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Abstract 

 

This paper presents a time-domain model for the prediction of acoustic field in an 

air-coupled, non-contact, ultrasonic surface wave scanner, which includes an air-coupled 

Emitter, the Propagation space, and an air-coupled Receiver (EPR). The computation is 

divided into three steps, with each step being modeled in the time domain by its 

spatio-temporal transfer function. The latter are then used in turn, to find the pulse response of 

the overall system. 

The model takes the finite size of the aperture receiver, the attenuation in both air and the 

tested solid sample, as well as the electric response of the emitter-receiver set eh  into 

account. The attenuation is characterized by a causal time-domain Green’s function, allowing 

wideband attenuation of a lossy medium, obeying the power law   0 ,0 2       , to 

be used. The model is implemented numerically using a Discrete Representation approach. It 

is then validated quantitatively by comparing the predicted acoustic field with experiment. 

The prediction error for three typical field features, the system’s impulse response, the on-axis 

field distribution, and the directivity pattern, is globally smaller than 3%. 

In order to obtain this high level of accuracy in the model, the parameters characterizing 

the solid sample used during the experiment were measured experimentally, with a 

specifically developed experimental setup. 

Overall, the proposed model is approximately 100 times faster than 3D FEM with an 

equivalent spatio-temporal resolution. In parallel, a simplified model is proposed, which 

neglects the attenuation in air and assumes the emitter inclination angle to be perfectly 

adjusted. This approach makes it possible to further shorten the computational by a factor of 
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about ten, whilst maintaining good accuracy. Thanks to its computational efficiency, the 

proposed model can be used to formulate various recommendations concerning the scanner 

settings, in particular the inclination angles of the emitter and receiver, and their distance from 

the sample. 

 

Keywords air-coupled transducers, lossy media, non-contact ultrasonics, Green’s function, 

impulse response, discrete representation approach 

1. Introduction 

The most commonly used and recognized ultrasonic tests rely on direct contact with the 

sample, and ultrasound signals are generated and received by means of wet coupling (oil, 

water, etc.) or mechanical contact. 

However, various drawbacks have been observed with direct contact techniques, in 

particular those arising from temporal variations in coupling quality (especially for porous 

and liquid absorbing materials) and limitations in the case of fast scanning. These drawbacks 

have encouraged the development of non-contact techniques, which do not contaminate the 

surface of the sample under investigation, and enable rapid, automated scanning processes. As 

a consequence of their straightforward and efficient implementation, non-contact techniques 

have been applied to automatic, fast, non-destructive testing in different engineering 

disciplines, e.g. for the testing of paper, composites, food, wooden materials, metal plates, as 

well as the evaluation of surface roughness, and the inspection of concrete. A complete review 

of various air-coupled, non-destructive testing approaches and applications is provided in two 

recent papers [1, 2]. Further examples are also provided in [3-9]. The above techniques are not 

restricted to classical geometries, i.e. pulse echo, or the transmission of longitudinal waves[10, 

11], but can also make use of surface or Lamb waves, in particular for non-destructive testing 

(NDT). 

Surface waves (SW) have been widely used for NDT, in different fields. This type of 

wave propagates along the surface of the tested sample, and penetrates down to a depth close 

to the signal wavelength [12], thus providing valuable information related to the near surface 

properties, such as micro-cracking, surface defects, dis-bonding, surface layering, etc. As they 

travel along the surface of the material, experiencing cylindrical divergence, SWs propagate 

over a greater distance than bulk waves, and thus enable the inspection of larger structures. 
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Concerning non-contact SW setups, one can distinguish between “semi” contact methods, 

in which either the receiver or emitter is of the contact type, and “fully” non-contact methods 

in which both are of the non-contact type. Examples of the first group are given by Abraham et 

al. [13] and Michaels et al. [14], who used a contact SW emitter and laser interferometry for 

the receiver. Zhu and Popovics [15], and Bjurstrom et al. [16] used a mechanical impactor as 

the emitter, and by introducing a set of microphones spaced along one profile, the recorded 

signals enabled multi-channel analysis of surface or Lamb waves. Kim et al. [17] applied the 

semi-contact technique to pipeline testing, using a contact emitter and a non-contact receiver. A 

“fully” non-contact technique which does not contaminate the surface of the sample under 

investigation, and enables rapid and automated scanning through the use of Lamb waves, has 

recently been used for NDT of composites. The authors used a non-contact piezo-ceramic 

emitter and a laser interferometer for the receiver [18, 19]. 

In the case of SW emission, an angle beam transducer, which is typically an assembly of 

a plastic wedge and a piezo-electric transducer, can be used for efficient SW emission and 

reception [20]. This approach has several advantages in that SWs are preferentially excited, 

their direction of propagation and directivity are controllable, and in pulse mode the SW pulse 

maintains the same shape [21]. The solid wedge can be replaced by a liquid, thus leading to 

the so-called liquid wedge technique. This method allows time-consuming coupling 

operations to be avoided, and produces repeatable SW signal levels [21, 22]. In the 

non-contact version, the liquid is simply replaced by air. The air-coupled wedge requires no 

modification/adaptation of the inspected surface, and the wedge angle can easily be adjusted 

in order to generate a SW or a certain Lamb wave mode. As a consequence of the flexibility 

of this technique, the air-coupled generation and reception of SW and Lamb waves has 

received considerable attention in the context of NDT applications. 

Examples of the application of a fully non-contact technique, in which both emitter and 

receiver are air-coupled wedge transducers, are given by the set-ups described in [23-27] for 

the testing of composites, and by the SW non-contact scanner presented in [13, 28]. This 

scanner has been used in practical situations since 2006, and was used to various research 

projects in civil engineering [29-32], for applications involving concrete cover characterization 

and crack detection. It has also been used with Lamb waves, for damage detection and 

localization in composites [33], and to examine railway lines [34]. 

Experience has shown that the performance of the aforementioned type of SW scanner is 

strongly influenced by its operating parameters, such as transducer dimensions and inclination, 

transducer-specimen distance, excitation signal shape and bandwidth, etc. Similar observations 
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have also been reported in [35]. In order to clarify the role of these parameters and to establish 

recommendations for the optimal operation of a SW scanner, an accurate modeling tool is 

needed for this type of non-contact device. 

Several researchers have modeled “full” non-contact Lamb wave testing devices. 

Castaings and Cawley [23] modeled the Lamb wave non-contact system using the finite 

element method (FEM). Although Ke et al. [24] also used FEM and implemented a 3D 

simulation of the system, propagation of the waves in air was neglected. A similar study was 

made by Fan et al. [36] and Delrue et al. [37], with accurate modeling of wave propagation in 

air included. In Fan’s work, the influence of the non-contact wedge angle on the Lamb signal 

radiation was also introduced. 

The above studies have shown FEM to be an effective tool for the understanding and 

modeling of an air-coupled system. However, FEM is a highly time-consuming. In addition, 

these studies pay more attention to the validation of the FEM model itself, rather than to the 

optimization of the system performance (perhaps as a consequence of the poor computational 

efficiency of FEM for 3D applications). In addition, they focus mainly on Lamb wave 

modeling. Among other approaches that have been published, the hybrid method developed in 

[38] combines the pulse response approach with an analytical solution, making it possible to 

model a non-contact Lamb wave device. Although the Distributed Point Source Method 

([39-42]) was successfully used for accurate modeling of the ultrasonic field produced by 

plates immerged in a fluid, this technique appears to be more suitable for lossless media, and 

as far as we are aware has not been applied to air-coupled scenarios. 

Finally, despite the above advances, there is at present a lack of suitable, simple and rapid 

modeling and characterization of the fully non-contact, acoustic SW scanner. The aim of this 

paper is thus to propose such a modeling tool, which could be used for performance 

optimization of this type of scanner. 

In an air-coupled, non-contact ultrasonic testing system, the ultrasonic waves propagating 

through a characterized medium are radiated and received by a pair of air-coupled ultrasonic 

transducers. A crucial requirement for the appropriate understanding and optimization of such 

a system is the accurate characterization of the basic setup, including the air-coupled Emitter, 

the Propagation space, and the air-coupled Receiver (EPR). This research was carried out by 

Li and Piwakowski [9], and their paper provides several recommendations for accurate 

modeling of the EPR. This reference shows that very accurate modeling of the EPR can be 

achieved using Rayleigh’s integral, and through correct modeling of the attenuation in air and 

the finite dimensions of the receiver. The basic components of the solutions developed in [9] 
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have thus been used in the present research and for simplicity in the present paper, the latter 

study is referred to as REF. The computational tool developed in REF was extended, in order 

to obtain a complete model of a fully non-contact SW scanner, which includes the non-contact 

Emitter, the Solid material sample (i.e. tested material) and the non-contact Receiver (ESR). 

