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Abstract

This work is a comparative study on the numerical behavior of com-
pact high-order schemes for discretizing scalar hyperbolic problems. To
this aim, we investigate two possibilities: a high-order Hermitian scheme
(HUPS), based upon the scalar variable and its first derivatives in space,
and a “classical” high-order upwind scheme (CUPS), based upon the
scalar variable and a wide numerical stencil, as a reference scheme. To
study the theoretical properties of both schemes we use a spectral ana-
lysis based on a Fourier transform of the numerical solution. In a one-
dimensional context, this analysis enables us to investigate the impact
of the “spurious” components generated by the Hermitian schemes. As
demonstrated by the spectral analysis, in some circumstances, this “spuri-
ous” component may deeply alter the accuracy of the scheme and even,
in some cases, destroy its consistency. Thus, by identifying the salient
features of an Hermitian scheme, we try to design efficients Hermitian
schemes for multi-dimensional purposes. A two-dimensional Fourier ana-
lysis and some scalar numerical tests allow to highlight two high-order
versions of an Hermitian scheme (HUPS4,5) of which the numerical prop-
erties are compared with a classical fifth-order scheme (CUPS5) based
upon a wider stencil.

Keywords: Upwind discretization, Hyperbolicity, high-order accuracy,
compact stencil, spurious component, Hermite polynomial.

1 Introduction

Nowadays, many fields of computational fluid dynamics require high-order nu-
merical schemes for modeling the physics: aeroacoustics, magnetohydrodynam-
ics, turbulence modeling, are all domains where a low frequency mean solution
coexists with rapidly varying components of very weak amplitude.

∗Ecole Centrale de Nantes, LHEEA Lab.(ECN/CNRS), Nantes, France.
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1. INTRODUCTION

Usually, the simpler way to improve accuracy of a numerical method is to
enlarge its numerical stencil. However, the lack of compactness of a stencil
may be problematic when introducing boundary conditions or when the mesh
is highly distorted; to remedy that, a solution is to reduce the numerical stencil
by employing a Hermitian strategy.

The use of Hermite polynomials to generate a compact high-order discretiz-
ation scheme is not really a novelty. Qiu and al. made a seminal contribution
about this matter those last years; see, for example, [1], [2] and [3].

More recently, pursuing their effort in this direction, Qiu and his co-workers,
proposed a new class of high-order compact schemes that are formulated on
staggered meshes and involve HWENO spatial discretization, [4]. With this
latter work, their schemes do not require the use of numerical fluxes while ac-
curately computing smooth and non-smooth numerical solutions. In [5], the
authors proposed a different strategy for the spatial reconstruction with a di-
mension by dimension algorithm when the spatial dimension is higher than one.
See also, the work of Zahran and Abdalla, [6], who extended the fifth-order
HWENO scheme of Qiu, [1], to seventh-order in combination with a high-order
Runge-Kutta positivity-preserving scheme (SSPRK) for the time integration.

Based on a spectral analysis, we propose, in this document, another way to
design a high order Hermitian method. This kind of analysis is not a novelty
since it was used early on by V. Leer, [7], to construct compact finite-difference
schemes for compressible flows. Later on, Lele, [8], and Mahesh, [9], used a
spectral analysis for the design of Hermitian schemes for smooth solutions. More
recently, Sengupta et al., [10], generated central and upwind compact schemes
by using a Von Neumann matrix spectral analysis. However, all this work was
limited to a one-dimensional analysis. The spectral analysis we use allows us to
analyze two-dimensional schemes.
In addition, upon using the work initiated in [11], we are able to introduce into
the method, monotonicity constraints that allow non-monotonous solutions to
be effectively treated, without entirely destroying the overall accuracy of the
resulting method. The benefits expected from this new approach are manifold:

- A resulting multi-dimensional discretization method that is not restricted
to Cartesian geometries.

- A simple introduction of monotonicity constraints into the Hermitian pro-
cedure for computing solutions with embedded discontinuities.

- An alternative to the now classic WENO strategy for generating high-order
non-oscillatory interpolation polynomials.

In order to achieve these objectives, using the work done in [12], [13] and
[11], we have designed and compared, both theoretically and numerically, models
whose main characteristics can be summarized as follows:

- A finite-volume formulation.
- A high-order interpolation polynomials based upon the cell-averaged vari-

able and its first derivatives in space.
- A least-square procedure to compute the polynomial coefficients over pos-

sible non Cartesian geometries.
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- A limitation procedure of the polynomial reconstruction that prevents
spurious oscillations in regions of discontinuous solutions and ensures a max-
imum principle in space without altering the formal accuracy.

- A positivity-preserving Runge-Kutta method (SSPRK) that provides a
maximum principle in time.

- A HLL numerical flux to introduce upwind principles into the discretization.

The numerical model resulting from these features is an Hermite Upwind
Positive Scheme (HUPS), which is designed to be monotonicity-preserving over
compact numerical stencils and of which the accuracy can be varied from fourth-
order to sixth-order.

This article is organized as follows:

In a first section, we analyze, in the Fourier space, the spectral proper-
ties of several possible Hermitian solutions when discretizing either the one-
dimensional or the two-dimensional scalar advection equation. Firstly, in the
one-dimensional framework, the truncation error, the phase and amplitude er-
rors, the damping factor and -last but not least -, the “spurious” component of
the numerical solution, are the main quantities that enable to assess the pecu-
liarities of an Hermitian method when compared with a more classical discret-
ization scheme, (CUPS). Theoretical details and numerical features concerning
the spectral analysis are developed in Appendices B and C.

Next, by using the teachings of the preceding sub-section, we propose three
HUPS versions for discretizing two-dimensional scalar conservation laws. The
resulting schemes are analyzed and compared by the means of a two-dimensional
spectral analysis.

In section 3, we develop the numerical procedure for a practical computation
of two-dimensional scalar laws. We also present the extension of the procedure
detailed in [11] to generate a monotonicity-preserving scheme. Next, we perform
numerical tests to verify the specific choices we have made. Then these results
are compared with those obtained from a more classical definition of a high-order
scheme (CUPS).

Lastly, conclusions and perspectives about the possible improvements and
extensions of this work, are drawn in a final section.

2 Spectral analysis.

The results obtained for this section required an intensive use of the MAPLE-
2017.3 symbolic mathematical computer package.
The purpose of this section is twofold: firstly to study the spectral properties
of an Hermitian discretization (HUPS) in terms of stability, phase/amplitude
errors and consistency; secondly, to compare those latter properties with a more
classical discretization scheme (CUPS).
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2. SPECTRAL ANALYSIS.

2.1 One-dimensional analysis

For the sake of simplicity, in a one-dimensional context, we suppose that the
mesh is uniform: (∆x ≡ Cte ≡ h).

For this study, we consider the discretization of the scalar linear advection
equation:

ut + aux = 0 (a ≡ Cte > 0) (2.1)

This equation is discretized by using the “method of lines” along with a finite-
volume formulation.

With the choice of a Classical Upwind Scheme (CUPS), we get then the
following ODE in time, at each discrete point, x = xi:

dūi
dt

+ a
uLi+1/2 − u

L
i−1/2

h
= 0 (2.2)

where the pointwise quantities uLi±1/2 are drawn from the local interpolation

polynomials, ũi±1(x); for example, ũi(x) is defined over the discrete “volume”,
Ii ≡ [xi−1/2, xi+1/2] and uLi+1/2 ≡ ũi(xi+1/2), is the pointwise value, at the left
of the point xi+1/2. In addition, ūi, represents the cell-averaged value of the
numerical solution over Ii.

Practically, we define ũi(x) in the following way, for a p-th order spatial
accuracy of the resulting scheme:

ũi(x) ≡ ūi +

p−1∑
l=1

1

hll!

[
(x− xi)l − x̄li

]
×D′l (2.3)

with the following definitions: x̄li ≡
1

h

∫
Ii

(x− xi)l dx, to ensure the mean pre-

servation of ũi(x) over Ii, and D′l ≡ hl
∂lu

∂xl
+O(hp).

If we adopt a classical choice (CUPS scheme), the polynomial coefficients
of ũi(x), D′l in (2.3), may be computed according to the condition of “mean
preservation”, which is consistent with the finite-volume formulation:

1

h

∫
Ij

ũi(x)dx = ūj , j ∈ Ni − {i} (2.4)

where Ni, stands for the numerical stencil over which ũ(x) is computed. The
size of Ni is selected to generate at least as many relationships as unknowns,
D′l.

Now, if we select, instead, an Hermitian procedure to discretize (2.1) (HUPS
scheme), firstly we decide to define the following system for the new discrete un-

knowns (ūi, r̄i ≡
∫
Ii

dũi
dx

dx) or, equivalently
(
ūi, r̄i ≡ ũi(xi+1/2)− ũi(xi−1/2)

)
,

as follows :
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dūi
dt

+ a
uLi+1/2 − u

L
i−1/2

h
= 0

dr̄i
dt

+ a
rLi+1/2 − r

L
i−1/2

h
= 0

(2.5)

with the following pointwise definition: rLi+1/2 ≡ h ·
dũi
dx

(xi+1/2).

Secondly, the polynomial coefficients of ũi(x), are computed according to
the double conservative conditions:


1

h

∫
Ij

ũi(x)dx = ūj , j ∈ Ni − {i}

∫
Ij

dũi(x)

dx
dx = r̄j , j ∈ Ni

(2.6)

Consequently, by increasing the number of relationships for the polynomial
coefficients, it now becomes possible to reduce the size of Ni for computing the
D′l: doing so, we define a “compact” stencil over which ũi(x) may be computed.

To illustrate this presentation, let us define the CUPS scheme over the nu-
merical stencil, Ni, typified by Figure 1, below:

Figure 1: Numerical stencil for the CUPS5 scheme

This symmetrical stencil is selected to generate a polynomial, ũi(x), of degree
four (p = 5), at best.

Indeed, over this stencil, with five relationships arising from (2.4) for de-
termining the D′l, one may define, at best, an interpolating polynomial of degree
four: the resulting finite-volume form (2.2) becomes, then, fifth-order accurate
in space. As a result, we call this solution the “CUPS5” scheme.

Now, if we define ũi(x) over the more compact numerical stencil, Figure 2
above, with an Hermitian definition, then, upon considering the six degrees of
freedom given by the variable and its first space derivative, a sixth-order scheme
may be defined, at best, over this stencil: this is the “HUPS6 scheme”.
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2. SPECTRAL ANALYSIS.

Figure 2: Numerical stencil for the HUPS scheme

However, to be consistent with the two-dimensional computations of the
next sub-section, we use also a least-square procedure to define interpolating
polynomials of degree three and four: we call the resulting schemes, respectively,
the “HUPS4” and “HUPS5” schemes.
Note that, in all what follows, all linear least-square problems are analytically
inverted from MAPLE-2017.3 by using a Gram-Schmidt process.

Lastly, if we choose a SSPRK(5,4) time-integration procedure, [14] (see also
Appendix A), either for (2.2) (CUPS scheme) or for (2.5) (HUPS), we get the
final algebraic form that is fourth-order time accurate and, depending on the
form and the algorithm selected, either fourth-order, fifth-order or sixth-order
accurate in space.

For the analysis that follows, all the computed quantities are formulated in
terms of two main parameters: the number of cells-per-wavelength, N , where
N × β = 2π, (β, phase angle: see Appendix B) for the sinusoidal solution, and
the CFL number, ν, where CFL ≡ ν = a∆t/h.

To begin this comparative analysis, let us compute the discrete character-
istics of the CUPS scheme, for p = 5: namely, the CUSP5 scheme. Thus, upon
using condition (2.4) over the stencil typified by Figure1, we obtain a 4 × 4
linear problem of which the solution for the D′l gives the following pointwise
interpolated quantity at x = xi+1/2, from the polynomial, ũi(x):

ũ
i
(xi+1/2) ≡ uLi+1/2 =

1

60
[2ūi−2 − 13ūi−1 + 47ūi] +

1

20
[9ūi+1 − ūi+2] (2.7)

If we introduce this latter result into the semi-discrete form, (2.2) and if we
use a discrete Fourier transform of the resulting numerical solution, then, we
can formulate the scalar “amplification factor”, G(β, ν), for the scheme (see
Appendix B), when employing the fourth-order accurate SSPRK(5,4) time-
integration algorithm.

This complex amplification factor, G(β, ν), is the key element to analyse the
spectral properties of any numerical scheme (see Appendix B).
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Thus, for the CUPS5 scheme, we get the following result for the truncation
error, τ(β, ν), in the Fourier space (see Appendix B):

τ(β, ν) = − jν
5

120

(
β5

∆t

)
− ν

720
(5ν5 − 12)

(
β6

∆t

)
+O

(
β7

∆t

)
(2.8)

This first result for the CUPS5 scheme gives us many informations:

- The resulting scheme remains fourth-order accurate, overall (term β5

∆t ), due
to the time-integration process.

