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A hybrid parareal Monte Carlo algorithm for parabolic problems ∗

Jad Dabaghi †‡ Yvon Maday † Andrea Zoia‡

March 11, 2021

Abstract

In this work, we propose a novel hybrid Monte Carlo/deterministic “parareal-in-time” approach
dedicated to further speed up to solution time of unsteady Monte Carlo simulations over massively
parallel computing environments.

This parareal approach iterates on two different solvers: a low-cost “coarse” solver based on a very
cheap deterministic Galerkin scheme and a “fine” solver based on a precise Monte Carlo resolution.

In a set of benchmark numerical experiments based on a toy model concerning the time-dependent
diffusion equation, we compare our hybrid parareal strategy with a standard full Monte Carlo solution.
In particular, we show that for a large number of processors, our hybrid strategy significantly reduces
the computational time of the simulation while preserving its accuracy. The convergence properties of
the proposed Monte Carlo/deterministic parareal strategy are also discussed.

Keywords: parareal-in-time algorithm, time-dependent problems, predictor-corrector, Galerkin schemes,
Monte Carlo method

1 Introduction
Several physical phenomena are described by partial differential equations (PDEs) whose analytical treat-
ment is often out of reach. In this context, numerical simulations appear to be in general the only viable
approach to approximating a solution. Among the wide range of numerical methods for solving PDEs,
we mention for instance the finite element methods [1, 2, 3], the finite volume methods [4, 5, 6], or the
discontinuous Galerkin methods [7, 8, 9]. These are deterministic methods that have been classically used
in industrial contexts for years. For a certain class of problems, e.g. in large dimension, probabilistic ap-
proaches based on Monte Carlo methods have been advocated for more than 40 years now [10, 11, 12] and
have become the approach of choice in several domains: they are preferred to deterministic methods in
specific applications like radiation transport [12] or molecular dynamics [13]. For instance, in the simula-
tion of neutron transport, a fine deterministic discretization of the phase space variables would involve a
tremendous number of unknowns and correspondingly an unaffordable computational cost and memory bur-
den. Monte Carlo methods are weakly dependent on the dimensionality of the system for high-dimensional
problems, are natively implemented over massively parallel computing environments [14, 15].

The Monte Carlo algorithm consists in approximating the solution (denoted for instance by u) by sam-
pling a finite number M > 1 of random walks whose estimated density at point x and time t converges in
the limit of largeM to u(x, t). It is well known that the Monte Carlo method displays a 1/

√
M convergence

as a result of the Central Limit Theorem [10]. Obtaining a numerical solution sufficiently close to the exact
one requires to consider a very large number of random walks, wich demands a high computational cost.

Up to now, Monte Carlo methods have been applied almost exclusively to the solution of stationary
(i.e. time-independent) problems, mainly due to their high computational cost [10, 12]. An application of
utmost importance is the simulation of time-dependent neutron transport in nuclear reactor cores, in order
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to take into account transient and/or accidental regimes for safety issues : the main scientific challenge is to
take into account the very different time scales of prompt and delayed neutrons in long transients ("kinetic"
Monte Carlo). Kinetic methods have been the subject of major research efforts in recent years [16]. Thanks
to the increasing available computer power, in particular based on incredibly large number of cores that are
in excess with respect to the number M of replicas, non stationary problems where the full knowledge of
what occurs during the evolution by Monte Carlo simulation can be tackled. This situation is similar to what
occurs for deterministic approaches when domain decomposition methods are used and where the number of
core is much larger than the number of subdomains. The idea is to decompose the time direction into slices
where each of them can be handled in parallel. In this respect, several strategies have been proposed in order
to efficiently cope the parallelisation in time [17, 18, 19, 20]. Among these numerical methods, the parareal
algorithm [20] is based on the idea of solving the time evolution of dynamical systems in a parallel fashion.
It involves two propagators F and G that integrate a given system of partial differential equations at the
continuous level. The propagator F is a fine, accurate and thus expensive propagator, which approximates
the exact solution u with high precision, whereas the propagator G is a coarse propagator, which is a less
accurate approximation of the exact solution u and thus much less expensive than F . These solvers can,
e.g., be based on different time steps (δt for F being much smaller than ∆t for G), but the model that G
approximates may also be a simplified one.

