. In this simple case, the Plurality run-off method assumes that in the
first run, each voter votes for only one candidate; if none of them obtains more than 50%
of the vote, only the top two candidates will go to the second contest that will determine
the final winner. Indeed, the No-show paradox may occur with any type of iterative scoring
rules (see Smith (1973)). Unfortunately, it has been discovered that the No-show paradox is
not limited to scoring run-off rules; for four candidates and more, Moulin (1988) showed that
all the Condorcet consistent2 voting rules are sensitive to the No-show paradox.3 Recently,
Zahid (2009) et Laslier (2018) proved that the Majority Judgement, a voting rule popularized
by Balinski and Laraki (2011) also suffers from the No-Show paradox. Felsenthal and Nurmi
(2019a,b) showed that for a No-show paradox to occur under a Condorcet consistent rule

1Eliminations methods based upon the Plurality scores are used in many countries to elect local officers,
mayors, representatives, presidents, etc. From one country to another, the type of the ballot, the number
of people to elect per jurisdiction and the number of elimination rounds vary. These methods have different
names such as Preferential Voting, Instant Run-off, Two Stage Plurality, Alternative Vote, Single Transferable
Vote, etc.

2A voting rule is said to be Condorcet consistent if it always selects the Condorcet winner when he exists.
3For recent extensions or refinements of Moulin’s theorem, see Brandt et al. (2017), Duddy (2013), Jimeno

et al. (2009).
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it is not, in general, necessary that a majority top cycle exists in the original profile, while
for this paradox to occur when using non Condorcet consistent rules it is, almost always,
necessary that a top cycle exists.

Participation is not the only condition that deals with variable electorate in social choice
literature. The Separability condition states that whenever a population is divided in two
sub-populations that elect the same winner, so does the entire population4. Smith (1973)
also shows that scoring run-off rules does not meet the Separability condition. The same
result holds for all the Condorcet consistent voting rules (Young and Levenglick, 1978).

In three-candidate elections with strict rankings of candidates, Lepelley and Merlin (2001)
analyzed the No-show paradox for three well known run-off scoring rules: The Plurality
run-off, the Antiplurality run-off and the Borda run-off. They focussed on two particular
forms of the No-show paradox: the Positive Abstention Paradox (PAP) which arises when
deleting some voters who rank a loser aj at the top of their rankings, aj becomes a winner;
and the Negative Abstention Paradox (NAP) which occurs when deleting some voters who
rank the winner aj at the bottom, aj becomes a loser. Lepelley and Merlin (2001) also
analyzed two symmetric paradoxes due to an increase of the size of the electorate: the
Positive Participation Paradox (PPP) and the Negative Participation Paradox (NPP). The
PPP occurs when adding some voters who rank the winner aj at the top of their rankings,
aj becomes a loser. The NPP appears when adding some voters who rank a loser aj at the
bottom of their rankings, aj becomes a winner. Hence, Lepelley and Merlin (2001) have
computed the probabilities of occurrence of the PAP, the NAP, the AP, the PPP, and the
NPP for these scoring run-off rules on the universal domain for a well-known probability
assumption, the Impartial Anonymous Culture (IAC) which will be defined later. Notice
that Lepelley and Merlin (2001) considered the coalitional version of these paradoxes: a
voting situation may lead to an abstention (resp. a participation) paradox if a group of
voters (possibly a unique voter) obtains a better result by not casting their ballots (resp.
by casting their ballots). Though the limit values when n goes to the infinity remain low
(between 4% and 6%), they found that the susceptibility to manipulation by abstention could
be huge for small populations. To give some examples, we reach the maximal value with
four voters, at 62% with the Borda run-off rule and 38% with the Plurality run-off. For the
Antiplurality run-off, the highest propensity to manipulate is as high as 26% with 6 voters.

Related papers are more optimistic about the occurrence of these phenomena. Recently,
Brandt et al. (2021) studied the susceptibility to manipulation by abstention for several Con-
dorcet consistent rules under different probability assumptions (including IAC). By focusing
on individual manipulability only, they derived extremely low values (inferior to 2%) for 3
alternatives, even for small populations. Also, from the PrefLib library, which gathers data
of real elections, they only find two situations out of 315 where the No-show Paradox can
occur for one given Condorcet consistent rule, namely, Black’s rule5. However, in scenarios
with 10 to 50 voters having to choose among 10 to 30 candidates, the likelihood of the ab-

4The same principle is known as the Consistency condition (Young, 1974, 1975) or the Reinforcement
axiom (Moulin, 1988, Myerson, 1995) elsewhere in the literature.

5Black’s rule Black (1958) selects the Condorcet winner whenever it exists; otherwise, it picks the Borda
winner.
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stention paradox can rise drastically (almost 28% for the Maximin6 rule with a population
of 30 voters and 30 candidates). Courtin et al. (2010) studied the violation of the Rein-
forcement axiom for scoring run-off rules. They also obtain extremely low values under the
IAC assumption. However, their main scenario deals with the merging of two parliaments
into a unique chamber, and not with the incentives a voter (or a small group) faces when he
has to decide whether he should vote. All in all, the fact that abstention and participation
could be part of a strategic behavior cannot be neglected for some voting scenarios. This is
particularly true when we use scoring run-off rules in small groups.

Hence, the purpose of this paper is to question the robustness of Lepelley and Merlin’s
results when we restrict the domain of preferences to that of single-peaked ones (Black,
1948, 1958). The single-peakedness assumption is a famous condition in public economics
literature. It assumes that for certain collective decision issues, not all the preferences are
present in the society. More precisely, candidates can be ordered on a left-right axis, such that
for each voter, his utility is decreasing with the distance to his preferred alternative along this
axis. With three candidates, this restriction implies that one of them, the centrist candidate,
is never ranked last by the voters. We know from social choice literature that imposing single-
peaked preferences can have various effects on both the existence and the likelihood of voting
paradoxes, such as: -eliminating the majority cycles (Black, 1948); reconciling the Condorcet
and Borda approach for some rules (Lepelley and Vidu, 2000, Smith, 1973)- opening the
possibility to design strategy proof rules (Moulin, 1980) -increasing the occurrence of some
paradoxes as in the case of the Borda paradox (Lepelley, 1993) or -reducing the likelihood of
some paradoxes such as the monotonicity paradoxes (Lepelley et al., 1995).

Given the number of democracies (e.g. Australia, France, Ireland, Senegal) or institu-
tions (e.g. the Olympic Committee for the choice of the host city, the Academy of Motion
Pictures Arts and Sciences for the Oscars, etc.) using elimination processes to take deci-
sions, examining the behavior of all the scoring run-off rules when that voters’ preferences
are single-peaked is of particular interest.

After a presentation of the notation and definitions (Section 2), our characterization
results of Section 3 help us to identify all the scoring run-off rules vulnerable to each of
the four paradoxes of variable electorate (PAP, NAP, PPP and NPP). In particular, we are
able to take advantage of the characterization of the scoring run-off rules that satisfy the
Condorcet criteria on the single-peaked domain proposed by Lepelley and Vidu (2000) to
derive our necessary and sufficient conditions for a paradox to occur. For rules likely to
produce a paradox in three-candidate elections, we assess the occurrence in Section 4 using
the assumption of the Impartial and Anonymous Culture. From this data, we are able to
assess to the likelihood of the Participation Paradox (PP) and of the Abstention Paradox
(AP). Due the progress of computation techniques, we also evaluate the probability of some
events that Lepelley and Merlin (2001) were not able to derive. We also compare our figures
to results that have been obtained in the literature regarding the monotonicity paradoxes
and manipulation probabilities under the single-peaked domain. Section 5 concludes.