- The leading error generated by this scheme is a phase error.
- The term that quantifies this phase error (see Appendix B), may be iden-

tified to give:

a1(ν) ≡ 1

120
ν5 (2.9)

- The second term in (2.8), which is a fifth-order term, gives us informations
about stability of the scheme. Indeed, if we formulate the modified equation of
(2.1) by the CUPS5 scheme, we get the following result (see Appendix B):

ut+ aux =
ν5

120

(
∆x5

∆t

)
∂5u

∂x5
− ν

720
(5ν5− 12)

(
∆x6

∆t

)
∂6u

∂x6
+O

(
∆x7

∆t

)
(2.10)

Since the high-order quantity, a2(ν) ≡ ν
720 (5ν5 − 12), is always negative,

whatever ν ∈ [0, 1], we deduce that the quantity in front of ∂6u
∂x6 , in (2.10), is

always positive and, therefore, it introduces a slight source of damping (damping
of the round-off errors) into the computation of the numerical solution: there
are no numerical sources of instabilities, even minor, within the CUPS5 scheme.

Figure 3, which plots the modulus of the amplification factor, G(β, ν = 3/4),
for N varying, illustrates this first finding:

As one can see it, the amplification factor is everywhere lower than one
(|G(β, ν = 3/4)| ≡ |λ| < 1), for a Courant number of 3/4 and its lowest value is
obtained for N = 5 points/wavelength, with (|G(β = 2π/5, ν = 3/4)| = 0.967.
In addition, upon using the computation of G(β, ν), we can plot numerical errors
for ν ∈ [0, 1] and N ∈ [5, 20] (see Appendix B).
Figures 4 that follow, display those first results.

As one can see from these results, for ν = 1/2, for example, less than 10
cells-per-wavelength are necessary to get an accuracy level of 1× 10−3, both in
amplitude and phase error.
Also, we can notice that the best results are obtained for ν < 1/2; this behavior
is particularly sensitive in what concerns the phase error, Figure 4b.
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2. SPECTRAL ANALYSIS.

Figure 3: CUPS5 scheme: stability range for ν = 0.75

(a) Amplitude error, A(β, ν) (b) Phase error, P (β, ν)

Figure 4: CUPS5 scheme errors, A(β, ν) and P (β, ν)

Now, if we compute the time-evolution of an initial sinusoidal solution,
u(x, t = 0) = sin2πx,∀x ∈ [0, 1], by using the relationship for the first compon-
ent of equation (B.28), we get the results displayed by Figure 5a, at t = 100∆t
and for the choices: ν = 3/4, N = 10 cells-per-wavelength; similarly, Figure 5b
gives us the accuracy time-evolution, computed from the definition given in Ap-
pendix B: the accuracy converges asymptotically towards the theoretical value,
4. Practically, this latter result tells us that there are no numerical instabilities
that arise during the time-evolution procedure and that might alter the scheme
accuracy.
Thus, those results gives us two significant informations about the spectral beha-
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vior of the CUPS5 scheme when employing a moderate space resolution (N = 10
points per wavelength):

• The dispersive behavior of the scheme is slight, although noticeable.

• The dissipative behavior of the scheme is very weak.

(a) Solution at t = 100∆t (b) accuracy time-evolution

Figure 5: CUPS5 scheme: time-evolution of the solution, u(x, t = 0) =
sin2πx,∀x ∈ [0, 1], and accuracy, for ν = 3/4, N = 10 cells/wavelength, at
T = 100∆t.
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2. SPECTRAL ANALYSIS.

Now, let us study the spectral characteristics of the first Hermitian scheme:
the HUPS4 scheme. This scheme is obtained for p = 4 in equation (2.3) and
over the stencil pictured by Figure 2: in that case, we obtain a linear system
of 5 equations for the 3 unknowns, D′l, in equation (2.3); this system is then
solved by the Gramm-Schmidt method from MAPLE-2017.3. This way, we get
the following pointwise interpolated quantities at x = xi+1/2, from the Hermite
polynomial, ũi(x):


ũ
i
(xi+1/2) ≡ uLi+1/2 = 1

30

[
11
2 ūi+1 + 29ūi

]
− 3

20 ūi−1 − 1
45 [r̄i+1 + 4r̄i−1] + 5

18 r̄i

r̃
i
(xi+1/2) ≡ rLi+1/2 = 1

120 [47ūi+1 − 23ūi−1]− 1
5 ūi + 1

360 [67r̄i+1 − 77r̄i−1] + 4
9 r̄i

(2.11)

The truncation error, in the Fourier space, may be computed from these results
and from the computation of the ”accurate” eigenvalue, λ1(β, ν), of the ”amp-
lification matrix”, G(β, ν) (see Appendix B), to give the first useful result for
the HUPS4 scheme:

τ(β, ν) = −
jν
(
21ν4 − 89

)
2520

(
β5

∆t

)
− ν

176400
(245ν5−6230ν−4101)

(
β6

∆t

)
+O

(
β7

∆t

)
(2.12)
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This latter result gives us the following informations:

• The resulting scheme is designed to be fourth-order accurate, overall (term
β5

∆t ).

• The leading error generated by this scheme is a phase error.

• The term that quantifies this phase error, is:

a1(ν) ≡ ν

2520

(
21ν4 − 89

)
This latter quantity is always negative, whatever ν ∈ [0, 1].

In addition,the modified equation of (2.1) by the HUPS4 scheme, is as follows:

ut + aux =
ν
(
21ν4 − 89

)
2520

(
∆x5

∆t

)
∂5u

∂x5

− ν

176400
(245ν5 − 6230ν − 4101)

(
∆x6

∆t

)
∂6u

∂x6
+O

(
∆x7

∆t

)
(2.13)

The function a2(ν) ≡ ν
176400 (245ν5 − 6230ν − 4101) being always negative,

∀ν ∈ [0, 1], the HUPS4 scheme does not present numerical source of instabilities,
even minor, in its design (see Appendix B).

Figure 6: HUPS4 scheme: stability range for ν = 0.75

Figure 6, illustrates the amplification factor modulus, |g(β, ν)|, (see appendix
B) computed for the HUPS4 scheme with ν = 3/4.
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2. SPECTRAL ANALYSIS.

This plot gives us more informations than that obtained with the CUPS5
scheme.
Firstly, we see that the HUPS4 scheme remains linearly stable, whatever the
number of cells per wave length, N , used; the minimum value for the accurate
eigenvalue is obtained for N = 5 with |λ1(β = 2π/5, ν = 0.75)| = 0.928: this
value is lower than that obtained by using the CUPS5 scheme and, consequently,
the damping of the high frequencies in the numerical solution (highly varying
components of the solution), will be sligthly stronger with this space resolution.
Moreover, Figure 6 shows us that the modulus of the ”spurious” eigenvalue is
below 1, whatever N : this means, in particular, that the consistency of the nu-
merical scheme cannot be destroyed by the spurious component of the solution
(see equ. (B.34), Appendix B).

Now, if we look at the amplitude and phase errors of the HUPS4 scheme,
we get numerical results displayed by Figures 7 that follow:

(a) Amplitude error, A(β, ν) (b) Phase error, P (β, ν)

Figure 7: HUPS4 scheme errors, A(β, ν) and P (β, ν)

Clearly, by comparing these results with those obtained in Figures 4, it ap-
pears that the HUPS4 scheme is largely less accurate, in phase errors, than
the CUPS5 scheme: the higher accuracy of the interpolation polynomial, ũi(x),
seems to have a significant role to explain this first result.
On the other side, if we look at the time evolution of the numerical solution,
we get results illustrated by Figure 8, below, for ν = 0.75 and N = 10 cells per
wavelength.

12



(a) Solution at t = 100∆t (b) accuracy time-evolution

Figure 8: HUPS4 scheme: time-evolutions, at T = 100∆t, of solution
u(x, t = 0) = sin2πx,∀x ∈ [0, 1], and accuracy, for ν = 0.75 and N = 10
cells/wavelength.

The phase error of the numerical solution is obvious by examining Figure 8a.
However, one can note that the spurious component of the solution is everywhere
0, Figure 8a: this means that this component has no influence over the accuracy
of the numerical solution, during the computation time.
Indeed, according to equation (B.34) of Appendix B, the numerical solution,
Uni ≡ [uni , r

n
i ]t, of the discretized form of (2.5), may be written as follows, after

a Fourier transform of the resulting algebraic form:

Uni =
(
λn1 ŵ

0
1r1 + λn2 ŵ

0
2r2

)
ejkxi (2.14)

where, (λp, rp), represent, respectively, the p− th eigenvalue and its associated
right eigenvector of the complex ”amplification matrix”, G(β, ν), coming from
the Fourier transform of the algebraic form (Appendix B); ŵ0

p is the p − th
complex amplitude associated to λp and it is computed from the initial solution
of (2.1).
Thus, if the eigenvalue, λ1(β, ν), is defined as the consistent approximation
of the exact amplification factor, e−jνβ , of (2.1) (see Appendix B), one may
say that the numerical solution at t = tn, is the sum of two components: an
”accurate” component, λn1 ŵ

0
1r1, which should be compared to the exact solution

of the Hermitian form of (2.1), and a ”spurious” component, λn2 ŵ
0
2r2, that does

not have counterpart in the differential problem; the amplitude of this latter
component is given by the modulus of the complex quantity, ŵ0

2.
Numerical results illustrated by Figure 8a show us that the modulus of this
”spurious” component is zero, everywhere.
Besides, the accuracy of the computations is not far from the theoretical value

13



2. SPECTRAL ANALYSIS.

of 4, when time evolves, Figure 8b.

Figure 9: HUPS4 scheme: time-evolution of errors for ν = 0.75, N = 10 and
r̄0
i = Im

{
jβ × ej2πxi

}
In addition, it is possible to compute the time-evolution of the ”spurious”

and ”accurate” discretization errors, by making the comparison between the
exact solution of (2.1) and, respectively, the spurious and accurate components
of this solution (see Appendix B, equ.(B.34) and associated definitions). Figure
9, displays this result.

As one can see, the spurious error generated, at t = 0, by an exact com-
putation of the space derivative (r̄0

i = Im
{
jβ × ej2πxi

}
, see Appendix B) is

not negligible. However, because |λ2|(β, ν) < 1, this spurious error is damped
as the time evolves and the ”accurate” error swiftly prevails; in that case, the
discretization error closely follows the time-evolution of this ”accurate” error
and the numerical solution has the spectral properties given by the ”accurate”
eigenvalue, λ1(β, ν).
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This result is interesting because it allows to understand the temporal beha-
vior of the numerical solution of an Hermitian scheme and the influence of the
initial error on this behavior.

Figure 10: HUPS4 scheme: time-evolution of errors for ν = 0.75, N = 10 and
r̄0
i = Im

{
jsinβ × ej2πxi

}
For example, if we decide to use a centered initialization of the space de-

rivative by setting: r̄0
i ≡ Im

{
jsinβ × ej2πxi

}
, then, we get the new results

displayed by Figure 10.
Now, the ”spurious” error generated by this initialization, is influent, even

for t > 0, and it significantly alters the discretization error, Figure 10. But,
once again, thanks to |λ2(β, ν)| < 1, the discretization error ultimately follows
the ”accurate” error as time evolves.

Let us pursue this analysis by studying the numerical behavior of the HUPS5
scheme.

This scheme is obtained for p = 5 in equation (2.3): in that case, we obtain
a linear system of 5 equations for the 4 unknowns, D′l, in equation (2.3); this
system remains solved by a least-square procedure and we get the following
pointwise interpolated quantities at x = xi+1/2, as result:


ũi(xi+1/2) ≡ uLi+1/2 = 1

30 [13ūi+1 − 2ūi−1 + 19ūi]− 1
30 [r̄i−1 + 4r̄i+1 − 5r̄i]

r̃
i
(xi+1/2) ≡ rLi+1/2 = 1

2 [3ūi+1 + ūi−1 − 4ūi] + 1
6 [r̄i + r̄i−1 − 2r̄i+1]

(2.15)

Then, the truncation error may be computed to give the following result for the
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2. SPECTRAL ANALYSIS.

HUPS5 scheme:

τ(β, ν) = − jν
5

120

(
β5

∆t

)
− 1

720
ν(ν5 − 2)

(
β6

∆t

)
+O

(
β7

∆t

)
(2.16)

To begin, a first interesting result may be noted: the truncation error is very
similar to the truncation error obtained for the CUPS5 scheme, equ.(2.8).
Indeed, only the second term typified by the function, a2(ν), is slightly differ-
ent from that obtained for the CUPS5 scheme since we have, now: a2(ν) ≡

1
720ν(ν5 − 2); this quantity remains negative, whatever ν ∈ [0, 1].
Therefore, the HUPS5 scheme does not present high-order source of instabilit-
ies and moreover, by considering the truncation error, one may expect accuracy
properties very close to those of the CUPS5 scheme.

This latter remark is confirmed by results of Figure 11 that follows.
Indeed, the modulus of the amplification factor is sligthly larger than that of
the CUPS5 scheme; for N = 5 cells-per-wavelength and ν = 0.75, we get:
|g(β = 2π/5, ν = 0.75)| = 0.991.
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Figure 11: HUPS5 scheme: stability range for ν = 0.75

In addition, compared to Figure 6 for the HUPS4 scheme, the modulus of
the ”spurious” eigenvalue is substantially lower; consequently, the influence of
the spurious component of the solution will be damped more swiftly than with
the HUPS4 scheme.
Now, if we look at the amplitude error, A(β, ν), and phase error, P (β, ν), we
get results displayed by Figures 12.