The computation includes three steps, each of which is modeled in the time domain using 

Rayleigh’s integral and the causal Green’s function for a lossy medium. This makes it possible 

to take the attenuation in air and the tested solid sample into account. The finite receiver size, 

which has been shown to influence air-coupled measurements, is also modeled. 

The originality of this work lies in the sequential use of a set of Rayleigh integrals 

adapted to a lossy medium, thus allowing each element of the ESR system to be modeled by 

its own transfer function. These are in turn used to find the pulse response of the overall 

system. 

This paper is organized as follows. Section 2 presents the mathematical model of the 

complete non-contact scanner. A simplified and more computationally efficient (although 

slightly less accurate) model was developed in parallel, and is presented in Appendix B. The 

experimental setup used to validate the models is presented in Sections 3 and 4. The 

experiments were performed using a Plexiglas block as the tested solid sample. In order to 

improve the signal-to-noise ratio (required during the experiments), the chirp technique was 

used [10, 11, 43]. The solid sample’s parameters (attenuation and velocity) were accurately 

determined using a special procedure described in Appendix A. Finally, the prediction tools 

developed in this study are used to analyze the influence of typical scanner settings, and in 

particular to determine the device’s sensitivity to the parameters describing the air and the 

solid (Sections 5, 6, 7). 

2. Time domain model of the ESR system 

The general model of a non-contact SW system is shown Fig.1, where the first block 

represents the common electric response of the emitter and receiver  eh t  (investigated in 

REF) and the second block, characterized by a pressure impulse response  ,prh tM , 

represents the modeled system. The system includes the air-coupled Emitter, the Solid sample, 

and the air-coupled Receiver (ESR). The air-coupled emitter of surface 0S , excited by an 

excitation signal  s t , radiates ultrasonic waves into the air. These waves arrive at the 

surface 1S  of the solid sample and excite a SW, which propagates along the sample to reach 
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the surface 2S . A certain fraction of the SW energy is re-radiated from 2S  into the air and is 

then detected by surface 3S  of the air-coupled receiver. The proposed ESR model is broken 

down into the following three steps: 

- Step 1 characterizes the radiation/propagation of an acoustic wave from the air-coupled 

emitter 0S  to the sample surface 1S , and is characterized by block E, 

- Step 2 describes the SW propagation across the surface of the solid sample from 1S  to 

2S , and is characterized by block S; 

- Step 3 describes the SW re-radiation from sample surface 2S  to the air-coupled 

receiver 3S , and is characterized by block R. 

2.1 Step 1: Acoustic wave propagation from air-coupled emitter to solid sample 

 
Fig.1 (a) Geometry and notation used for the ESR system model; (b) Equivalent block diagram of the 

computational procedure.  
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The notations and geometry used for the modeling of Step 1 are presented in Fig. 2. An 

ultrasonic wave is radiated from the emitter surface 0S  into the air, then impinges on the 

sample surface 1S  and produces a vertical force  1,nF tM . The aim of step 1 is to model 

 1,nF tM
 
over the surface 1S . 

According to the solution presented in REF (Eq. (10)), and using the notations defined in 

Fig.2, the pulse response in terms of pressure, representing the field incident on the sample 

surface 1S  radiated from emitter 0S , which is excited by a normal component velocity in the 

form of a Dirac function      0 0,n nv t v tM M   (assuming piston mode operation of the 

emitter), and observed at point 1M , can be written as: 

      
0

1 0 0 1 0

d
, , , , d

d fp n f
S

h t v g t S
t

M M M M     (1) 

where  0 1, , ,
f fg tM M   is the Green’s function in absorbing air, 0 1,M M  are points on 

the surfaces 0 1,S S , respectively, and   is the density of air. The attenuation in air, f , 

obeys the power law: 

   0dB cmf f

      (2) 

 Various studies [44, 45] have confirmed that the attenuation in air can be expressed as a 

quadratic function of frequency, i.e. 2  , with  2

0 1 0 04f T T P P    and 

 11 2

1 15.895 10 dB m Hz     
 

, where T  is the temperature, P  is the pressure, and the 

 
Fig. 2 Notations for step 1 
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reference values are 0 25 CT    and 0 101.325 kPaP  , respectively (for these calculations  

must be expressed in units of 1/m, where: dB/m 1/m 10 1/m20log ( ) 8.68e     ). As shown in 

REF, for the special case where 2   the attenuation-induced phase shift is zero, the medium 

is dispersion free, and the phase velocity in air is constant:     fc c c    . The causal 

Green’s function for air in the frequency domain can then be expressed as (see REF; Eq. (9)): 

  

2
0 1 1

0 1

1

, , ,
2

f
f

f

R j R t
c

f

e
G

R
M M


  

  


 
    

 
 

   (3) 

where 
1 1 0R M M  . The Green’s function 

f
g  for air in the time domain can then be 

obtained using the inverse Fourier transform, as (see REF; Eq. (4)): 

    1

0 1 0 1, , , , , ,
f ff fg t GM M M M     

 
  (4) 

As 
f

G  in Eq. (3) has a Gaussian shape, the function 
f

g  for air can also be determined 

analytically (REF; Eq. (12)). In computational terms, this solution is more efficient. 

The acoustic wave passes through the air and “impinges on” the point 1M  on the solid 

surface with a force  1,F tM , which excites a SW in the solid medium. The normal force 

 1,nF tM , expressed in units of force/unit area, can be derived from the pressure gradient of 

the incident wave [46] as: 

  
 1

1

,
,n

p t
F t

n

M
M





  (5) 

By using the known relationship between pressure and velocity potential:

 
 1

1

d ,
,

d
p

h t
h t

t

M
M  

 , the force distribution over the surface 1S  can be expressed as: 

  
 1

1

,d
,

d
n

h t
F t

t n

M
M  




  (6) 

In fact, the above equations state that the local force acting on the mass of the local sample is 

proportional to its acceleration (second Newton’s law). Using Eq.(1), we thus obtain: 

      
0

1 0 1 0

d
, , , d

d fn n f
S

F t v g R t S
t n

M M  
 

   
   (7) 

where n  is the normal vector. The normal derivative can be written as: 

  
   1 11

1 1

1 1

, , , ,
, , cos ,

f f

f

f f

f

g R t g R tR
g R t R n

n R n R

 



 


 
  

   
  (8) 
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where 
1,R n  is the angle between the incident wave and the normal vector n . Since in the 

modeled system we have 1 fR  (distance from emitter to sample 1min 30mmR  and 

max 3mmf  , see Section.3), the so-called plane wave approximation 
d 1 1

d dR c t
   [47] can 

be used. Eq. (7) can then be simplified to: 

      
0

2

1 0 1 1 02

1 d
, , , cos , d

d fn n f
S

F t v g R t R n S
c t

M M    
     (9) 

At a plane interface, the fluid air and solid are characterized by the acoustic impedances 

fZ  and sZ , respectively. As these two impedances are different, reflection and transmission 

of the incident wave , is characterized by [48]: 

 
2

,
f s f

t r

f s f s

Z Z Z

Z Z Z Z
 


 

 
  (10) 

where t  and r  are the transmission and reflection coefficients in terms of pressure, for 

normal incidence, and the subscripts r and t denote reflected and transmitted waves, 

respectively. Since pressure is proportional to the local force, the distribution of the effective 

normal force  1,neF tM  over 1S  becomes: 

    1 1, ,ne t nF t F tM M   (11) 

It should be noted that we always have s fZ Z , such that 1t , which means that in an 

air-coupled system only a small fraction of the energy in the incident wave penetrates the 

solid [49]. Finally, the field of  1,neF tM  over the surface 1S  can be written as: 

      
0

2

1 0 1 1 02

1 d
, , , cos , d

d fne t n f
S

F t v g R t R n S
c t

M M     
     (12) 

2.2 Step 2: Surface wave propagation along the sample 

The notation for the modeling of Step 2 is presented in Fig.3. In a solid medium, the 

vertical point load  1,neF tM  excites both body waves and SWs, which propagate along its 

surface. This topic has been extensively studied and is known as Lamb’s problem [50]. The 

SWs always dominate, because 2/3 of the energy is converted into SWs, whilst the remainder 

is converted to body waves [51]. Measurements performed by Breckenridge and Greenspan 

[52] proved that the SW Green’s function in a lossless solid could be approximated by a Dirac 

delta function: 
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   2
1 2

2

1
, ,

2 R

R
g t t

cR
M M 



 
  

 
  (13) 

where 
2 2 1R M M  , and Rc  is the SW velocity. Using the solution for body waves given 

by Aki and Richards [53], the local normal impulse load    1 1dneF t SM   excites SWs, and 

for a lossless solid the SW impulse response in terms of displacement can be approximated by: 

    
1

2
2 1 1

2

1
, d

2nu ne
S

R

R
h t F t S

cR
M M 



 
  

 
   (14) 

where the term  21 2 R  represents the geometrical spreading of a cylindrical wave [54]. 