Let T0 = 0 < T1 < · · · < TN = T be a sequence of times. For the sake of simplicity, we choose
here Tn = n∆T for some appropriate time interval ∆T . The parareal algorithm constructs a sequence
uk := (unk )1≤n≤N such that ∀k ≥ 0, unk is an approximation of un := u(n∆T ). For the iteration k = 0,
the initial approximation is obtained at each time step n using the coarse propagator G over a propagation
length of fixed size ∆T (we denote by G∆T such a coarse evolution over a time window of size ∆T ) :

un+1
k=0 := G∆T (unk=0),

where u0
k=0 := u0. Next, we perform a prediction, followed by a correction iteration

un+1
k+1 := G∆T (unk+1)︸ ︷︷ ︸

Prediction

+ [F∆T (unk )− G∆T (unk )]︸ ︷︷ ︸
Correction

, (1.1)

where u0
k+1 := u0. Note that the coarse solver G is sequential, whereas the fine solver F computes at the

end of each step k the corrections in parallel. When k → ∞, equation (1.1) yields un+1
k+1 = F∆T (unk ) and

thus the final approximation is achieved by the accuracy of the fine propagator F .
In general, the two solvers involved in the parareal procedure are deterministic. For instance a parareal

procedure for the Navier–Stokes equation in the context of finite elements and spectral methods has been
proposed in [21]. A micro-macro version of the parareal algorithm for singularly perturbed systems of
ordinary differential equations (ODEs) has been illustrated in [22], coupling a coarse propagator based
on an approximate macroscopic model with fewer degrees of freedom to a fine propagator that accurately
simulates the full microscopic dynamics. For other applications, see [23, 24] for kinetic transport problems
or [25] for reservoir simulation. For a convergence study of the parareal algorithm we refer to [20, 26, 27, 28].
In particular, a superlinear bound on the convergence on bounded time intervals for the diffusion equation
and the advection equation has been demonstrated in [28].

The parareal-in-time strategy has been also applied to Monte Carlo methods, as in [29] where a paral-
lelization of the Least-Square Longstaff–Schartz Monte Carlo algorithm dedicated to the pricing in american
options has been discussed. The kernel transport used in that survey is a standard Brownian motion [30],
where the coarse and fine propagators are Monte Carlo solvers with different time steps. A parareal in time
version of a micro-macro Monte Carlo algorithm where the involved propagators have different time scales
has been also proposed in [31], by closely following the ideas of [22].

In this work, we propose a novel hybrid version of the parareal algorithm, with a predictor based on a
deterministic solver and a corrector based on a Monte Carlo solver. To the best of our knowledge, this scheme
has never been considered before and may serve as a starting point for extensions to diverse applications.
In order to illustrate the general features of this strategy, we apply this method to a simple benchmark
problem based on the time-dependent diffusion equation, used as a prototype model of evolution equation.

This paper is organized as follows. First, in Section 2, we expose our model problem and settings. Next,
in Section 3 we present some admissible deterministic coarse propagators. Section 4 focuses on the fine
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solver in terms of a standard Monte Carlo algorithm. In Section 5, we introduce our hybrid parareal scheme
for the time-dependent diffusion equation. Finally, in Section 6 we present a set of benchmark numerical
experiments so as to illustrate the features of the proposed approach.

