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Johnson-Nyquist noise effects in neutron electric-dipole-moment experiments
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Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric
field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We
present here a dedicated study on JNN applied to a large-scale long-measurement-time experiment with the
implementation of a comagnetometry. In this study, we derive surface- and volume-averaged root-mean-square
normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model
the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and
three-dimensional spatial dependencies of JNN. The calculations are applied to estimate the impact of JNN
on measurements with the new apparatus, n2EDM, at the Paul Scherrer Institute. We demonstrate that the
performances of the optically pumped 133Cs magnetometers and 199Hg comagnetometers, which will be used
in the apparatus, are not limited by JNN. Further, we find that, in measurements deploying a comagnetometer
system, the impact of JNN is negligible for nEDM searches down to a sensitivity of 4 × 10−28e cm in a
single measurement; therefore, the use of economically and mechanically favored solid aluminum electrodes
is possible.

DOI: 10.1103/PhysRevA.103.062801

I. INTRODUCTION

The search for a permanent electric dipole moment of the
neutron (nEDM) has been an important topic in fundamen-
tal physics research since the 1950s [1]. These experiments
have been carried out by comparing the Larmor precession
frequencies of neutron spins ( fn) under static uniform parallel
and antiparallel electric and magnetic fields, using the Ramsey
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technique of separated oscillating fields [2,3]. For an accurate
and precise measurement of fn, controlling the stability and
uniformity as well as reducing the noise of the magnetic field
in the apparatus are of paramount importance. A potential
source of magnetic-field disturbance is Johnson-Nyquist noise
(JNN) [4,5], originating from the thermal motion of electrons
in metal components within the experimental apparatus.

Johnson-Nyquist noise was originally observed as a
“random variation of potential between the ends of a con-
ductor” [4]. The same underlying effect, random thermal
motion of charge carriers, also results in fluctuation of the
electromagnetic field near a conductor. Magnetic JNN is rele-
vant in various research domains, all related to measurements
with highest precision. The first published numerical analysis
of JNN came from the biomagnetic measurements [6] us-
ing superconducting quantum interference devices (SQUIDs).
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FIG. 1. Cross-sectional drawing of the central storage chambers
of the n2EDM apparatus located inside the vacuum tank. Included
are only components relevant to this study. For a better visibility, the
support structure of the Cs magnetometers (CsM) and the top UCN
shutter are omitted. The electrodes are separated by polystyrene
insulating rings.

Johnson-Nyquist noise often exceeds the intrinsic noise of
modern high-sensitivity detectors such as SQUIDs [6–9]
and high-density alkali-metal atomic magnetometers [10].
More recently, it was observed that these magnetic-near-field
fluctuations induce spin-flip processes, and in turn are a cru-
cial element of decoherence in magnetic traps which limits the
trapping lifetime of atoms [11–16]. In addition, relaxations of
spin states in the presence of magnetic fluctuations were also
studied in the context of magnetic resonance force microscopy
and quantum computation [17]. In EDM measurements, fol-
lowing the requirement of sensitivity enhancement, potential
constraints from JNN received extensive attention in the past
few decades [18–21]. Johnson-Nyquist noise from metal parts
in high precision experiments impose a limit on the measure-
ment sensitivity. Quantifying the impact of JNN in the design
of the n2EDM experiment [22,23] to search for an nEDM at
the Paul Scherrer Institute (PSI) in Villigen, Switzerland, with
the PSI ultracold-neutron (UCN) source [24,25] motivates the
presented research.

As in the past, the challenges in measuring nEDM, dn, are
the increase of the statistical sensitivity and the corresponding
control of systematic effects. New sources of UCN world-
wide [26,27] improve the statistical sensitivity, σdn ∝ N−1/2,
by increasing the number of neutrons available after storage,
N . Nevertheless, owing to systematic effects, e.g., random
frequency shifts due to possible magnetic-field noise or drifts,
the improvement in pure counting statistics might be compro-
mised. This study investigates the impact of JNN on nEDM
experiments, focusing especially on the n2EDM spectrometer
[22,23] currently under construction at the PSI.

The n2EDM apparatus features two cylindrical storage
chambers, 12 cm in height and 40 cm in radius, stacked
vertically. The two chambers share the central plane, an
electrode to which a high voltage of up to 200 kV can be
applied. The top and bottom of the cylinder pair are closed
with grounded plates. Figure 1 shows a simplified drawing

FIG. 2. Normal amplitude spectral density of a 2.5-cm-thick
aluminum (σ = 3.77 × 107 S/m) infinite-slab conductor at various
distances under 20 ◦C.

of the central storage chambers with the components relevant
to this paper, whereas detailed descriptions and schematics
of the experimental apparatus can be found in Figs. 1 and
2 of Ref. [22]. The three electrodes are made of aluminum
plates, whose surfaces pointing towards the inside of the UCN
storage chambers are coated with diamondlike carbon (DLC)
[28,29] in order to optimize the UCN reflection properties.

Thermal motion of charge carriers in the bulk aluminum
results in magnetic JNN, which might affect the sensitivity
of the magnetometers in its vicinity. In the following, we
investigate the effects of JNN on the cesium magnetometers
(CsM) [30,31], glass bulbs filled with saturated 133Cs vapor
positioned around the precession chambers, the UCN and
the mercury comagnetometers (HgM), polarized 199Hg atoms
occupying the same volumes as the UCN in the chambers and
read out by resonant light beams [32–34].

