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ABSTRACT
We give an analytical demonstration of the possibility to realize a simple magnonic demultiplexer based on induced transparency resonances.
The demultiplexer consists on an Y-shaped waveguide with an input line and two output lines. Each line contains two grafted stubs at a given
position far from the input line. We derive in closed form the analytical expressions for selective transfer of a single propagating mode through
one line keeping the other line unaffected. This is performed through magnonic induced transparency resonances (MIT) characterized by a
resonance squeezed between two transmission zeros. The existence of a complete transmission beside a zero transmission, enables to select a
given frequency on one output line, by canceling the transmission on the second line as well as the reflection in the input line. Also, we show
that despite the existence of a bifurcation of the input line on two output lines, the transmission through each line can be written following a
Fano line shape. In addition, in order to understand better the scattering properties of the filtered resonances, we give the analytical expressions
of Fano parameter q and quality factor Q of the MIT resonance in each line. The spatial distribution of the spin waves associated to different
MIT resonances is performed through an analysis of the magnetization of these modes. Also, the effect of attenuation on the transmission
spectra and the quality of demultiplexing is also discussed. The theoretical results are performed using the Green’s function approach which
enables to deduce in closed form, the transmission and reflection coefficients as well as the densities of states.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5080350

I. INTRODUCTION

The rapid development of research on magnonic crystals (MCs)
is related to the possibility of using spin waves as a new means of sig-
nal processing, communication and computation over a very wide
bandwidth. The developments in the field of spin dynamics, such
as the interaction of charge and heat currents with magnons, opens
up the prospect of new concepts of information processing and
potential applications purely magnetic without the need of charge
transport.1,2 Magnons are the spin-wave excitation quanta of mag-
netic materials. They can be classically understood as the collective
precession of electron spins.1,3–11

The magnonic devices may be smaller than conventional
microwave devices because the spin waves operating at GHz or THz
frequencies have micron or nanometric wavelength and the infor-
mation can be encoded in either the amplitude7,12 or in the phase13

of the spin waves. Interest in MCs also results from their poten-
tial use as high sensitive magnetic sensors,14 switches,15,16 cou-
plers,17–19 tunable filters or phase shifters,20–22 multiplexers7 and
transistors.23

The existence of the analogue of electromagnetic induced
transparency (EIT) and Fano resonances in classical linear systems
such as phononic, photonic and plasmonic structures, has attracted
a great deal of attention.24–27 In this context, we have shown
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theoretically and experimentally the possibility of existence of these
two types of resonances28,29 in simple photonic circuits composed
of a waveguide with two grafted stubs on the same site or at two dif-
ferent sites. These resonances are obtained by detuning the lengths
of the two stubs of lengths d1 and d2 (i.e., δ = d2 − d1). The cou-
pling of spin waveguides with one or more resonators has been
studied and applied to obtain the so-called magnonic induced trans-
parency (MIT) resonances.30–32 This process can also be applied to
the design of a wavelength magnonic crystal demultiplexer.

In a recent paper,30 we have shown the possibility of existence
of the induced transparency resonances in a simple magnonic circuit
made of a waveguide with two grafted stubs at the same site. Such
resonances are obtained by detuning the lengths of the two stubs
of lengths d1 and d2 (i.e., δ = d2 − d1) in such a way that the two
stubs induce two transmission zeros falling at two closed frequen-
cies f 1 and f 2. Then there exists automatically a third frequency f 3
lying between f 1 and f 2 for which the transmission reaches unity.
This resonance, squeezed between two transmission zeros, has been
shown to be induced by the two stubs taken together. In this work,
we show the possibility to realize a simple magnetic demultiplexer
based on such induced resonances.30 The demultiplexer consists
of an Y-shaped waveguide with an input line and two output lines
(Fig. 1). Each line contains two grafted stubs at a given position
far from the input line. The existence of transmission zeros around
the MIT resonances enables us to derive in closed form the expres-
sions for selective transfer of a single propagating mode through
one line keeping the other line unaffected. We illustrate these ana-
lytical results by some numerical solutions for a simple structure
made out of one-dimensional magnetic waveguides. In addition, the
exact results are supported by approximate results (Taylor expan-
sion) around the resonances showing that the transmission coeffi-
cients can be written following a Fano like form where the position,
width and Fano parameters of the resonances can be deduced explic-
itly as a function of δ. The theoretical results are obtained using the
Green’s function method which enables to deduce in closed form
the transmission and reflection coefficients as well as the densities of
states.