2 Model problem and setting
Let Ω ⊂ Rd, d = {1, 2, 3}, be a polygonal domain and T > 0 be the upper boundary of the time domain
[0, T ] ∈ R. Let L2(Ω) be the Hilbert space of square integrable functions on Ω. Let H1(Ω) be the space
of L2 functions on the domain Ω which admit a weak gradient in L2(Ω) and let H1

0 (Ω) be its zero-trace
subspace. We denote by H−1(Ω) the dual space of H1

0 (Ω) with the duality pairing 〈·, ·〉H−1(Ω),H1
0 (Ω). We

consider the time-dependent diffusion equation with homogeneous Dirichlet boundary conditions: Find u
such that

∂tu−D∆u = 0 in ]0, T [× Ω,

u = 0 on ]0, T [× ∂Ω,

u(0, ·) = u0 in Ω.

(2.1)

Here, D > 0 is a diffusion tensor supposed constant for the sake of simplicity, and u0 ∈ L2(Ω) is the initial
condition.
The weak formulation associated to (2.1) reads as follows: find u ∈ L2(0, T ;H1

0 (Ω)) such that ∂tu ∈
L2
(
0, T ;H−1(Ω)

)
and satisfying for almost all t ∈ ]0, T [ and for all v ∈ L2(0, T ;H1

0 (Ω))

〈∂tu, v〉H−1(Ω),H1
0 (Ω) +D

∫
Ω

∇u ·∇v dx = 0. (2.2)

We mention the fundamental books of Lions [32], Dautray and Lions [33], and Brezis [34], for a complete
analysis of parabolic problems.

3 Discretization methods and deterministic propagators
In this section, we present the numerical discretization of problem (2.2) to define the coarse propagator. In
particular, we specify the coarse grid for the discretization in time. The Lagrange finite element method,
the cell-centered finite volume method, and the discontinuous Galerkin method are presented.

3.1 Setting
For the time discretization, we introduce a division of the interval [0, T ] into subintervals In := [tn−1, tn],
1 ≤ n ≤ Nt, such that 0 = t0 < t1 < · · · < tNt

= T . The time steps are denoted by ∆tn = tn − tn−1,
n = 1, · · · , Nt. For a function v with sufficient regularity, we denote vn := v(tn), 0 ≤ n ≤ Nt, and we define
the approximation of the first-order time derivative thanks to the backward Euler scheme as follows:

∂tv
n :=

vn − vn−1

∆tn
∀ 1 ≤ n ≤ Nt.

For the space discretization, we consider a conforming simplicial mesh Th of the domain Ω, i.e. Th is a set
of elements K verifying

⋃
K∈Th

K = Ω, where the intersection of the closure of two elements of Th is either an

empty set, a vertex, or a l-dimensional face, 0 ≤ l ≤ d−1. Denote by hK the diameter of the generic element
K ∈ Th and h := maxK∈Th hK . We denote by Vh the set of Lagrange nodes of Th. This set is partitionned
into the interior nodes V int

h and the boundary nodes Vext
h . Similarly, the nodes of an element K ∈ Th are

collected in the set VK and we denote respectively by V int
K and Vext

K the set of the Lagrange nodes in K ∩Ω
and in K ∩∂Ω. The number of Lagrange nodes of Th is denoted by Nh and the number of internal Lagrange
nodes is denoted by N int

h . We denote by Eh the set of mesh faces. Boundary faces are collected in the set
Eext
h = {σ ∈ Eh;σ ⊂ ∂Ω} and internal faces are collected in the set E int

h = Eh\Eext
h . To each face σ ∈ Eh, we
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associate a unit normal vector nσ; for σ ∈ E int
h , σ = K ∩ L, nσ points from K towards L and for σ ∈ Eext

h

it coincides with the outward unit normal vector nΩ of Ω. The jump operator J·Kσ yielding the difference
of the argument from the two mesh elements that share σ ∈ E int

h is defined as JvKσ := (v|K − v|L)nσ,
where σ = K ∩ L and the average of v on σ ∈ E int

h is defined as {{v}}σ := 1
2 (v|K + v|L). When σ ∈ Eext

h ,
σ = ∂K ∩ ∂Ω, JvKσ := vnΩ and {{v}}σ = v. We also denote by Nsp the number of elements in the mesh
Th. For any spatial discretization method, the numerical unknown associated to (2.2) is obtained via the
following procedure. Knowing Un−1 ∈ Rm, m ≥ 1, the unknown vector Un ∈ Rm satisfies

Un = G∆tn(Un−1). (3.1)

where G∆tn(U) stands for the coarse discrete evolution over a time range of ∆tn (i.e. one coarse step).
In the following, we explicit for various discretization schemes the definition of the coarse propagator

G∆tn associated to (2.1). Note that the time step ∆tn of the coarse propagator is smaller than the window
∆T .