A similar formula has also been used to compute the longitudinal and transversal field in solid 

samples since, as mentioned above, any load nF  applied to the surface of a solid generates all 

types of wave [55]. The above formula states that when an excitation force    1neF tM   is 

exerted on a unit area 1dS , a surface wave is produced, which propagates along the outer 

surface of the solid, reaches point 2M  on 2S , and produces a displacement response 

 2,uh tM . It should be pointed out that the SW includes both longitudinal and normal 

components, which are shifted in phase with respect to each other by 2 . The ratio between 

these components remains fixed and depends only on Poisson’s ratio in the solid [12]. Since in 

step 3 the leaky wave is radiated due to the normal component of the SW, we assume that the 

integral expressed in (14) determinates the vertical displacement. In the present case, since the 

force distribution  1,neF tM  over 1S  is not separated in time and space, Eq. (14) can be 

rewritten as: 

    
1

2
2 1 1

2

1
, , ( )d

2
n ne

S
R

R
u t F t t S

cR
M M 


     (15) 

where   denotes a time-domain convolution, and nu  is the normal component of the 

 
Fig.3 Notations for computational step 2: SW propagation 
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displacement distribution over surface 2S . 

Equations (14) and (15) provide an approximate description of the SW field. The physical 

meaning of Eq. (14) is that every point may be considered as the source of an outgoing 

wavelet, such that the field at any arbitrary point can be constructed from the superposition of 

these wavelets. This is equivalent to Huygens’ principle, which is used by Wilcox et al. [56] to 

model the Lamb wave field excited by PVDF IDT. This idea was also adopted by Schmerr-Jr. 

and Sedov [57]. A similar technique was used to model the SW field generated by an angle 

beam wedge transducer [58, 59] and in the case of transducer arrays for Lamb wave 

generation,[57,58]  Recently, it was successfully used to model the acoustic field of Inter 

Digital Transducers (IDT), and was verified experimentally [59]. 

If absorption in the solid is taken into account, the integral in (15) can be written in the 

form: 

      
1

2 1 1 2 1, , , , , d
sn ne s

S
u t F t g t SM M M M     (16) 

where  1 2, , ,
s sg tM M   is the SW Green’s function in a lossy solid medium, characterized 

by the attenuation s . In general, the solid may have a frequency-dependent attenuation of the 

form:  

   1 0s s s

        (17) 

Similarly, as in Section (2.1), the velocity dispersion  c   should be introduced in order to 

preserve the causality of the function 
s

g . Since the attenuation in most solids [60], including 

the solid used in the present study, varies linearly as a function of frequency, we introduce the 

dispersion relationship proposed by Waters, Kelly and McGough et al. [61-65], which is 

applicable to the case where 1  : 

 
   

1

0 0

1 1 2
lns

c c




   
     (18) 

where Rc c   
is the limiting value of  c   when  (corresponding to the Rc  

velocity of a SW in a lossless medium), and 0  is a constant, which should be significantly 

greater than the maximum frequency of interest, i.e. 0  . The “causal” Green’s function 

for the case where 1   can then be written as (cf. Eqs. (3) and (13)): 
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  

1
0 2 1 2 2 2

0

2
ln

1 2

2

, , ,
2

s
s s

R

s

R R j R R t
c

s

e
G

R
M M

   
   

 

  


 
       
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 (If 1   the solutions adapted to cases where 0 2, 1    , already described in Eq.(3), 

can be used). The above expression is the counterpart of Eq.(3), in which the geometrical 

spreading of a cylindrical wave is introduced. The causal Green’s function of the SW in the 

time domain,  1 2, , ,
s sg tM M  , can then be obtained using the inverse Fourier transform, as 

in Eq.(4). 

Finally, by taking d dn nv u t , the normal component of the velocity nv  over 2S  

becomes: 

      
1

2 1 1 2 1

d
, , , , , d

d sn ne s
S

v t F t g t S
t

M M M M     (20) 

2.3 Step 3: Surface wave re-radiation from the structure’s surface to an 

air-coupled receiver 

 In step 3, the surface 2S  of the solid sample acts as an emitter of a so-called leaky wave 

[66]. In practice, re-radiation of a leaky wave from a solid surface into air corresponds to the 

problem of radiation from a rigid, baffled emitter, which is already accounted for in Step 1. 

Using the notations provided in Fig. 4, the pulse response expressed in terms of the velocity 

potential observed at point 3M on the receiver, in response to radiation from 2S  excited by 

   2nv tM  , can be written as: 

      
2

3 2 2 3 2, , , , d
ft n f

S
h t v g t SM M M M      (21) 

By analogy with Eq. (15), the velocity potential over the receiver surface 3S  can be 

expressed as: 

        
2

3 3 2 2 2 3 2, ( , ) , , , , , d
fn t n f

S
t h M t v t v t g t SM M M M M        (22) 

Similar to the approach used in REF, the response at the receiver output is found by computing 

the spatial average of  3,tM
 
over the surface 3S , and converting the potential into 

pressure. Finally, the output pressure response of the receiver centered at point M  can be 

written as: 
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  (23) 

It is interesting to note that for the SW propagating across 2S , the field  2 ,nv tM  over 2S  

acts as a time delay beam-former, such that the SW is naturally re-radiated from the sample’s 

surface towards the receiver, at an inclination angle [12, 67]: 

  1sino f Rc c    (24) 

The inclination of the receiver r  is thus set to r o  , such that waves observed at 3S   

arrive in phase, and their superposition provides a signal maximum at the receiver output. 

Similarly, if the inclination e  of the emitter (Fig.2) is set to e o  , this provides optimal 

SW excitation [17] (see also Appendix B). 

2.4 Total system response observed at the receiver output 

In accordance with the setup shown in Fig.1, in the presence of an excitation    s t t  

the impulse response of the entire ESR system can be written as: 

            , , ,pESR e pr e prh t t h t h t h t h tM M M       (25) 

where  eh t  is the electric response characterizing the electric-acoustic properties of the 

emitter-receiver pair, defined and used in REF. Note that the response prh  cannot be 

determined from the simple convolution of the responses of consecutive blocks E, S, R in 

Fig.1, because the blocks S and R contain the spatio-temporal input signal, whereas the 

integrals over 1S , 2S , and 3S are not space invariant. 

 
Fig.4 Notations for step 3- receiver, centered on the point M 
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3. Experimental system 

In order to validate the theoretical models developed in section 2, the theoretically 

predicted field was compared with experimental measurements. The emitter was held in a 

constant position and the receiver was mounted on an accurate 3D scanner, allowing the signal 

to be recorded along the x , y , and z  axes (Fig. 5). 

A circular, piezoelectric air-coupled transducer (Ultran Group USA[68]), with an active 

diameter 50 mmED  and central frequency 350kHzof  , was used as the emitter. A 

membrane type, non-contact, wide-band (10kHz-2MHz) receiver (type mBAT-1, 

Micro-Acoustic Canada [69]) with a membrane diameter 10 mmRD   was used for signal 

reception (the receiver and emitter were the same as those characterized in REF). The solid 

sample used in the experiment was a 600mm 400mm 48mm  rectangular block of Plexiglas 

(poly(methyl methacrylate)). Its thickness 48mmd  was chosen to be much greater than the 

maximum wavelength of the SW, in order to avoid the production of Lamb waves. The sheet 

of sponge foam used in this setup provides insulation from direct sound waves (transmitted 

directly through the air, from the emitter to the receiver). 

 
Fig.5 (a) Experimental setup (b) Geometry and notation used for the experiments and 

computations 
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The user-defined model parameters are: emitter and receiver heights EH , RH and 

inclination angles of the emitter and receiver e , r  (Fig. 5(b)). The experimental velocity 

of sound in air and Plexiglas were determined, as described in Appendix A. Using the data 

provided in Table 2 together with Eq. (24), the optimal inclinations e  and r  were 

determined as:  1sin 345 1270 15.8o
   . This value was confirmed experimentally, by 

measuring the received signal amplitude as a function of e  and r : the strongest signal 

level was indeed found for 15.7 0.2e r     , and this angle was then used for all 

experiments and calculations. The user-defined geometrical parameters used during the 

experiments are summarized in Table 1. 