FIG. 1. Schematic representation of a demultiplexer in the Y-shap with one input
line and two output lines. Along the first output line, two stubs of lengths d1 and d2
are inserted at the same position on the waveguide and at a distance d5 from the
input line. Along the second output line, two stubs of lengths d3 and d4 are inserted
at the same position on the waveguide at a distance d6 from the input line.

FIG. 2. Schematic illustration of the one dimensional waveguide with two res-
onators on the same site. The lengths of the resonators are d1 and d2.

This paper is organized as follows: in section II, we give a
summary of the method of calculation and the possibility to obtain
the induced transparency resonances in a cross structure (Fig. 2).
Section III is devoted to the calculation of transmission and reflec-
tion coefficients based on the Green’s function method. In this sec-
tion we present also the analytical results that enable to achieve a
complete transmission in one line by canceling the transmission in
the second line as well as the reflection in the input line. In addi-
tion we give some numerical results to elucidate the obtained phe-
nomenon. The spatial localization of the different modes transferred
and stopped along each line are analyzed by means of the magneti-
zation field. Also, the effect of damping on the transmission spectra
in each line is discussed. In section IV, we summarize and conclude
the main results of this work.

II. MIT RESONANCE IN DETUNED MAGNONIC
STUB WAVEGUIDES: AN OVERVIEW

It is well established33,34 that properties of spin waves are
mainly determined by two important interactions acting between
magnetic moments: the magnetic dipole and the exchange interac-
tion. Since the contribution of the exchange interaction is scaled with
wavevector as k2 (see Eq. (1) below), for relatively small wavevectors
(k < 104cm−1) the spin wave dynamics is almost entirely determined
by the magnetic dipole interaction and magnetostatic modes are the
resulting excitations that propagate in such waveguides.35 Due to
the anisotropic nature of the magnetic dipole interaction, the fre-
quency of a spin wave depends not only on the absolute value of its
wavevector, but also on the orientation of the wavevector relative
to the static magnetization. However, for large values of wavevec-
tors (k > 106cm−1), the exchange interaction, which thus provides
the restoring force for spin waves, dominates although there is also
interest in the intermediate (or dipole-exchange) case, where both
types of interactions influence the dynamical behavior. This is a
first step towards more sophisticated calculations, in particular on
the effects of longer-ranged interactions, which are expected to pro-
duce some changes in the position and shape of the MIT resonance
whose existence is mainly reported here. In this work, we use the
classical ferromagnetic Heisenberg model where the Hamiltonian
is constituted only by the part that presents the exchange inter-
action. Therefore, in evaluating the needed Green’s function, it is
convenient to use the continuum approximation. This approxima-
tion is valid provided that the wavelengths are large compared to

AIP Advances 9, 035011 (2019); doi: 10.1063/1.5080350 9, 035011-2

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

the lattice spacing and to the transverse dimension of the waveg-
uide. In this case the propagation becomes monomode.36 In our
case even if the wavelength is small (1/k < 10−6cm), it is still con-
sidered higher than the transversal section of the waveguide in order
to consider monomode propagation along with Heisenberg approx-
imation. Also, the magnetization and the applied magnetic field
are supposed to be perpendicular to the plane of Fig. 1 (i.e. the
deviation from the static magnetization are in the direction of the
waveguides).

In this long wavelength exchange interaction model, the disper-
sion relation of the magnons can be written as

ω = γH0 + Dk2, (1)

where D = (2Ja2M0)/(γh̵2). ω, M0, H0, J, γ and h̵ stand respectively
for the angular frequency of the spin wave, the spontaneous magne-
tization, the static external field, the exchange interaction between
neighboring magnetic sites in the lattice of lattice parameter a con-
stituting the ferromagnetic medium, the gyromagnetic ratio and
the Planck constant.36 The calculation of transmission and reflec-
tion coefficients in the waveguide divided into two output lines and
interacting with side stubs are performed in the frame of a Green’s
function method based on the interface response theory (IRT) of
continuous media.36 The IRT enables to calculate also total and local
densities of states. We shall avoid the details of this calculation which
is given in the chapter 2 of our book.37

Before giving the results of the demultiplexer based on MIT
resonances, it is interesting to recall the main results about the
possibility to realize MIT resonances from two detuned magnonic
stub waveguides placed at the same position along the main waveg-
uide. The cross structure is formed with two resonators of lengths
d1 and d2 grafted on a waveguide at the same position (Fig. 2).
In this structure each resonator causes the appearance of a zero
of transmission. In the case where the two resonators have differ-
ent lengths (d1 ≠ d2), two different transmission zeros are obtained.
Between the two zeros the overall resonator of length d0 = d1 + d2
induces a transmission reaching unity giving rise to an MIT reso-
nance shape, i.e., a resonance squeezed between two transmission
zeros.