3.2 The Lagrange finite element propagator
In this section, we assume that p ≥ 1. We define the conforming spaces

Xp
h :=

{
vh ∈ C0(Ω); vh|K ∈ Pp(K) ∀K ∈ Th

}
⊂ H1(Ω),

Xp
0h := Xp

h ∩H
1
0 (Ω),

where Pp(K) stands for the set of polynomials of total degree less than or equal to p on the element K. The
Lagrange basis functions of Xp

h are denoted by (ψh,l)1≤l≤Nh
for xl ∈ Vh. We recall that ψh,l(x′l) = δl,l′ (the

Kronecker symbol) for all 1 ≤ l, l′ ≤ Nh. Given the data u0
h := u0 ∈ L2(Ω), the discrete weak formulation

associated to (2.2) consists in searching, for all 1 ≤ n ≤ Nt − 1, unh ∈ X
p
0h such that for all vh ∈ Xp

0h

1

∆tn

∫
Ω

(
unh − un−1

h

)
vh dx+D

∫
Ω

∇unh ·∇vh dx = 0. (3.2)

Expressing unh in the Lagrange basis (ψh,l)1≤l≤N int
h

, problem (3.2) reads

AnUn = F n−1. (3.3)

Here, Un ∈ RN int
h is the unknown vector expressed nodewise, satisfying

unh :=

N int
h∑
l=1

(Un)l ψh,l,

and An ∈ RN int
h ,N int

h is a sparse matrix defined by

Anl,l′ :=
1

∆tn

∫
Ω

ψh,lψh,l′ dx+D
∫

Ω

∇ψh,l ·∇ψh,l′ dx ∀1 ≤ l, l′ ≤ N int
h .

The right-hand side vector F n−1 ∈ RN int
h is defined as[

F n−1
]
l

:=
1

∆tn

∫
Ω

un−1
h ψh,l dx ∀1 ≤ l ≤ N int

h .

In practice, we choose for the sake of simplicity, all the time steps to be equal : ∆tn = ∆t, and thus applying
the propagator G∆tn , amounts to solving (3.3) that yields:

Un = G∆tn

(
Un−1

)
with G∆tn

(
Un−1

)
:= A−1 × F n−1.
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3.3 The cell-centered finite volume propagator
In the case of the cell-centered finite volume method, we assume that the family Th is superadmissible, in
the sense that for all cells K ∈ Th there exists a point xK ∈ K (the center of the cell) and for all faces σ ∈ Eh
there exists a point xσ ∈ σ (the center of the face) such that, for all faces σ ∈ EK , the line segment joining
xK with xσ is orthogonal to σ [5]. For an interior face σ ∈ E int

h shared by two elements K and L (denoted
in the sequel by σ = K ∩ L) we define the distance between these elements dKL := dist(xK ,xL). For an
exterior face σ ∈ Eext

h the distance between the element K and the face σ is denoted by dKσ := dist(xK ,xσ).
To approximate the space gradient we use∫

σ

∇v · nK,σ ds ≈ |σ|vL − vK
dKL

, σ ∈ E int
K , σ = K ∩ L,∫

σ

∇v · nK,σ ds ≈ −|σ| vK
dKσ

, σ ∈ ∂Ω.