6The Maximin rule picks the alternative which worse score in pairwise comparisons against the other
candidates is maximal.
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2 Notation and definitions

2.1 Preferences

Let N be a set of n voters with n ≥ 2 and A = {a1, a2, . . . am} the set of m candidates. When
we will consider only three candidates, we will assume that A = {a, b, c}. It is assumed each
voter ranks all the candidates in A a strict manner without ties. His preference is depicted
by a linear ordering Pi on A. The preference profile π = (P1, P2, . . . , Pi, . . . , Pn) gives for
each voter i among the n voters, his strict ranking Pi. The universal domain D(A)U , is the
set of all the possible preference profiles on A, whatever the size of population is. When we
will consider a subset of alternatives B ⊂ A, we will assume that the preference of individual
i is the linear ordering Pi restricted to B, Pi|B.

In the three-candidate case, a voting situation ñ = (n1, n2, n3, n4, n5, n6) indicates for the
six possible types of strict rankings on A = {a, b, c}, the number of voters of each type t such
that

∑6
t=1 nt = n. Table 1 describes the voting situation on A = {a, b, c} where abc means

that n1 voters rank a before b and b before c.

Table 1: Possible types of preferences on A = {a, b, c}

abc : acb : cab : cba : bca : bac :
n1 n2 n3 n4 n5 n6

The single-peakedness assumption describes a situation where all the voters agree to
position in the same way all the candidate on a common left-right axis (Black, 1948, 1958).
For the sake of simplicity, we will assume that this axis is described by the linear ranking:

a1P̄ a2P̄ a3 . . . P̄am

Candidate a1 is the most leftist candidate, a2 the second most leftist, etc... and am is
the most rightist candidate. Moreover, it is assumed that each voter has a unique preferred
candidate, and that is, his preference is strictly decreasing as we move away from it along the
left-right axis depicted by P̄ . The domain of singled-peaked preferences on A is denoted by
D(A)SP . Sen (1966) shows that the single-peakedness assumptions is equivalent to consider
that on each triplet of candidates, one of them is never ranked last. For three candidates
case, assuming c, the centrist candidate, is never ranked last, we obtain the ordering aP̄ cP̄ b
and the preferences depicted in Table 2.

Table 2: single-peaked preferences on A = {a, b, c}

acb : cab : cba : bca :
n2 n3 n4 n5
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For a linear ordering P , the rank of alternative x is defined by r(P, x) = #{y ∈ A :
yPx} + 1. We recall some well known results regarding single-peaked preferences (see for
example Lepelley and Vidu (2000)).

Lemma 1. For any profile in D(A)SP , the jth option in P̄ cannot be ranked after the rank
(m + 1 − j) in any individual preference if j ≤ m/2; it cannot be ranked after rank j
if j > m. As a consequence, only extreme alternatives a1 and am can be ranked last in
individual preferences.

2.2 Voting Rules

Definition 1. For any B ⊂ A, a Social Choice Function f is a mapping from D(B)U into B.

For each set of candidates proposed to the voters, the social choice function will select a
unique winner. It may be necessary to use tie breaking mechanisms in the decision process.
In this paper, we will not define any particular tie breaking rule. In case of a tie between
any two alternatives x and y, we will always favor the choice of the alternative that lead to
a paradox and/or a problem, in order to tackle the worst case scenario. In that sense, our
results will not depend upon the choice of any particular tie breaking rule.

Condorcet Principle

Given a profile π (resp. a voting situation ñ(π)), we will write aM(π)b (resp. aM(ñ)b) to
say that candidate a is majority preferred to b i.e. the number of voters who rank a before b
is strictly greater than that of those who rank b before a. When there is no risk of confusion,
we will simply write aMb.

A Condorcet Winner (CW) is an alternative that is able to defeat any other candidate
in pairwise comparisons. Candidate a is a CW at profile π whenever:

aM(π)x, ∀x ∈ A, x ̸= a.

By definition, a CW is unique. A Weak Condorcet Winner (WCW) is an alternative which
is never beaten in pairwise comparisons. Candidate a is a WCW at profile π if there is no
x ∈ A, x ̸= a, such as xM(π)a. We know from Black (1948) that the CW winner always
exists on the single-peaked domain when n is odd; when n is even, the set of WCW is non
empty too, but may contain up to m alternatives7. We denote by C(π), or simply C, the set
of WCW at profile π.

7Consider the profile where half of the population has the preference a1Pia2 . . . Piam and the other half,
exactly the opposite preference.
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Scoring rules and scoring run-off rules

Given a set B of p alternatives, a scoring vector is a vector vp = (vp1, v
p
2, . . . , v

p
j , . . . , v

p
p) ∈ Rp

such as wp
1 = 1, wp

m = 0 and wp
j ≥ wp

j+1. Given a scoring vector vp, voters give points to
candidates in B according to their rankings in preferences. A scoring rule fv is a mapping
from D(B)U into A, which picks the alternative with the highest total score8. The most
famous scoring rules are the Plurality rule (vpP = (1, 0, . . . , 0)), the Antiplurality rule (vpA =
(1, 1, . . . , 1, 0)) and the Borda count (vpB = (1, m−2

m−1
, . . . , m−j

m−1
. . . , 1

m−1
, 0)).

For the three-candidate case, one point is given to a candidate each time he is ranked
first, s point (0 ≤ s ≤ 1) when he is ranked second and 0 when he is last. This defines
vs = (1, s, 0). When s = 0, we get the Plurality rule; s = 1 defines the Antiplurality rule;
when s = 1

2
we recover the Borda count.

A set v⋆ = {v2, v3, . . . , vp, . . . , vm} is a family of scoring vectors; it can be used to define
a scoring run-off rule fv⋆ . A scoring run-off rule eliminate progressively the candidates on
the basis of the scores they obtained with a given scoring vector. When p alternatives are in
contention, the alternative which obtained the lowest score with fvp is removed from the set
of alternatives (again, a tie breaking rule might be used in case of a tie for the last position).
Alternatives are eliminated one by one till the final duel (v2 = (1, 0)). The most famous
members of this family are the Plurality run-off rule (Hare, 1859), the Antiplurality run-off
rule (Coombs, 1954) and the Borda run-off rule (Baldwin, 1926). Notice that our definition
does not encompass the cases where several alternatives are eliminated in block, as it is the
case for two stages Plurality run-off which directly selects the top two candidates for the
final run; the original rule suggested by Nanson (1883) that eliminates at each stage the
alternatives which Borda scores are below the average and the rule suggested by Kim and
Roush (1996) that also eliminates at each stage the alternatives which Antiplurality scores
are below the average.

In the three candidate case, the one with the lowest score is eliminated after a first run
and the last run is a majority contest involving the two other candidates. Given the single
peaked preferences of Table 2 and vs = (1, s, 0), the scores ws(a), ws(b) and ws(c) of each of
the candidate in A are as follows:

ws(a) = n2 + sn3

ws(b) = sn4 + n5 (1)

ws(c) = n3 + n4 + s(n2 + n5)

We can now focus on the characterization of the paradoxical voting situations. To do so,
we will first use some results from Lepelley and Vidu (2000) in order to identify situations
where the abstention and participation paradoxes cannot appear.

8A tie-breaking rule might be applied if needed
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3 Paradoxical voting situations under the single-peaked do-

main: Characterization results

3.1 General Results

In order to specify which scoring runoff rules suffer from the Participation and Abstention
paradoxes, we will connect this issue with previous results by Lepelley and Vidu (2000);
under the single-peaked domain, they proposed necessary and sufficient conditions for the
scoring run-off rules to always select the Condorcet winner when he exists.

Proposition 1. (Lepelley and Vidu, 2000) Let fv⋆ be a scoring run-off rule defined on D(A)SP .
If the family v⋆ is such that for all p = 2, . . .m, vpp−1 + vp⌈ p

2
⌉ ≥ 1, then fv⋆ will always select

the Condorcet winner.