II. SPECTRUM OF MAGNETIC JOHNSON-NYQUIST
NOISE

The relevant magnetic JNN spectrum was first analytically
derived for research in biophysical applications [6,8]. There it
is shown that, for an infinite-slab conductor of thickness a and
conductivity σ at a temperature T , the normal component of
the amplitude spectral density (ASD) found in a distance d to
the conductor surface within a finite frequency interval � f ,
with the z axis defined to be perpendicular to the conductor
surface, can be written as [6]

Bz(d, f ) =
√

Bz(d, f )2/� f

= μ0

√
2σkBT

π

[∫ ∞

0
R(ρ, a, σ, f )e−2ρdρ dρ

]1/2

,

(1)

where kB is the Boltzmann constant, ρ is the radial component
of the infinite conductor, and Bz(d, f ) is the magnetic-field
amplitude normal to the surface at a given frequency f [35].
R(ρ, a, σ, f ) in Eq. (1) is a function of conductor properties,
a and σ , at a given frequency f , with the original expression
defined in Eq. (39) of Ref. [6]. For the horizontal compo-
nents, due to symmetry and Maxwell’s equations, one can
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infer that [6]

Bx(d, f ) = By(d, f ) = 1√
2
Bz(d, f ). (2)

All three components of the noise spectrum depend on the
normal distance between the point of interest and the surface
of the infinite slab. Figure 2 shows the normal ASD of a
2.5-cm-thick aluminum infinite-slab conductor, σ = 3.77 ×
107 S/m, under 20 ◦C at various distances, using Eq. (1).
The spectral line flattens at low frequencies towards a con-
stant value equal to the root-mean-square (rms) limit for f →
0. With increasing frequency, the noise amplitude decreases
due to self-damping of high-frequency noise within the
conductor slab.

To verify these noise spectra, measurements of the
magnetic-field noise created by an aluminum sheet were
carried out in the magnetically shielded room BMSR-2
at the Physikalisch-Technische Bundesanstalt (PTB), Berlin,
Germany [36], using the 304-channel SQUID-vector-
magnetometer system [37]. The system is based on nineteen
modules placed on a hexagonal grid with each comprising
sixteen SQUIDs placed at various vertical planes. A total of
304 SQUIDs each with a 7 mm effective pickup-coil diameter
permit one to calculate all three vector components of the
magnetic field on three measurement planes. The noise of a
sheet made of 99.5% aluminum with dimensions of 1.3 m ×
1 m × 0.5 mm was measured. In the first measurement, the
sheet was placed to touch the flat bottom of the Dewar cryo-
stat, resulting in a minimal distance of 27.5 mm between
sample and SQUIDs, due to the cold-warm distance of the
Dewar. Another measurement was carried out by adding a
wood plate in between aluminum sheet and Dewar to provide
an additional 7.5 mm distance to the Dewar bottom. In each
measurement, seven SQUIDs at different heights from two
central modules were used, with four measuring the vertical
field component with respect to the probe and three measuring
the horizontal field component.

Figures 3(a) and 3(b) are the combined results from the
two measurements, with or without the wood plate, with the
former showing the vertical field component and the latter
displaying the horizontal component. The spectra are results
from 300 s measurements averaged over 5 s samples. The
background noise measured without aluminum sheet was
subtracted. The increase in noise below 2 fT/

√
Hz is due to

the SQUID white noise. Mechanical vibrations influence the
measurement between 5 and 25 Hz at the level of 10 fT/

√
Hz.

Comparing between the measured spectra and the theoretical
ASD calculated with Eqs. (1) and (2), with σ = 3.77 × 107

S/m and T = 22 ◦C, discrepancies up to ∼15% are found.
The uncertainties on σ and T are not enough to explain the
differences. Nenonen, Montonen, and Katila [8] pointed out
that correlation of JNN within pickup coils with finite surface
areas should be taken into account if the pickup-coil diameter
is larger than the measurement distance (see Sec. III B for
details). In our measurements, the ratios between the pickup-
coil diameter and the distances were all smaller than one-third;
thus the correlation is considered negligible (see Fig. 4).
Additionally, considering the dimensions of the aluminum
sheet, the pickup coils, and the measurement separations, we
can approximate the aluminum sheet as an infinite conductor.

FIG. 3. (a) Vertical and (b) horizontal magnetic-field noise com-
ponent of a 0.5-mm-thick aluminum sheet measured by the SQUID
system at PTB with respect to the theoretical ASD at various
distances. The spectra were averaged over 5 s samples from 300 s
measurements. The ASD decreases with increasing distance.

Comparisons between theoretical calculations and noise
measurements on copper [6] and aluminum [8] conduc-
tors using first-order gradiometers have been performed in
biomagnetic research. It is reported in Ref. [6] that the agree-
ment lies within uncertainties of ±15%. Our measurements
performed with a magnetometer confirm the theoretical spec-
trum in a nondifferential manner to a fairly good level, and
verify the relation between transverse and normal noise com-
ponents [Eq. (2)]. The reason for the small disagreement is
still unclear; nonetheless, by using the theoretical ASD, we
guarantee that the noise will not be underestimated.

For JNN studies in EDM experiments, a principle sim-
plification can be made assuming that the frequency of the
fluctuating field is low enough such that the eddy currents
generated in the bulk material can be neglected. This is stated
as the static approximation by Lamoreaux [18], which is
valid when the thickness of the conductor is smaller than the
skin depth

λ =
√

1

πμσ f
, (3)

where f is the fluctuation frequency. In the context of EDM
experiments, this corresponds to approximately the reciprocal

062801-3



N. J. AYRES et al. PHYSICAL REVIEW A 103, 062801 (2021)

FIG. 4. Root-mean-square normal noise averaged over a finite
area with respect to a random single point (r, z). Comparison among
results obtained with Monte Carlo integration based on analytical
derivation (red dashed line), calculation shown in Ref. [8] (black
solid line) and numerical finite-element method computed at various
distances (colored points).

of the spin-coherence time, T2. In the n2EDM experiment,
the free-spin-precession period for a single measurement will
be �t ∼ 200 s, approximately two times the spin-coherence
time of mercury and a fraction of the spin-coherence time of
neutrons. Hence we assume f −1 = �t ∼ 200 s ≈ T2,Hg will
be the free-spin-precession period for a single measurement.
At 5 mHz, λ ∼ 116 cm, so the low-frequency assumption
can be applied safely for conductors with a thickness of less
than 10 cm.