Here, the notation nK,σ stands for the outward unit normal vector to the elementK on the face σ. Obviously,

when σ ∈ E int
h , σ = K ∩ L, nK,σ = −nL,σ. Furthermore, vK ≈

1

|K|

∫
K

v dx is an approximation of v in the

volume K and vσ is an approximation of v on the face σ. Using the cell-centered finite volume method, the
unknown of the model is discretized using a single constant value per cell: ∀n, 1 ≤ n ≤ Nt − 1 we let

Un := (unK)K∈Th ∈ RNsp .

By integration of (2.1) over the element K and using the Green’s formula we obtain

|K|
∆tn

unK +D
∑
σ∈EintK

FnK,σ − |σ|
unK
dKσ

= Qn−1
K ∀K ∈ Th. (3.4)

Here, the conservative numerical flux FnK,σ = −FnL,σ, for an internal face σ = E int
h , σ = K ∩ L, is given by

FnK,σ := −|σ|u
n
L − unK
dKL

.

The elementwise right-hand side Qn−1
K is defined by

Qn−1
K := − |K|

∆tn
un−1
K . (3.5)

Problem (3.4) reads then as follows: Find Un ∈ RNsp such that Un = G∆t(U
n−1), where (under the same

hypothesis ∆tn = ∆t)
G∆t(U

n−1) := A−1 × F n−1.

Here, An−1 ∈ RNsp,Nsp has a sparse structure and the right-hand side vector F n−1 ∈ RNsp is defined locally
by (3.5).

3.4 The discontinuous Galerkin propagator
In this section, we consider the discontinuous Galerkin method (or DG method) for solving problem (2.1).
This time, the unknowns are local and N int

h denotes the total number of local internal degrees of freedom
which is different and higher than for the finite element method. We define the discontinuous Galerkin space

Xp
h :=

{
vh ∈ L2(Ω); vh|K ∈ Pp(K) ∀K ∈ Th

}
6⊂ H1(Ω),

Xp
0h :=

{
vh ∈ L2(Ω); vh|K ∈ Pp(K) ∀K ∈ Th, vh|∂Ω = 0

}
6⊂ H1

0 (Ω).

Next, we introduce the bilinear form

ah(vh, wh) :=
∑
K∈Th

∫
K

∇vh ·∇wh dx+Ah(vh, wh). (3.6)
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Here, the bilinear symmetric form Ah consists of all consistency and stability terms. Several choices are
possible for the bilinear symmetric form Ah, provided that the bilinear form ah is coercive and bounded
with respect to the following norm on Xp

0h:

‖vh‖2Xp
0h

:=
∑
K∈Th

‖∇vh‖2K +
∑
σ∈Eh

1

hσ
‖JvhKσ‖2σ (3.7)

where hσ is the diameter of the face σ. We mention for instance the SIPG method [35]: For γ > 0 (large
enough), ∀vh ∈ Xp

h and ∀wh ∈ Xp
h

Ah(vh, wh) :=−
∑
σ∈Eh

∫
σ

({{∇wh}}σ JvhKσ + {{∇vh}}σ JwhKσ) ds

+
∑
σ∈Eh

γ

hσ

∫
σ

JwhKσJvhKσ ds,

(3.8)

or the NIPG method [36]: For γ > 0, ∀vh ∈ Xp
h and ∀wh ∈ Xp

h

Ah(vh, wh) :=−
∑
σ∈Eh

∫
σ

({{∇wh}}σ JvhKσ − {{∇vh}}σ JwhKσ) ds

+
∑
σ∈Eh

γ

hσ

∫
σ

JwhKσJvhKσ ds.

(3.9)

Other choices are also possible [7, 8, 9].
Considering the bilinear form ah defined by (3.6), (3.8), and (3.9) the discontinuous Galerkin scheme reads∑

K∈Th

1

∆tn

∫
K

(
unh − un−1

h

)
vh dx+D ah(unh, vh) = 0. (3.10)

Expressing unh in the Lagrange basis (ψh,l)1≤l≤N int
h

, problem (3.10) reads

AnUn = F n−1 (3.11)

where the unknown vector Un ∈ RN int
h is defined by

Un := (Un
K)K∈Th , and unh|K :=

dim(Pp(K)))∑
l=1

(Un
K)l ψh,l ∀xl ∈ V

int
K .