Table 1 Geometric parameters of the experiment 

 
Diameter 

[mm] 

Height 

 [mm] 

Inclination 

 (deg) 

Scanned area 

[mm] 

Emitter S0 50ED   15.9EH   15.8e    
38 < x < 138 

-50 < y < 50 
Receiver S3 10RD   23.3RH   15.8r    

 

Measurements of the impulse response pESRh were made over the 38 138mm,x 

50 50mmy    region. In Appendix B we show that the line L (Fig. 5(b)) can be interpreted 

as being equivalent to a SW source, which replaces 1S . The position of L was thus assumed to 

be 0x  , allowing the far-field limit N  of this equivalent source to be estimated as [70]: 

  2 4 173mmoRN L     (26) 

where   3.6mmoR R o oc f f f    is the SW wavelength in Plexiglas at the central 

frequency of . The studied zone is thus located inside the near-field region: 

0.21 0.81x N  . 

As a consequence of the very low transmission coefficient t  between air and the solid, 

the same chirp technique as that described in REF was applied in this experiment, to improve 

the signal to noise ratio SNR of the observed signals [10, 11, 43]. The linear chirp signal 

 ch t , covering a bandwidth chB  from 5-700 kHz, was the same as that used in REF. The 

chirp duration was adjusted to 80ms, the longest duration compatible with the processor 

memory used during the measurements. The resulting improvement in SNR (compared to the 

level obtained using a pulsed excitation) was approximately 2.5 times greater than that 

obtained in REF, and is estimated to be 25 dB. The chirp signal is amplified and excites the 
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emitter with an amplitude of 70V, in order to avoid thermal damage to the emitter. 

 From Eq. (25), if    s t ch t the receiver provides the non-correlated output signal: 

      , ,nc pESRp t ch t h tM M    (27) 

This signal is then compressed by the next correlation with  ch t : 

            , , ,corr pESR pESRp t ch t ch t h t k t h tM M M         (28) 

 where      k t ch t ch t   is the compressed chirp (known as a Klauder wavelet, [71]). It 

has been shown in REF that under these experimental conditions, the linear chirp with a 

 
Fig.6 (a) The upper portion of this figure shows the applied chirp signal  ch t  of duration 80mschT   

and bandwidth 5-700kHz; the lower portion shows the uncompressed received signal ncp (Eq.(27)) 

recorded at the point  66mm, 0x y  ; (b) The signal after compression corrp , derived from Eq. (28). 

The response of interest, pESRh  corresponds to the first arrival of pcorr; (c) Upper portion: 

windowed first arrival of the experimental signal pcorr shifted in order to match the peak of the predicted 

signal; Lower portion: predicted signal inside the same time-domain window. 
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5-700 kHz bandwidth acts like a Dirac delta function. Eq. (28) can thus be simplified to: 

        , , ,corr pEPR pEPRp t t h t h tM M M     (29) 

The chirp signal  ch t , the received signal  ncp t , and the compressed signal corrp  are 

shown in Figs. 6 (a,b). The response of interest, pESRh ,corresponds to the first arrival of pcorr 

and is followed by different diffracted components of the air coupled waves. Using the same 

approach as described in REF, this response is thus extracted through the use of an 

automatically defined window, as shown in Fig. 6(c). In the present study, the length of this 

window is defined as the interval over which the normalized predicted signal is greater than 

10
-2

, ( i.e. corresponds to SNR =20 dB). 

It should be noted that generally dispersion causes signals change shape as a function of 

propagation distance and limits the effectiveness of the chirp technique [72]. In the presented 

study the Rayleigh wave was intrinsically non-dispersive and the air was not dispersive either. 

The only dispersion was induced by the Plexiglas absorption (Eq .(A.7)); it was very small 

(less than 0.1%, Fig. A.4) and thus did not perturb the chirp technique. If the intrinsically 

dispersive waves were processed (e.g. the Lamb and Love SH waves ) the chirp technique 

could be used, but under specific requirements [73]. 

4. Experimental validation and model prediction errors 

4.1 Prediction 

The response  ,pESRh tM  of the modeled ESR system is computed by assuming the 

excitation signal to be   ( )s t t , and by sequentially computing Eqs. (12), (20), (23) and 

(25). The electric response of the emitter-receiver pair  eh t is the same as that determined 

experimentally, which was also used in REF. The results obtained with this method are 

referred to as the “exact model”. Independently  ,pESRh tM  is predicted by the simplified 

model, proposed in Appendix B. 

The solution for the response  prh t  was determined numerically, using the same 

Discrete Representation (DR) computational technique as that described in REF [74]. 

Although a DR model is included in the DREAM toolbox software environment [75], it was 

preferred to develop a DR routine independently under the Matlab environment, in order to 

include variable power law attenuation in the model, with 2  , as required in steps 1 and 3 
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(DREAM currently only includes the case where 1  ). The computations were performed at 

a sampling frequency 10 MHzsf  (to ensure that the condition maxsf f - where maxf  is the 

highest frequency of interest - is adequately respected), and used spatial discretization of the 

surfaces 0 1 2 3, , ,S S S S  defined by , 1 mmx y   . With the above settings, it was verified 

that the computational errors did not exceed 0.1%. 

The input geometrical parameters were the same as those used for the experiment (Table 

1). Although the relevant data can be found in the bibliography, the velocity and attenuation of 

Plexiglas were determined experimentally, in order to ensure the best possible predictive 

accuracy. The parameters used to compute the modeled acoustic field of the scanner are 

summarized in Table 2. Surfaces 1S  and 2S , were approximated as the projections of emitter 

0S  and receiver 3S  onto the surface of the Plexiglas solid. Since the emitter and receiver 

were located very close to the solid sample, they were considered to be circular (they are in 

fact slightly elliptical [23, 24]). 

 

Table 2. Material properties used for the computations (Appendix A) 

Medium Velocity Attenuation Dispersion 
Impedance 

[76] 

Rayl 

Density 
[76] 

kg/m3 

Air 

Longitudinal wave 

345fc  m/s 

(T=25°C) 

[77] see Appendix A 

2

0f f f   dB/cm 

 11 2

0 15.895 10 dB m Hzf     

T=25°C; see Eq. (2); [44, 45, 78] 
 

No dispersion, (see REF). 
 

414fz 
 

1.24f 
 

Plexiglas 

Surface wave 

 350kHz 1270Rc f  

m/s, see Appendix A 

and [66] 

 
 

See Eq.(A.5) 

1 0s s sf     dB/cm 

 1 3.41dB cm MHzs  

0 0.13dB cms   

See Eq. (18) 

 1 3.41dB cm MHzs    

converted to Np. 

sf =
 
10 MHz, 

max max100 ; 0.5MHzf      

  1300m sRc    

63.1 10sz  

 

1150s 

 

 

4.2 Prediction errors 

The predicted and measured acoustic fields were compared for three typical field 

characteristics, identical to those used in REF. Each of these was derived from both the time 

domain signal, and its spectrum. For the convenience of presentation, they are redefined in 

Table 3. 
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Table 3.  Field characteristics, derived from both the time domain signal and its spectrum, used to compare the 

predicted and measured acoustic fields 

No. Field characteristic Definition Equation 

1 
Waveform impulse response 

 ,pESRh tM  
 (29) 

2 Spectrum of  ,pESRh tM      , ,pESR pESRH h tM M   
    (30) 

3 
Peak value of  ,pESRh tM , found in 

the time domain. 
   , max , ,m pESR

t
p x N y h x N y t      (31) 

4 
Spectral amplitude for a fixed 

frequency 
of   

 , ,pESR oH x N y f f  (32) 

5 
Directivity pattern at distance x N , 

derived from the time-domain signal. 
 

 

 

,
,

max ,

m

m

p x N
b x N

p x N








  

  (33) 

6 
Directivity pattern at distance x N , 

for a fixed frequency 
of  

 

 

0

0

0

, ,
( , , )

max , ,

pESR

pESR

H x N f f
b x N f f

H x N f f








 

  

  (34) 

 

The prediction error is expressed in % as the error energy normalized with respect to the 

measured energy: 

 

   

 

2

1

2

1

100%

s

s

N

m p

i

N

m

i

P i P i

E

P i





  
 

  




  (35) 

  

This relative error was determined for each pair of measured and (modeled) predicted values, 

where Pm and Pp are vectors containing the (normalized) measured and predicted quantities 

defined for the above field characteristics, and Ns is the length of these vectors [79]. 

The measured field characteristics are compared with the predictions. Fig.7 provides 

examples of the three measured and predicted field characteristics defined above. It can be 

seen that for all characteristics the prediction error is quite small, thus demonstrating the high 

accuracy of the computational procedure proposed in this study. The most demanding test is 

that involving a comparison of the waveforms (Fig. 7(a), field characteristic No. 1), which is 

shown to have an error of approximately 2% for the exact model. For the other less 

demanding features, i.e. directivity and on-axis field, the errors are generally much smaller. 