To visualize this type of resonance in a cross structure, we cal-
culate the transmission and reflection coefficients using the inverse
of the Green’s function of the whole structure36 at the connec-
tion point 0. The inverse of this matrix is obtained by superim-
posing the inverse elements of each connected guide, i.e., the two
resonators and the two semi-infinite waveguides. The expressions
of the inverse of the surface Green’s function element of each dan-
gling resonator (stub) i grafted vertically at a given site 0 when the
boundary conditions at the ends of the stubs are vanishing mag-
netic current (i.e., the derivative of magnetic field) is given by −j FCi

Si
and the expression of the inverse of the surface element of the
Green’s function of each semi-infinite waveguide surrounding the
two stubs is given by −F where F = jDk/γM0, j = √−1, Si = sin(kdi)
and Ci = cos(kdi) with i = 1, 2. For the sake of simplification, we
assumed that all the waveguides and stubs are made of the same
material.

Now by superposing the inverse elements of the surface Green’s
functions of the different constituents, we obtain the inverse inter-
face element of the Green’s function of the cross structure (Fig. 2) at

the point 0

g−1(0, 0) = −2F − jFS1

C1
− jFS2

C2
. (2)

The transmission amplitude through the structure is given by

t = 2C1C2

2C1C2 − jS
, (3)

and the reflection amplitude is given by

r = jS
2C1C2 − jS

(4)

FIG. 3. Transmission as a function of the reduced frequency Ω = H̃ + (kd0)
2

where H̃ =
γH0d2

0
D . (a) Case of single resonators of length d2 = 0.6d0 (dash-dot

red curve) and d1 = 0.4d0 (dashed blue curve) on the waveguide. (b) Case of two
resonators of lengths d1 = 0.4d0 and d2 = 0.6d0 attached at the same point on
the waveguide. (c) Case of two identical resonators of lengths d1 = d2 = 0.5d0
attached to the waveguide.
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where S = sin(k(d1 + d2)). From the expressions of the transmission
and reflection coefficients T = |t|2 and R = |r|2, one can deduce eas-
ily the conservation energy, namely R + T = 1. It is well established
that the connection of a single resonator along the waveguide gives
rise to a transmission zero associated to the eigenmodes of the res-
onator with vanishing the amplitude at the bottom side connected
to the waveguide, namely when C1 = 0 or C2 = 0. Figure 3(a) gives
the transmission spectra when a single stub of length d1 = 0.4d0
(blue curve) or d2 = 0.6d0 (red curve) is attached on the side of
the waveguide versus the reduced frequency Ω = H̃ + (kd0)2 where
H̃ = γH0d2

0/D. One can notice the existence of transmission zeros
at the reduced frequencies Ω1 = 7.85 or Ω2 = 16.42 respectively
(Figs. 3(a)).

Figure 3(b) shows the transmission through the cross structure
where we have connected the two resonators at the same point. The
spectra shows that the position of the transmission zeros are same as
before, see the comparison between the plots presented in Figs. 3(a)
and 3(b). Between the two zeros (Fig. 3(b)) there exists a resonance
that reaches unity, this resonance is the result of the constructive
interference between the two modes of the two resonators. When
the lengths of the resonators become identical (i.e., C1 = C2 = 0),
then the two transmission zeros fall at the same reduced frequency
Ω = π2 + 1, then the width of the resonance vanishes (Fig. 3(c)).
This kind of zero-width resonance, characterized by an infinite qual-
ity factor, is called bound in continuum (BIC) state.38 Indeed, this

FIG. 4. Density of states (DOS) as a function of the reduced frequency
Ω = H̃ + (kd0)

2. (a) Case of two resonators of lengths d1 = 0.4d0
and d2 = 0.6d0 attached at the same point on the waveguide. (b) Case
of two identical resonators of lengths d1 = d2 = 0.5d0 attached to the
waveguide.

mode corresponds to a confined mode in the two vertical stubs
without interaction with the main horizontal guide. Therefore, this
mode remains localized in the two stubs and do not radiate energy in
the semi-infinite waveguides with which they are connected. In this
case, instead of having a total transmission, we obtain a double trans-
mission zero, which renders the system opaque around the reduced
frequency Ω = π2 + 1 (Fig. 3(c)). These results clearly show that by
detuning the lengths of the two resonators, we can render an opaque
system transparent within a given frequency range. This is a char-
acteristic of an MIT resonance squeezed between two transmission
zeros.