(a) Amplitude error, A(β, ν) (b) Phase error, P (β, ν)

Figure 12: HUPS5 scheme errors, A(β, ν) and P (β, ν)
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2. SPECTRAL ANALYSIS.

The results for the amplitude and phase errors, Figure 12a and Figure 12b,
respectively, are lower by an order of magnitude than that obtained with the
CUPS5 scheme, Figure 7a and Figure 7b; for example, with ν = 1/2 and 10
cells-per-wavelength, we get an error level below 1 × 10−4. However, one can
note that the phase error of the HUPS5 scheme is more sensitive to the CFL
number, Figure 12b, and values higher than 0.5 generate a significant increase
of the phase error.

Figures 13 that follow present the time-evolution of the solution and of the
effective accuracy.

(a) Solution at t = 100∆t (b) accuracy time-evolution

Figure 13: HUPS5 scheme: time-evolutions, at T = 100∆t, of solution, u(x, t =
0) = sin2πx, and accuracy, for ν = 0.75, N = 10 cells/wavelength and r̄0

i =
Im
{
jβ × ej2πxi

}
.

The numerical accuracy asymptotically converges towards the value 4, Figure
13b. The numerical solution, Figure 13a, does not exhibit amplitude and phase
errors as substantial as that obtained with the CUPS5 scheme, Figure 5.
Compared to results obtained with HUPS4, Figure 8, these results are better
for the solution and almost identical for the effective accuracy.
If we look at the time evolution of the errors, we get results displayed by Figure
14.

As one can see, the spurious error decreases very rapidly with, as con-
sequence, a discretization error identical to the ”accurate” error: the advantage
in having a spurious eigenvalue, λ2(β, ν), of which the modulus is much smaller
than 1, is obvious, here.
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Figure 14: HUPS5 scheme: time-evolution of errors for ν = 0.75, N = 10 and
r̄0
i = Im

{
jβ × ej2πxi

}

Lastly, if we compute the numerical solution with a centered approximation
of the initial space derivative, r̄0

i , the numerical results for the errors are exactly
the same as those displayed by Figure 14: the HUPS5 scheme is insensitive to
the way the first space derivative is initialized.

To end with this one-dimensional spectral analysis, it is left to consider the
best obtainable accuracy for an Hermite polynomial, on the stencil pictured by
Figure 2. This accuracy is obtained for p = 6 in equ. (2.3). This way, we have
to solve a linear system of 5 equations for the 5 unknowns, D′l, which is directly
inverted. The result gives the following pointwise interpolated quantities at
x = xi+1/2:


ũ
i
(xi+1/2) ≡ uLi+1/2 = 1

60 [11 (ūi+1 + ūi−1) + 38ūi] + 1
20 [40r̄i + r̄i−1 − r̄i+1]

r̃i(xi+1/2) ≡ rLi+1/2 = 1
4 [7ūi+1 − 8ūi + ūi−1] + 1

12 [r̄i−1 − 5r̄i+1 − 2r̄i]

(2.17)
And the truncation error, in the Fourier space, writes as:

τ(β, ν) = − jν
5

120

(
β5

∆t

)
− ν6

720

(
β6

∆t

)
+O

(
β7

∆t

)
(2.18)

Once again, since we used a fourth-order time-integration procedure, the res-
ulting scheme is fourth-order, overall, although the interpolation polynomial,
ũi(x), is a fifth degree polynomial.
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2. SPECTRAL ANALYSIS.

This truncation error is very similar to that obtained with the CUPS5 or the
HUPS5 scheme, previously studied. However, one must note an interesting

difference: the function a2(ν) ≡ ν6

120 , is always a positive quantity, whatever
ν ∈ [0, 1]; according to the form of the modified equation linked to this trunca-
tion error (see Appendix B), this means that instabilities may appear, since the
second term of the truncation error becomes, then, an amplification term.
Of course, this does not mean that the resulting scheme is linearly unstable,
since the first term of the truncation error, which introduces phase errors into
the computations, prevails, but, due to this second term, some minor instabil-
ities may appear and alter the convergence rate of the numerical algorithm.

Figure 15: HUPS5 scheme: stability range for ν = 0.75

Figure 15, gives us the first informations concerning the spectral properties
of the HUPS6 scheme. The amplification factor modulus is almost identical
to that of the HUPS5 scheme, Figure 11. Indeed, we have |g(β = 2π/5, ν =
0.75)| = 0.994; similarly, the size of the modulus of the ”spurious” eigenvalue is
the same as that of the HUPS5 scheme.
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If we consider, now, the Figures for the amplitude and phase errors, the
improvments in accuracy are obvious by comparing with Figure 7 (HUPS4) or
Figure 12 (HUPS5).

(a) Amplitude error, A(β, ν) (b) Phase error, P (β, ν)

Figure 16: HUPS6 scheme errors, A(β, ν) and P (β, ν)

Indeed, as one can see from Figure 16a, the amplitude error is lower by more
than an order than that of Figure 12a (HUPS5); the phase error, Figure 16b,
has a similar behavior but it is more sensitive to the CFL number: the phase
error is very low in the range [0.30, 0.40], whereas this quantity rapidly grows
up as soon as ν > 1/2.
This latter result means that the better accuracy properties of the scheme are
obtained at the cost of a smaller CFL number: this is what we may consider as
the main drawback of the HUPS6 scheme.
The time-evolution of the numerical solution and the accuracy are given in
figures that follow.

The temporal evolution of the accuracy of the numerical solution, Figure
17b, asymptotically converges towards the theoretical value of 4, as time grows
up.
If we look at the time-evolution of the errors, we get results illustrated by Figure
18.
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2. SPECTRAL ANALYSIS.

(a) Solution at t = 100∆t (b) accuracy time-evolution

Figure 17: HUPS6 scheme: time-evolutions, at T = 100∆t for the solution,
u(x, t = 0) = sin2πx, and T = 200∆t for the accuracy, for ν = 0.75, N = 10
cells/wavelength and r̄0

i = Im
{
jβ × ej2πxi

}
.

Figure 18: HUPS6 scheme: time-evolution of errors for ν = 0.75, N = 10 and
r̄0
i = Im

{
jβ × ej2πxi

}

This result is pretty similar to that of Figure 14, for the HUPS5 scheme. In
addition, things are almost unchanged if we approximate the space derivative,
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r̄0
i , by a centered discretization, Figure 19.

Figure 19: HUPS6 scheme: time-evolution of errors for ν = 0.75, N = 10 and
r̄0
i = Im

{
jsinβ × ej2πxi

}
Therefore, just as for the HUPS5 scheme, the HUPS6 scheme is not sensitive

to the initialization of the space derivative, r̄0
i , because the modulus of the

spurious eigenvalue, λ2(β, ν), remains largely below the unit value, whatever
the number of cells per wavelength, N , selected.

Now, upon using these first results, we can extend our comparative study to
two-dimensional linear advection problems.

2.2 Two-dimensional analysis

We want to discretize the two-dimensional form of the scalar linear advection
equation.
In a Cartesian reference frame, this equation reads as:

ut + aux + buy = 0 (a ≡ Cte > 0, b ≡ Cte > 0) (2.19)

Once again, we select an uniform Cartesian mesh, in both directions, with:
∆x = ∆y ≡ h. In addition , we define the ”convection angle”, θ ≡ Atan(b/a),
as a new parameter to typify the two-dimensional nature of the physical prob-
lem.

With the same choices we made previously, the CUPS scheme gives us
the following ODE in time, at the reference discrete point, o ≡ (xi,j , yi,j),
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2. SPECTRAL ANALYSIS.

upon starting from an integration of equation (2.19) over the discrete cell
Io ≡ [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]:

dūo
dt

+ a
uLi+1/2 − u

L
i−1/2

h
+ b

uLj+1/2 − u
L
j−1/2

h
= 0 (2.20)

Once again, all the space-derivatives are approximated in an upwind manner,
according to the sign of the convection velocities, (a, b).
With those notations, ūo, is the cell averaged value of the numerical solution
over Io and uLi+1/2, for example, loses its pointwise meaning to become the
following averaged value, at the left of the face x = xi+1/2:

uLi+1/2 ≡
1

h2

[∫ yj+1/2

yj−1/2

ũo(xi+1/2, y)dy

]
(2.21)

where, ũo(~x) stands for the two-dimensional interpolation polynomial defined
within the discrete cell, Io.
More specifically, for a spatial p− th order accuracy of the resulting scheme, we
define ũo(~x) as follows:

ũo(~x) ≡ ūo+

p−1∑
k=1

k∑
l=0

1

hkk!
×
(
k

l

)
×
[
(x− xo)l (y − yo)k−l − (xlyk−l)o

]
×D′l,k−l

(2.22)
with the following definition for D′l,k−l:

D′l,k−l ≡ hk
∂ku

∂xl∂yk−l
+O(hp)

and for (xlyk−l)o:

(xlyk−l)o ≡
1

|Io|

∫
Io

(x− xo)l (y − yo)k−l dxdy

which is designed to ensure that the average of ũo(~x), over Io, is equal to ūo.
Practically, the quantities, D′l,k−l, are computed by using the mean preser-

vation condition, over each discrete cell, Ij :

1

|Ij |

∫
Ij

ũo(~x)dxdy = ūj ,∀j ∈ So − {o} (2.23)

where So represents the two-dimensional numerical stencil over which ũo is
defined.
In order to maintain the fifth-order accuracy of the CUPS scheme, in each spatial
direction, we selected the numerical stencil, So, which is illustrated by Figure
20 that follows:
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Figure 20: Two-dimensional CUPS5 scheme: Numerical stencil, So, and the
control volume, Io.

Thus, if we discard the central point, o, which already appears in equation
(2.22), this stencil generates 12 relationships in using condition (2.23).

Consequently, if we want to preserve the fifth-order accuracy of the interpol-
ation procedure, at least along each spatial direction, one must add the following
terms to equation (2.22), initially defined for p = 4:

1

24h4

[
(x− xo)4 − (x4y0)o

]
×D′4,0 +

1

24h4

[
(y − yo)4 − (x0y4)o

]
×D′0,4+

1

4h4

[
(x− xo)2

(y − yo)2 − (x2y2)o

]
×D′2,2 (2.24)

so that a system of 12 equations for the 12 unknowns, D′l,k−l, results. This
latter system is analytically inverted from MAPLE-2017.3 to generate the inter-
polated quantities, uLi±1/2 and uLj±1/2 that appear into equation (2.20) in using

conditions such as (2.23).
Note that we did not choose the derivatives D′3,1 and D′1,3 in (2.24) because
these terms cannot be computed consistently over the numerical stencil, So.

Lastly, the SSPRK(5,4) time-integration procedure enables us to generate
the final algebraic form that is fourth-order accurate, overall. However, since
the spatial fifth-order accuracy is preserved along each Cartesian direction, we
call the resulting CUPS scheme, the CUPS5 scheme. The algebraic formulas
that characterize uLi±1/2 and uLj±1/2, are not given, here, because they are too
intricate.
Practically, the system of order 12 for the unknowns, D′l,k−l, is directly solved,
at each time-step, by a Gauss pivot method. The metric matrix of this system
is pre-inverted and the result is stored at the very begining of the computations.

25



2. SPECTRAL ANALYSIS.

Then, by knowing D′l,k−l, the computations of uLi±1/2 and uLj±1/2, from ũo, be-
come straightforward.
To study the spectral properties of the resulting CUPS5 scheme, we start from
the integrated form of (2.20) by the SSPRK(5,4) algorithm and we extend the
one-dimensional procedure by using a two-dimensional discrete Fourier trans-
form of the numerical solution. Then, it becomes possible to formulate the
complex amplification factor of the scheme, G(β, ν, θ, ϕ) (see Appendix C).
By doing that, the first result we obtain is the truncation error of the CUPS5
scheme in the Fourier space. Indeed, this latter quantity writes as:

τ(βx, βy, νx, νy) = − j

120

(νxβx + νyβy)
5

∆t
+O

(
β6

∆t

)
(2.25)

where we defined the following practical quantities:{
νx ≡ ν × cosθ, βx ≡ kx × h ≡ β × cosϕ
νy ≡ ν × sinθ, βy ≡ ky × h ≡ β × sinϕ

with: ν ≡
√
a2+b2∆t
h , which represents the CFL number of the discretization

scheme; therefore, νx and νy are, respectively, the CFL number in the x and

y-directions. Similarly, β ≡
√
β2
x + β2

y , represents the equivalent phase angle

of the wave solution of (2.19) and ϕ, indicates the direction of this wave-like
solution; this way, the relationship N × β = 2π, keeps the same meaning as in
the one-dimensional context.
Equation (2.25) is interesting, since, by comparing with equation (2.8), it shows
that the CUPS5 scheme is, indeed, fifth-order accurate along each spatial dir-
ection; however, due to the fourth-order accuracy of the time-integration and
an imperfect interpolation polynomial, the CUPS5 scheme remains fourth-order
accurate (term: O(β5

x,y/∆t)), overall.
Now, If we plot the modulus of the complex amplification factor, G(N, ν, ψ)
(ψ ≡ θ−ϕ, see appendix C), then, we get results displayed by Figure (21) that
follows.
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Figure 21: CUPS5 scheme: modulus of the amplification factor, G(N, ν, ψ)

This result gives us useful insights: first, when ψ ≡ 0 (convection and wave
directions both aligned), we find the results displayed by Figure 3, for the amp-
lification factor: this is the solution obtained in the one-dimensional context.
On the other side, the solutions for which the convection and wave direction are
not aligned (ψ 6= 0) give numerical results that are better since the values of
the amplification factor are higher. The best results are obtained for ψ = π/2,
or, in other words, when the wave and convection directions are orthogonal.
However, it is not obvious to interpret results in terms of the wave direction;
for this reason, we only present numerical results for which ψ ≡ 0, in what fol-
lows: this is what we may consider as the most unfavorable case for the CUPS5
scheme, according to Figure 21.