The simplified model provides a similar level of accuracy for all field characteristic (2-6), 

except the waveform. The fact that both models have similar accuracies can be explained by 

the fact that the simplified one models just one case, i.e. e o  , which is the same as that 

assumed in the exact model. 
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It can also be seen that although the receiver and emitter axes were carefully adjusted, the 

experimental setup was slightly asymmetric, especially for the case of the directivity pattern 

measurements in the near field. This phenomenon was also observed in REF (where the same 

emitter and receiver were used), and can obviously lead to higher prediction errors, especially 

in the near field. 

 

Three-dimensional representations of the predicted and measured fields are shown in Figs. 

8 and 9. Analysis of these results reveals that, similarly to the classical case of a near-field 

 
Fig.7 Comparison between the numerically predicted and experimentally measured field characteristics, 

together with their associated errors, for the exact and simplified models. The upper plots in each figure 

show the results obtained from the time-domain signal, whereas the lower plots show the corresponding 

characteristics determined in the frequency domain. Continue blue line: exact model, dotted/dashed black 

line: simplified model, dotted red line: experiment. (a) near-field, on-axis impulse response 

 0.22, 0, 0,pESRh x N y z t    and its spectrum  pESRH f  (b) on-axis distribution 

 0.22 0.81, 0, 0mp x N y z    and its fixed-frequency counterpart for 350kHzof  ; (c) directivity 

 0.22,mp x N  and its counterpart for 350kHzof  ; (d) directivity  0.81,mp x N   and its 

counterpart for 350kHzof  . 
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region [80], the strongest signal is located in the zone defined by 2 2L y L   , where 

EL D  is the length of the equivalent linear source (Fig. 5). It is interesting to note that the 

signal decreases monotonically along the x-axis, which is unusual for an acoustic near field. 

This is caused by the very strong the attenuation produced by Plexiglas, which is the 

dominating factor in this setup (see Appendix B). The time- and frequency-domain attributes 

provide very similar results. The aforementioned asymmetry of the experimentally recorded 

field can also be noted. 

 

 

 

  

 

 
Fig. 8 Comparison of time-domain field characteristic No.3 (see Table 3) in the plane defined by: 

0.22 0.81, 2Ex N y D   : (a) experimental; (b) predicted. The upper plots provide a 3D view of 

 ,mp x N y  whereas the lower views show the corresponding normalised 2D contour plots, with the 

amplitude expressed in decibels. 

 
Fig. 9. Similar to Fig. 8, this figure plots the experimental and predicted acoustic fields, based on the 

frequency-domain characteristic No. 4 (Table 3) at 350kHzof  . 

 

 
Fig. 10 2D contour plot of the error E (expressed in %) in the plane 0.22 0.81, 2Ex N y D   . (a), (b) for 

the exact model and (c), (d) for the simplified model. The left and right columns show the waveform (field 

characteristic No. 1) and spectral (field characteristic No. 2) errors, respectively. 
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Finally, Fig. 10 presents the most important parameter for this study, the prediction error 

of the developed model. The error of the exact model is generally smaller than 3% in the 

region close to the x-axis, and is even smaller in the frequency domain (as shown in Fig. 7). 

The asymmetry visible in this figure is caused by the asymmetry of the experimentally 

recorded field. It is important to note that, within the error margin of 3%, the predicted 

waveforms are quite similar to those observed for the experimental signal (Fig.7(a)). This 

shows that the results obtained with our model are very satisfactory. It also can be seen that the 

error increases when the receiver moves away from the x-axis, where the signal is both weaker 

and noisier. The signal-to-noise ratio (SNR) of the recorded signal was measured and 

correlated with the error. The SNR is found as [81]: 

 1020log rms
dB

rms

p
SNR

n

 
  

 
  (36) 

where rmsp  and rmsn denote the root-mean-square values of the signal and the noise, 

respectively. (The above formula is a simplified one (because a received signal is always 

noisy) and is only valid when SNR is relatively high). The value of rmsp  was computed within 

the window shown in Fig. 6(b), and rmsn  was determined using the window placed before the 

arrival time of  ,pESRh tM  (where only noise is present).  

 

The resulting SNR and corresponding waveform errors are shown in Figs.9 (a) and (b), as 

a function of the off-axis distance y , for two along-axis distances x/N=0.21 and 0.81. Figs. 10 

(c) and (d) plot the relationship  E f SNR . Indeed, although at the greater distance (

0.81x N  ) the relationship  E f SNR  is quite linear, in the vicinity of the emitter it is 

more sensitive to the signal quality and a non-linear relationship is observed. This experiment 

confirms the direct relationship between the error and the noise level, which allows us to 

assume that the prediction accuracy is close to 3% throughout the modeled region. It is 

interesting to note that since the use of a chirped input signal improved the SNR by 

approximately 25 dB, in the absence of this technique the experimental error would be driven 

mainly by the noise induced by the experimental setup, rather than the accuracy of the 

computational model. The SNR, must be greater than 40-50 dB for the influence of background 

noise to be neglected. 

Similarly, as could be expected from the comparisons shown in Fig. 7, the simplified 

model leads to a significantly stronger error for the waveform (close to 15% in the near-axis 
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region), and a relatively small error (less than 3%) in the frequency domain. This outcome 

shows that the simplified computation has a more significant impact on the signal’s shape than 

on its amplitude.     

 

 

 

5. Computational recommendations  

5.1 Influence of the size of surface 1S  on the computational accuracy 

The SW is excited by a source located inside the ellipse 1S , which is usually considered 

to be the projection of emitter 0S  on the sample surface [23, 24, 82]. Meanwhile, as a 

consequence of diffraction-induced beam spreading, the dimensions of surface 1S  do not 

exactly correspond to the direct projections of the emitter, as could be concluded from Fig. 5. It 

 
Fig. 11 SNR (a) and waveform error E (b) for the field characteristic No. 1 as a function of off-axis distance 

y , for two axial distances: x/N=0.22 and x/N=0.81; waveform errors  E f SNR for the axial distances 

x N =0.21 (c), and 0.81 (d), respectively, and their corresponding correlation coefficients. 



24 

 

is thus important to determine the influence of the effective area of 1S  on the computational 

accuracy.  

This influence is analyzed here with the prediction tool, and is quantified using Eq. (35) 

and by varying 
1SD , the diameter of 1S  which is assumed to be a circular. The case where 

1S ED D  is used as a reference. From Fig. 12(a) it can be seen that when 
1S ED D , the 

influence of 
1SD  on the field characteristics practically disappears. At the same time, as the 

amplitude of the received waveform reaches its maximum value, the effective shape of 1S , 

which includes most of the signal energy, is very close to a circle of diameter ED . For 

1S ED D  a small improvement in accuracy is obtained (although more computational time is 

needed), thus demonstrating that the field outside the projection of 0S  has only a small 

influence on the results. Indeed, a previous study [83] clearly shows that the field observed 

very close to the source constitutes its image. Quantitatively, this leads to the requirement that 

E fEH N [84] 

  2 4 644E fE E ofH N D mm    (37) 

where fEN  is the far-field limit of the emitter and 1mmof f oc f    is the wavelength in 

air at frequency of . The above condition is largely fulfilled in the model (where the surface 

1S  is located in the vicinity of the emitter ( 15.9mmEH  ). 

5.2 Influence of S2 

If 2S  is considered to be the projection of the receiver surface 3S , then it also tends 

towards a circle of diameter RD . The influence of 2S  on the computational accuracy as a 

function of 
2S RD D , where 

2SD  is the diameter of 2S  (assumed to be a circle), is plotted in 

Fig. 12 (b) and (d). This shows that when 
2

1.5S RD D , the influence of 2S  becomes 

negligible and the amplitude of the received waveform reaches its maximum value. When 

compared with the previous case, now 23.3mmRH  and the receiver far field fRN  yields: 

  2 4 25fR R ofN D mm    (38) 

It can thus be seen that now R fRH N , which means that condition (37) is not fulfilled and the 

receiver “sees” a surface 1.5 RD  larger than its geometrical projection.  
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Our analysis of field characteristic (not presented here) shows that in cases where 

2
1.5S RD D  the shapes of the waveform and its spectrum do not change, and the only 

observed influence is that of an increasing signal level (see Fig.12(d)). The condition 

2
1.5S RD D  thus ensures that the accuracy remains unchanged, and output signal level is 

maximal. 

The preceding discussion shows that the dimensions of 1S  and 2S  are generally a 

function of their distance from the emitter and receiver.   