In addition to the transmission and reflection coefficients, the
Green’s functions also allow us to calculate the density of states
(DOS) which provides a supplementary information on the weight
of the modes in the system. The DOS is defined from the imaginary
part of the Green’s function as DOS = −1/πIm(g(0, 0)) where g(0, 0)
is obtained from Eq. (2). In Figs. 4(a) and (b) we have presented the
DOS as a function of the reduced frequency Ω in order to analyze
the MIT resonance and the possibility of existence of BIC state. The
results presented in Figs. 4(a) and (b) concern the DOS for the same
geometries as in Figs. 3(b) and (c) respectively and clearly show the
existence of a resonance around Ωr = 10.86. This resonance is simi-
lar to that obtained in Fig. 3(b); its width decreases when δ decreases
and give rise to a BIC state for δ = 0 (i.e., d1 = d2) as it is shown in
Fig. 4(b).

III. Y-SHAPED MAGNONIC DEMULTIPLEXER BASED
ON MIT RESONANCE
A. Transmission and reflection coefficients

Let us consider the structure depicted in Fig. 1. This demulti-
plexer consists of an input line and two output lines, all attached at
the point 0. The first output line contains two stubs of lengths d1
and d2 inserted at the same site 1 at a distance d5 from the entrance
0. Similarly, the second output line of the demultiplexer contains two
stubs of lengths d3 and d4 inserted at the same site 4 at a distance d6
from the entrance 0.

The calculation of the transmission and reflection coefficients
is performed within the Green’s function method. For this, we
need only the inverse of the Green’s function the interface space
M = {0, 1, 4}, the inverse of the Green function of the whole struc-
ture (demultiplexer) described in Fig. 1 is obtained by the super-
position of the inverse Green’s function of its elementary con-
stituents, namely: i) the inverse of the surface Green’s function ele-
ment of the three semi-infinite waveguides constituting the input
and the two output lines. Their expressions are given by [gs(0, 0)]−1

= [gs(1, 1)]−1 = [gs(4, 4)]−1 = −F. ii) The inverse of the sur-
face Green’s functions of the dangling resonators (stubs) grafted
at the sites {1} and {4}. Their expressions are given by [gi(1, 1)]−1

= [gi(4, 4)]−1 = −FiSi/Ci, where Ci = cosh(αidi), Si = sinh(αidi)
(i = 1, 2, 3, 4). The boundary conditions at the ends of all the stubs
are those of vanishing magnetic current (i.e., the derivative of mag-
netic field). iii) The segments of lengths d5 and d6 are bounded by
two surfaces located at the sites M1 = {0, 1} and M2 = {0, 4} respec-
tively (Fig. 1). These surface elements can be written in the form of a
(2 × 2) matrix gi(MM) within the interface space M1 = {0, 1} for the
segment 5 and M2 = {0, 4} for the segment 6 (Fig. 1). The inverse of
this matrix takes the following form:39
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[gi(MM)]−1 = ⎛
⎝
− FiCi

Si

Fi
Si

Fi
Si
− FiCi

Si

⎞
⎠, (5)

In what follows, we suppose that all the wires (medium) have
the same characteristics (i.e., F1 = F2 = F3 = F4 = F5 = F6 = F).
The linear superposition of the inverse of the Green functions of the
preceding constituents gives us the inverse of the Green function of
the composite structure (Fig. 1) in the interface space M = {0, 1, 4},
namely

[g(MM)]−1 = −F

⎛
⎜⎜⎜⎜
⎝

C5
S5

+ C6
S6

+ 1 − 1
S5

− 1
S6

− 1
S5

C5
S5

+ S1
C1

+ S2
C2

+ 1 0

− 1
S6

0 C6
S6

+ S3
C3

+ S4
C4

+ 1

⎞
⎟⎟⎟⎟
⎠

.

(6)

Consider an incident spin wave U(x) = e jkx that comes from the left
side of the semi-infinite guide (Fig. 1). The reflection amplitude wave
in the input line of the demultiplexer (Fig. 1) is given by39 r = −1
− 2Fsg(0, 0) or equivalently

r = − ξ1 + jξ2

χ1 + jχ2
, (7)

where

ξ1 = C1C2C3C4(S5S6 − C5C6) + C1C2S′C6S5 + C3C4SC5S6 + SS′S5S6

(8)

ξ2 = C1C2C3C4S0 + C1C2S′C5C6 + C3C4SC5C6 − S0SS′ (9)

χ1 = 3C1C2C3C4(S5S6 − C5C6) + C1C2S′(S0 + C5S6)
+ C3C4S(S0 + C6S5) − SS′S5S6 (10)