III. MAGNETIC-FIELD FLUCTUATION OBSERVED BY
FIELD-SENSING PARTICLES

During an nEDM-measurement cycle, 199Hg atoms oc-
cupying the same volumes as UCN are used as cohabiting
magnetometers (HgM) [32–34]. As the HgM and the UCN
measure the magnetic field simultaneously, the ratio of the two
precession frequencies, fn/ fHg, is robust against magnetic-
field changes. Nonetheless, the two spin species sample the
magnetic field differently. The UCN sample the field adia-
batically and have a negative center-of-mass offset, whereas
the 199Hg atoms sample the field nonadiabatically [38]. For
a nominal field of B0 = 1 μT, we investigate the degree to
which the effects of JNN can be controlled when taking
the frequency ratio of two ensembles within one precession
chamber.

A. Analytical derivation of spatial properties

In the first step to calculate the rms magnetic-field noise
sensed by the particles, it is useful to derive the spatial corre-
lation of JNN at different locations within the volume. For this
purpose we calculated the magnetic noise originating from
thermal noise currents by dividing a volume conductor into in-

finitesimal cuboidal elements, �V = �x�y�z, similar to the
seminal calculation in Refs. [6,8]. There an equivalent current
dipole for the volume element is defined, whose component
Pα = Iα�α (α = x, y, z) in the direction α is the product of
this short-circuit current and the finite size of the element.
Following this concept, the source of thermal magnetic noise
is represented by a great number of randomly oriented current
dipoles on the surface of the conductor.

We consider an infinite conductor and assume its surface is
an x − y plane on the reference of the vertical coordinate z =
0. A current dipole element on an infinitesimal surface area
ds located at (x, 0), where x now denotes a two-dimensional
vector on the x − y plane, is written as I(x)ds, where the z = 0
component is omitted for simplicity. The magnetic field cre-
ated by this dipole at a point (r, z) can be calculated, according
to the Biot-Savart law, as

dB = μ0

4π

I(x)ds × k
d2

, (4)

where

k = r − x
d

+ z

d
êz (5)

is the unit directional vector pointing from (x, 0) to (r, z), and

d =
√

|r − x|2 + z2 (6)

is the distance between the dipole and the observation point.
Now, we obtain the normal component êz of the field

dBz(r, z) = dB · êz

= μ0

4π

(
I(x)ds × r − x

d3

)
· êz

= μ0

4π
[êz × I(x)ds] · r − x

d3

= μ0

4π
F(r − x, z) · I (x)ds, (7)

with

F(x, z) ≡ x
(|x|2 + z2)3/2

(8)

and

I (x) ≡ êz × I(x) (9)

being the rotated current component transformed from the
triple product.

1. Variance of a disk-averaged field

Consider a disk parallel to the conductor, which has a
radius R and is located at a normal distance z above the
conductor. The average normal magnetic field over this disk
generated by thermal noise in a finite element ds from the
conductor can be written as

dB̄z(R, z) ≡
∫

SR

d2r

πR2
dBz(r, z)

= μ0

4π

∫
SR

d2r

πR2
F(r − x, z) · I (x)ds

= μ0

4π
I (x)ds · M̄(x, R, z), (10)
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where

M̄(x, R, z) ≡
∫

SR

d2r

πR2
F(r − x, z) (11)

is the average over the disk. For an infinite conductor, we
integrate over all dipoles

B̄z(R, z) =
∫

dB̄z(R, z). (12)

The variance of this surface average is then calculated as

〈B̄z(R, z)2〉 =
( μ0

4π

)2
∫

ds
∫

ds′

·〈[I (x) · M̄(x, R, z)][I (x′) · M̄(x′, R, z)]〉. (13)

As shown in Eq. (1) in Ref. [6], based on Nyquist’s
theorem,

〈I (x)I (x′)〉 = 4σkBT � f aδ(x − x′), (14)

where the conductor properties are identical to those indi-
cated in Eq. (1). With the change of variables and further
derivations, the variance of the surface-averaged field can be
expressed as

〈
B̄z(R, z)2〉 = Cπ

2z2
I

(R

z

)

= 〈Bz(r, z)2〉I
(R

z

)

= 〈Bz(0, z)2〉I
(R

z

)
, (15)

normalized to the variance of the single-point field at a random
location of distance z, 〈Bz(r, z)2〉 = 〈Bz(0, z)2〉, with

C ≡
( μ0

4π

)2
4σkBT � f a. (16)

I(R/z) is an integration over three two-dimensional vectors
calculated as

I(ξ ) ≡ 2

π3
ξ 4

∫
S1

d2u
∫

S1

d2v

∫
d2X

· u − X

(ξ 2|u − X |2 + 1)3/2
· v − X

(ξ 2|v − X |2 + 1)3/2
.

(17)

u and v are two observation points on the disk, where an
integration over a unit circle S1 is performed, and X is a dipole
on the conductor integrated from zero to infinity.