The sparse matrix An ∈ RN int
h ,N int

h is defined by

Anl,l′ :=
∑
K∈Th

(
1

∆tn

∫
K

ψh,lψh,l′ dx+D
∫
K

∇ψh,l ·∇ψh,l′ dx

)
+Ah(ψh,l, ψh,l′) ∀1 ≤ l, l′ ≤ N int

h

and the right-hand side vector satisfies

F n−1 :=
(
F n−1
K

)
K∈Th

with
[
F n−1
K

]
l

:=
1

∆tn

∫
K

un−1
h ψh,l dx ∀xl ∈ V int

K .

Finally, (3.11) is solved by inverting A (still under the hypothesis ∆tn = ∆t)

Un = G∆tn

(
Un−1

)
with G∆tn

(
Un−1

)
:= A−1 × F n−1.

Remark 3.1. Note that for each of the discretization methods described above, the resulting linear system
could also be solved by an iterative algebraic solver, which is a popular approach to speed up the numerical
resolution. We mention for instance the GMRES [37], the PCG [38] and the multigrid algorithm [39]. In
the present case, the matrix A is symmetric positive definite: then the fastest iterative solver would be the
multigrid algorithm.
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Remark 3.2. The resolution of (2.1) is also possible for different boundary conditions. For instance, when
Neumann boundary conditions are used, H1(Ω) is the set of test functions. Concerning the finite element
discretization, the number of unknowns is set to Nh. When the cell-centered finite volume method is used,
the number of unknowns is still equal to Nsp (except that in (3.4) the boundary terms are eliminated). For
the discontinuous Galerkin method, the total number of unknowns is the total number of degrees of freedom
Nh.

4 The Monte Carlo solver as a fine propagator
In this section, we propose a resolution of (2.1) by the Monte Carlo method. In the Monte Carlo procedure,
we propagate a finite number of particles following an appropriate stochastic process over a time window.
The positions of these particles at the end of the window are then used to estimate the solution of (2.1) in
each element K of a given mesh Th (the properties of this mesh Th are for instance similar to the one of
the DG method). Each particle carries a statistical weight, assigned according the appropriate rules (see
Section 5), and representative of the contribution of the particle to the sought response and that may vary.
We consider in the sequel “analog” Monte Carlo methods where the weights are fixed in the course of the
simulation. Note also that statistical weights could evolve and in this case the Monte Carlo methods are
called “non analog”, see [40]. In the sequel, M ≥ 1 denotes the number of particles. At the beginning of a
Monte Carlo computation, we have to sample a particle population corresponding to the initial condition
u0. Next, we have to specify how to describe each particle history starting from the initial condition and
until the particle either leaves the viable domain or attains the final simulation time.

4.1 Sampling
In this section, we detail the sampling procedure according to a given strictly positive probability density
function (PDF) denoted by f . We recall several techniques available in the literature and we detail the case
d = 1 as all multidimensional samplings are extensions to the monodimensional sampling. Note that when
d = 1, the domain Ω is partitionned into intervals Ei := [xi−1, xi], 1 ≤ i ≤ Nsp where Ω = ∪Ni=1Ei and that

Ω =
[
x0, xNsp

]
. We recall that a PDF f satisfies: f > 0 a.e. on Ω and

∫
Ω

f(y) dy = 1.

4.1.1 Direct inversion of the cumulative distribution

In this section, we recall a theoretical tool to sample from a probability density function f defined over the
domain Ω. Define the cumulative function F : Ω→ [0, 1] associated to the PDF f : Ω→ R∗+ by

F (x) :=

∫ x

x0

f(y) dy. (4.1)

Let ξ ∼ U ([0, 1]) be a random variable that obeys a uniform law on the interval [0, 1]. Compute the inverse
function:

x = F−1(ξ). (4.2)

Equation (4.2) is also known as the inversion theorem of the cumulative [12]. We repeat this procedure M
times to obtain a collection of M independent and identically distributed particles obeying the PDF f .