Proposition 2. (Lepelley and Vidu, 2000) Let fv⋆ be a scoring run-off rule defined on D(A)SP .
If fv⋆ always selects the Condorcet winner at any profile, it the case that, for all p:

� vpp
2
+ vpp

2
+1

≥ minj∈{1,..., p
2
−1}

(
vpp−j+1 + vpj

)
if p is even

� vpp+1
2

≥ minj∈{1,..., p−1
2

}

(
vpp−j+1+vpj

2

)
if p is odd.

First, the necessary and sufficient conditions they propose are equivalent for m = 3 to
v32 = s ≥ 1

2
) and for m = 4 to v42 + v43 ≥ 1. For these cases, both the Antiplurality run-off

and the Borda run-off rules satisfy the necessary and sufficient conditions.

Dealing with variable electorates means that the number of voters who show up may be
even or odd. And, if the the number of voter is even, we may not have a unique Condorcet
winner. Hence, we need first to extend Proposition 1 to the case of Weak Condorcet Winners
(WCW) by showing that if the necessary condition is met, the scoring run-off rules will always
select a WCW.

Theorem 1. Let fv⋆ be a scoring run-off rule defined on D(A)SP . If the family v⋆ is such
that for all p = 2, . . .m, vpp−1 + vp⌈ p

2
⌉ ≥ 1, then fv⋆ will always select a WCW.

The proof is very similar to the one proposed by Lepelley and Vidu (2000), as we just
need to slightly adapt it to the case of an even number of voters.

Proof. Assume that ∀p = 2, . . .m, vpp−1 + vp⌈ p
2
⌉ ≥ 1. Let B the set of alternatives still in

competition at any stage of the elimination process and C ⊂ B the set of WCW. Without
loss of generality, we can relabel the alternatives in B from a1 to ap.

Case 1) Suppose a1 ∈ C (or symmetrically ap ∈ C). It comes that a1 is ranked first
by at least half of the population, because the only ordering in the single-peaked domain
where a1 is ranked before a2 is a1Pa2Pa3 . . . ap−1Pap. Hence, the score of a1 is at least n

2
.
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If a1 is ranked last for the other half of the voters (which means that n is even), his score is
exactly n

2
. If the score of ap is lower, a1 won’t be eliminated at this stage. Otherwise, the

score of ap will exactly be n
2
too. This is only possible if the other half of the population

has the preference apPap−1Pap−2 . . . a2Pa1. In that case, C = B : all the alternatives still
in competition are WCW, and whoever is eliminated at this stage, a WCW will be elected
at the end.

Case 2) Suppose that a1 ̸∈ C and ap ̸∈ C. From Lemma 1, we can deduce that the
median option a⌈n

2
⌉ along the axis a1P̄ a2 . . . P̄ ap is always ranked before rank ⌈p

2
⌉ in all the

individual orderings. Hence, an element ac of C must appear before this rank for at least
half of the voters. Otherwise, ac could not be a WCW. Moreover, as ac is not one of the
extreme options (a1 or ap), it cannot be ranked last. Hence, his score is at least equal to:

n+ 1

2
vp⌈ p

2
⌉ +

n− 1

2
vpp−1 =

n− 1

2

(
vp⌈ p

2
⌉ ++vpp−1

)
+ vp⌈ p

2
⌉ if n is odd,

and to
n

2

(
vp⌈ p

2
⌉ + vpp−1

)
if n is even.

If vp⌈ p
2
⌉ + vpp−1 ≥ 1 and n is odd, the score of ac is superior to n−1

2
. Moreover, one of the

extreme alternatives, a1 or ap, has a score inferior of equal to n−1
2

(as one has to be ranked
last by more than half of the voters). Hence, ac is not eliminated. If vp⌈ p

2
⌉ + vpp−1 ≥ 1 and n

is even, the score of ac is superior or equal to
n
2
. The maximal score an extreme alternative

can get is also n
2
. There is only one case for which a1 and ap have both this score: when

half of the population has the preference a1Pa2 . . . ap−1Pap and the other half, the opposite
preference. In that case, C = B, and in any case, a CWC is elected at the end. Otherwise,
one of them as a lower score and ac is not eliminated. Thus, in any case, we are sure that if
vp⌈ p

2
⌉ + vpp−1 ≥ 1, fv⋆(π) ∈ C(π).

Theorem 2. Let f be a Social Welfare Function on D(A)SP . If f always select a member
of C(π) at any profile in D(A)sp, it cannot suffer from any Abstention nor Participation
paradox.

Proof. First, we only consider the case of one individual leaving or entering the population,
as each change in the population is a sequence of individual entries or leaves.

Assume that fv⋆ always select a WCW, and let fv⋆(π) = a. Assume that a participation
paradox occurs, that is, a new voter with aPib joins population to form the profile π′ and
fv⋆(π

′) = b. But as fv⋆ always select a WCW, it cannot select b. Either b was tied with a,
and it is now dominated by b in π′, or b was already dominated, and it remains dominated.
In any case, we have aM(π′)b and b ̸∈ C, which is a contradiction.

The same reasoning holds for the abstention paradox. Assume that fv⋆(π) = a, and that
a voter i with bPia leaves the population. But b cannot be elected as long as fv⋆ always
select a WCW. If b was a WCW, being tied with a, it is now dominated and cannot be
selected.
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3.2 Specific results related to three-candidate elections

Note that Theorems 1 and 2 are valid for any number of alternatives. We adapt these
results to the three-candidate case. First of all, let us recall that the Positive Abstention
Paradox (PAP) occurs when some voters with a loser ranked last abstain, this loser becomes
the winner. Symmetrically, the Positive Participation Paradox (PPP) describes a situation
under which by joining the electorate, some voters with the winner ranked first in their
preferences, can turn this winner into a loser. The Negative Abstention Paradox (NAP)
appears after some voters with the winner ranked last abstain and this winner becomes a
loser ; for the Negative Participation Paradox (NPP), some voters with a loser ranked last
can turn this candidate into a winner by joining the electorate.

Theorem 3. Given a voting situation with three candidates and single-peaked preferences,
the Positive Abstention Paradox nor the Positive Participation Paradox can occur with the
Plurality run off and with all the scoring run-off located between the Borda run-off and the
Antiplurality run-off. Nonetheless, for all s ∈]0 1

2
[, there exists some voting situations ñ

under which these paradoxes can happen.

The sufficient part is just the consequence of Theorems 1 and 2 for s ∈ [1
2
, 1]. Smith

(1973) prove that the Plurality run-off does not suffer from PPP and PAP. The necessary
part is proved via examples, provided in Lemmata 2 and 3 (See Appendix 1).

Theorem 4 characterizes in three-candidate elections, all the scoring run off rules sensitive
to the Negative Participation Paradox and to the Negative Abstention Paradox under the
single-peaked domain.

Theorem 4. With three candidates and single-peaked preferences, the Negative Participation
Paradox and the Negative Abstention Paradox never occur for all the scoring run-off rules
located between the Borda run-off and the Antiplurality run-off i.e. for all s ∈ [1

2
1]. On the

other hand, each of these paradoxes can happen for any s ∈ [0 1
2
[ at some profiles.

Again, the sufficient part is just the consequence of Theorems 1 and 2. The necessary
part is proved via examples, provided in Lemmata 4 and 5 (See Appendix 2).

As for three candidates, an Abstention (resp. Participation) paradox can only be an
instance of PAP or a NAP (resp. PPP or NPP), Table 3 summarizes our results by displaying
for each of the paradoxes, the rules (the values of s) for which they can appear.