χ2 = C1C2C3C4(3C6S5 + 3C5S6)
+ (C5C6 − 2S5S6)(C1C2S′ + C3C4S) − S0SS′ (11)

and S = sin(k(d1 + d2)), S′ = sin(k(d3 + d4)), S0 = sin(k(d5 + d6)).
The expression of the reflection R in the input line is given by

R = ∣r∣2. (12)

The amplitude of the transmitted waves in the output lines
1 and 2 (Fig. 1) are given respectively by39 t1 = −2Fg(0, 1) and
t2 = −2Fg(0, 4), or equivalently

t1 = 2C1C2(−C6C3C4 + S′S6 + jC3C4S6)
χ1 + jχ2

, (13)

t2 = 2C3C4(−C5C1C2 + SS5 + jC1C2S5)
χ1 + jχ2

. (14)

The transmission coefficients in the two output lines are given
respectively by

T1 = ∣t1∣2 (15)
and

T2 = ∣t2∣2. (16)

From Eqs. (7)–(16), one can check that the transmission and
reflection coefficients satisfy the energy conservation: T1 + T2
+ R = 1.

B. Demultiplexing phenomenon and Fano-shape
behavior of MIT

Based on the parameters of the system, we are able to specify
the necessary conditions to arrive at a total transmission on each
output with a given frequency. Indeed, from Eqs. (7), (13) and (14),
one can show easily that in order to realize |T1| = 1, T2 = 0 and
R = 0, one should have C3C4 = 0 (i.e., C3 = 0 or C4 = 0), S = 0
and C6 = 0. Similarly, in order to realize |T2| = 1, T1 = 0 and R
= 0, one should have C1C2 = 0 (i.e., C1 = 0 or C2 = 0), S′ = 0
and C5 = 0. Now, in order to realize both conditions (i.e., |T1| = 1
and |T2| = 1 at closed frequencies), one can show easily that the
six lengths d1, d2, d3, d4, d5 and d6, should satisfy the following
conditions:

d3 = d1 + d2

2
, (17)

d4 = 3d2 − d1

2
, (18)

d5 = d2, (19)

d6 = d3. (20)

As we have shown above (section II), in order to realize a
magnonic induced resonance, one should take the lengths of the two
stubs along the waveguide slightly different (i.e., δ = d2 − d1 ≠ 0).
Also, in this study we shall take the length of the two stubs (i.e., d0
= d2 + d1) unchanged, which fix the position of the induced reso-
nance along the output 1. Therefore, the above conditions (Eqs. (17),
(18), (19) and (20)) become respectively:

d1 = d0

2
− δ

2
, (21)

d2 = d5 = d0

2
+
δ
2

, (22)

d3 = d6 = d0

2
, (23)

d4 = d0

2
+ δ. (24)

To visualize the previous analytical calculations, we present
in Fig. 5 the variation of the transmission coefficients T1, T2
and the reflection coefficient R versus the dimensionless frequency
Ω = H̃+(kd0)2 for different values of δ around δ = 0. Figure 5 clearly
shows that when the transmission in the first output (blue line) is
unity (T1 = 1), the transmission in the second output T2 (red line)
and the reflection R (black line) vanish (i.e., T2 = R = 0). Simi-
larly, when the transmission in the second output (red line) is unity
(T2 = 1), the transmission in the first output T1 (blue line) and the
reflection R (black line) vanish (i.e., T1 = R = 0). As mentioned above,
the induced resonance in the first output falls at the same frequency
(Ωr = π2 + 1) whatever of δ, its width decreases when δ decreases
and vanishes for δ = 0 (Fig. 3(c)). However, the shape and the width
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FIG. 5. Variation of the intensity of the transmitted signal in the output 1 (blue line),
output 2 (red line) and the reflected signal in the input of the demultiplexer (black
line) versus the dimensionless frequency Ω = H̃ + (kd0)

2 for different values of
δ = d2 − d1 and for d0 = d1 + d2 fixed.

of magnonic induced resonance slightly changes when δ becomes
negative (i.e., when permuting the two stubs 1 and 2). This appar-
ently surprising behavior results from the fact that by changing delta
in the first output, we change simultaneously the value of d4 (see
Eq. (24)) in the second output. The position and the width of the
resonance in the second output depend strongly on δ. Indeed, as the
first magnonic induced resonance exhibits two transmission zeros
around Ωr , the position of the second resonance falls below Ωr = π2

+ 1 for δ < 0 at the left hand side zero, crosses the first resonance
at δ = 0 and reappears above Ωr for δ > 0 at the right hand side

zero (Fig. 5). This is illustrated in the inset of Fig. 7 where the cross
resonances occurs at δ = 0.