Summarizing those first results, one may say that the two-dimensional nature
of the problem does not alter the spectral properties of the CUPS5 scheme, at
least in what concerns the amplification factor.
To check these first findings, let us consider the Figures that follow:

Figures 22 represent the iso-lines of the amplitude, Figure 22a, and of the
phase, Figure 22b, for ν = 0.75 and whatever θ ∈ [0, π/2].
Firstly, it is interesting to note that, in both cases, the minimum value for the
errors (at a given spatial resolution, N) is obtained for θ = π/4: this a truly
multi-dimensional solution. However, the variation of errors with the convection
angle, θ, is not very significant: this is particularly meaningful in what concerns
the phase error, Figure 22b.
Secondly, by comparing with the one-dimensional results of Figures 4, we can
see that the error levels generated by the CUPS5-2D scheme are very similar,
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2. SPECTRAL ANALYSIS.

(a) Amplitude error (b) Phase error

Figure 22: CUPS5 scheme: Amplitude and Phase errors for: ϕ = θ

for the same spatial resolution, N , to those of the CUPS5-1D version.
Overall, those results demonstrate that, by discretizing the two-dimensional
advection problem, (2.19), with a genuine multi-dimensional scheme that shares
the main characteristics of the one-dimensional version, the high-order accuracy
properties, are preserved: it is a very hopeful result for the future extensions of
the HUPS scheme.
Let us begin those extensions with the two-dimensional version of the HUPS4
scheme. For a straightforward extension of the one-dimensional version of this
scheme, we select the numerical stencil, So, typified by Figure 23 that follows.

Figure 23: Two-dimensional HUPS4 scheme: Numerical stencil, So, and the
control volume, Io.
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The very compact nature of this scheme is obvious when we compare its
stencil with that of the CUPS5 scheme, Figure 20. Once again, in order to
maintain the fifth-order spatial accuracy along each spatial direction, we add to
(2.22) the following fourth-order terms, with p = 4:

1

24h4

[
(x− xo)4 − (x4y0)o

]
×D′4,0 +

1

24h4

[
(y − yo)4 − (x0y4)o

]
×D′0,4 (2.26)

This latter choice is the only one that allows to compute all the derivatives,
D′l,k−l, which define the interpolation polynomial over So.
However, we keep calling the resulting scheme, the ”HUPS4 scheme”, in order
to distinguish it from the higher order version that follows.
Therefrom, the derivatives of the resulting polynomial are computed by solving
the following system, ∀j ∈ So − {o}:

1

|Ij |

∫
Ij

ũo(~x)dxdy = ūj

h

|Ij |

∫
Ij

∂ũo
∂x

(~x)dxdy = r̄j

h

|Ij |

∫
Ij

∂ũo
∂y

(~x)dxdy = s̄j

(2.27)

This is a system of 12 equations, for the 11 unknowns, D′l,k−l (D′0,0 ≡ ūo,
is already included into the initial definition of ũo(~x)). Once solved by a least-
square procedure, the interpolation polynomial, ũo(~x), may be computed in
order to generate the pointwise interpolated values that appear in the following
semi-discrete Hermitian system:

dūo
dt

+ a
uLi+1/2 − u

L
i−1/2

h
+ b

uLj+1/2 − u
L
j−1/2

h
= 0

dr̄o
dt

+ a
rLi+1/2 − r

L
i−1/2

h
+ b

rLj+1/2 − r
L
j−1/2

h
= 0

ds̄o
dt

+ a
sLi+1/2 − s

L
i−1/2

h
+ b

sLj+1/2 − s
L
j−1/2

h
= 0

(2.28)

Lastly, by integrating this system of ODEs by the means of the SSPRK(5,4)
time-integration procedure, we get an algebraic system for the discrete variables
(ūj , r̄j , s̄j).
Consequently, if we do a discrete Fourier transform of this latter system, we get
the 3×3 amplification matrix, G(β, ν, ψ), of which the complex eigenvalues give
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the spectral properties of any HUPS scheme (see Appendix C).
This time, the amplification matrix generates not only the ”accurate” eigen-
value, λ1(β, ν, ψ), which represents the approximation of the exact amplific-
ation factor of (2.19) (see Appendix C), but also two spurious eigenvalues,
λ2,3(β, ν, ψ), which have no counterpart in the differential problem, (2.19).
Since we have to solve for a third-order complex polynomial to get the λ′s, it is
not possible to derive the complex truncation error in a closed analytical form;
for this reason, we only presents in what follows numerical results obtained from
the spectral analysis.
To begin, we consider results obtained by computing the modulus of the complex
eigenvalues of G(β, ν, ψ): those are Figures 24.

(a) |λ1(N, ν = 0.75, ψ)| (b) |λ2,3(N, ν = 0.75, ψ)|max

Figure 24: HUPS4 scheme: Modulus of the eigenvalues of the complex ampli-
fication matrix, G(β, ν, ψ).

Figure 24a presents numerical results obtained with the accurate eigenvalue,
λ1(β, ν, ψ), for ν = 0.75 and ψ ∈ {0, π/4, π/3, π/2}.
As one can see it, we obtain the same trends as with the CUPS5-2D scheme,
Figure 21: the best value for the modulus of λ1(β, ν, ψ) is obtained for ψ = π/2,
whereas ψ = 0 (convection and wave directions aligned) gives the lowest value
for this quantity. In addition, always by comparing with Figure 21, results ob-
tained with the HUPS4 scheme are more accurate since the modules are nearer
of the unit value for N = 5: we have, indeed, |λ1| = 0.9998, for ψ = 0.
Now, if we look at the behavior of the spurious eigenvalues of the HUPS4 scheme,
Figure 24b, we plot the most detrimental case for the study of the stability of
the scheme: max(|λ2|, |λ3|) .
We note the significant result that the modulus of the spurious eigenvalues is
below 1, whatever the values of ψ; hence, there are no minor sources of instabil-
ities within the HUPS4 scheme. In addition, the case for which the convection
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and the wave directions are aligned (ψ ≡ 0) is the most stable among cases
investigated.
The genuine accuracy of the HUPS4 may be evaluated by considering the mag-
nitude of the amplitude and phase errors. These errors are obtained for the most
detrimental case, ψ = 0 (ϕ ≡ θ), in terms of accuracy. Figures 25 that follow
plot these latter quantities for ν = 0.75 and the convection angle θ ∈ [0, π/2].

(a) Amplitude error (b) Phase error

Figure 25: HUPS4 scheme: Amplitude and Phase errors for: ϕ = θ

As one can see from Figure 25a, the HUPS4 scheme gives a better amplitude
error level than the CUPS5 scheme does, Figure 22a; moreover, this latter quant-
ity is less sensitive to the convection angle, θ, than with the CUPS5 scheme. In
reality, the HUPS4 scheme is almost free of the convection angle in what con-
cerns the amplitude error: this is a good proof for a genuine multi-dimensional
discretization.

The phase error, Figure 25b, is almost the same as with CUPS5, Figure 22b;
however, this quantity is slightly more sensitive to the convection angle, θ.
Therefore, those first results show that, with the same overall accuracy and des-
pite a more compact numerical stencil, a HUPS scheme performs better than a
classical upwind scheme (CUPS).

Now, if we want to improve the spatial accuracy of the Hermitian scheme,
one must resort to a larger numerical stencil, So: this improvement is typified
by Figure 26 that follows.
Indeed, by selecting a stencil of 9 points, it becomes possible to build a complete
interpolation polynomial of degree four: in that case, the fifth-order spatial
accuracy (p = 5) may be reached if we generate, at least, 14 relationships for
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the 14 unknowns, D′l,k−l (D′0,0 ≡ ūo, is already included into the initial definition
of ũo(~x)).
The choice we put forward consists in using only the variable, ū, for the nodes
{1, 3, 6, 8}, Figure 26, for generating the missing relationships. This way, we
are able to yield a system of 16 equations for the 14 unknowns, which is always
solved by means of a least-square procedure.

Figure 26: Two-dimensional HUPS5 scheme: Numerical stencil, So, and the
control volume, Io.

Note that this is by no means the best accuracy attainable over this stencil:
however, since we want to pursue the one-dimensional analysis by comparing
many versions of the HUPS scheme, this choice may constitute a good accom-
modation between a higher spatial accuracy and a moderate increase of the
algebraic complexity.
Since we have, now, a complete polynomial of degree four, we call the resulting
numerical scheme, the HUPS5 scheme.
Therefore, once the coefficients, D′l,k−l, of ũo(~x) are computed, we may gen-
erate, as we did previously, the discrete Hermitian system for the unknowns
(ū, r̄, s̄) and then, a discrete Fourier transform allows to formulate the complex
amplification matrix, G(β, ν, ψ).

From this amplification matrix, we can withdraw the first useful insights,
displayed by Figures 27.
The main difference between these results and those illustrated by Figures 24
appears into the behavior of the spurious eigenvalues. Indeed, those quantities,
when computed for the HUPS5 scheme, are closer to the unit value, whatever
the value of ψ, Figure 27b: one may expect a more significant sensitivity of the
numerical solution to slight disturbances, during the computations.
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(a) |λ1(N, ν = 0.75, ψ)| (b) |λ2,3(N, ν = 0.75, ψ)|max

Figure 27: HUPS5 scheme: Modulus of the eigenvalues of the complex ampli-
fication matrix, G(β, ν, ψ).

Practically, the consequence of this increasing in sensitivity is in a necessary
lowering of the CFL number in order to preserve the accuracy properties.
Then, Figures 28 below, display numerical results obtained in computing the
amplitude and phase errors of the numerical solution in the Fourier space.

(a) Amplitude error (b) Phase error

Figure 28: HUPS5 scheme: Amplitude and Phase errors for: ϕ = θ

The utmost sensitivity of the amplitude error to the convection angle, θ,
appears obviously, here, Figure 28a, whereas the phase error is, now, almost
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independent of θ, Figure 28b; however, except this change, the errors levels
generated by the HUPS5 scheme are tantamount to those of the HUPS4 scheme,
Figures 25.
Consequently, upon considering those results, the advantage in using a fifth-
order version of the HUPS scheme over an enlarged stencil is not obvious if we
only consider a spectral analysis.
Thus, one might think that the special choice we made in selecting a stencil
of which the corner points are only associated to the mean quantity, ū, as
parameter, is not optimum.
For this reason, we investigate an ultimate choice based on the stencil illustrated
by Figure 26 but, this time, we associate the three variables (ū, r̄, s̄) to each node
constituting the numerical stencil, So; this way, we can generate 26 relationships
(ūo not included) for the unknowns coefficients of (2.22). Thus, we can build an
interpolation polynomial of degree five (p = 6) that necessitates the computation
of 20 coefficients (D′0,0 ≡ ūo) to be uniquely defined. The resulting numerical
scheme is called the HUPS6 scheme, accordingly: this is the best accuracy we
can hope by using a HUPS scheme over a 9 points stencil.
With the same procedure as previously, we can analyze the spectral properties
of the HUPS6 scheme. Firstly, Figures 29 display the modulus of the eigenvalues
of this scheme.

(a) |λ1(N, ν = 0.75, ψ)| (b) |λ2,3(N, ν = 0.75, ψ)|max

Figure 29: HUPS6 scheme: Modulus of the eigenvalues of the complex ampli-
fication matrix, G(β, ν, ψ).

As expected and due to the increased spatial accuracy of the HUPS6 scheme,
we get an amplification factor of which the values are very close to the unit value,
whatever the values taken by ψ, Figure 29a: by comparing with Figure 27a the
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improvement is real although slight. On the other hand, Figure 29b gives unex-
pected results since the maximum modulus of the spurious eigenvalues is lower
than that of the HUPS5 scheme, Figure 27b: as a matter of fact, results of
Figure 29b are almost identical with those obtained in studying the HUPS4
scheme, Figure 24b.
Therefore, upon considering these first results, one might say that the HUPS6
scheme constitutes an intermediary scheme between HUPS4 and HUPS5 schemes.
To end this two-dimensional spectral analysis, let us study results displayed by
Figures 30.