Table 3: single-peaked preferences and existence of paradoxes for scoring run-off rules

Paradoxes

PPP NPP PP NAP PAP ABS
s ∈]0, 1

2
[ s ∈ [0, 1

2
[ s ∈ [0, 1

2
[ s ∈ [0, 1

2
[ s ∈]0, 1

2
[ s ∈ [0, 1

2
[
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Table 4: The six types of basic voting situation

Case: Initial Scores Winner PPP PAP NPP NAP

1 ws(a) ≥ ws(b) ≥ ws(c) a Yes, for c No No Yes, for c
(Lemma 2) (Lemma 5)

2 ws(a) ≥ ws(b) ≥ ws(c) b Yes, for c No No Yes, for c
(Lemma 6) (Lemma 7)

3 ws(a) ≥ ws(c) ≥ ws(b) a No No No No

4 ws(a) ≥ ws(c) ≥ ws(b) c No Yes, for a Yes, for a No
(Lemma 3) (Lemma 4)

5 ws(c) ≥ ws(a) ≥ ws(b) a No No No No

6 ws(c) ≥ ws(a) ≥ ws(b) c No No No No

From Table 3, we learn that in three-candidate elections, none of the scoring run-off rules
located between the Borda run-off and the Antiplurality run-off is vulnerable to variable
electorate paradoxes when preferences are single-peaked. However, notice that the Plurality
run-off, remains vulnerable to the NPP and to the NAP. Before turning to Section 4 where we
will evaluate how often the run-off rules located between s = 0 and s = 1

2
are vulnerable to

these variable electorate paradoxes, let us characterize all the situations where the paradoxes
can happen.

Lemmata 2 to 5 (see Appendices) enable us to confirm that some rules do suffer from
participation and abstention paradoxes on the single peaked domain. However, if we want
to evaluate the likelihood of these paradoxes, we need to numerate precisely all the voting
situations that may lead to a paradox.

Theorem 5. On the single peaked domain for three alternatives, Table 4 describes all the
possible occurrences of the PPP, PAP, NPP and NAP for any s ∈]0, 1

2
[. As the situations

leading to a PPP or NPP are disjoint, the likelihood of the PP is the sum of the likelihood
of the PPP and NPP. Similarly, as the situations leading to a PAP and a NAP are disjoint,
the likelihood of an AP is the sum of the likelihood of the PAP and NAP.

Proof. Due to the specific role played by the centrist alternative (candidate c) on the single-
peaked domain, there are indeed 6 “basic” types of voting situations (instead of just 2 for the
universal domain). They are described in Table 4. Also according to Lepelley and Merlin
(2001, Prop. 5), in three-candidate elections (under the universal domain), the NAP and
the PAP situations are exclusive. So the likelihood of the No-show paradox is just equal to
the sum of the PAP and the NAP. Obviously the same result holds on a restricted domain,
such as the single peaked domain. However, Lepelley and Merlin (2001) displayed a voting
situation where one can end with the PPP as with the NPP simultaneously from the same
original profile. Hence, we need to further explore the 6 cases to see whether the PPP and
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NPP situations are exclusive. This enumeration will also pave the way for the probability
computations we will derive in the next section.

Case 1) We have ws(a) ≥ ws(b) ≥ ws(c) for the initial profile, and a wins against b in
the runoff. A PPP may occur if we add acb types, c goes to the runoff and then beats a
(see Lemma 2 for an example). A PAP could occur if, by removing a bca (resp cba or cab),
b (resp. c) would get elected. This is impossible here, as b (resp. c) would loose ground
to a and c (resp. b) in the first round. As c is never last in D(A)SP , a NPP could only
occur by adding acb or cab voters. But adding any of this preference type cannot help b to
win. However, a NAP can occur: by removing a bca voter, c could reach the run-off and win
against a (see Lemma 5 for an example).

Case 2) We have ws(a) ≥ ws(b) ≥ ws(c) for the initial profile, and b wins against a in
the runoff. By adding bca voters, it could that both b and c get more vote than a, and that
ultimately, c beat b, leading to a PPP. This is a tricky situation, as both b and c need extra
support to eliminate a in the first round. However, we provide an example in Appendix 3
(Lemma 6), which starts from a situation where all the scores are equal and lead to this
result for any s ∈]0, 1

2
]∩Q. A PAP could occur if, by deleting acb voters, a would win. This

obviously not possible. Removing cba or cab voters cannot either help c. For a NPP to
occur, adding cba voters should enable c to reach the second stage, and then a could beat c.
However, for a to beat c, we need to have n2 ≥ n

2
initially, which is not possible, as b initially

beats a. However, a NAP can occur: removing acb voters could lead to a duel between b and
c that c could win. Lemma 7 in Appendix 3 provides such an example for any s ∈]0, 1

2
]∩Q;

again, it uses the fact all the scores are initially equals.

Case 3) We have ws(a) ≥ ws(c) ≥ ws(b) and a wins against c in the runoff. Obviously,
a PPP cannot occur, nor a NPP. Removing a preference with c (resp b) first cannot make
c win (resp. b), and we cannot have a PAP. Deleting a preference with a last cannot make
him lose either (as a beats c, we are sure that n2 >

n
2
initially; so, there is no NAP .

Case 4) We have initially ws(a) ≥ ws(c) ≥ ws(b) and c beats a. Adding cba could lead
to a PPP if both c and b go to the runoff. As b wins, we should have had initially n5 > n

2
.

Hence, his score should have been superior to n
2
. But as s < 1

2
, the sum of the points

distributed by all the voters is inferior to 3
2
n. This is a contradiction, as in this case, b’s

initial score would have been superior to the average, and he would not have been last. A
PPP cannot happen. For a PAP to happen, removing acb could lead to a duel between a
and b if c becomes eliminated first; see Lemma 3 for an example. Obviously, a NAP cannot
occur as c is never last. A NPP can happen if, by adding bca voter, b could dislodge c for
the runoff, and next, a would win (see Lemma 4 for an example).

Case 5) We have initially ws(c) ≥ ws(a) ≥ ws(b) and a beats c. A PPP cannot happen
as the only possibility is to add acb voters. By deleting cab voters, candidate a could loses
points and be eliminated first and then c would emerge as a final winner, leading to a PAP .
But, as a beats c initially, we are sure that n2 ≥ n/2, and by removing a cab voter, the score
of a diminishes by s, which is also inferior to the average diminution. Hence, a cannot be
eliminated and he still beats b and c in the second round. For a NPP to occur, adding voters
with b last should help him; this is no possible here either. For a NAP to occur, deleting
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voters with a last should hurt a. This could be possible if by deleting cba voters, we could
end up in a duel between a and b that b could win. But initially, we had n2 > n/2 as a was
the winner against c. This is always the case after deleting cba voters, and b cannot win.

Case 6) We have initially ws(c) ≥ ws(a) ≥ ws(b) and c beats a. A PPP could happen, if,
by adding a cba preference, b would reach the second stage and beat c. However, this would
mean that initially, n5 > n/2, and that b would not be last, a contradiction. A PAP cannot
happen : removing bca won’t help b and removing acb won’t help a. Adding preferences with
a or b last will not help them to win, the NPP is not possible either. A NAP cannot happen,
as c is never ranked last.

4 The likelihood of the paradoxes under IAC

Before evaluating the likelihood of the paradoxes, we first need to define the necessary and
sufficient conditions that characterize each of these paradoxes.

4.1 Necessary and sufficient conditions

Propositions 3 to 4 respectively characterize all the voting situations in three-candidate
elections with single-peaked preferences in which the NAP, the PAP, the NPP and the PPP
are likely to occur given s. We skip the proofs of these propositions since they follow the
same scheme as those of Lepelley and Merlin (2001); nonetheless, they are available upon
request.