The two filtered resonances exhibit an induced transparency-
like shape, i.e. a resonance squeezed between two transmission zeros
induced by the stubs falling at the same frequency where the sys-
tem has been opaque. Indeed, a Taylor expansion of the transmission
amplitude (Eq. (13)) around the resonance at Ωr (i.e., Ω = Ωr + ε),
enables us to write T1 following the induced transparency-like
resonance, namely

T1 = A
(ε + q1Γ)2(ε + q2Γ)2

ε(ε + β) + Γ2 , (25)

where A = ( 1
4− ∆2

π2 )2

1
4 + 5∆2

8 + ∆3
2π2

, β = (
4∆4
π −∆5+ 6∆6

π )
1
4 + 5∆2

8 + ∆3
2π2

and ∆ = −πδ/2d.

The full width at half maximum of the induced resonance
falling at ε = 0(i.e., Ωr) is given by

Γ = ∆2

( 1
4 + 5∆2

8 + ∆3

2π2 )1/2 , (26)

q1 = ∆
Γ( 1

2 + ∆
π )

and q2 = − ∆
Γ( 1

2− ∆
π )

are the Fano parameters.

They give qualitatively the strength of the interference between the
bound state and the propagating continuum states.40,41 One can
notice that when increasing δ from 0, Γ increases (i.e., the quality
factor decreases) and q decreases. The approximate expression for
the second transmission coefficient T2 can be obtained by following
the same procedure where we consider d0 = d3 + d4 instead of d1
+ d2. However, from Eqs. (17)–(20), d4 − d3 keep the same value
as d2 − d1. An example of the results of the approximate expres-
sion (Eq. (25)) is shown by the red triangles in Fig. 5(b) for δ = 0.1
and clearly shows that the resonance is induced transparency-like
with q1 = −7.4, q2 = 6.06 and width 2Γ = 0.03π. In addition, in the
periodic systems, a perturbation is often introduced to the system
in order to create the resonance state in the gap.42 However, the
above calculation shows that, without introducing any perturbation
in the structure, one can find a well defined a MIT resonance with a
width 2Γ and coupling parameters q1 and q2 that can be adjusted by
tailoring the lengths of the resonators (i.e. δ).

Figure 6 shows an analysis of the DOS at the connecting points
0, 1 and 4 of the demultiplexer (Fig. 1): 0 (black curve), 1 (blue

FIG. 6. Density of states (DOS) as a function of the reduced frequency at the
connecting points 0, 1 and 4 of the demultiplexer (Fig. 1): 0 (black curve), 1(blue
curve), and 4 (red curve) for δ = 0.1d0.
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FIG. 7. Square modulus of the magneti-
zation field |M|2 versus the space posi-
tion of the system. The blue (red) curves
represent the intensity of the field in
the first (second) line. (a) and (c) give
the behavior of |M|2 along the horizon-
tal lines whereas (c) and (d) show the
behavior of |M|2 along the vertical stubs
in each line. These fields are plotted for
the dimensionless frequency Ωr 2 = 7.38
((a) and (b)) and Ωr 1 = 10.86 ((c) and
(d)).

curve), and 4 (red curve). These results are plotted for the same
parameters as in Fig. 5(b), namely δ = 0.1d0. One can notice that the
DOS at the exit points 1 and 4 exhibit similar behaviors as the trans-
mission coefficients T1 and T2 in Fig. 5(b), that is the DOS presents
a maximum on one line at the same frequency where it vanishes on
the other line and vice-versa. However, the DOS at the input point
0 shows dips at both resonances without reaching zeros as for the
reflection (black curve in Fig. 5(b)). This is due to the fact the reflec-
tion coefficient is not proportional to the term g(0, 0) as it is the case
for the DOS.

In order to analyze the spatial confinement43,44 of the different
modes filtered and stopped by the demultiplexer, we have calcu-
lated the field magnetization in each part of the structure using the
following expression:37

M(x) = −2F
Sm

{g(0, i) sin[k(dm − x)] + g(0, j) sin[k(x)]}, (27)

in each finite waveguide m (m = 1-6) delimited by the interfaces i
and j (i,j = 0-6, see Fig. 1) and 0 ≤ x ≤ dm. The Green’s function
elements g(0, i) and g(0, j) that relates the entrance of the system and
the two surfaces of each finite guide, are obtained by inverting the
7 × 7 matrix given in the Appendix. In the semi-infinite waveguides,
the expressions of M(x) are given by

M(x) = −2Fg(0, 0)e−jkx for x ≤ 0 in the input line, (28)

M(x) = −2Fg(0, 1)ejk(x−d5) for x ≥ d5 in the first output line, (29)