2. Variance of a cylinder-averaged field

In our case, we are interested in the average field observed
within a cylinder of radius R and height H on the surface of
the conductor,

d ¯̄Bz(R, H ) ≡
∫ H

0

dz

H

∫
SR

d2r

πR2
dBz(r, z). (18)

Physically, direct contact between a dipole and an observa-
tion point will result in a divergent magnetic field; hence we
regularize the integration by starting from a small distance h

(h  H, R) to the conductor surface

d ¯̄Bz(R, H ) ≈ d ¯̄Bz(R, H, h)

=
∫ h+H

h

dz

H

∫
SR

d2r

πR2
dBz(r, z)

= μ0

4π

∫ h+H

h

dz

H

∫
SR

d2r

πR2
F(r − x, z) · I (x)ds

= μ0

4π
I (x)ds · ¯̄M(x, R, H, h), (19)

with

¯̄M(x, R, H, h) ≡
∫

SR

d2r

πR2
F̄(r − x, H, h) (20)

and

F̄(x, H, h) ≡
∫ h+H

h

dz

H
F(x, z). (21)

Similarly, the contributions of all dipoles are integrated
over, ¯̄Bz(R, H, h) = ∫

d ¯̄Bz(R, H, h), and the variance of the
volume-averaged field can be carried out as

〈 ¯̄Bz(R, H, h)2
〉 = C

π2R2
J

(
H

R
,

h

R

)
, (22)

where

J(η, ζ ) ≡ 1

η2

∫
S1

d2u
∫

S1

d2v

∫
d2X

·
{

(η + ζ )(u − X )

|u − X |2[|u − X |2 + (η + ζ )2]1/2

− ζ (u − X )

|u − X |2(|u − X |2 + ζ 2)1/2

}

·
{

(η + ζ )(v − X )

|v − X |2[|v − X |2 + (η + ζ )2]1/2

− ζ (v − X )

|v − X |2(|v − X |2 + ζ 2)1/2

}
. (23)

At the limit of H → 0, the variance of the volume average
reduces to the variance of the disk average at a distance h,
which gives

〈 ¯̄Bz(R, H → 0, h)2〉 ≈ 〈B̄z(R, h)2〉. (24)

B. Analytical derivation computed with Monte Carlo
integration

The variances of surface and volume averages are impor-
tant for practical purposes. To calculate the corresponding
results, integrals in Eqs. (17) and (23) were computed using
the method of Monte Carlo integration [39].

As described in Ref. [8], SQUID detectors used to measure
magnetic fields have pickup coils with finite surface areas
within which the correlation of JNN should be taken into
account. Nenonen et al. [8] calculated the magnetic noise
observed by a single circular coil of diameter d parallel to
a conducting slab at a distance z, Bcoil

n,z , and plotted the ratio
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FIG. 5. Comparison of rms normal noise amplitude at a
frequency bandwidth � f = 1/(2 × 200 s) between surface average
(blue, circular) and volume average with an infinitesimal cylinder
height (red, square). Two regularization distances, h = 2.5 mm or
10 μm, are shown as filled or open data points, respectively.

to the single-point spectral density, Bcoil
n,z /Bn,z, as a function of

d/z, shown in Fig. 4 of Ref. [8]. Bcoil
n,z and Bn,z are the notations

used in the original paper of Nenonen et al., where n in the
subscript stands for JNN. They are equivalent to B̄z(R, z) and
Bz(r, z) in our study, respectively. The ratio Bcoil

n,z /Bn,z is the
same as I(R/z)1/2 in Eq. (15). We computed this integral
I(R/z) and compared it to the calculation made by Nenonen
et al. shown in Fig. 4. The black solid line in the graph is
the result from Ref. [8]. The red dashed line is our result
using the Monte Carlo integration, averaged over 30 random
numerical solutions. The other colored points were calculated
with a numerical finite-element method which will be ex-
plained in Secs. III C and III D. All methods agree with one
another, and the remaining small deviations are inconsequen-
tial for our pragmatic intent.

As described in Eq. (24), with reduction of cylinder
height, the volume variance converges to the surface variance.

Figure 5 displays both 〈 ¯̄Bz(R, H → 0, h)2〉1/2
(red, square)

and 〈B̄z(R, h)2〉1/2 (blue, circular) for various chamber radii.
Integrations were performed using 10 to 50 random solutions
in the Monte Carlo method for various radii, where the mean
values are plotted with their standard errors shown as error
bars. Filled data points were computed with a regularization
distance h = 2.5 mm, whereas open points were calculated
with h = 10 μm. Both methods agree with each other, which
confirms the validity of the convergence of the volume cal-
culation to the surface solution in the limit of zero chamber
height (H → 0).

By integrating over a larger cylinder height, H , the
volume-averaged JNN decreases as a result of averaging over
uncorrelated noise at relatively larger distances. Results of

〈 ¯̄Bz(R, H, h)2〉1/2
with various H and R are displayed in Fig. 6.

Again, filled and open points were computed with h = 2.5 mm
and 10 μm, respectively.

From Figs. 5 and 6, one can see that the larger the cylinder
volume (R or H), the smaller the influence of the regulariza-
tion distance, h.

FIG. 6. Volume-averaged rms normal noise amplitude at a
frequency bandwidth � f = 1/(2 × 200 s) with various cylinder di-
mensions. Two regularization distances, h = 2.5 mm or 10 μm, are
shown as filled or open data points, respectively.