Proposition 3. Consider a voting situation with single-peaked preferences described by Table
2. If a beats b in the runoff, PPP occurs in favor of c (Lemma 2) for all run-off rule s ∈]0; 1

2
[

if and only if: 
(s− 1)n2 + (1− s)n3 + n4 + sn5 ≤ 0 (A.1)
sn2 + n3 + (1− s)n4 + (s− 1)n5 ≤ 0 (A.2)

−n2 − n3 + n4 + n5 ≤ 0 (A.3)
−(1 + s)n3 − n4 + (1− 2s)n5 ≤ 0 (A.4)

In Proposition 3, the first three conditions respectively describe ws(a) ≥ ws(c), ws(b) ≥
ws(c) and aMb; the last condition guarantees that the paradox occurs. Notice that Lemmata
2 and 6 are symmetric; so, Proposition 3 can be used to describe both Cases 1 and 2 of Table
4 for the PPP.

Proposition 4. Consider a voting situation with single-peaked preferences described by Table
2. If a beats b in the runoff, the NAP occurs in favor of c (Lemma 5)for all run-off rule
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s ∈ [0; 1
2
[ if and only if

(s− 1)n2 + (1− s)n3 + n4 + sn5 ≤ 0 (B.1)
sn2 + n3 + (1− s)n4 + (s− 1)n5 ≤ 0 (B.2)

−n2 − n3 + n4 + n5 ≤ 0 (B.3)
(1− 2s)n2 + (s− 2)n3 + 2(s− 1)n4 ≤ 0 (B.4)

Note that for the NAP, Proposition 4 covers Case 1 of Table 4 and it can be used to
characterize Case 2 since Lemmata 5 and 7 are symmetric. In this proposition, the first
three conditions respectively describe ws(a) ≥ ws(c), ws(b) ≥ ws(c) and aMb; the last
condition ensures that the paradox can happen.

Proposition 5. Consider a voting situation with single-peaked preferences described by Table
2. If c beats a in the runoff, the PAP occurs in favor of a (Lemma 3) for all run-off rule
s ∈]0; 1

2
[ if and only if

−n2 − sn3 + sn4 + n5 ≤ 0 (C.1)
−sn2 − n3 + (s− 1)n4 + (1− s)n5 ≤ 0 (C.2)

n2 − n3 − n4 − n5 ≤ 0 (C.3)
(1− s2)n3 + (1− s+ s2)n4 + (2s− 1)n5 ≤ 0 (C.4)

(1− s)n3 + n4 + (2s− 1)n5 ≤ 0 (C.5)

In Proposition 5, the first three conditions respectively describe ws(a) ≥ ws(b), ws(c) ≥
ws(b) and cMa; the two last inequalities are technical conditions guaranteeing that the
paradox occurs.

Proposition 6. Consider a voting situation with single-peaked preferences described by Table
2. If c beats a in the runoff, the NPP occurs in favor of a (Lemma 4) for all run-off rule
s ∈ [0; 1

2
[ if and only if

−sn2 − n3 + (s− 1)n4 + (1− s)n5 ≤ 0 (D.1)
n2 − n3 − n4 − n5 ≤ 0 (D.2)

(2s− 1)n2 + (1− s+ s2)n3 + (1− s2)n4 ≤ 0 (D.3)
(2s− 1)n2 + sn3 + 2(1− s)n4 ≤ 0 (D.4)

The first two conditions of Proposition 6, respectively describe ws(c) ≥ ws(b) and cMa;
the two last inequalities are technical conditions guaranteeing that the paradox occurs.

We are now ready to evaluate the likelihood of the different paradoxes we presented;
before doing so, let us present the probability model we will use, namely, the Impartial
Anonymous Culture assumption.

4.2 The Impartial Anonymous Culture

The Impartial Anonymous Culture (IAC) is one of the most used assumptions in the so-
cial choice theory for the computation of the likelihood of voting events (see for example,
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Gehrlein and Lepelley (2010, 2017)). Under IAC, it is assumed that each voting situation
is equiprobable. When no restriction is made on voters’ preferences (universal domain), the
total number of the possible voting situations is given by the m! − 1 degree polynomial
Cn

n−m!−1 with n the number of voters and m the number of candidates. For three-candidate
election and single-peaked preferences, the total number of the possible voting situations is
given by the following three degree polynomial9 :

(n+ 1)(n+ 2)(n+ 3)

6

The probability of a given event obeys to the following ratio :

total number of voting situations where the event is likely to happen

total number of possible voting situations

Many techniques have been suggested in the literature for the determination of the total
number of voting situations where the event is likely to happen. According to Ehrhart (1962,
1967), this amounts to count the number of vectors with integer components contained in a
polytope10. This author showed that this number is a specific function in n (here, the size
of the electorate); for an appropriate value of n, this specific function is a polynomial in n
which depends of the congruence that appears due to the form of the considered polytope.
In this way, diverse algorithms have been developed for performing the counting of the
vectors with integer components given a polytope. We can refer to the works of Barvinok
(1994), Barvinok and Pommersheim (1999), Clauss and Loechner (1998), Haung and Chua
(2000), Lepelley et al. (2008), Wilson and Pritchard (2007). The most used algorithm in
the literature is that of Barvinok (1994). For more on this algorithm and its extensions,
see the works of Clauss and Loechner (1998), Verdoolaege et al. (2004). In this paper,
we use the parameterized Barvinok’s algorithm developed by Verdoolaege et al. (2004) for
small electorates. The Parameterized Barvinok’s algorithm covers the limitations of the
algorithm proposed by Clauss and Loechner (1998) and it extends the Barvinok’s algorithm
by considering parametric polytopes with any numbers of parameters. It generalizes the
Barvinok’s algorithm by considering validity domains with the ability to handle periodic
numbers. For more details on the Parameterized Barvinok’s algorithm, we refer the reader
to works of Verdoolaege et al. (2004). Due to space constraints, we are not going to report
all the polynomials we obtained; they are available upon request. For large electorates, we
use the technique suggested by Cervone et al. (2005) and report the results in Appendix 4.

9See Lepelley (1995).
10A polytope is a geometric object with flat sides; it may exist in any general number of dimensions n as

an n-dimensional polytope or n-polytope.
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4.3 The probabilities of the paradoxes

4.3.1 The case of small electorates

Let us denote by P̂ IAC
NAP(s,m, n), P̂ IAC

PAP(s,m, n), P̂ IAC
PPP(s,m, n) and P̂ IAC

NPP(s,m, n) respectively
the probability under IAC that the NAP, the PAP, the PPP and the NPP occurs for a given
scoring run-off s with m candidates and n voters with single-peaked preferences. Our results
concerning small electorates (n = 3, 4, 5, . . . , 33) are provided in Table 5 for the PPP and
the PAP and Table 6 for the NAP and the NPP.