 

5.3. Influence of attenuation in air on the computational accuracy 

 
Fig. 12 Influence of the dimensions of 

1SD and 
2SD on the computational accuracy. (a), (b) Influence 

computed for the same time-domain field caracteristic as that assumed for Fig.7; (c), (d) peak value of the 

waveform:  0.21, 0mp x N y    
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The influence of attenuation depends not only on     (as often commented), but also 

on the path 1R  travelled by the signal, and thus on the product   1R   (Eq. (3)). In order to 

study this phenomenon, steps 1 and 3 were computed with and without attenuation in air (by 

assuming 0 0f   in Eq. (3)), and the results are presented in Fig. 13. It can be seen that only 

very small differences are introduced when the attenuation in air is ignored, thus suggesting 

that operation (4) could be deleted, with the advantage of reducing by a factor of 30 the 

computational time involved in steps 1 and 3 (see Table 4). However, this conclusion is valid 

for the examined case only. Fig. 13(b) plots the influence of attenuation in air by comparing 

the modulus of the Green’s function (Eq. (3)) for lossy and lossless air. This clearly shows that 

in the context of the present  

 
Fig. 13 Influence of attenuation in air. (a) Field characteristics with and without attenuation in air, with the 

errors being computed for the same four cases as in Fig. 7; (b) Absolute value of Green’s function for a lossy 
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study (f=350 kHz), the influence of attenuation is negligible when , 1 20mmE RH R  . This is 

confirmed by previous studies reported by Castaings et al. [82], Ke et al. [24], and Delrue et al. 

[37], who found that under similar conditions the attenuation in air is negligible. However, 

when the acoustic frequency increases (f=1MHz) the signal loss caused by attenuation in air is 

no longer negligible. 

6. Sensitivity of the prediction accuracy to medium parameters  

When the prediction model is run, the parameters describing the medium, i.e. attenuation in 

the solid 1s , SW velocity Rc , and the velocity in air fc , must be accurately adjusted. The 

sensitivity of the prediction model’s accuracy to the parameters characterizing the medium is 

analyzed in the following. For this, each of the above parameters is varied, and the results are 

compared with the reference results obtained with the correct parameters, presented in Table 2. 

The sensitivity is then quantified using expression 35, with pm now denoting the reference 

result. 

From Fig. 14(a) it can be seen that attenuation in the solid, 1s , mainly affects the axial 

distribution and far-field directivity. 

The results plotted in Fig. 14(b) show that Rc  has the strongest (and also very similar) 

influence on the four field features analyzed with the model. This outcome is predictable, since 

Rc  affects both the velocity dispersion (Eq. (18)) and the inclination angle o  (Eq. (24)).  

Fig. 14(c) reveals the influence of the ambient temperature CT  , which directly affects the 

velocity in air fc ( 331.4 0.6fc T  [77]) as well as the attenuation in air 0f , since  

0 1 0f C T T  , where 0 25 CT    and 1C  is a constant [44]. This result shows that changes 

in temperature typical of laboratory conditions or an outdoor experiment, i.e. in the range 

between 0 °C and 30 °C, can lead to significant errors, especially at lower temperatures. This 

information is of considerable practical value since the modeled scanner was used mainly 

under outdoor conditions. 

Finally, Fig. 14(d) plots the influence of the acoustic velocity in air fc  only. The results 

are quite similar to those described in Fig. 14(c), thus confirming that in the present study, the 

medium (Eq. (3)), normalized with respect to its counterpart for air with no losses and plotted as a function of 

the distance 
1R  from the emitter, at frequencies f=0.35 and 1.0 MHz, and for 

0 0f  . 
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attenuation in air has a negligible influence, and that the influence of T on the field 

characteristics is exerted via the changes it produces in fc .  

 

7. Influence of scanner setting on the recorded signal 

In practice, the inclination angles e  and r , and the emitter and receiver distances EH  

and RH , are adjusted to values representative of the experimental conditions. For this reason, 

it is also of interest to determine the influence of these parameters on the results produced by 

the scanner, and to evaluate the accuracy with which they must be adjusted. This influence is 

 
Fig. 14 Predicted influence of the medium’s parameters on the time-domain field caracteristics shown in Fig. 7: 

(a) influence of attenuation 1s ; (b) influence of SW velocity Rc ; (c) Influence of air temperature T . (d) 

Influence of acoustic velocy in air fc . The reference values for the relevant parameters (see Tables 1 and 2) are 

indicated by the encircled numbers on the abscissa of each plot. 
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quantified using expression 35, with mp  now representing the reference result obtained with 

the values listed in Tables 1 and 2. 

The results plotted in Fig. 15(a) and (c) show that the emitter angle e  has the strongest 

(and also very similar) influence on the four field features analyzed with the model. This 

outcome is predictable, since e , influences the field shape over surface 1S  and its effective 

size (see Appendix B). As the influence of the emitter angle e  is found to be considerably 

more significant than the other parameters, it should be adjusted as accurately as possible [12, 

35, 67, 85]). The predicted results were also found to be in excellent agreement with the 

experimentally measured functions (Fig. 15 (a) and (c)).  

Although the reciprocity theorem predicts that the receiver angle r  has the same 

influence as e , the impact of the former angle is found to be much weaker (Fig. 15(b) and 

(d)). In the case of the present study, this discrepancy can be attributed to the receiver 

dimension being five times smaller than that of the emitter ( 0.2R ED D  ). The predicted 

values of the field characteristics were again very well confirmed by the experimental 

observations. 

Fig.16 shows that the emitter-solid distance EH , as well as the solid-receiver distance RH

, have a relatively small influence on the measured signal. This result confirms the results 

obtained in Section 5. 
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Fig. 15 (a), (b) Predicted influence of emitter and receiver inclination angles 

e  and 
r  on the four field 

characeristics shown in Fig. 7, together with the experimental results (for the waveform only). The reference 

values are indicated by the encircled numbers on the abscissa of these plots. (c), (d) On–axis normalized peak 

waveform value in the near field  0.21, 0mp x N y   as a function of 
e  and 

r . 

 

Fig. 16 (a) Predicted influence of emitter-Plexiglas distance 
EH ; (b) influence of receiver-Plexiglas 

distance 
RH  computed for the four field characrestics shown in Fig. 7. The reference values are 
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8 Computational efficiency 

Various computation times are listed in Table 4 (determined using a computer with an 

Intel i7 CPU @ 3.7 GHz, 16GB RAM). It can be seen that when the attenuation in air is 

neglected, the gain in time is not significant, because step 2 is the most time consuming 

operation (when attenuation in the solid is modeled). When the simplified model is used, step 

1 is omitted and step 2 is significantly shortened because the surface integral (15) is replaced 

by a 1D integration (B.6), which shortens the overall computational time by a factor of ten. 

The computing time needed to evaluate a 3D FEM model is approximately 1 month (with 

the computations being performed for all volume (150 x 100 x 100 mm) including the emitter, 

receiver and scanned area and with same spatio/temporal resolution. The advantage of the 

model presented in this study is that a typical parametric analysis (requiring for example 100 

field points) can be carried out in just a few hours. 

The computation time is also the function of the model size, that is of the number of the 

elementary surfaces ,x y   used to discretize the surfaces 0S , 1S , 2S , 3S  and of the 

vector length Nt containing the computed response hpESR(t). The results reported in Table 4 

were obtained for Nt=8192 (i.e. output response length was set as (Nt-1)/fs=819.1 s). The 

strong influence of length Nt on the computational efficiency is illustrated in Table 5 

(attention: Nt affects also the spectral resolution). 

 

 

“The computational efficiency could still be improved through the use of the computational 

parallel algorithm. Taking into account the serial structure of the proposed model (which 

should be maintained during computing), the parallel computation could be used for 

consecutive computing of integrals over the surfaces oS  1S , 2S , and 3S ”. 

 

Table 4 Computational efficiency (for number of samples of computed response Nt=8192) 

Version 

Step 1 

 

 

(min) 

Steps 2-3 

1 field 

point 

 

(min) 

Total time 

100 field points 

 

(min) 

Total time 

3D plot as Fig.10 

1100 field points 

(day) 

Total FEM time 

Inspected volume with same  

Spatio/temporal resolution 

1mm/1s 

mesh 15x105 cells 

with Attenuation in air 30 3.7 400 80h 3.3 days  

No attenuation in air 1 3.6 360 72h 3 days  

Simplified model 0 0.4 40 8h 0.3day  

indicated by the encircled numbers on the abscissa of these plots.  
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FEM      28 days 

 

 

Table 5 Computational efficiency for case “with attenuation in air” as a function of response length
tN  

Response length 

Nt  

(number of samples) 

Step1 

 

 

(min) 

Steps 2-3  

1 field point 

 

(min) 

Total time 

100 field points 

 
 

(min) 

Total time 

3D plot as Fig.10 

1100 field points 

(day) 

1024 2.4 0.13 15 2.7h≈0.1day 

2048 6.6 0.38 45 8.2h≈0.3day 

4096 12 1 120 23h≈1day 

8192 30 3.7 400 80h≈3.3day 

 

9.Conclusions 

This research demonstrates that a computational approach based on the Rayleigh integral, 

which predicts the ultrasonic field in a three-step process, allows a complex system such as 

that of a non-contact SW scanner to be very accurately modeled. The model takes the finite 

size of the aperture receiver, the attenuation in both air and the tested solid sample, as well as 

the electric response of the emitter-receiver set eh  into account. The accuracy is evaluated 

quantitatively within the region of practical interest, by comparing the predicted and 

experimentally measured acoustic fields. 