M(x) = −2Fg(0, 4)ejk(x−d6) for x ≥ d6 in the second output line.
(30)

Figure 7 gives the square modulus of the magnetization field
for the two resonances labeled Ωr1 = 10.86 and Ωr2 = 7.38 for
δ = 0.24d0 (Fig. 5(a)). These modes correspond respectively to a fil-
tered resonance in one line and a stopped resonance in the other
line (blue dashed and red dotted curves in Fig. 5(a)). Figures 7(a)
clearly show that mode Ωr2 = 7.38 is transferred along the second
line (red curve), whereas it is stopped along the first line (dashed
blue curve). The transfer of this mode along the second line is due
to the excitation of both stubs of lengths d3 and d4) along this line
as it illustrated in Fig. 7(b) (red curve), whereas its stopping along

FIG. 8. The variation of the logarithm of the quality factor Q versus δ. The inset
shows the variation of the positions of the two resonances in Fig. 5 as a function
of δ.
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FIG. 9. The same as in Figure 5(a), except that d6 = 0.75d0
≠ d3.

the first line is due to the excitation of the stationary mode of only
the stub of length d2 = 0.62d0 as shown in Fig. 7(b) (blue dashed
curve). Figures 7(c) and (d) give the same results as in Figs. 7(a)
and (b) but for the MIT resonance Ωr1 = 10.86. Here, we obtain
a different behavior where the transfer occurs along the first line
(blue dashed curve in Fig. 7(c)) through the excitation of its dou-
ble stubs of lengths d1 and d2 (blue dashed curve in Fig. 7(d)),
whereas the wave is stopped along the second line (red curve in
Fig. 7(c)) as a consequence of the excitation of the mode of one of
its stubs of length d3 = 0.5d0 (red curve in Fig. 7(d)). These results
clearly show how the lengths of the finite guides constituting the
demultiplexer should be engineered in order to realize a perfect
demultiplexing.

Another interesting quantity that characterizes the resonances
filtered along each line is the quality factor which is defined by
Q = Ωr/2Γ, where Γ is given by Eq. (26) and Ωr is the resonance
frequency. The width of the resonances depends strongly on the dif-
ference between the lengths of the stubs (i.e., δ = d2 − d1 = d4 − d3).
This is illustrated in Fig. 8 where we have plotted the quality factor Q
of the resonance at Ωr . One can notice that the quality factor of the
resonance depends slightly on the sign of δ and as predicted diverges
when δ vanishes.

Equations (17)–(20) are necessary to be satisfied for a perfect
demultiplexing (i.e., total transmission along each line). However,
if one of the above conditions is not satisfied, then the transmis-
sion can not reach unity and the demultiplexing becomes imperfect.
An example elucidating this deviation from perfect demultiplexing
is given in Fig. 9 where we have chosen the same parameters as in
Fig. 5(a) except that d6 = 0.75d0 ≠ d3. One can notice that the trans-
mission in the first output (blue line) does not reach unity at Ω
= 11.12, and at the same time the reflection coefficient (black dot-
ted line) does not reach zero. However, the deviation from perfect
demultiplexing remains weak as far as the lengths of the different
waveguides do not exceed 10% of the exact values. Also the trans-
mission in one arm can be affected by the geometry of the other line.
Indeed, Eqs. (17) and (18) clearly show how the lengths of the stubs
d3 and d4 in the second line should be chosen as function of those
d1 and d2 in the first line in order to realize perfect demultiplex-
ing, otherwise we obtain (not shown here) a deviation from a perfect
demultiplexing.

Another interesting physical quantity that can affect consid-
erably the quality of the demultiplexer in filtering the MIT reso-
nances, is the damping. The magnetic damping has been probed by

measuring the resonance linewidth in the frequency domain using
the ferromagnetic resonance (FMR) technique45 that makes accu-
rate predictions about the magnetization dynamics. Two mecha-
nisms are behind the linewidth FMR, one intrinsic which is related
to spin-orbit coupling and magnon-phonon scattering and the
other extrinsic which is due to the presence of inhomogeneities
or imperfections within the crystal. In a ferromagnetic system, the
spin dynamics is described by using Landau-Lifshitz-Gilbert (LLG)
equation in which a phenomenological dimensionless parameter α
defines a magnetization relaxation.46 In order to take into account
this effect, we have introduced a phenomenological damping factor
Γ and therefore the wave-vector k in Eqs. (7), (13) and (14) becomes
complex: k = kR + jkI where kR =

√
ω−γH0

D and kI = Γ
2
√

D(ω−γH0)
are real and imaginary parts of the wave-vector in the different
waveguides. The LLG parameter α is related to Γ by the equation
α = Γ

γH0
.