Table 5: Probabilities P̂ IAC
PAP(s, 3, n) and P̂ IAC

PPP(s, 3, n)

P̂ IAC
PAP(s, 3, n) P̂ IAC

PPP(s, 3, n)

n s = 0.1 s = 0.2 s=0.3 s = 0.4 s = 0.1 s = 0.2 s = 0.3 s = 0.4
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0.03572 0 0
6 0 0.02381 0 0 0 0.02381 0 0
7 0 0 0 0 0 0 0.01667 0
8 0 0.01212 0.01212 0 0 0.01212 0 0
9 0 0.00909 0 0 0 0.00909 0 0
10 0 0.00699 0 0 0 0.00699 0 0
11 0 0 0 0.00549 0.01098 0.00549 0 0.00549
12 0 0.00439 0.00439 0.00879 0.00879 0.00439 0.00879 0.00879
13 0.00357 0.00357 0.00714 0 0.00714 0.00714 0.00714 0.00357
14 0.00882 0.00588 0.00883 0.00294 0.01176 0.00883 0.00588 0.00294
15 0.00491 0.00735 0 0 0.00491 0.00491 0.00245 0.00245
16 0.00619 0.01032 0.00206 0.00206 0.00413 0.00619 0.00206 0.00206
17 0.00877 0.00175 0.00175 0 0.00351 0.00526 0.00175 0
18 0.01053 0.00301 0.00301 0.00151 0.00301 0.00752 0.00451 0.00151
19 0.00259 0.00259 0.00389 0.00129 0 0.00519 0.00389 0.00129
20 0.00226 0.00452 0.00452 0.00226 0 0.00565 0.00452 0.00113
21 0.00197 0.00494 0.00197 0.00198 0.00197 0.00494 0.00296 0.00099
22 0.00174 0.00608 0.00348 0.00261 0.00261 0.00608 0.00261 0.00174
23 0 0.00307 0.00231 0.00154 0.00231 0.00462 0.00307 0.00154
24 0 0.00478 0.00342 0.00205 0.00274 0.00547 0.00342 0.00274
25 0 0.00427 0.00244 0.00061 0.00427 0.00488 0.00244 0.00122
26 0.00055 0.00493 0.00274 0.00109 0.00438 0.00547 0.00383 0.00164
27 0.00148 0.00296 0.00246 0.00049 0.00345 0.00493 0.00394 0.00148
28 0.00267 0.00401 0.00356 0.00134 0.00489 0.00489 0.00445 0.00178
29 0.00202 0.00282 0.00202 0.00081 0.00363 0.00444 0.00323 0.00121
30 0.00257 0.00366 0.00256 0.00147 0.00293 0.00513 0.00329 0.00147
31 0.00334 0.00367 0.00201 0.00134 0.00301 0.00468 0.00267 0.00101
32 0.00397 0.00489 0.00275 0.00183 0.00367 0.00519 0.00367 0.00122
33 0.00252 0.00336 0.00252 0.00112 0.00252 0.00448 0.00308 0.00084
...

...
...

...
...

...
...

...
...

50 0.00247 0.00342 0.00273 0.00119 0.00307 0.00444 0.00307 0.00119
...

...
...

...
...

...
...

...
...

100 0.00201 0.00305 0.00236 0.00092 0.00287 0.00404 0.00288 0.00091

We notice from Table 5 that given s ∈]0; 1
2
[, the likelihood of the PPP tends to decrease

as the size of the electorate increases; also, given the size of the electorate, the likelihood of
the PPP tends to decreases as s increases. Concerning the PAP, we notice that the PAP does
not occurs for for certain rules when the population size remains low (up to n ≤ 25) ; for a
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given value of s, it is difficult to describe the evolution of the probability when the size of
the electorate varies. As P̂ IAC

PAP(0.1, 3, n) < P̂ IAC
PAP(0.2, 3, n) ≥ P̂ IAC

PAP(0.3, 3, n) > P̂ IAC
PAP(0.4, 3, n),

this leads us to think that given n, the likelihood of the PAP reaches its maximum for
0.2 ≤ s ≤ 0.3.

Concerning the NPP and the PPP, the changes in the probabilities do not show a stable
trend when the number of voters is below 16 regardless of s ∈ [0, 1

2
[. With more than 15

voters, it comes that the probabilities of the NPP and the NAP tends to decrease as n
increases regardless of s. For a given size of the electorate, the likelihood of the NPP and
the NAP tends to decreases as s increases. So, the likelihoods of these paradoxes tend to be
maximized by the Plurality run-off. Comparing our results of the NPP and the NAP for the
Plurality run-off to those of Lepelley and Merlin (2001), it comes that when we move from
the universal domain to the single-peaked one, the probabilities are almost divided by two
thirds or even by two according to the number of voters.

From a global perspective, under the single-peaked domain and for small electorates, a
paradox of participation is more likely to occur than its equivalent in abstention regardless
of s. This pattern is in line with what Lepelley and Merlin (2001) got under the universal
domain.
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Table 6: Probabilities P̂ IAC
NPP(s, 3, n) and P̂ IAC

NAP(s, 3, n)

P̂ IAC
NPP(s, 3, n) P̂ IAC

NAP(s, 3, n)

n s = 0 s = 0.1 s = 0.2 s=0.3 s = 0.4 s = 0 s = 0.1 s = 0.2 s = 0.3 s = 0.4
3 0.09999 0 0 0 0 0.10000 0 0 0 0
4 0.22857 0.05714 0.05714 0.05714 0 0.17143 0 0 0 0
5 0.07143 0 0 0.03571 0 0.03571 0.03571 0.03571 0 0
6 0.14286 0.04762 0.07143 0.02381 0 0.07143 0.02381 0.04762 0 0
7 0.06667 0.03333 0.03333 0 0 0.05000 0 0.01667 0.01667 0
8 0.13333 0.04848 0.04848 0.02424 0.01212 0.07273 0.02424 0.02424 0.01212 0
9 0.07273 0.01818 0.01818 0.00909 0.00909 0.04545 0.02727 0.00909 0.00909 0
10 0.10490 0.05594 0.02797 0.02098 0.00699 0.05594 0.02098 0.01399 0.00699 0
11 0.06593 0.03297 0.01099 0.01099 0.00549 0.03846 0.01648 0.01648 0 0.00549
12 0.10989 0.05275 0.03956 0.01758 0.00879 0.06154 0.02637 0.01758 0.00879 0.00879
13 0.06429 0.03571 0.02500 0.01071 0 0.03929 0.02143 0.01429 0.00714 0.00357
14 0.09118 0.05588 0.03529 0.01765 0.00294 0.04412 0.02941 0.01765 0.01176 0.00294
15 0.06618 0.03676 0.02451 0.00735 0 0.03922 0.02206 0.01225 0.00735 0.00245
16 0.09288 0.05160 0.03509 0.01445 0.00619 0.05160 0.02477 0.01858 0.00826 0.00413
17 0.06316 0.03860 0.01754 0.00877 0.00351 0.03509 0.01930 0.01404 0.00526 0.00175
18 0.08571 0.04812 0.03008 0.01353 0.00602 0.04361 0.02707 0.01654 0.00752 0.00301
19 0.06234 0.02987 0.02208 0.00909 0.00260 0.03636 0.02078 0.01169 0.00519 0.00130
20 0.08470 0.04404 0.03162 0.01355 0.00339 0.04404 0.02146 0.01468 0.00565 0.00113
21 0.06324 0.03261 0.02273 0.00988 0.00198 0.03557 0.01680 0.01186 0.00395 0.00099
22 0.07913 0.04261 0.02957 0.01304 0.00261 0.04087 0.02174 0.01565 0.00609 0.00174
23 0.06154 0.03077 0.02077 0.00846 0.00154 0.03385 0.01923 0.01308 0.00615 0.00154
24 0.08068 0.04376 0.03009 0.01299 0.00342 0.04239 0.02120 0.01573 0.00752 0.00274
25 0.06105 0.03358 0.02137 0.00916 0.00183 0.03419 0.01770 0.01221 0.00549 0.00122
26 0.07553 0.04379 0.02791 0.01314 0.00328 0.03777 0.02189 0.01423 0.00657 0.00164
27 0.06158 0.03498 0.02167 0.00985 0.00246 0.03399 0.01872 0.01182 0.00542 0.00148
28 0.07608 0.04494 0.02848 0.01246 0.00356 0.04004 0.02225 0.01379 0.00756 0.00222
29 0.06048 0.03589 0.02137 0.00847 0.00202 0.03266 0.01895 0.01210 0.00524 0.00161
30 0.07368 0.04509 0.02749 0.01173 0.00257 0.03739 0.02126 0.01430 0.00623 0.00220
31 0.06016 0.03676 0.02206 0.00902 0.00134 0.03309 0.01872 0.01203 0.00468 0.00134
32 0.07334 0.04431 0.02811 0.01161 0.00214 0.03759 0.02200 0.01436 0.00611 0.00183
33 0.06050 0.03585 0.02157 0.00868 0.00252 0.03277 0.01933 0.01204 0.00504 0.00140
...