(a) Amplitude error (b) Phase error

Figure 30: HUPS6 scheme: Amplitude and Phase errors for: ϕ = θ

These results present the computation of amplitude and phase errors, for
ϕ ≡ θ, ν = 0.75 and θ ∈ [0, π/2]. The major teaching from these computations
is that the errors are independent of the convection angle, θ. Nevertheless, by
comparing with Figures 28 the error level is not substantially improved.
Consequently, one may consider that the meaning improvement brought by
passing to a sixth-order spatial interpolation is the independence of the discret-
ization from the convection angle.

On summarizing the main teachings of this sub-section, two schemes seem
to emerge and to constitute a good compromise between accuracy and algebraic
simplicity: the CUPS5 and HUPS4 schemes. To be more specific, the most
efficient scheme seems to be, despite everything, the CUPS5 scheme.
Unexpectedly, the high-order accuracy combined with a compact discretization
is not an absolute guarantee for obtaining outstanding performances. Moreover,
the behavior of spurious eigenvalues is difficult to foresee when one selects a high-
order HUPS scheme.
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

These conclusions should be contrasted with those coming from the one-dimensional
spectral analysis, which demonstrates that the most accurate scheme is also the
most efficient; with the emergence of two supplementary parameters, θ and ϕ,
a genuinely two-dimensional scheme has a peculiar numerical behavior.

However, these initial findings should be weighted by the following remarks:
the scope of a spectral analysis is limited to linear problems without any in-
fluence of the boundary conditions: the use of a compact discretization is not
negligible in that case. In addition, the computation effort is a significant para-
meter that is not at all addressed by a spectral analysis.
Therefore, in order to be as exhaustive as possible, we go beyond this spectral
analysis and we study the whole numerical behavior of the schemes we designed
by computing two-dimensional scalar non-linear problems.

3 Two-dimensional high-order schemes.

3.1 HLLE approximate Riemann solver for the convective
fluxes.

By employing the numerical methods we previously presented, we want to study
the discretization of the scalar, non-linear, two-dimensional, conservation law,
over the computation domain, D:

ut + f(u)x + g(u)y = 0 ∀~x ∈ D (3.1)

Consequently, if we use a CUPS finite-volume scheme, we can generate the
following semi-discrete ODE equation, over a Cartesian mesh of typical size
h ≡ ∆x ≡ ∆y and for the discrete point o ≡ (xi,j , yi,j):

dūo
dt

+

(
f̄i+1/2 − f̄i−1/2

)
h

+

(
ḡj+1/2 − ḡj−1/2

)
h

(3.2)

In order to generate this equation, we introduced the following approxima-
tions: 

f̄i+1/2 ≈
∫
Si+1/2

f(u(xi+1/2, y))dy

ḡj+1/2 ≈
∫
Sj+1/2

g(u(x, yj+1/2))dx

(3.3)

Practically, these approximations are realized by using a 2-point Gaussian
integration formula, which is exact for a polynomial up to degree 3 (p = 4).
For example, along the face x = xi+1/2, referenced in what follows as Si+1/2,
we write, by using the interpolated values uLq ≡ ũo(~xq) and uRq ≡ ũi+1(~xq) (see
Figure 31):

36



f̄i+1/2 ≡
1

2

(
f̃(uLq1 , u

R
q1) + f̃(uLq2 , u

R
q2)
)

(3.4)

where q1 represents, for example, the quadrature point: (xi+1/2, w×yj−1/2+

(1 − w) × yj+1/2), with: w ≡ 1
2

(
1 +

√
3

3

)
; q2 is computed in the same way,

by: (xi+1/2, w × yj+1/2 + (1−w)× yj−1/2). Consequently, the resulting spatial
discretization will be, at best, fourth-order accurate.

Figure 31: Computation of the interpolated values (uLq , u
R
q ) at the cell-face,

Si+1/2, from the interpolating polynomial, ũo(~x).

Lastly, to introduce upwind principles into the discretization scheme, spa-
tially typified by (3.4), we use an approximate Riemann solver for computing
the numerical flux, f̃(uL, uR); specifically, if we use the now ”classical” HLLE
scheme, [15], the computation of this numerical flux is as follows:

f̃(uL, uR) = f(uL) + aL · (u∗ − uL)

= f(uR)− aR · (uR − u∗) (3.5)

where the mean quantity, u∗, is calculated from the ”conservativity” condition
(see [15]):

u∗ =
aRu

R − aLuL

aR − aL
− f(uR)− f(uL)

aR − aL
(3.6)
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

with: {
aL ≡ min(f ′(uL), ā, 0)

aR ≡ max(f ′(uR), ā, 0)
(3.7)

The set of conditions (3.7) for the characteristic velocities was early designed
by Einfeldt, [15], in the context of Euler equations.
On the other hand, if we define the mean characterisitc velocity, ā, as:

ā ≡


f(uR)− f(uL)

uR − uL
, if |uR − uL| ≤ ε

f ′(uR) else

(3.8)

then, the numerical flux, f̃(uL, uR), which is computed according to equa-
tions (3.5), (3.6), (3.7), and (3.8), is a Lipschitz continuous function of its ar-
guments, [15].
This set of definitions and properties constitute the main features of the ”HLLE
Riemann solver” designed in [15]; this solver constitutes the building block for
the spatial discretization of the convective terms of (3.1) by the CUPS scheme.
Now, to extend the HLLE algorithm to an Hermitian formulation, we have to

consider the following Hermitian system for the unknowns (u, r ≡ h
∂u

∂x
, s ≡

h
∂u

∂y
) from (3.1): 

ut + f(u)x + g(u)y = 0

rt + [a(u).r]x + [b(u).r]y = 0

st + [a(u).s]x + [b(u).s]y = 0

(3.9)

with the ”characteristic velocities”: (a(u) ≡ f ′(u), b(u) ≡ g′(u)). Hence, if we
introduce, for the variable r or s, the following definitions: f1(u, α) ≡ [a(u) · α]

g1(u, α) ≡ [b(u) · α]
(3.10)

with α ∈ {r, s}, we can note the following property:
∂f1

∂α
= a(u)

∂g1

∂α
= b(u)

(3.11)

Literally, this latter property means that the equation for the first derivat-
ives, (r, s), in (3.9), have the same characteristic velocities as equation (3.1).
Consequently, we can use the HLLE algorithm for computing, for example, the
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numerical flux f̃1(uL, uR, αL, αR) that approximates f1(u, α), in the following
way:

f̃1(uL, uR, αL, αR) = f1(uL, αL) + aL · (α∗ − αL)

= f1(uR, αR)− aR · (αR − α∗) (3.12)

with:

α∗ =
aRα

R − aLαL

aR − aL
− f1(uR, αR)− f1(uL, αL)

aR − aL
(3.13)

Therefore, by extending this procedure to the whole Hermitian system, we
can produce the following semi-discrete Hermitian system, which generalizes
(3.2), and is tantamount to (2.28) in the non-linear case:



dūo
dt

+
f̄i+1/2 − f̄i−1/2

h
+
ḡj+1/2 − ḡj−1/2

h
= 0

dᾱo
dt

+
f̄1i+1/2 − f̄1i−1/2

h
+
ḡ1j+1/2 − ḡ1j−1/2

h
= 0

f̄1i+1/2 ≡
1

2

(
f̃1(uLq1 , u

R
q1 , α

L
q1 , α

R
q1) + f̃(uLq2 , u

R
q2 , α

L
q2 , α

R
q2)
)

α ∈ {r, s}

(3.14)

Indeed, if we set a(u) ≡ Cte and b(u) ≡ Cte, then, system (3.14) identifies
with (2.28). Finally, by integrating equation (3.2) or system (3.14) by means
of the fourth-order accurate SSPRK (5,4) algorithm, we get the finite-volume
discretization of the conservation law, (3.1), either from the CUPS or from the
HUPS scheme.

3.2 Polynomial reconstruction: monotonicity-preservation
principles.

In order to compute the interpolated values, (uq, αq), at the quadrature points,
we use the definition of the interpolation polynomial, ũo(~x), given by equation
(2.22); this way, according to the accuracy selected, p ∈ {4, 5, 6}, we can design
a numerical scheme of which the interpolated quantities are computed with an
accuracy that evolves between the fourth and the sixth-order. Practically, the
polynomial coefficients are computed according to the procedure described in
the preceding section; depending on the choice for the accuracy, those coeffi-
cients are computed either by a direct inversion of the resulting system or by a
least-square procedure (Housseholder’s algorithm)
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

However, the interpolated quantities do not guarantee the non-oscillatory beha-
vior of the resulting numerical scheme: some specific conditions must be added
for that.
To begin, we start from the monotonicity-preserving procedure we early de-
veloped in [11]. This procedure ensures the following monotonicity property, for
the computed quantity, ūo:

ūn+1
o ∈ [mo,Mo], ∀o

with: Mo ≡ max
j∈So

{
ūnj
}

and mo ≡ min
j∈So

{
ūnj
} (3.15)

This is a classical property of what is usually called a ”positive” numerical
scheme, [11], [16].
To enforce this latter property, we designed the following two-step procedure.
In a first step, for each interface, Sk, k ∈ {i− 1/2, i+ 1/2, j − 1/2, j + 1/2}, of
the control volume, Io, we compute the limiter, ϕok, which reads as:

ϕok ≡ min

{∣∣∣∣∣ 1
2

(
uRq1 + uRq2

)
− ūo

1
2

(
uLq1 + uLq2

)
− ūo

∣∣∣∣∣ , 1
}

(3.16)

In the interpolation process, this latter condition ensures that the interpol-
ated values, uLq , limited by ϕok, will follow the monotonicity of the mean solution
(see [11], for the theoretical derivation of this condition).
To this aim, we define the following modified quantity, ∆u1

o(~xq), for every quad-
rature point, q, located on each surface, Sk, delimiting the control volume, Io
(see Figure(31)):

∆u1
o(~xq) ≡ ϕok.∆uo(~xq) ≡ ϕok.(uLq − ūo) ∀q ∈ Sk (3.17)

The second step of the monotonicity-preserving procedure uses the preceding
computation and lies upon the definition of the limiter, ψo, which writes as
follows:

ψo ≡ min


∣∣∣∣∣∣ M − ūo
max
q

∆u1
o(~xq)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ m− ūo
min
q

∆u1
o(~xq)

∣∣∣∣∣∣ , 1
 (3.18)

The bounds (m,M) are defined from the initial solution, uo(~x), of (2.19):

m ≡ minuo(~x)
~x∈D

and M ≡ maxuo(~x)
~x∈D

Hence, by using this latter limiter, the quantity, ψo.∆u
1
o(~xq), lies inside the

range [m−ūo,M−ūo],∀q, and, therefore, a global maximum principle is ensured
for the interpolation procedure.
Finally, the overall procedure that permits to compute monotone interpolated
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values, henceforth noted ũLq in what follows, is synthesized in the following
formula:

ũLq = ūo + ψo.∆u
1
o(~xq) (3.19)

with: ∆u1
o(~xq) ≡ ϕok.∆uo(~xq) ≡ ϕok.(uLq − ūo) ∀q ∈ Sk.

By combining these two steps, one can prove (see [11]) that the positivity
condition, (3.15), is ensured when discretizing (3.1).
In what concerns the Hermitian scheme, the interpolated derivatives, (rLq , s

L
q )

at the cell interface, Sk, are simply computed as:
rLq ≡ h ·

∂ũo
∂x

(~xq)

sLq ≡ h ·
∂ũo
∂y

(~xq)

(3.20)

Thus, doing so, we have designed the ultimate version of a high-order nu-
merical scheme for discretizing, with monotonicity principles, non-linear scalar
conservation laws.
Now, in the sub-section that follows, we present numerical tests in order to
study and to compare the salient features of each scheme.

3.3 Numerical tests

A Cartesian grid (h ≡ ∆x ≡ ∆y), is used for all the computations of this
sub-section. The CFL number is defined as:

CFL ≡ max
o

(|f ′(ūno )| , |g′(ūno )|) .∆t/h (3.21)

This latter definition is used for all the tests that follow, except for linear accur-
acy tests where we selected: ∆t ≡ CFL × hp/4, for either the CUPS5/HUPS5
scheme (p = 5) or the HUPS6 scheme (p = 6) to verify spatial accuracy.
In all that follows and for each numerical scheme, the optimum CFL value that
generates the lowest error level obtainable, was selected.

Test1 : Two-dimensional linear advection.
We begin this series of numerical tests with an accuracy study. To this aim,

we compute the linear form of equation (3.1), D ≡ [−2, 2]2, with:

f(u) ≡ u, g(u) ≡ u
The initial conditions are defined as follows:

uo(~x) ≡ u(~x, t = 0) = sin
(
π
2 (x+ y)

)
ro(~x) ≡ h · ∂u

∂x
(~x, t = 0) = h · π

2
· cos

(π
2

(x+ y)
)

so(~x) ≡ ro(~x)
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

Computations are run up to the dimensionless time, T = 0.20, with periodic
boundary conditions.
Table 1 displays the numerical results we obtained by using the CUPS5 scheme
(equations (2.22) and (2.24) for the definition of the interpolation polynomial,
with p = 4), with an optimum CFL number of 0.50. The Cartesian mesh is
gradually refined from N = 20 to N = 320 grid points, in each space direction.