C. Finite-element method with discrete dipoles

To estimate the JNN originating from the electrodes, in-
stead of infinite slabs, conductors of finite size need to be
considered. Lee and Romalis [40] calculated magnetic noise
from conducting objects of simple geometries. The JNN
calculation for a thin circular planar conductor is shown in
Table VI of Ref. [40], which is in accord with the geometry
of the electrodes and was used in our study. To estimate an
upper limit of the average-field difference observed by UCN
and HgM in the presence of JNN, it is sufficient to apply
the static approximation, where only a white-noise spectrum
at the limit of f → 0 should be considered, as shown in
Fig. 2. The z component of the ASD measured at a normal
distance d generated by a thin film of radius R, thickness a,
and conductivity σ at a temperature T is [40,41]

1√
8π

μ0
√

kBT σa

d

1

1 + d2

R2

=: Bthin
z (d, f → 0). (25)

However, for a calculation of the magnetic field sampled
by particles within the chamber, the JNN spectrum shown
above, Eq. (25), which depends only on the normal dis-
tance between the source of noise and the observation point,
needs to be replaced with a time-dependent three-dimensional
magnetic-noise source. For this reason, we used a supple-
mentary method by considering a finite number of random
magnetic dipoles on the surface of the conductors as noise
sources.

Although the n2EDM apparatus consists of a double
chamber, to study the possible cancellation of field fluctua-
tion deploying a comagnetometer system, we considered only
the field measurements that have taken place in one preces-
sion chamber. In general, only the contribution from the two
electrodes defining top and bottom of the relevant chamber
needs to be considered, as the effect from metal plates further
away is exponentially suppressed. Random time series were
generated for each discrete dipole on both electrodes. The
superposition of all these time series and the applied field B0

at discrete positions within the volume of the chamber permits
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one to calculate the distinct magnetic field B(r, t ) for any time
and locations.

Following the idea of equivalent current dipoles introduced
initially in Refs. [6,8] described in Sec. III A, we divided the
surface of the electrodes into triangular areas. The motivation
of using triangular grids instead of common quadrilateral
meshing methods will be explained later. For each triangular
element, three noise-current sources located at the center of
the triangle and oriented along the three Cartesian coordinates
representing the normal component of the three directions
were created. For a sampling period of �t , the magnetic field
created by a number of ndip dipoles and measured at position
r can be calculated by the discrete Biot-Savart law,

B(r,�t ) = μ0

4π

ndip∑
i=1

∑
α=x,y,z

Iα,i(�t )dl × (r − r′
i )

|r − r′
i|3

, (26)

where r′
i and Iα,i(�t ) are the position and current of an indi-

vidual dipole in direction α and the unit-length vector dl was
defined to be the average side length of the triangles.

The white-noise ASD of the thermal current is [6,8,40]

I =
√

kBT σa, (27)

having a unit of A/
√

Hz. By using the power spectral density
(PSD = ASD2), the variance of the dipole-current time series
can be calculated as

σ 2(I (�t )) = 2 I2� fBW

= 2kBT σa� fBW, (28)

where � fBW is the bandwidth, corresponding to 1/(2�t ) with
�t being the average observation time. The current Iα,i(�t ) in
Eq. (26) is a random current drawn from a Gaussian distribu-
tion with the defined variance, σ 2(I (�t )).

The surface of the aluminum electrode was divided into
approximately 1500 finite surface elements, whose average
side length was about 28 mm. The electrode-division lay-
out was optimized to provide a theoretically compatible
noise spectrum and to be computationally efficient. A dipole
with three time-averaged current components lies at the cen-
ter of each surface element. The current components were
randomly created from a Gaussian distribution with a defined
variance using �t = 200 s, which is the free-spin-precession
period of one measurement. Figure 7 shows the time-domain
magnetic-field distribution along a horizontal cut line, x =
−40 . . . 40 cm within the diameter of the chamber, with one
random current-dipole set, where (a)–(d) indicate field distri-
butions at various distances from the electrode. The shorter
the distance to the source, the larger the amplitude of the
field. Note that also the fluctuation of the field is larger in
close vicinity to the source. This validates the argument in the
beginning of this section, that a normal-distance dependent
JNN spectrum, Eq. (25), is inadequate for the purpose of cal-
culating the impact of JNN on the sensitivity of field-sensing
spin- 1

2 particles, since the spatial correlation between adjacent
observation points is not considered in the spectral-density
formulation.

This finite-element method was used to calculate the
time-and-volume-averaged magnetic field observed by field-
sensing particles within the chamber over one measurement,

FIG. 7. Normal component of time-domain magnetic-field dis-
tribution along a horizontal cut line at various distances. This is an
example created from one random current-dipole set.

in the presence of JNN. Monte Carlo simulations matching
experimental results [42] show that the whole volume of the
chamber is sampled isotropically during one 200 s measure-
ment in the case of a large number of particles; therefore, it
is sufficient to divide the chamber into equally sized finite
volumes, and calculate the magnetic fields observed at the
center of each of these rectangular cuboids. A good balance
between numerical accuracy and computational efficiency
was reached with a size of 10 × 10 × 5 mm3 for these vox-
els. The reason for using a smaller vertical dimension was
due to the fact that, according to the noise spectrum, JNN
is normal-distance dependent; hence a transverse separation
between two observation points has fewer impacts than a
vertical separation. This was confirmed by using voxels with
a size of 5 × 5 × 5 mm3 whose result was comparable to that
calculated with a 10 mm transverse dimension. In addition,
the volume that was divided has a six times larger diameter
than height; to partition the chamber in both transverse and
vertical directions into numbers of units with the same order
of magnitude, we decided to use a voxel with a smaller vertical
size. Voxels with a size of 10 × 10 × 2 mm3 were also stud-
ied, which gave a negligible difference. As a result, for a better
computational efficiency, a voxel size of 10 × 10 × 5 mm3

was selected as the optimal size for chamber partition and
used for the results presented below.