...
...

...
...

...
...

...
...

...
...

50 0.06616 0.04183 0.02518 0.01076 0.00231 0.03329 0.02083 0.01281 0.00581 0.00145
...

...
...

...
...

...
...

...
...

...
...

100 0.06107 0.04017 0.02376 0.00983 0.00192 0.03084 0.01988 0.01188 0.00515 0.00113

4.3.2 The case of large electorates

Under the universal domain, Lepelley and Merlin (2001) were able to derive the likelihood of
the abstention paradox under IAC as the size of the electorate tends to infinity only for the
Plurality run-off, the Antiplurality run-off and the Borda run-off. The results for the Borda
run-off were obtained via simulations. The recent developments in computational techniques
enable us to compute on the universal domain, the exact values of the limiting probabilities
for each of the paradoxes for s = 0(0.1)1 under IAC. The results are provided in Table 7
where we also provide the limiting probabilities under the single-peaked domain in order to
envisage possible comparisons.
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Table 7: Limiting probabilities under the Universal domain (U) and the Single-peaked do-
main (SP)

s = 0 s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.5 s = 0.6 s = 0.7 s = 0.8 s = 0.9 s = 1

PAP
U 0 0.00263 0.00509 0.00713 0.00864 0.01042 0.01442 0.01997 0.02665 0.03425 0.04253
SP 0 0.00185 0.00264 0.00213 0.00071 0 0 0 0 0 0

NAP
U 0.04079 0.03554 0.02994 0.02417 0.01853 0.01389 0.01181 0.00994 0.00739 0.00404 0
SP 0.02778 0.01894 0.01094 0.00459 0.00085 0 0 0 0 0 0

AP
U 0.04079 0.03818 0.03502 0.03129 0.02717 0.02431 0.02623 0.02991 0.03405 0.03829 0.04253
SP 0.02778 0.02080 0.01358 0.00672 0.00156 0 0 0 0 0 0

PPP
U 0 0.00395 0.00759 0.01043 0.01224 0.01389 0.01703 0.02095 0.02582 0.03162 0.03822
SP 0 0.00266 0.00364 0.00262 0.00068 0 0 0 0 0 0

NPP
U 0.07292 0.06127 0.04873 0.03651 0.02648 0.02083 0.01927 0.01679 0.01244 0.00666 0
SP 0.05556 0.03848 0.02202 0.00887 0.00151 0 0 0 0 0 0

PP SP 0.05556 0.04114 0.02567 0.01149 0.00219 0 0 0 0 0 0

Comparing the figures of Table 7, we observe that on the single peaked domain, the lim-
iting probabilities of the paradoxes are drastically reduced. Thus, single-peakedness can help
in reducing the likelihood of the Participation and Abstention paradoxes. This conclusion
is also in line with the findings of Lepelley et al. (1995) concerning two paradoxes of mono-
tonicity: the more-is-less paradox (M1) and the less-is-more paradox (M2). The paradox M1
appears when a winner can become a loser after he has been lifted up, ceteris paribus, in one
or more voters’s rankings. The paradox M2 appears when a loser can become a winner after
his position has been degraded, ceteris paribus, in one or more voters’s rankings. According
to the findings of Lepelley et al. (1995), in three-candidate elections, when we go from the
universal domain to the single-peaked one, the likelihoods of M1 and M2 are considerably
reduced. Table 8 recalls some results of Lepelley et al. (1995) for the Plurality runoff and
the Antiplurality runoff when the size of the electorate tends to the infinity.

Table 8: Limiting probabilities of paradoxes M1 and M2 for the Plurality runoff and the
Antiplurality runoff under the universal domain and under the single-peaked domain

Plurality runoff Antiplurality runoff
Domain M1 M2 M1 M2
Universal 0.04514 0.01968 0.05556 0.06481

Single-peaked 0.01736 0 0 0.04629

5 Conclusion

In this paper, we have shown that, in three-candidate elections, when we go from the universal
domain to the single-peaked domain, none of the paradoxes of variable electorate appear with
all the scoring runoff located between the Borda runoff and the Antiplurality runoff. Also,
we found that, among the well known scoring runoff, only the Plurality runoff is sensitive to
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two of the four paradoxes of variable electorate: the Negative Participation Paradox and the
Negative Abstention Paradox. The evaluation of the likelihood of the abstention paradox in
three-candidate elections with s varies allowed us to conclude after a comparison with the
results obtained by Lepelley and Merlin (2001) that the abstention paradox is less likely to
occur under the single-peaked domain than under the universal domain. Our analysis with
three candidates lead us to notice that among the numerous (theoretical) critics against the
runoff system in use in France, many of them will no be valid anymore in the real life such
as the Negative Participation Paradox and the Negative Abstention Paradox.

Top and Merlin (2016) investigated the four-candidates case and they found that the
task is quite arduous as under the Single-peaked domain, numerous subcases are to be
analyzed. They also showed that with four candidates, the Abstention Paradox is no more
the combination of only the PAP and the NAP but also of a new type of Abstention paradox
: the Intermediary Abstention Paradox. This paradox occurs when, by deleting some voters,
the candidate ranking in the second place (with the winner of the initial situation ranking
third or fourth) or the third place (with the winner of the initial situation ranking fourth)
by these voters becomes the winner. As the number of cases to investigate increases, we fear
that the values of the participation and abstention paradoxes will not longer be negligible,
even if we consider only the single-peaked domain.

Appendices

Appendix 1: Proof of Theorem 3

The sufficient part is just the consequence of Theorems 1 and 2. The necessary part is
provided in Lemmata 2 and 3.

Lemma 2. Consider the single peaked domain for three alternatives. For a, b ∈ A \ {c}, if
candidate a wins versus candidate b, it is possible to build examples where the PPP and this
possible in favor of c for any s ∈]0 1

2
[.

Proof. Let us show that the PPP can happen for s ∈]0 1
2
[. Using the labels from Table 2,

Table 9 describe the initial voting situation ñ such as (with ⌈x⌉ the smallest integer greater
than x).

Table 9: Initial Profile for the PPP

acb: cab: cba: bca:
n2 = n5 n3 = ⌈1

s
⌉ n4 = 0 n2 = n5 = ⌈ n3

1−2s
⌉
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Then,the scores for ñ are:

ws(a) = n2 + sn3

ws(b) = n2

ws(c) = n3 + 2sn2

Note that n3 ≥ 1
s
> 1. So, ws(a) > ws(c) and ws(b)−ws(c) = (1− 2s)n2−n3. By definition,

n2 = ⌈ n3

1−2s
⌉ ≥ n3

1−2s
. Thus, ws(b) − ws(c) ≥ 0. Candidate c eliminated at the first run and

a wins the majority contest versus b by n2 + n3 supports against n4 + n5 = n2. Let us add
k = n3 voters of type 2 to create profile ñ

′
. The new scores are :

w
′

s(a) = n2 + (1 + s)n3

w
′

s(b) = n2

w
′

s(c) = (1 + s)n3 + 2sn2

We still get w
′
s(a) > w

′
s(b) but now:

w
′

s(b)− w
′

s(c) = (1− 2s)n2 − (1 + s)n3.