N L1-error order L∞-error order

20 2×10−5 - 3.10×10−5 -

40 6.35×10−7 5 1.0×10−6 5

80 2.0×10−8 5 3.20×10−8 5

160 6.65×10−10 5 1.04×10−9 5

320 2.43×10−11 4.8 3.82×10−11 4.7

Table 1: Linear advection test: ut + ux + uy = 0 , u0(x, y) =
sin
(
π
2 (x+ y)

)
, at T = 0.20. CUPS5 scheme.

These results are compared with those obtained by using the HUPS4 (CFLopt =
0.125), Table 2, the HUPS5, Table 3 (CFLopt = 0.250) and the HUPS6 scheme
(CFLopt = 0.250), Table 4.
Thus, we get many valuable informations, from these first simulations:

• The HUPS6 scheme excepted, all schemes achieve their designed spatial
accuracy, both in L1 and L∞ norms.

• The monotonicity-preservation procedure typified by (3.16) and (3.18),
does not deteriorate the numerical schemes accuracy.

• Due to its compact nature, the HUPS4 scheme gives better error levels
than the CUPS5 scheme does, but its rate of convergence is weaker and
the optimum CFL number is lower than that of CUPS5 scheme.

• Despite a better error level, the numerical performances of the HUPS
schemes deteriorates as soon as the mesh resolution becomes dense. The
behavior of the spurious eigenvalues is a possible explanation of this fact
(see Figs. (24b), (27b) and (29b)): the spurious round-off errors are insuf-
ficiently damped, during the time-procedure, by the numerical algorithm;
hence, despite a CFL condition that ensures the overall numerical stability
of the scheme, there exist some minor instabilities, which are supported
by the spurious modes of the HUPS scheme, and which ”pollute” its nu-
merical solution.

• This latter behavior seems particularly exacerbated with the HUPS6 scheme
since its rate of convergence is not at all in agreement with its targeted
accuracy. Neither a decrease of the CFL number nor a deactivation of the
monotonicity-preservation procedure, alleviates that flaw.
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N L1-error order L∞-error order

10 1.27×10−4 - 1.96×10−4 -

20 4.33×10−6 4.9 6.75×10−6 4.9

40 1.54×10−7 4.8 2.42×10−7 4.8

80 6.30×10−9 4.6 9.90×10−9 4.6

160 3.0×10−10 4.4 4.75×10−10 4.4

320 1.65×10−11 4.3 2.60×10−11 4.3

Table 2: HUPS4 scheme.

N L1-error order L∞-error order

10 4.79×10−4 - 7.40×10−4 -

20 1.64×10−5 4.9 2.56×10−5 4.9

40 5.28×10−7 5 8.29×10−7 5

80 1.69×10−8 5 2.66×10−8 5

160 5.65×10−10 5 8.87×10−10 5

320 2.14×10−11 4.7 3.35×10−11 4.7

Table 3: HUPS5 scheme.

N L1-error order L∞-error order

20 1.22×10−6 - 1.91×10−6 -

40 4.14×10−8 4.9 6.51×10−8 4.9

80 3.20×10−9 3.7 5.04×10−9 3.7

160 2.15×10−10 4 3.37×10−10 4

Table 4: HUPS6 scheme.

In addition, Figure 32 that follows, gives us supplementary insights about
the computation effort supported by each scheme.
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

Figure 32: Linear advection test: Comparisons of the computation effort for the
CUPS5, HUPS4, HUPS5 and HUPS6 schemes

Clearly, the HUPS6 scheme generates a significant computation effort when
compared with the remaining schemes; for a given error level, the computation
effort of the CUPS5 scheme is tantamount to that of the HUPS4 and HUPS5
schemes: this property can be explained by knowing that the CUPS5 scheme
can accomodate a CFL number that is much greater than that of the HUPS
schemes.
Therefore, by only considering these first findings, one might conclude that
the increased algebraic complexity associated with a HUPS scheme does not
bring any substantial advantage over a more classical scheme. To confirm or to
balance this characteristic, we study the two-dimensional linear advection of a
discontinuity, in what follows.
Now, the initial solution of the linear advection problem, with D ≡ [−1, 1]2, is
typified as follows: uo(~x) ≡ u(~x, t = 0) =

{
1 if ~x ∈ S
0 otherwise

ro(~x) ≡ so(~x) ≡ 0

where S ≡
{

(x, y)/ |x− y| < 1/
√

2, |x+ y| < 1/
√

2
}

represents an unit square
centered at the origin and rotated by an angle of π/4.
For this problem, the mesh resolution selected is h = 1/40 and computations
are run up to T = 2 (one period in time).
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To be as accurate as possible, both the maximum and minimum values of the
numerical solution as well as the error in L1 norm, are computed, every time.
Numerical results obtained with the CUPS5 scheme are displayed by Figure 33,
for an horizontal cut along the line y = 0 and an optimum CFL value of 0.125.

Figure 33: CUPS5 scheme: Two-dimensional linear advection of a discontinuity
at T = 2, for h = 1/40 and CFLopt = 0.125.

As one can see, the monotonicity of the numerical solution is ensured and
the discontinuities are captured with accuracy.
The numerical solution verifies the maximum principle, since there are no values
that lie outside the range [umin = 0, umax = 1].
Now, we compare these first results with those obtained by employing the
HUPS4 scheme, with an optimum CFL number of 0.125.
Figure 34, displays those results.

Obviously, the discontinuities are captured with a better accuracy, this
without any oscillation. The monotonicity-preservation condition is almost
ensured although the minimum value of the solution (umin = −1.15 × 10−3)
lies outside the monotonicity range; however, the overall discretization error
is lower (|err|L1

= 1.97 × 10−2) than that obtained with the CUPS5 scheme

(|err|L1
= 2.35× 10−2).

This latter result can even be improved if we look at numerical results ob-
tained by using the HUPS5 scheme, Figure 35, with CFLopt = 0.125.
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

Figure 34: HUPS4 scheme: Two-dimensional linear advection of a discontinuity
at T = 2 for h = 1/40 and CFLopt = 0.125.

Figure 35: HUPS5 scheme: Two-dimensional linear advection of a discontinuity
at T = 2 for h = 1/40 and CFLopt = 0.125.
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Indeed, the discontinuities are captured with no more than 3 points; in
addition, the discretization error is substantially lower, since we have: |err|L1

=

1.48× 10−2.
However, the price we have to pay for this better resolution seems to be in the
property of monotonicity-preservation since umin = −3.2 × 10−3 and umax =
1.002.
Lastly, numerical results given by the HUPS6 scheme, are displayed by Figure
36.

Figure 36: HUPS6 scheme: Two-dimensional linear advection of a discontinuity
at T = 2 for h = 1/40.

As one can see it, not only the accuracy but also the structure of the solu-
tion are entirely lost; whatever the CFL number selected, spurious errors de-
velop during the time-procedure. For the reasons identified in the spectral ana-
lysis, these errors cannot be damped by the scheme itself and, consequently, the
monotonicity-preservation procedure must be activated to preserve the mono-
tonicity of the solution.
In some sense, this procedure is successful since no value lies outside the mono-
tonicity range, however the damping necessary for that purpose, is definitely
too strong.
Thus, this second test case brings significant novelties. Indeed, the compact
nature of HUPS schemes (HUPS6 excepted) enables to capture a linear discon-
tinuity with a better accuracy; this accuracy is even improved by increasing the
degree of the interpolation polynomial. On the other side, in terms of computa-
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

tion effort, the CUPS5 schemes remains advantageous since the computations
last 11 s, in CPU time, while the HUPS4 and HUPS5 schemes necessitate 20s
and 35s, respectively.

To get the same error level as the HUPS5 scheme, in using the CUPS5 al-
ternative solution, we need to use a spatial resolution of h = 1/60, Figure 37;
then, the computation time climbs to 36s, with CFLopt = 0.125. However,
although this mesh resolution gives an error level tantamount to that of the
HUPS5 scheme, the capture of the shock remains less good when compared to
this latter scheme, Figure 35: obviously, this is the main advantage in using an
Hermitian formulation of problem (3.1).

Figure 37: CUPS5 scheme: Two-dimensional linear advection of a discontinuity
at T = 2, for h = 1/60 and CFLopt = 0.125.

The case of the HUPS6 scheme is somewhat particular. Indeed, considering
its significant sensitivity to spurious errors and since the spurious modes are not
sufficiently damped, its numerical solution becomes inconsistent with the actual
solution.
Therefore, whatever the kind of solution, the HUPS6 scheme does not perform
well: for all these reasons, this latter scheme is discarded in the remaining sim-
ulations.
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Pursuing this series of linear tests, we consider the scalar equation, (3.1),
with the following modifications for the fluxes:

f(u) ≡ y · u, g(u) ≡ −x · u

The initial data is Gaussian: uo(~x) = exp
[
−100 ·

[
(x− 1/2)

2
+ y2

]]
over

the square domain, D ≡ [−1, 1]2. The initial conditions for the spatial derivat-
ives, ro(~x) and so(~x), are directly derived from uo(~x). This choice for the fluxes
and the initial condition enables to model the rotation of a Gaussian hill.
This test-case is significant to evaluate the dissipative and dispersive properties
of a numerical scheme. Indeed, to avoid significant extrema damping, one must
resort to high-order schemes; however, in that case, slight oscillations often ap-
pear behind the convected hill. These oscillations come from phase errors and
often illustrate a local loss of monotonicity.
The mesh size selected is h = 1/40 and computations are run for one period,
up to T = 2π. Figure 38, displays the first results obtained in using the CUPS5
scheme, with CFLopt = 0.90.

Figure 38: CUPS5 scheme: Rotation of a Gaussian hill over one period, for
h = 1/40 and CFLopt = 0.90.

There are no noticeable oscillations and the extrema damping is weak since
umax = 0.922; the discretization error is: |err|L1

= 2.64× 10−4.
Upon comparing with the HUPS4 scheme, we get results illustrated by Figure
39, for CFLopt = 1.0: this high value for the CFL number is permitted by the
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

five stages of the SSPRK procedure (see [14] and appendix A).
The improvement appears when considering the maximum value computed:
umax = 0.947. Again, there are no oscillations behind the signal and the dis-
cretization error is lower: |err|L1

= 9.33× 10−5.

Figure 39: HUPS4 scheme: Rotation of a Gaussian hill over one period, for
h = 1/40 and CFLopt = 1.0.

Lastly, Figure 40 displays numerical results for the HUPS5 scheme.
This time, the optimum CFL number may be selected greater than one and we
have: CFLopt = 1.30. These are the best results among the numerical solutions
investigated since we have: umax = 0.956 and |err|L1

= 2.94× 10−5.
In terms of computation effort, we have the following results: tcpu = 10.4s,
(HUPS5), tcpu = 8s, (HUPS4) and tcpu = 4.8s, (CUPS5); but, once again,
to get, approximately, the same error level as HUPS5 when using the CUPS5
scheme, we need h = 1/60 and then we now have: tcpu = 15.5s.
Consequently, there is an advantage in using a HUPS scheme when dealing with
isolated extrema; in some sense, this finding is in agreement with the previous
one concerning the good shock capturing capabilities of a HUPS scheme.
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Figure 40: HUPS5 scheme: Rotation of a Gaussian hill over one period, for
h = 1/40 and CFLopt = 1.30.

Test2 : Two-dimensional non-linear advection.

Now, we want to check the previous conclusions in a non-linear context. To
this aim, we study the 2D Burgers equation. In such a case, the non-linear form
of equation (3.1) is obtained by the following fluxes:

f(u) ≡ g(u) ≡ u2

2

with the initial data, defined for D ≡ [−2, 2]2:{
uo(~x) = 1

4 + 1
2sin

(
π
2 (x+ y)

)
ro(~x) = so(~x) = h · π4 cos

(
π
2 (x+ y)

)
The exact solution for this problem is computed from the ”method of char-

acteristics”.
Firstly, the L1− and L∞−norms of the discretization error, are collected for the
dimensionless time, T = 0.30, when the exact solution is still smooth. Table 5,
synthesizes those first results for the CUPS5 scheme, with CFLopt = 0.50.

Both in L1− and L∞−norms, the accuracy asymptotically converges towards
the value 4: the error made in approximating the unsteady term predominates
in that case because we used definition (3.21) for computing the discrete time-
step.
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

N L1-error order L∞-error order

20 9.36×10−5 - 5.60×10−4 -

40 5.30×10−6 4.1 4.60×10−5 3.6

80 2.52×10−7 4.4 2.30×10−6 4.4

160 1.20×10−8 4.4 1.60×10−7 4

320 7.96×10−10 4 9.60×10−9 4

Table 5: CUPS5 scheme. 2D Burgers equation at T = 0.30.

Now, if we compute the same problem with the HUPS4 scheme, we get numerical
results typified by Table 6, for CFLopt = 0.25.