The reason for using triangular meshes for the conduc-
tor is to avoid aligned patterns between the conductor grids
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FIG. 8. Volume average of normal JNN component 〈Bz〉 over half
of the n2EDM chamber calculated with the numerical finite-element
method.

and the voxels within the chamber volume. In a preliminary
study, we found that an alignment between the two meshing
patterns could result in artifacts that computed extremely large
magnetic-field values due to minimum distances between the
noise sources and the observation points. This should be
avoided and was resolved by implementing different meshing
geometries for the conductors and the chamber where align-
ments could be well reduced.

D. Comparison between the analytical derivation
and the finite-element method

With the finite-element method, the magnetic noise aver-
aged over a disk or a cylinder can be easily estimated. With
the optimal voxel height of 5 mm, the n2EDM precession
chamber was divided into 24 layers with each consisting
of 5024 pieces. First, we calculated the average field over
different numbers of adjacent voxels on the same layer, cor-
responding to radii ranging from 10 to 35 mm, with respect
to a central piece, where 100 random central pieces were
selected. Results from four different layers, with distances of
7.5 . . . 22.5 mm, are shown in distinct colors and shapes in
Fig. 4. The error bar on each point is the standard deviation
of these 100 randomly chosen central pieces. We confirmed
that the surface-averaged magnetic-field noise computed with
the finite-element method is in good agreement with both the
analytical derivation and the calculation performed in Ref. [8].
Next, to calculate a cylinder average with the finite-element
method compatible with the analytical description, we
considered only half of the precession chamber and one
electrode. The half-chamber volume average of normal mag-
netic field generated by magnetic dipoles on this electrode,
〈Bz〉, was computed and shown in Fig. 8. Each entry in the
histogram is the result of one simulated cycle. For one finite-
element calculation, i.e., one simulated cycle, approximately
1500 dipoles were created on the conductor using three ran-
dom noise currents at a bandwidth of � fBW = 1/(2 × 200 s).
A total of more than 3000 random configurations were gener-
ated to accumulate statistics. The standard deviation of these
random solutions is σBz = (3.060 ± 0.037) fT. The uncer-
tainty is the standard error of σBz estimated theoretically with

SE (σBz ) = σBz/
√

2S − 2, where S = 3450 is the number of
simulations. On the other hand, using the analytical formula
of volume variance, Eq. (22), and replacing the infinite con-
ductor with a finite conductor of R = 40 cm, the standard
deviation of the volume average with 20 random solutions for
the Monte Carlo integration is

〈 ¯̄Bz(40 cm, 6 cm, 2.5 mm)2〉1/2 = 2.805 ± 0.005 fT, (29)

where the error is the statistical error of the Monte Carlo
sample. The results from the two methods agree within half
a femtotesla. The small deviation is negligible for our purpose
and confirms the use of voxels for volume-average calculation
with the finite-element method.

IV. EFFECTS ON THE n2EDM experiment

A. Magnetic fields observed by UCN and HgM

Due to the difference in the velocity spectrum and the
Larmor precession frequency, UCN and HgM sample the
volume differently under a nominal 1 μT B0 field. Much faster
thermal 199Hg atoms fall into the nonadiabatic regime. The
spins precess under a vectorial volume average of the field;
hence the average magnetic field observed by 199Hg atoms is
calculated as

〈BHg〉 = |〈B〉|

=
√

〈Bx〉2 + 〈By〉2 + 〈B0 + Bz〉2. (30)

By contrast, due to the much smaller velocity and larger
precession frequency, UCN sample the volume in the adia-
batic regime, such that their spins precess under the volume
average of the modulus of the field. In addition, taking into
account the negative center-of-mass offset 〈z〉 of the ensemble
of UCN, the average field sampled by UCN is

〈BUCN〉 = 〈|B|ρUCN(z)〉

=
〈√

Bx
2 + By

2 + (B0 + Bz )2ρUCN(z)
〉
,

(31)

where

ρUCN(z) = 1

H

(
1 + 12〈z〉

H2
z

)
(32)

is the normalized vertical UCN density function.
To estimate the time-and-volume average of the mag-

netic fields over one precession chamber sandwiched between
two electrodes, the finite-element method was employed.
Figure 9 shows the average magnetic fields observed by UCN
and HgM over one simulated cycle, calculated with 〈z〉 =
−4.1 mm for Eq. (32). This offset value was obtained using
a Monte Carlo simulation [42] and is in agreement with the
offset obtained in Ref. [43]. Each entry in the histogram in
Fig. 9 is the result of one �t = 200 s time average simulated
with approximately 1500 dipoles created on both electrodes.
The average magnetic fields were computed with Eqs. (30)
and (31). Histograms for UCN and 199Hg atoms are shown
in Figs. 9(a) and 9(b), respectively. The standard deviation
of these distributions, σ (〈BUCN〉) = (3.781 ± 0.046) fT ≈
σ (〈BHg〉) = (3.777 ± 0.046) fT, are comparable within the
statistical error, confirming the naive hypothesis that they
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(a)

(b)

FIG. 9. Deviations of time-and-volume-averaged field to the
nominal constant B0 magnetic field sampled by (a) UCN and
(b) 199Hg atoms.

similarly sense the effects from JNN. In addition, this is an
order of magnitude lower than the sensitivity requirement,
30 fT per measurement cycle, for the HgM in the n2EDM
experiment [23], indicating that the performance of HgM will
not be limited by JNN.