The error obtained for the most demanding field characteristic is generally smaller than 3% 

but increases when the point of observation moves away from the system axis. However, it is 

shown that this increase in error is directly related to a decrease in SNR, which must be 

greater than 40-50 dB for the influence of background noise to be neglected. Overall, it 

appears safe to assume that an accuracy of 3% can be achieved throughout the examined area. 

The prediction errors for less demanding characteristics, such as the on-axis distribution and 

directivity pattern, are smaller than 0.5-2%. It should be noted that even when the error is 

close to 3%, the computed and measured signals are virtually identical. The high waveform 

accuracy obtained is also conditioned by the use of accurate electric response of the 

emitter-receiver set eh , as reported in REF. 

Other factors, which can affect the accuracy, include uncertainties in the values of the 

acoustic velocity and attenuation in the solid sample and air. For this reason, the parameters 

characterizing the solid were measured experimentally using a specifically developed 

experimental setup.  
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A simplified computational model is also proposed, which neglects the attenuation in air 

and assumes the emitter inclination angle to be perfectly adjusted, thus allowing the 

computing time to be shortened by a factor of 10. The accuracy of this simplified model is 

comparable with that of the exact model, for all of the studied field characteristics, except the 

waveform. 

Concerning the computational efficiency, the time needed to carry out a typical 

parametric analysis, involving approximately 100 field points, is close to 7 hours. For the case 

of the acoustic setup analyzed in this study, it is found that the attenuation in air can be 

omitted, which allows the computing time of steps 1 and 3 to be reduced leading to an overall 

reduction of approximately 10% in the total computing time. 

Thanks to this computational performance, the ESR prediction model could be used to 

investigate the influence of typical settings on the modeled scanner. The system’s sensitivity to 

parameters characterizing the air and the solid was also studied, and the results are expected to 

be beneficial for the implementation of non-contact scanners for the identification of solid 

parameters. The analysis of the influence of temperature provides indications for the outdoor 

use of non-contact devices. The influence of typical user-defined settings, such as the 

inclination angle and transducer-solid distance, were modeled and have led to 

recommendations for future use of the scanner. 

The model developed in the present study was implemented using the Discrete 

Representation computational technique, which is very well adapted to the accurate 

determination of the integrals inherent to this type of solution The computations were carried 

out for a circular planar emitter and receiver, but can also be straightforwardly adapted to the 

case of different planar and quasi-planar aperture shapes. In particular, it would not be 

difficult to model a focused emitter or receiver, by replacing the surface of our planar 

transducers with spherical or cylindrical surfaces, and to model the emitter or receiver as a 

multi-element array. 

The model is not limited to the special case of Plexiglas, and could also be used for a 

medium obeying any law of the type    , provided that the causal solution for g  is 

known. Apart from the fact that the model is not limited to air-coupled systems, replacement of 

the edge material by a solid could also be used to model semi-contact SW scanners equipped 

with contact wedge transducers. This method can be also adapted to the modeling of a system 

relying on Lamb wave propagation, provided the corresponding dispersion characteristic is 

known. 
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Moreover, if the displacement field on the sample surface 2S  is considered to be the 

output, it would be straightforward to model air-coupled systems equipped with an 

interferometric receiver. Similarly, it would also be straightforward to model a pulsed laser 

source, or the effects of mechanical impact source, by allowing the point-like force at surface 

1S  to represent the input excitation. 
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Appendix A Measurement of medium parameters   

In the modeling of an ESR system, the basic properties of a tested solid medium, i.e. SW 

velocity Rc , attenuation in the solid s , and velocity in air fc  should be accurately known. 

Although these parameters can be found in the literature, they were determined experimentally 

in the present study, in order to optimize the accuracy of the prediction model. 

Attenuation measurements should normally be performed in the far field of the emitter, in 

order to avoid errors encountered in the near field, which require so-called diffraction 

corrections [86, 87]. For this reason, the same experimental system was used as that described 

in Section 4, with the exception of surface 1S , which was reduced in size, such that 1 1S S   

(Fig. A.1). The reduced source was created by placing a plastic mask, with a square hole of 

dimension 
1

10mmSD  , on the surface of the Plexiglas. From Eq. (26) the near-field limit 

then becomes: 

    
1

2

4 6mmS oRN D      (A.1) 

and the attenuation measurements can be performed without diffraction corrections, at 

distances x N .  

Combining the conclusions developed in the core of this paper and Appendix B, we can 

assume that the attenuation in air is negligible, and since 2S  is close to 3S  propagation from 

2S  to 3S  can be reduced to a simple delay 3 3 ft R c . By assuming that 1 1 1dS S S    in 

Eq. (20), and combining Steps 2 and 3, the response given by Eq. (23) can be approximated to: 

        
2

1 1 2 1 32

d
, , , , ,

d spESR ne sh t CF t g t S t t
t

M M M M         (A.2) 

 
Fig. A.1 Illustration of the experimental set-up and notations used to determine  s   and  Rc   
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where C  is a constant. By expressing Eq. (A.1) in the frequency domain and assuming that 

2 2 1R xM M   , Eq. (18) can be combined with Eq. A.1 to yield: 

       
 

32, , ,
2

s s

f

x jk x
jk R

pESR pESR ne

e
H x j h x t CF x j e

x
M M M

 

  


 


              (A.3) 

where  neF j  is the complex spectrum of normal forces exciting 1S ,  s Rk c  and 

f fk c  are the wavenumbers in Plexiglas and air, respectively, and 
3 2R M M  . The 

above expression shows that the leaky wave propagation and reception is now reduced to a 

travel path phase shift 3s fk x k R , and that the spectral amplitude of the received signal thus 

depends on the travelled distance x  only, as well as the attenuation in Plexiglas s . Finally, 

the spectral amplitude of the temporal SW pulse   ,pESRh x tM    recorded as a function of 

position x  can be expressed as: 

        2

1

1
, , , s x

s pESRA x H x C F e
x

M
 

    


      (A.4) 

where 1C  is another constant. The above expression is often used to express SW attenuation 

[13]. 

Measurements of   ,pESRh x tM    were carried out using the same excitation as that 

described in Section 4, along a line defined by 63 163x  mm (far field), for 100n   

points and a step d 1mmx   (in order to respect the spatial sampling condition: d 2oRx   ). 

The resulting 100 SW signals are shown in Fig. A.2 (a), and the corresponding spectra 

 , ,sA x    in Fig. A.2(b). For the 350 kHz emitter (identical to that used in the core of this 

paper), the resulting central frequency is, as expected, close to 350kHzof  and the 

corresponding useful frequency band B  is estimated to be 200-500 kHz. 

This experiment also allowed us to simultaneously adjust the receiver inclination angle 

r , since the correct angle provides the maximum signal level (see Fig.15.d) (the emission 

angle e  is irrelevant here). This angle was found to be: 15.8r    which was used during 

all of the experiments and predictions in the present study (Table 1). 

 

 

 

 



37 

 

A.1 Attenuation 

From Eq. (A.3), the frequency-dependent attenuation of Plexiglas can be found for each pair 

of signals recorded at distance 1ix   and ix [88]: 

  
 

 

 
11

Np
1

1 1
ln ln

2

ii
s

i i i i

Ax

x x x A


 







 
  

   

  (A.5) 

from which the attenuation expressed in decibels is derived using the relationship 

 
 

 
 dB Np

8.68s s    . The attenuation  s   was computed for all distance pairs 

,i jx x , such that 10di jx x x  , and all of the resulting values were averaged. The resulting 

relationship between attenuation and frequency is presented in Fig. A.3(a). As could be 

expected, this reveals the attenuation’s quasi-linear frequency dependence within the 

frequency band B , in which the SNR is sufficient to provide robust values. The linear 

regression adjusted to the linear portion of this graph leads to an attenuation estimated as: 

  
  1 0dB cm

3.41 0.13s s sf f f        (A.6) 

where f  is the frequency in MHz. The attenuation at the central frequency of  is thus 

found to be  0.35MHz 1.32dB cms of   .  

An alternative method can be used to estimate the attenuation by determining the best fit 

to the experimental spectral amplitude at the central frequency  , ,s oA x f f  , using the 

function 
 s x

e x
 

 included in Eq. (A.3). The curve with the best fit (shown in Fig. A.3(b))  

 

Fig. A.2 (a)   ,pESRh x tM   pulses measured along the profile 63 163mmx  at intervals d 1mmx  ; (b) 

corresponding spectra. 
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leads to:  =0.35MHz 1.30dB cms of  , which is very close to the aforementioned result of 

1.32dB/cm (Fig. 3(a)). These two methods were also used to determine the attenuation in 

[13]. 