FIG. 10. Transmission spectra in the output 1 (dashed blue line), output 2 (dotted
red line) and the reflected wave in the input of the demultiplexer (black line) versus
the dimensionless frequency Ω = H̃ + (kd0)

2 for δ = 0.24d0 (a) and δ = 0.1d0
(b). These figures are similar to Figs. 5(a) and (b) respectively but in presence of
loss in the waveguides.
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Figures 10(a) and (b) give the same results as in Figs. 5(a) and
(b) but in presence of damping. We suppose that waveguides are
made of Permalloy (Py) material characterized by the parameter
α = 0.008. Py is the most common material used in magnon-
ics research, it offers low damping and isotropic magnetic prop-
erties.1,47,48 We can notice that the transmission spectra in
Fig. 10(a) (blue and red curves) exhibit the same behavior as
in Fig. 5(a), however, as predicted the resonances do not reach
unity because of the attenuation in the waveguides. Also, the
reflection spectra (black curve) is less affected. However, when
δ decreases the effect of damping on the intensity of thin
MIT resonances (Fig. 5(b)) becomes important as it is shown
in Fig. 10(b) for δ = 0.1d0, also the reflection does not reach
zero at the positions of both MIT resonances (black curve in
Fig. 10(b)).

IV. CONCLUSION
In this paper we have shown theoretically the possibility to real-

ize a simple magnonic demultiplexer based on magnonic induced
transparency resonances. The demultiplexer design has the form
of Y-shaped waveguide with one input line and two output lines.
Each line contains two grafted stubs at a given position far from the
input line. We derived closed form expressions for the waveguide
lengths to achieve selective transfer of a single propagating mode
through one line keeping the other line unaffected. The position
and the width of the resonances depend on the different lengths
of the waveguides which should be chosen appropriately. Also, we
have shown that the transmission can be written following the Fano-
like form, which enables us to deduce the position, the width (or
the quality factor) and the Fano parameters of the resonances as
a function of the detuning parameter δ between the two stubs in
the first line. In addition to the transmission and reflection study,
we have given an analysis of the density of states of the different

modes in the system. The confinement of the filtered and stopped
resonances along each line are demonstrated through an analysis
of the magnetization field. The effect of loss on the quality of the
demultiplexer in filtering and stopping different frequencies is also
discussed.

The demultiplexer proposed in this study presents several
advantages in comparison with those based on magnonic crys-
tals such as: i) the simplicity of the device from the technological
point of view, where we need only two resonators on each out-
put line instead of a periodic structure with a given defect, ii) the
simplicity of the structure renders the calculation analytical which
enables to deduce the exact expressions of the different lengths of
the waveguides to realize a perfect demultiplexing. iii) The possi-
bility to increase the quality factor of the filtered resonances close to
infinity by detuning the two stubs. This property is a characteristic of
induced transparency resonances and does not exist in standard one-
dimensional magnonic crystals with defects where filtering occurs
through Breit-Wigner resonances with finite width. Finally, let us
mention that the results presented in this paper can be transposed
straightforwardly to acoustic demultiplexers based on waveguide
tubes.27,49,50

APPENDIX: THE WHOLE INTERFACE GREEN’s
FUNCTION OF THE DEMULTIPLEXER

In order to calculate the magnetization field associated to
different modes in the demultiplexer structure (Fig. 1), we need
the inverse of the Green’s function of the whole system in the
space of interface composed of seven interfaces, namely M = {0,
1, 2, 3, 4, 5, 6}. From the expressions of the inverse Green’s
function of each piece (Eq. (5)), one can construct the inverse
Green’s function g−1(MM) of the whole system as follows (the
details of this calculation are given in the chapter 2 of our
book37).

[g(MM)]−1 = −F

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C5
S5

+ C6
S6

+ 1 −1
S5

0 0 −1
S6

0 0
−1
S5

C5
S5

+ C1
S1

+ C2
S2

+ 1 −1
S1

−1
S2

0 0 0

0 −1
S1

C1
S1

0 0 0 0

0 −1
S2

0 C2
S2

0 0 0
−1
S6

0 0 0 C6
S6

+ C3
S3

+ C4
S4

+ 1 −1
S3

−1
S4

0 0 0 0 −1
S3

C3
S3

0

0 0 0 0 −1
S4

0 C4
S4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A1)

After inverting this matrix numerically, we get the different
Green’s functions elements between the interface 0 and any inter-
face i (i = 0 − 6) (Fig. 1); these elements are needed for the cal-
culation of the magnetization at different position in the system
(Eqs. (27)–(30)).
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