Next, we studied the influence of JNN on the ratio of pre-
cession frequencies of the two spin- 1

2 ensembles by looking
at the difference of the average magnetic fields (see Fig. 10).
The standard deviation of the differences of average mag-
netic fields is σ (〈BUCN〉 − 〈BHg〉) ∼ 0.1 fT. The sensitivity
of an nEDM measurement depends on the uncertainty of the
magnetic-field measurement. By using a mercury comagne-
tometer, the effect from JNN is reduced to σJNN ∼ 0.1 fT
per measurement, and induces an uncertainty on the neutron
EDM of

σdn = h̄

2E
γnσJNN = 4 × 10−28e cm, (33)

assuming an electric field E = 15 kV/cm and γn/2π = 29.16
MHz/T is the gyromagnetic ratio of the neutron. The exper-
iment will consist of a total of M 200 s long measurement
cycles to improve the statistical sensitivity. Note that the un-
certainty on σdn calculated for one cycle in Eq. (33) scales

FIG. 10. Difference between the average fields sampled by UCN
and mercury ensembles, 〈BUCN〉 − 〈BHg〉.

statistically with M−1/2. Results shown in Figs. 9 and 10 had
been cross-checked with another 2000 random configurations
which showed similar results, confirming the negligibility of
the statistical error arising from the sampling size.

B. Magnetic field measured by CsM

The design of the n2EDM experiment [23] deploys more
than 100 cesium magnetometers (CsM) being installed above
and below the precession-chamber stack in order to provide
essential information about the homogeneity and stability of
the magnetic field. They are arranged radially in groups of
four on vertical modules. Each CsM contains a glass bulb
filled with saturated vapor pressure of 133Cs atoms. They are
operated as Bell-Bloom type [44] magnetometers. Tensor-
polarization (alignment) is created by amplitude-modulated
linearly polarized laser light that traverses the bulb, at a fre-
quency roughly matched with the 133Cs Larmor precession
frequency, similar as in Refs. [45,46]. Once the atomic vapor
is spin aligned, the light intensity is reduced and kept con-
stant. As the spin-polarized atoms precess under the influence
of B with a frequency proportional to the magnitude of the
magnetic field, the intensity of transmitted light is periodically
modulated by precessing atoms and detected by a photodiode.

Consider a CsM with a radius of 1.5 cm placed above the
topmost electrode. Polarized 133Cs atoms at different loca-
tions within the bulb are exposed to magnetic noise from the
electrode which decreases with distance according to Eq. (1).
The finite-element method introduced in Sec. III C was
employed to calculate the average magnetic field measured
by 133Cs atoms in the presence of JNN. For a CsM bulb, the
measurement time of the magnetic field is δt = 70 ms, which
is roughly two times the spin-coherence time of 133Cs atoms.
The skin depth at 14 Hz is 2.2 cm, which is outside of the
thickness range in which the static approximation is valid.
Nonetheless, the static approximation can be used to obtain
an upper limit for the field fluctuation.

In this case, only the closest electrode which was relevant
to a specific CsM was considered. Similarly, the noise source
was represented by a number of dipoles lying on the surface
of the electrode, each with three random noise currents at the
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FIG. 11. Comparison between rms normal noise amplitude inte-
grated over 70 ms, calculated from the noise spectrum (blue line),
and the average-field noise measured by a CsM estimated with
the finite-element method (orange points). The statistical errors on
the results calculated with the finite-element method are smaller than
the marker size.

bandwidth of � fBW = 1/(2 × 70 ms). The bulb was divided
into about 14000 voxels of size 1 mm3, much smaller than
the voxel size used for chamber division due to the orders of
magnitude smaller volume. The 133Cs atoms sense the field in
the same way as the 199Hg atoms in the precession chamber.
Hence the average magnetic field observed by a CsM was
calculated by averaging over the fields in all voxels using
Eq. (30). More than 3000 random dipole sets were simulated.
The average magnetic fields from JNN for four CsM bulbs
placed on one module with different distances to the electrode
were simulated. The corresponding standard deviations of the
time-and-volume-averaged fields at these positions are shown
as orange points in Fig. 11, whose statistical errors are three
orders of magnitude smaller.

In a perfectly spherical CsM bulb, the 133Cs atoms are
uniformly distributed over the volume. Due to the fast move-
ment of 133Cs atoms, the average magnetic field over the
sphere is sampled homogeneously and its value is equal to
the field measured at the center based on the mean-value
theorem [47,48], assuming all sources are outside the sphere.
The rms magnetic noise can be estimated by the noise ob-
served at the center of the bulb within a time span δt . At
a distance d measured to the center of the bulb, the rms
magnetic noise is

BCsM
i (d, δt ) =

{∫ 1
2δt

0
Bi(d, f )2df

}1/2

, (34)

with i being x, y, or z. In the presence of an applied B0 ‖Bz

field of about 1 μT, the lateral components Bx, By  B0 of
JNN are quadratically suppressed and hence negligible. For
this reason, we only take the vertical component into account.
The normal rms magnetic noise estimated at the center of the
CsM, BCsM

z (d, δt ), as a function of distance, is also displayed
in Fig. 11.

In the figure, both methods deliver similar results with
small differences, which can be understood by the follow-
ing explanations. Equation (34) is the frequency-bandwidth

integrated rms noise generated by an infinite slab, whereas
the finite-element method took a finite size of the electrode
and only the low-frequency noise was considered. Therefore,
the results calculated from the finite-element method will in
principle be larger due to the use of static approximation,
which is true for three of the cases. As for the result calcu-
lated at d = 16.3 cm, the finite-element method computed a
smaller value. For this specific case, the CsM is placed at
R = 55 cm, which is larger than the electrode radius; hence
the effect of noise from the electrode will be smaller compared
to the theoretical calculation which used an infinite conductor.
In general, this method provides a sufficiently precise estima-
tion of the impact of JNN on the measurements by the CsM.