N L1-error order L∞-error order

20 4.15×10−5 - 2.60×10−4 -

40 2.39×10−6 4.1 2.90×10−5 3.2

80 1.0×10−7 4.6 2.60×10−6 3.2

160 3.70×10−9 4.8 2.30×10−7 3.5

320 1.60×10−10 4.6 2.10×10−8 3.5

Table 6: HUPS4 scheme. 2D Burgers equation at T = 0.30.
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This time, the rate of convergence of the discretization error, in L1−norm,
is greater, by more than an order, than in L∞−norm. This discrepancy, which
does not come from the monotonicity-preserving procedure, is difficult to ex-
plain. A decrease of the CFL number does not modify significantly this result.
Some minor nonlinear instabilities might appear into the numerical solution and
might trigger the spurious modes of the numerical scheme with, as consequence,
a local increase of the spurious error and, then, an alteration of the resulting
accuracy.
Despite this detrimental behavior, one must note that the error levels are
lower in L1−norm than those of the CUPS5 scheme and almost equivalent in
L∞−norm.
Lastly, Table 7 shows numerical results obtained displayed by the HUPS5 scheme,
for CFLopt=0.125.

N L1-error order L∞-error order

20 6.60×10−5 - 5.90×10−4 -

40 4.30×10−6 4 4.50×10−5 3.7

80 1.90×10−7 4.5 2.50×10−6 4.2

160 7.50×10−9 4.7 9.70×10−8 5

320 2.90×10−10 4.8 2.10×10−9 4.8

Table 7: HUPS5 scheme. 2D Burgers equation at T = 0.30.

As one can see it, the improvement essentially appears in the L∞−error
when passing from HUPS4 to HUPS5 scheme, since the error level is lower
and the rate of convergence of this quantity is higher, when using the HUPS5
scheme. As the accuracy of the interpolation polynomial is pretty much the
same in both cases, the main difference between HUPS4 and HUPS5 schemes
lies on the discretization stencil; a wider stencil seems to contribute to reducing
the nonlinear excitation of the spurious components of the numerical solution,
at least for the test-case investigated, here.
The rate of convergence of the discretization error, in both norms, seems to in-
dicate that errors made by the spatial discretization predominate over temporal
errors. Note, also, that the monotonicity-preserving procedure does not alter
the accuracy of the scheme.
Lastly the three schemes may be compared in terms of the computation effort,
for a given accuracy; Figure 41, displays these results.
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3. TWO-DIMENSIONAL HIGH-ORDER SCHEMES.

Figure 41: 2D Burgers equation: Comparisons of the computation effort for the
CUPS5, HUPS4 and HUPS5 schemes

Both HUPS4 and HUPS5 schemes give equivalent results; on the other side,
the CUPS5 scheme is more advantageous in terms of computation effort.
Therefore, it appears that this latter quantity is an important parameter in the
rating of a high-order numerical method. Indeed, despite higher error levels and
lower rates of convergence, the CUPS5 scheme is less costly in CPU time than
a HUPS scheme with an equivalent accuracy.

Now, if we compute the numerical solution at T = 0.80, a moving shock de-
velops and interacts with a rarefaction wave. The numerical solution is drawn
in Figures 42, 43, 44, for the CUPS5, HUPS4, HUPS5 schemes, respectively,
with h = 1/20 and CFLopt = 0.250.
We see that the monotonicity of the solution is preserved between the shocks
that are accurately captured without any spurious oscillation.
The solution computed from the CUPS5 scheme is visually identical with either
that of the HUPS4, Figure 43, or the HUPS5 scheme, Figure 44.
Similarly, upon looking at the discretization error, the differences are very weak:
|err|L1

= 1.45 × 10−2 (CUPS5), |err|L1
= 1.46 × 10−2 (HUPS4), |err|L1

=

1.40× 10−2 (HUPS5).
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Figure 42: CUPS5 scheme: 2D Burgers equation at T = 0.80, for h = 1/20 and
CFLopt = 0.250.

Figure 43: HUPS4 scheme: 2D Burgers equation at T = 0.80, for h = 1/20 and
CFLopt = 0.250.
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4. CONCLUSIONS AND PERSPECTIVES

Figure 44: HUPS5 scheme: 2D Burgers equation at T = 0.80, for h = 1/20 and
CFLopt = 0.250.

Consequently, the choice of the high-order version of a scheme to com-
pute this test-case does not appear to be a crucial point; the choice of the
monotonicity-preserving procedure is undoubtedly more prominent.

4 Conclusions and perspectives

In this paper we designed a high-order and compact numerical method that is
weakly dissipative and dispersive, while remaining non-oscillatory.
An Hermitian formulation of the differential problem allows to generate a com-
pact numerical scheme (HUPS scheme) without sacrificing numerical accuracy;
in addition, an upwind formulation of the numerical fluxes (HLL formulation)
reduces phase errors and increases the stability of the numerical method.
When there are discontinuities in the solution or when the solution presents isol-
ated extrema, a HUPS formulation becomes advantageous. This is particularly
true for the computation of linear discontinuities for which we demonstrated
that an HUPS scheme gives better results than a classical scheme (CUPS) of
the same order.
On the other hand, a CUPS scheme generally performs better than a HUPS
scheme of the same order as long as the solution remains smooth and provided
that boundary conditions do not play a critical role in the accuracy of that
solution; the CUPS5 scheme (fifth-order accuracy in space) is a good choice in
that case.
In cases of complex solutions with embedded discontinuities, a HUPS scheme
is preferable; the HUPS5 scheme we designed in this paper is a good candidate
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for this kind of problems.

However, an Hermitian formulation of a differential problem has some draw-
backs, also.
Firstly, at the discrete level, any Hermitian formulation introduces spurious
components into the numerical solution; these components have no equivalent
in the differential problem. Depending on the formulation of the Hermitian
scheme, these spurious components may deeply alter not only the theoretical
convergence properties of the resulting scheme, but also the consistency of the
numerical solution.
Secondly, an Hermitian formulation of a differential problem results in an in-
creased algebraic complexity when compared with a classical formulation; this
has consequences on the computation effort.

These drawbacks trace the way for future improvements of an Hermitian
numerical method.
For instance, the leading equations for the spatial derivatives might be linearized
in order to decrease the algebraic complexity and to weaken the non-linearities
that are responsible for a triggering of the spurious components of the numerical
solution.
On the other side, extension of this work to non Cartesian geometries may be
developed by using the least-square procedure designed in [12], [13].
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Appendix A Preserving positivity time-integration
method.

In order to preserve the positivity properties of the scheme in its high-order
time-integration version, we made the choice of the fourth-order, five stages,
SSPRK(5,4) scheme of Gottlieb,[14].

For example, by writing formally equation (2.2) as:

(
dū

dt

)
i

≡ F(ū(t)) (A.1)

integration of this equation by the SSPRK(5,4) scheme, gives the following
algorithm:

Algorithm SSPRK(5,4), [14].

u
(1)
i ≡ ū

n
i + 0.391752226571890∆tF(ū(tn))

u
(2)
i ≡ 0.444370493651235ūni + 0.555629506348765u

(1)
i

+ 0.368410593050371∆tF(u(1))

u
(3)
i ≡ 0.620101851488403ūni + 0.379898148511597u

(2)
i

+ 0.251891774271694∆tF(u(2)) (A.2)

u
(4)
i ≡ 0.178079954393132ūni + 0.821920045606868u

(3)
i

+ 0.544974750228521∆tF(u(3))

ūn+1
i ≡ 0.517231671970585u

(2)
i + 0.096059710526147u

(3)
i

+ 0.063692468666290∆tF(u(3)) + 0.386708617503269u(4)

+ 0.226007483236906∆tF(u(4))

The advantage in using this algorithm is twofold: firstly, the resulting scheme
is fourth-order accurate in time and, moreover, it remains monotonicity-preserving;
secondly, this time-integration method is more efficient than the popular SS-
PRK(3,3) method (see also [14]), with an effective CFL number (≡ CFL /m,
m:number of computations of F(ū(t)) required per time step) of 0.377 instead of
1/3 for SSPRK(3,3).
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Appendix B Spectral analysis for the discretiz-
ation of the linear advection equa-
tion.

B.1 Classical Upwind Scheme (CUPS)

We start this analysis from the linear semi-discrete form (2.2) obtained over an
uniform Cartesian mesh (∆x ≡ Cte ≡ h) :

dūi
dt

+ a
uLi+1/2 − u

L
i−1/2

h
= 0 (a ≡ Cte > 0) (B.1)

This form is supposed to be the semi-discrete form obtained by a classical up-
wind scheme over the stencil typified by Figure 1. The pointwise values, ui±1/2

are obtained, at t = tn, from the interpolation polynomials, ũi(x) and ũi−1(x),
computed according to conditions (2.4).

Now, assuming that the computation domain is periodic, we decompose
the semi-discrete solution, ūi(t), in Fourier series, according to the following
definition:

ui(t) ≡ û(t)ejk xi (j2 = −1) (B.2)

where û(t) represents the complex amplitude of the numerical solution and k, the
wave number that characterizes the periodic signal.

Inserting (B.1) into the linear form, (B.1), produces the following result:

dû

dt
= G(β, ν).û(t) (B.3)

G(β, ν) is a complex factor that represents the discrete Fourier transform of the
discrete spatial operator in (B.1). This quantity only depends upon the phase
angle, β (≡ kh) and the CFL number, ν (≡ a∆t/h).

Finally, upon integrating (B.3) over the time-interval [tn, tn+1], we get, form-
ally, the following result, in the Fourier space (ûn+1 ≡ û(tn+1), ûn ≡ û(tn))

ûn+1 = G(β, ν)ûn (B.4)

When it is a scalar quantity, G(β, ν) is called the “amplification factor” of the
numerical scheme; G(β, ν) is a complex quantity.

To formalize G(β, ν), let us suppose that (B.3) is integrated by using a
Runge-Kutta positive scheme, [14] (Appendix A). Then, each step, m, of the
integration procedure, will produce the following recursive result:

ûm = ûn-αmG(β, ν)ûm−1 (B.5)

where, αm, represents the coefficient of the Runge-Kutta scheme at them-th stage.
Combining those results for the whole procedure, we have, therefore, for a

p-th order Runge-Kutta scheme, the final result:

ûn+1 = (1-αpG. (1-αp-1G.( 1-. . . (1-α1G) ) .ûn (B.6)
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and the amplification factor, G(β, ν), can now be directly identified as:

G(β, ν) ≡ (1-αpG. (1-αp-1G.( 1-. . . (1-α1G) ) (β, ν) (B.7)

Thus, G(β, ν) can be compared with the exact amplification factor obtained
from a continuous Fourier transform of the linear advection equation, (2.1).
Indeed, if we introduce into (2.1), for a given wave number, k, the decomposition:
u(x, t) = û(t)ejk x, then, we get the following ODE:

dû

dt
+ jka û(t) = 0 (B.8)

By integrating exactly this result over [tn, tn+1], we obtain:

ûn+1 = e−jνβ ûn (B.9)

This latter result is unchanged if we consider the integrated form of (2.1)
with the decomposition ui(t) ≡ û(t)ejk xi , for the variable, ū(x, t).
Therefore, since equation (B.4) represents the approximation of equation (B.9),
in the Fourier space, G(β, ν) may be considered as the result of the numerical
approximation by the numerical scheme, of the exact amplification operator,
e−jνβ , obtained from equation (B.9).

In agreement with this statement, one may define the following useful quant-
ities for the study of the spectral properties of a numerical scheme, with ν ∈
[0, 1], β ∈ [0, π]:

- The amplitude error : A(β, ν) ≡ 1− |G(β, ν)|

- The relative phase error: P (β, ν) ≡ [νβ + Arg(G(β, ν))] /νβ

- The truncation error: τ(β, ν) ≡ 1
∆t [e

−jνβ − G(β, ν)]

- The discretization error, at t = tn: en(β, ν) ≡ |Gn(β, ν)− e−jnνβ |

- The accuracy at t = tn:
[log10 (en(β0, ν))− log10 (en(β1, ν))]

(log10(β0)− log10(β1))

In addition, according to the classical Von-Neumann linear stability analysis,
the quantity, |G(β, ν)|, makes it possible to evaluate the stability of the numerical
scheme discretizing (2.1).

Of course, the truncation error, τ(β, ν), in the Fourier space, may be linked
with the classical definition of the truncation error, τ(x, t), for a numerical
scheme, by the following relationship:

TF(τ(x, t)) = τ(β, ν)ûejk x (B.10)

Indeed, if we integrate (B.1) over [tn, tn+1], we get the following condensed
algebraic form:

ūn+1
i = H∆t(ū

n; i) (B.11)
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From this result, the local truncation error is usually defined as:

τ(xi, tn) ≡ 1

∆t
[ū(xi, tn+1)−H∆t(ū

n; i)] (B.12)

If we introduce decomposition (B.2), at t = tn+1, into this latter definition
and if we use result (B.9), then we get the following result:

TF (τ(xi, tn)) =
1

∆t

[
e−jνβ − G(β, ν)

]
ûnejkxi (B.13)

where we used the following result: TF (H∆t(ū
n; i)) = G(β, ν).