 In a further example, Press and Healy [89] determined the SW attenuation in Plexiglas 

experimentally, reporting a value of:  =0.35MHz 1.60dB cms of  , which is somewhat 

different to our result (perhaps because these authors used a different type of Plexiglas). For 

the predictions described in Section 4, our experimentally determined expression for the 

attenuation, given in Eq. (A.6), was used (Table 2). 

A.2 Velocity and dispersion of SW in Plexiglas 

The sequence of 100 recorded pulse signals  ,pESRh x t  (Fig. A.2(a)) was processed using a 

Slant Stack (SL) transformation [90, 91] in order to compute the SW dispersion  Rc  , 

leading to the results shown in Fig. A.4. It can be seen that the velocity dispersion is very low. 

Within the studied bandwidth B (200-500 kHz), the velocity varies between 1265 m/s and 

1275 m/s. At the central frequency we obtain  350kHz 1270m sR oc f   . Theoretically, the 

attenuation-related dispersion should follow the relationship given in Eq. (18): 

 

Fig. A.3 (a) Measured attenuation  s   and its linear regression of the measured attenuation  s   over 

the range 200-450kHz; (b) Spectral amplitude  , , 350kHzsA x f  measured experimentally, and computed 

using Eq. (A.5), with 1.32dB cms  . The best fit is found for an attenuation equal to 

 =0.35MHz 1.30dB cms of  . 
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  

 
1

1

2 1
ln

R

s

R

c

c


 

   



 

  (A.7) 

In order to use this expression in the model, we need to determine the parameters   

and  Rc 
. Taking  1 3.41dB cm MHzs    and assuming the maximum frequency of 

interest to be max 0.5MHzf  , and using max100    (in order to fulfill the condition 

max  ), the best fit to the experimental curve leads to:   1300m sRc   . The 

theoretical value of  Rc   computed from Eq. (A.6) is plotted in Fig. A.4 (b), and is indeed 

very closely matched to the experimental values above 200 kHz. 

The resulting velocity and dispersion are in very good agreement with the experiments 

performed by Mattei and Adler [66], who show that the SW velocity in Plexiglas lies in the 

range between 1260 and 1280 m/s. The obtained values are retained for the prediction and are 

summarized in Table 2. 

A.3 Velocity in air 

The velocity in air was also determined by applying a SL transform to the signals, using a 

setup similar to that shown in Fig. A.1, but with the direct emitter–receiver signals being 

recorded and analyzed (as in REF) . The velocity obtained was 344 m sfc  , thus very close 

 

Fig.A.4. (a) Slant Stack data obtained from the signals shown in Fig.A.3. Upper figure: with corrected 

amplitude; lower figure: without amplitude correction, showing the usable frequency bandwidth B ; (b)  Rc f  

obtained experimentally, and computed from Eq.(A.7)) for  350kHz 1270m sR oc f    and 

  1300m sRc    
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to the value of 345m sfc  found using the formula: 331.4 0.6fc T  [77] at a temperature 

25T C  . The former value, i.e. 345m sfc   was retained for the predictions (Table 2) 

Appendix B. Simplified model of the ESR system 

The geometry of the air-coupled wedge emitter modeled in Section 1 is shown in Fig. B.1. In 

the case of wedge transducers, a commonly used approximation is that any pulse emitted from 

point 0M  on 0S  reaches the corresponding projection point 1M  on 1S  and arrives at the 

point LM  located on reference line L along each travel path 
0 1 LM M M . If the inclination 

angle is set correctly, in accordance with Eq. (24), i.e. e o  , it can easily be shown that the 

signal travel time 0t  along each travel path 
0 1 LM M M  is constant and equal to: 

 0 1 1
0

L

f R

t
c c

M M M M
    (B.1) 

The above assumption is justified (as already commented in section 5.1 ) if 1S  is located close 

to 0S  (see condition (37)). The field between 0S  and 1S  can then be assumed to be a 

plane-wave collimated beam [84].   

Thus, neglecting the attenuation in air, propagation along any path 0 1 LM M M  is reduced 

to a time delay only, and Eq. (1) can be simplified to: 

        0 0 0 0 0, ,L nh t C v S t tM M M M 
     (B.2) 
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where  ,Lh tM
 is the contribution of an emitter element  0 0S M  excited by  

   0nv tM   and observed at LM , and C  is a constant. By introducing Eqs. (9)-(12) the 

force exciting the SW observed at LM  and originating from  0 0S M  can then be written 

as: 

      
2

, 0 0 02

d
,

d
n o L nF t C v S t t

t
M M M      (B.3) 

where C  is another constant. Notice that each point  L oyM  collects all of the wavelet 

contributions emanating from the corresponding line  oCD y , which in turn originates from 

an equivalent chord  0 0 oC D y  on the emitter’s surface. With increasing distance along the 

x   coordinate, all of the contributions are perfectly superimposed (if Eq. (B.1) holds) and 

the final signal observed at LM  is proportional to the length of the equivalent chord 

 0 0C D y , which can easily be derived as: 

   2 22 ,W y a y y a     (B.4) 

where 2Ea D  is the emitter radius. This phenomenon is illustrated in Fig. (B.2), which 

represents field pulses at three different positions: 1x , 2x  and Lx , clearly showing that the 

signal strength increases as a function of x (i.e. proportionally to contributing emitter’s surface)  

Note that the resulting field observed along the line L (Fig. B.1) represents the sum of all of the 

 

Fig. B.1 Geometry of the modeled air-coupled wedge emitter (see also Fig. 2)
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superimposed emitter contributions. The force observed at any point  L yM  on line L is 

thus proportional to the length of the chord W and becomes: 

      , M , ,n L n o LF y t W y F y tM M         (B.5) 

By combining Eqs. (B.3), (B.5) and (20), steps 1 and 2 can be simplified to the computation of 

the following 1D integral: 

          
3

2 0 2 03

d
, , , , d

d sn n L s
L

v t C v W y g t t L y
t

M M M M     (B.6) 

Finally, the simplified model consists in: 

(1) Computing step 1, i.e. with Eqs. (1-12) being omitted; the propagation from 0S  to 

1S  is reduced to a simple time delay 0t . 

(2) Assuming the inclination angle to be perfectly adjusted, according to Eq. (24). 

(3) Replacing step 2 (i.e. Eq. (20)) by radiation from a linear source of length EL D  

located at position Lx , centered at 0y   and weighted by the function  W y  (shown in Fig. 

B.2(d)). 

 

Fig.B.2. (a), (b), (c) Snapshots of the field  , ,nF x y t  observed at surface 
1S  (indicated by circles), along 

the y axis, at three positions x=x1, x2 and xL (see Fig.B.1); (d) Normalized weighting function  W y  defined 

in Eq. (B.4). 
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The results presented in the core of this paper (Figs. 7 and 10) show that the simplified 

model indeed provides rather accurate results (with the exception of the waveform shape), and 

makes it possible to achieve substantially reduced computation times. This confirms that the 

hypothesis of nearly plane wave propagation between emitter and solid, expressed by Eq. (B.2) 

(and also commented in Section 5), is fully justified here. 

It is straightforward to show that if the inclination angle does not fulfill the relationship 

given by Eq. (24), (i.e.  1sine f Rc c   or  1sine f Rc c  ), the travel time along the 

path 
0 1 LM M M  will not be same for each point oM . The contributions  , ,o Lh tM M

 will 

thus arrive at different instants, such that they will not be perfectly superimposed. This effect 

reduces the amplitude of the re-radiated SW and also increases the effective surface 1S   

contributing to the creation of the SW (i.e. 1S  can no longer be replaced by line L). This is the  

reason for which the maximum SW signal level (Fig. 15(c)) is obtained when e o  , 

and for which e  has such a significant influence on the waveform and spectrum of the field 

characteristics of the radiated SW field (Fig. 15(a)). 

An example of the usefulness of the simplified model is shown in Fig. B3, where the axial 

field (equivalent to that studied in Fig. 7(b)) is computed for two receiver sizes and for 

different attenuations in the solid. Fig. B.3(a) clearly shows that the finite size of the receiver is 

associated with spatial averaging, which masks certain details of the axial distribution (the 

results for a point-like receiver are close to those reported in [92]). Fig. B.3(b) illustrates the 

influence of attenuation in the solid, and confirms that the results shown in Fig. 7(b) are 

dominated essentially by attenuation in the Plexiglas. This explains why typical near-field 

behavior (maximum close to 1x N  ) is not observed in core of this paper. 
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