Remark 4.1. The direct inversion method often involves complicated functions and in some cases the
cumulative function F is hard to invert.

4.1.2 The table lookup method

In this case, we invert numerically the cumulative function F (associated to the PDF f) whose inverse
is often hard to compute analytically. First, we construct for each interval Ei the associated cumulative
distribution

Fi :=

i∑
j=1

∫ xj

xj−1

f(x) dx.
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Let ξ ∼ U ([0, 1]). Obviously, there exists a unique i ∈ [1, Nsp] such that Fi−1 ≤ ξ < Fi. By a linear
interpolation, the approximate solution of the equation F (x) = ξ is given by

x :=
(xi − xi−1) ξ − xiFi−1 + xi−1Fi

Fi − Fi−1
.

We repeat this procedure M times to obtain a set of sampled particle positions obeying the interpolant of
f .

4.1.3 Rejection method

Next, we present the rejection method, often used when a simpler PDF is available. In this case, we assume
there exists a PDF ĝ : Ω→ R∗+ “easy” to sample from, such that

f(x) ≤ kĝ(x), ∀x ∈ Ω

with k ≥ 1 a constant.

We set α(x) =
f(x)

kĝ(x)
. First, we compute the cumulative distribution G : Ω → [0, 1] associated to the

density ĝ following (4.1). Next, we sample according to the PDF ĝ the position x employing the direct
inversion of the cumulative procedure (4.2) and we compute α(x). Then, we consider a uniform random
number ξ following the uniform law on the interval [0, 1]: ξ ∼ U ([0, 1]). If ξ ≤ α(x), then accept x.
Otherwise, reject it and go back to the first step. This method provides a sequence of values x obeying the
PDF f that is hard to simulate [12, Theorem 2.5].

4.2 Sampling of the initial condition
Suppose now that the initial condition u0 is a probability density function. We use a sampling procedure
given above to obtain a population of particles X0 ∈ RM . If u0 > 0 is not a probability density function,

i.e.
∫

Ω
u0(x) dx 6= 1, we sample from the PDF ũ0 defined by ũ0(x) :=

u0(x)∫
Ω
u0(y) dy

. Obviously, ũ0 > 0 and∫
Ω
ũ0(x) dx = 1. We obtain a collection of particle positions that we denote by X̃0. Finally, to obtain a

population of particles X0 ∈ RM corresponding to the initial condition u0, we consider the population X̃0

and we attribute to each particle i a statistical weight equal to ωi =
∫

Ω
u0(y) dy. Note that, when u0 is

already a PDF, we assign to each particle i (after sampling) a statistical weight ωi = 1.

4.3 Simulation of a Brownian motion
Concerning the fine Monte Carlo solver we consider a subdivision of the interval [0, T ] into subintervals
[t̃n−1, t̃n], 1 ≤ n ≤ N? such that 0 = t̃0 < t̃1 < . . . < t̃N? = T . The time steps are denoted by δtn = t̃n−t̃n−1,
n = 1, · · · , N?. The underlying stochastic process for the diffusion equation whose diffusion coefficient is
D > 0 is a Brownian motion or a Wiener process [30, 41, 42]. The variation of a Wiener process, over each
time interval (δtn → 0), is a continuous Gaussian probability density function. We simulate the Brownian
motion at times t̃n, n = 0, · · ·N? − 1. Knowing the position x′ at time t′ > 0 of a given particle, we
determine its subsequent position x at time t > t′ by sampling the Gaussian transition kernel

T (x′, t′ → x, t) :=
1√

2πD (t− t′)
exp

(
− (x− x′)

2

2D (t− t′)

)
. (4.3)

We say that the particle displacement x − x′ follows the normal distribution law whose mean is 0 and
whose standard deviation is D(t − t′) i.e. x − x′ ∼ N (0,D(t − t′)). For the sake of clarity, the notation
(x′, t′ → x, t) means that we randomly displace the particle having the position x′ at time t′ to position x
and time t.