Then, it becomes easy to identify τ(β, ν) in a practical way.
Of course, we keep on having, in the Fourier space, the consistency condition:

τ(β, ν) →
β→0

0 (B.14)

More specifically, for the high frequency components of the numerical solution
(β � 1), a Taylor series expansion of τ(β, ν) gives the following typical result,
for a p− th order (space and time) discretization scheme of (B.1):

τ(β, ν) =
1

∆t

[
−a1(ν) (jβ)

p+1 − a2(ν) (jβ)
p+2
]

+O
(
βp+3

∆t

)
(B.15)

Upon starting from this result, we can identify the truncation error in the phys-
ical space, τ(x, t), from an inverse Fourier transform (τ(x, t) = TF−1

(
τ(β, ν)ûejk x

)
),

to produce the following useful result:

τ(x, t) = −a1(ν) (−1)
p ∆xp+1

∆t

δp+1u

δxp+1

− a2(ν) (−1)
p+1 ∆xp+2

∆t

δp+2u

δxp+2
+O

(
∆xp+3

∆t

)
(B.16)

Consequently, the modified equation of (2.1), by the discretization scheme that
generates the two first term of τ(x, t), may be defined as:

ut + aux = a1(ν) (−1)
p ∆xp+1

∆t

δp+1u

δxp+1
+ a2(ν) (−1)

p+1 ∆xp+2

∆t

δp+2u

δxp+2
(B.17)

Finally, by using, once again, a continuous Fourier transform of the exact solu-
tion of this modified equation, we may appreciate the characteristic behavior of
the numerical solution.

Indeed, the Fourier transform of (B.17) (u(x, t) = û(t)ejkx) integrated over
[tn, tn+1], produces the following exact result for the complex amplitude, û:

ûn+1 = e−jνβ ûne(−1)pa1(ν)
(jβ)
∆t

p+1

e(−1)p+1a2(ν)
(jβ)
∆t

p+2

(B.18)

Now, this latter result must be compared with that of equation (B.9).
Thus, if p is even, the leading error (first term of the truncation error),

between exact solution (B.9) and solution (B.18), which typifies the numerical
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scheme, is a phase error; whereas the higher order term of (B.16) gives us in-
formation about the dissipative behavior of this scheme, depending on the sign
of a2(ν).
On the other side, if p is odd, the leading error will be, henceforth, an amp-
litude error; in that case the second term of (B.16) will introduce a phase error
of higher order.

B.2 Hermitian Upwind Scheme (HUPS)

Now, if we suppose that equation (2.1) is discretized by an Hermitian upwind
scheme, for example over the compact stencil typified by Figure 2, some signi-
ficant modifications must be made to the above considerations.

First of all, we must start from the following semi-discrete linear system:

dŪi
dt

+ a
ULi+1/2 − U

L
i−1/2

h
= 0 (a ≡ Cte > 0) (B.19)

with: U ≡
(
u, r ≡ h.∂u∂x

)t
and Ū ≡

(
ū, r̄ ≡ u(xi+1/2)− u(xi−1/2)

)t
.

Now, if we do a Fourier transform of the spatial operators of this system:

Ūi(t) =

[
û(t)
r̂(t)

]
× ejkxi ≡ Û(t)× ejkxi (B.20)

we obtain, formally, a result equivalent to equation (B.3):

dÛ

dt
= G(β, ν) · Û(t) (B.21)

But now, the quantity, G(β, ν), becomes a 2 × 2 complex matrix and Û is the
vector of complex amplitudes, (û, r̂)t.

Then, upon integrating (B.21) over [tn, tn+1] with a positive Runge-Kutta
algorithm, we get:

Ûn+1 = G(β, ν) · Ûn (B.22)

where G(β, ν) is a 2× 2 complex matrix; G(β, ν) is called the “amplification mat-
rix” of the Hermitian scheme and this result is formally tantamount to the scalar
equation (B.4), for a classical scheme.

Secondly, the spectral properties of the Hermitian scheme are influenced by
the complex eigenvalues of G(β, ν).
Indeed, the complex scalar amplification factor, g(β, ν), for the Hermitian sys-
tem is such that we have:

Ûn+1 = g(β, ν)× Ûn (B.23)

Therefore, if we introduce this definition into (B.22), we get the following
condition:
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(G(β, ν)− g(β, ν)× I) Ûn = 0 (B.24)

(I: identity matrix) showing that the only condition for having a solution differ-
ent from the trivial solution, Ûn = 0, is the quantity, g(β, ν), to be an eigenvalue
of G(β, ν).

If we calculate those eigenvalues, defining the first eigenvalue, λ1(β, ν), as
approximating the exact amplification factor, e−jνβ , of (2.1) in the complex
plane, then λ1(β, ν) is identified, practically, by the consistency condition:

λ1(β, ν) →
β→0

1 (B.25)

In that case, the second eigenvalue, λ2(β, ν), represents a “spurious compon-
ent”, introduced by an Hermitian discretization into the solution, and has no
equivalent in the continuous problem (2.1).

In order to illustrate this latter property, let us suppose that the initial
solution of (2.1) is: u(x, t = 0) = û0ejkx, a sinusoidal solution with a wavelength,
2π/k and an amplitude û0.
Then, the exact solution of (2.1), at any time t, is as follows:

u(x, t) = û0e−jνβ
t

∆t ejkx (B.26)

and, for an Hermitian problem, this exact solution can be written as:

U(x, t) ≡
[

u
h∂u∂x

]
= e−jνβ

t
∆t û0

[
1
jβ

]
ejkx (B.27)

or, equivalently, at x = xi and t = tn ≡ n∆t and by setting: Û0 ≡ û0 ×
[1, jβ]t :

U(xi, t = tn) = Û0e−jnνβejkxi (B.28)

The vector, Û0 ≡ û0 × [1, jβ]t, is the complex amplitude of the full solution
and it also represents the exact eigenvector of the Hermitian system, in the
Fourier space.
Now, let us compare this exact solution with the numerical solution, Uni , gen-
erated by an HUPS scheme.
To begin, let us suppose that the initial first space derivative, r̄0

i , is approxim-
ated by a centered discretization at x = xi; then, we write:

r̄0
i ≈

(
ū0
i+1 − ū0

i−1

)
/2 (B.29)

or, by using the Fourier decomposition: ū0
i = û0ejkxi :

r̄0
i = jsinβû0ejkxi (B.30)
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Consequently, the first approximation generated by the HUPS scheme in ini-
tializing the numerical solution, reads as:

û0 ·
[

1
jsinβ

]
∼ Û0 (B.31)

Now, by using relationship, (B.22), it becomes possible to formulate, at
t = tn, the approximate solution, Uni , generated by an HUPS discretization
typified by G(β, ν):

Uni = Gnû0 ·
[

1
jsinβ

]
ejkxi (B.32)

If we use the decomposition: G ≡ RΛR−1, where R stands for the right
eigenvectors matrix of G and Λ its matrix of eigenvalues, we can re-formulate
(B.32) as follows:

Uni = RΛnR−1û0 ·
[

1
jsinβ

]
ejkxi (B.33)

Looking at this latter result, one may see that two sources of approximation
appear into the solution:

• a spatial and a time approximations, typified by Gn(β, ν) = RΛnR−1

• an initialization error, which is represented by the approximate vector,
û0 · [1, jsinβ]t.

Lastly, by setting:

Ŵ 0 ≡ R−1û0 ·
[

1
jsinβ

]
≡
[
ŵ0

1

ŵ0
2

]
the following significant result is obtained:

Uni = RΛnŴ 0ejkxi =
(
λn1 ŵ

0
1r1 + λn2 ŵ

0
2r2

)
ejkxi (B.34)

where, rp, represents the p− th right eigenvector of G(β, ν), associated with the
p− th eigenvalue, λp.

Therefore, if we compare (B.34) with equation (B.28), since the eigenvalue,
λ1(β, ν), is defined as the consistent approximation of the exact amplification
factor, e−jνβ , one may say that the numerical solution at t = tn is the sum
of two components: an ”accurate” component, λn1 ŵ

0
1r1, which should be com-

pared to Û0e−jnνβ , and a ”spurious” component, λn2 ŵ
0
2r2, that does not have

counterpart in the differential problem; the amplitude of this latter component
is given by the modulus of the complex quantity, ŵ0

2.

Thus, one can define in the Fourier space the following new quantities, for
the first component, u, of U :
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- an ”accurate” error: |λn1 ŵ0
1r11 − e−jnνβ |.

- a ”spurious” error: |λn2 ŵ0
2r21|.

- a discretization error: |λn1 ŵ0
1r11 + λn2 ŵ

0
2r21 − e−jnνβ |

If |λ2| < 1, whatever ν ∈ [0, 1] and whatever β ∈ [0, π], then the ”spurious”
error sized by |ŵ0

2| has a decreasing influence as time evolves, even though this
latter error is significant at t = 0 (initialization).
The issue becomes problematic as soon as |λ2| > 1: in that case, if |ŵ0

2| 6= 0,
then, according to (B.34), the numerical solution may become inconsistent when
the spurious component overwhelms the accurate component of the solution.
Therefore, at least theoretically, an Hermitian scheme, even though it is de-
signed to be linearly stable (|λ1| < 1, ∀ν ∈ [0, 1], ∀β ∈ [0, π]) and consistent
with the differential problem, may generate spurious components within its
solution, with as consequence the need to lower the CFL number more than
necessary, to damp this unwelcome behavior.
To end, it is significant to note that the way the numerical solution is initial-
ized plays a role in the definition of the discretization error, contrarily to the
definition we gave for this latter quantity when considering the CUPS scheme.
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Appendix C Spectral analysis: two-dimensional
linear advection equation.

To begin, we start from the classical (CUPS) numerical form that discretizes
the two-dimensional linear advection equation, (2.19):

dū
i

dt
+ a

uLi+1/2 − u
L
i−1/2

h
+ b

uLj+1/2 − u
L
j−1/2

h
= 0 (a ≡ Cte > 0, b ≡ Cte > 0)

(C.1)
with: h ≡ ∆x = ∆y ≡ Cte.

Once again, by introducing the decomposition: u(~x, t) = û(t)ej
~k~x, into equa-

tion (2.19), for the given wave vector, ~k ≡ (kx, ky)t, and after integrating over
[tn, tn+1], we get the following exact solution: ûn+1 = Ge(ν, β, ψ)ûn

Ge(ν, β, ψ) ≡ e−jνβcosψ
(C.2)

Where we defined the following quantities:

β ≡
(
β2
x + β2

y

)1/2
, ν ≡

√
a2 + b2∆t

h
, ψ ≡ θ − ϕ

with: βx,y ≡ kx,yh, and: θ = arctan(b/a), ϕ ≡ arctan(βy/βx).
Thus, to deal with a two-dimensional spectral analysis, we have to add, now, a
new parameter, ψ, which links together, the convection angle, θ, and the wave
angle, ϕ.
Note that, the parameter, N , remains associated with the two-dimensional phase
angle, β, by the relationship: N × β = 2π, with the same meaning as in the
one-dimensional case.
Similarly, a discrete Fourier transform of the numerical solution of (C.1) com-
puted by the CUPS scheme and integrated by a Runge-Kutta scheme over
[tn, tn+1], gives the following relationship:

ûn+1 = G(β, ν, ψ)ûn (C.3)

The scalar numerical amplification factor, G(β, ν, ψ), must now be compared
with Ge(β, ν, ψ), to compute the quantities defined in Appendix B.
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On the other side, when we approximate (2.19) by an Hermitian scheme
(HUPS), we get the following semi-discrete result:

dŪ
i

dt
+ a

ULi+1/2 − U
L
i−1/2

h
+ b

ULj+1/2 − U
L
j−1/2

h
= 0 (C.4)

with: Ūi ≡
(
ūi, r̄i ≡

h

|Ii|

∫
Ii

∂u

∂x
dxdy, s̄i ≡

h

|Ii|

∫
Ii

∂u

∂y
dxdy

)t
.

Therefore, a discrete Fourier transform of the numerical solution, will display
the following relationship:

Ûn+1 = G(β, ν, ψ)Ûn (C.5)

with, now, the following meaning for Û : Û ≡ [û, r̂, ŝ]
t
, vector of the complex

amplitudes of the variable, the first derivative in x and the first derivative in y,
respectively.

Consequently, G(β, ν, ψ) becomes a 3 × 3 complex matrix when computing
a two-dimensional Hermitian scheme.
Once again, by analyzing the eigenvalues of G(β, ν, ψ), we can identify an ”accur-
ate” and two ”spurious” components into the numerical solution, respectively
associated to the eigenvalues, λ1(β, ν, ψ) and λ2,3(β, ν, ψ).

Thus, λ1(β, ν, ψ) is now considered as the numerical approximation of Ge(ν, β, ψ),
introduced in (C.2). Practically, to study the two-dimensional properties of an
HUPS scheme discretizing, (2.19), we define the following discretization errors,
for ν ∈ [0, 1], β ∈ [0, π] and ψ ∈ [0, π/2]:

- The amplitude error: A(β, ν, ψ) ≡ 1− |λ1(β, ν, ψ)|

- The relative phase error: P (β, ν, ψ) ≡ [νβ +Arg(λ1(β, ν, ψ))] /νβ.

Unfortunately, the truncation error, due to the complexity of the algebraic
form for λ1(β, ν, ψ), cannot be computed in a simple closed form as in the
one-dimensional problem.
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