The sensitivity goal for n2EDM translates to a maximum
rms noise of 2.7 pT in 70 ms for the CsM [23]. The upper
limits of the noise for CsM at various distances all lie below
the sensitivity limit. In addition, for an nEDM-measurement
cycle of 200 s � 70 ms, the magnetic noise seen by a CsM
will be averaged out to a much lower value; hence we confirm
that JNN from the electrodes is negligible for the design and
placement of all CsM within the experiment.

V. CONCLUSION

This paper reports on a finite-element study of Johnson-
Nyquist noise (JNN) originating from the bulk metal elec-
trodes in the n2EDM experiment being constructed by the
nEDM collaboration at PSI. In the first part, we revisited the
theoretical noise spectra [6,8], and compared them to the mea-
surements on a thin aluminum sheet using a superconducting
quantum interference device (SQUID).

Next, we derived for a given frequency bandwidth ex-
pressions for the root-mean-square normal noise amplitudes
of averages over a two-dimensional disk and a cylinder
of finite volume. These are important in understanding the
spatial correlation of JNN and are necessary for practical
purposes. Numerical results from the analytical derivation
were computed with the method of Monte Carlo integration
and demonstrate good agreement with the calculation per-
formed in the literature [8].

Using a discretization of the electrodes into a finite number
of magnetic white-noise dipoles, we calculated temporal and
spatial magnetic fields generated by JNN. By averaging these
magnetic fields over time and volume, we obtained the mean
magnetic field sensed by precessing ultracold neutrons (UCN)
and mercury (199Hg) atoms. The standard deviation of more
than 3000 randomly produced configurations for UCN and
mercury is approximately 3.8 fT, which we consider as small
enough for next-generation neutron electric-dipole-moment
(nEDM) searches. With the same method, we found that
for the cesium (133Cs) vapor magnetometers, the maximum
rms noise observed within a measurement time of 70 ms is
approximately 0.6 pT, which lies below the sensitivity goal of
2.7 pT for n2EDM. Thus we confirm that the precision of the
cesium magnetometers will not be constrained by JNN from
the aluminum electrodes.

Additionally, by computing the average-field difference
observed by UCN and mercury, we found that the noise is
sensed highly correlated and mostly cancels out by using a
comagnetometer to normalize the UCN measurements. That
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is, the impact of JNN is negligible for nEDM searches down
to a sensitivity of 4 × 10−28e cm for a single 200 s measure-
ment. Assuming a projected experiment of 500 days with
∼280 cycles per day, this results in a factor of 374 smaller
limit, which is sufficiently small for our planned nEDM search
using a comagnetometer concept.

ACKNOWLEDGMENTS

We would like to thank A. Crivellin and M. Spira for
helpful discussions. We are grateful for the technical sup-
port from P. Hömmen and R. Körber with the material
measurements in BMSR-2, PTB, Berlin. The material mea-
surements inside BMSR-2 were supported by the Core
Facility “Metrology of Ultra-Low Magnetic Fields” at PTB
funded by Deutsche Forshungsgemeinschaft (DFG) through
funding codes DFG KO 5321/3-1 and TR408/11-1. The
swiss members acknowledge the financial support from the

Swiss National Science Foundation through Projects No.
157079, No. 163413, No. 169596, No. 188700 (all PSI), No.
181996 (Bern), No. 172639 (ETH), and No. FLARE20FL21-
186179. This work has also been supported by the Cluster
of Excellence “Precision Physics, Fundamental Interac-
tions, and Structure of Matter” (PRISMA + EXC 2118/1)
funded by DFG within the German Excellence Strategy
(Project ID 39083149) from Johannes Gutenberg University
Mainz. This work is also supported by Sigma Xi Grants
No. G2017100190747806 and No. G2019100190747806,
and by the award of the Swiss Government Excellence
Scholarships (SERI-FCS) No. 2015.0594. The group from
Jagellionian University Cracow acknowledges the support
from National Science Centre, Poland, through Grants No.
2018/30/M/ST2/00319, and No. 2020/37/B/ST2/02349.
The group from University of Leuven acknowledges supports
from the Fund for Scientific Research Flanders (FWO).

[1] J. H. Smith, E. M. Purcell, and N. F. Ramsey, Phys. Rev. 108,
120 (1957).

[2] N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[3] E. M. Purcell and N. F. Ramsey, Phys. Rev. 78, 807 (1950).
[4] J. B. Johnson, Phys. Rev. 32, 97 (1928).
[5] H. Nyquist, Phys. Rev. 32, 110 (1928).
[6] T. Varpula and T. Poutanen, J. Appl. Phys. 55, 4015

(1984).
[7] J. R. Clem, IEEE Trans. Magn. 23, 1093 (1987).
[8] J. Nenonen, J. Montonen, and T. Katila, Rev. Sci. Instrum. 67,

2397 (1996).
[9] R. Körber, in EMBEC & NBC 2017, edited by H. Eskola, O.

Väisänen, J. Viik, and J. Hyttinen (Springer, Singapore, 2018),
Vol. 65, pp. 795–798.

[10] J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis,
Phys. Rev. Lett. 89, 130801 (2002).

[11] M. P. A. Jones, C. J. Vale, D. Sahagun, B. V. Hall, and E. A.
Hinds, Phys. Rev. Lett. 91, 080401 (2003).

[12] D. M. Harber, J. M. McGuirk, J. M. Obrecht, and E. A. Cornell,
J. Low Temp. Phys. 133, 229 (2003).

[13] Y.-J. Lin, I. Teper, C. Chin, and V. Vuletić, Phys. Rev. Lett. 92,
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