Since n2 = ⌈ n3

1−2s
⌉, we have n2 ≤ n3

1−2s
+ 1. Hence:

w
′

s(b)− w
′

s(c) ≤ (1− 2s)

(
n3

1− 2s
+ 1

)
− (1 + s)n3

⇔ w
′

s(b)− w
′

s(c) ≤ 1− 2s− sn3

As n3 = ⌈1
s
⌉, s⌈1

s
⌉ ≥ 1 and the score of b is inferior to the score of c. Then, b is eliminated and

c is elected if we use a tie break in his favor. Thus, the PPP can happen for any s ∈]0 1
2
[.

Lemma 3. Consider the single peaked domain for three alternatives, as described by Table 2.
If candidate c wins versus candidate a, it is possible to build at least one example where the
PAP occurs in favor of a for any s ∈]0 1

2
[

Proof. The proof is just the mirror of the one we described for Lemma 2, by starting from
the final profile.

Appendix 2: Proof of Theorem 4

The sufficient part is just the consequence of Theorems 1 and 2. The necessary part is
provided in Lemmata 4 and 5.

Lemma 4. Consider the voting situation of Table 2 and assume that candidate c wins against
candidate a. The NPP can occur for any s ∈ [0 1

2
[ at some profile in D(U)SP .
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Proof. First, notice that the NPP is not possible if we try to favor candidate b by adding
some voters of type 2 or 3; in either of the cases candidate b’s score remain unchanged while
those of a and c increase. So, the only possibility to get the NPP is to imagine a situation
in which we favor candidate a. In this case, the NPP will be possible only if after one adds
some detractors of a (type 4 and/or 5), candidate c is eliminated after the first run and that
candidate a wins versus candidate b. For this, consider the profile described in Table 10 with
x = ⌊ 1

1−2s
⌋.

Table 10: Initial Profile for the NPP

acb: cab: cba: bca:
n2 = x+ 1 n3 = 1 n4 = 0 n5 = x

Note that x is positive and well defined for any s ∈ [0, 1
2
[. Then,the scores for ñ are:

ws(a) = x+ 1 + s

ws(b) = x

ws(c) = (2x+ 1)s+ 1

We have immediately ws(a) ≥ ws(b). Also, we get:

ws(c)− ws(b) = (2x+ 1)s+ 1− x

= (2s− 1)x+ 1 + s

= (2s− 1)⌊ x

1− 2s
⌋+ 1 + s ≥ 0

As (1 − 2s)⌊ x
1−2s

⌋ ≤ 1, we are sure that the score of c is at least superior or equal to the

score of b for any s ∈ [0, 1
2
[. We can assume that a and c reach the second stage, and that c

beats a by one extra vote.

Let us add 1 type 5 voter with preference bca. The new scores are :

w
′

s(a) = x+ 1 + s

w
′

s(b) = x+ 1

w
′

s(c) = (2x+ 1)s+ 1 + s

Again, a’s score is superior to b’s. Now:

w
′

s(b)− w
′

s(a) = x+ 1− (2x+ 1)s− 1− x

= ⌊ 1

1− 2s
⌋(1− 2s)− 2s

On can check that with Maple or another software that this value is always positive for any
s ∈ [0, 1

2
[. Hence, a and b make it to the runoff. Both alternatives obtain the same number

of votes, and provided that we break the tie in favor of a, we obtain a NPP.
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Lemma 5. Consider the voting situation of Table 2 and assume that candidate a wins against
candidate b. The NAP can occur for any s ∈ [0 1

2
[ at some profile in D(U)SP .

Proof. The proof is similar to the one we proposed for Lemma 4, except that the roles of the
initial and final profiles are switched.

Appendix 3: Additional Lemmata for the Proof of Theorem 5

Lemma 6. Consider the voting situation of Table 2 and assume that candidate b wins against
candidate a. A PPP can occur in favor of c for any s ∈ [0 1

2
[ at some profile in D(U)SP .

Proof. Case 2 of Table 4 envisages that ws(a) ≥ ws(b) ≥ ws(c), b beat a, and adding bca
voters lead to the victory of c! We will display an profile that supports this assertion for any
s ∈]0, 1

2
[ in Table 11, where x is a real number such as the values of n2,n3, n4 and n5 are

integer numbers. Notice that for s ∈ [0, 1
2
[, these numbers are well defined.

Table 11: Initial Profile for the PPP

acb: cab: cba: bca:

n2 =
x
6
(2+s−s2)
(1−s2)

n3 =
x
6
(1−s−2∗s2)

(1−s2)
n4 =

x
6
(1−s−s2)
(1−s2)

n5 =
x
6
(2+s−s2)
(1−s2)

One can check that the values of the ni’s have been precisely designed such as ws(a) =
ws(b) = ws(c). The pairwise comparison between a and b is a tie. Hence, with the appropriate
tie breaking rule, a and b could go to the runoff, and b could be elected.

Now, let us add a bca voter. Hence, a is eliminated first, and b is now confronted to c.
As n3 = n4 > 1, c now wins against b.

Lemma 7. Consider the voting situation of Table 2 and assume that candidate b wins against
candidate a. A NAP can occur in favor of c for any s ∈ [0 1

2
[ at some profile in D(U)SP .

Proof. Again, we will start from the profile displayed in Table 11 which lead to equals scores
among a, b and c. Hence, with the appropriate tie breaking rule, a and b could go to the
runoff, and b could be elected. Now, let us remove a acb voter. A priori, this should help
b. However, a is eliminated first, and b is now confronted to c. As n3 = n4 > 1, c now wins
against b.
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Appendix 4: Probability representations for large electorates

� Limit probability of the PPP

P̂ IAC
PPP(s, 3,∞) =


s(10s3+20s2+25s−21)(−1+2s)3

36(−2+s)(s−1)2(3−5s+4s2)(5s−3)
for s ∈ [0 1

3
]

(s2+17s−2)(−1+2s)3

72(−2+s)(s−1)2(1+s)
for s ∈ [1

3
1
2
]

� Limit probability of the PAP

P̂ IAC
PAP(s, 3,∞) =

s(5s3 + 12s2 + 3s− 13)(2s− 1)3

432(s− 2)(4− 5s)(s− 1)2(s2 + 2s− 2)
for s ∈ [0

1

2
]

� Limit probability of the NAP

P̂ IAC
NAP(s, 3,∞) =

(s+ 4)(2s− 1)3

72(s− 2)(s− 1)2
for s ∈ [0

1

2
]

� Limit probability of the NPP

P̂ IAC
NPP(s, 3,∞) =

(s2 + 2s+ 4)(−1 + 2s)3

432(s− 1)(1− s+ s2)(2− s)
for s ∈ [0

1

2
]
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préférences unimodales. RAIRO-Oper. Res. 34(3), 347-362.

Moulin H. (1980) On strategy-proofness and single peakedness. Public Choice 35(4), 437-455.

Moulin H. (1988) Condorcet’s principle implies the no show paradox. Journal of Economic
Theory 45(1), 53-64.

Moulin H. (1988) Axioms of Cooperative Decision Making. Series: Econometric Society
monographs, 15. Cambridge University Press: Cambridge.

26



Myerson R. (1995) Axiomatic derivation of scoring rules without the ordering assumption.
Social Choice and Welfare 12, 59-74.

Nanson E.J. (1883) Methods of Election. Trans. Proc. of Roy. Soc. Victoria 18, 197-240.

Nurmi H. (1999) Voting Paradoxes and How to Deal with Them. Springer-Verlag.

Nurmi H. (1989) Comparing Voting Systems Dordrecht: B.Reidel.

Saari D.G. (1995) Basic Geometry of Voting. Springer.

Sen A. (1966) A possibility Theorem on Majority Decisions. Econometrica 34(2), 491-499.

Smith J.H. (1973) Aggregation of preferences with variable. Econometrica 41, 1027-1041.

Top F. M. and Merlin V. (2016) L’unimodalité des préférences peut-elle atténuer la vulnéra-
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