Based on (4.3), the position of the particles at time t denoted by Xt when we know the positions of the
particles at time t′ denoted by Xt′ is determined by the formula,

Xt = Xt′ +
√

2D(t− t′) S (4.4)
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where S ∈ RM is a standard normal Gaussian vector.
A popular approach to generate Gaussian random variables N (0, 1) is the Box-Muller algorithm. We

refer to [43] for more details.

Finally, the approximation of the particle density
∫
K

un(x) dx at any time step n (where we recall that

un := u(n∆T )), is given by ∫
K

un(x) dx ≈ 1

M

M∑
i=1

1ni∈K × ωi. (4.5)

Here, 1ni∈K denotes the characteristic function such that 1ni∈K = 1 if the particle i (after its random walk)
belongs to the element K at time n∆T and is otherwise equal to 0. Note that for an infinite number of
simulated particles M → +∞, the law of large numbers provides an exact computation in (4.5).

To take into account Dirichlet boundary conditions, the particles that cross the spatial boundaries x = x0

or x = xNsp
are killed. The Monte Carlo computation presented in (4.5) is sequential in the sense that one

processor is employed throughout the simulation. The variance and the standard deviation can be computed
to determine the confidence intervals [44]. We present in the following Section the parallelized Monte Carlo
algorithm which is more practical and competitive.

Remark 4.2. Concerning Neumann boundary conditions, the particles crossing the spatial boundary are
reflected inside the domain ensuring mass conservation.

4.4 Parallelized Monte Carlo
In practice, we realize the Monte Carlo computation p > 1 times independently. We simulate p > 1 batches
or replicas of M ′ particles so that M = p ×M ′. This is a more convenient manner to compute the Monte
Carlo expectation (4.5) as it allows parallelization per batches. More precisely, one processor is devoted to
one batch. For a given M , the greater the number of batches, the faster the computation. Furthermore,
the Monte Carlo computation per batches is a practical way to compute the variance (see below). In this
case, we denote by ZnK,j the score associated to the element K ∈ Th in the batch j ∈ [1, p] at the fixed time
step n. This score is defined as the result of the Monte Carlo computation (4.5) for the batch j:

ZnK,j :=
1

M ′

M ′∑
i=1

1ni∈K,j × ωi (4.6)

Here, 1ni∈K,j denotes the characteristic function for the replica j such that 1ni∈K,j = 1 if the particle i belongs
to the element K, and is otherwise equal to 0. Then, the particle density is approximated by∫

K

un(x) dx ≈ 1

p

p∑
j=1

ZnK,j . (4.7)

Note that for a very large number of processors the previous Monte Carlo computation is exact as a result
of the law of large numbers. The variance denoted by Var(ZnK) is defined in K ∈ Th by

Var(ZnK) :=
1

p− 1

1

p

p∑
j=1

(
ZnK,j

)2 −
1

p

p∑
j=1

ZnK,j

2
 .

The standard deviation denoted by σ̂n is defined by

σ̂n :=
√

Var(ZnK).
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We also define the Monte Carlo error bars in each mesh element K ∈ Th:

ÎnK :=

1

p

p∑
j=1

ZnK,j − 1σ̂n,
1

p

p∑
j=1

ZnK,j + 1σ̂n

 , (4.8)

InK :=

1

p

p∑
j=1

ZnK,j − 2σ̂n,
1

p

p∑
j=1

ZnK,j + 2σ̂n

 , (4.9)

ĨnK :=

1

p

p∑
j=1

ZnK,j − 3σ̂n,
1

p

p∑
j=1

ZnK,j + 3σ̂n

 . (4.10)

From the probability theory [45], the probability for the exact solution u at time Tn to be in ÎnK is approx-
imately equal to 68%, the probability to be in InK is approximately equal to 95%, and the probability for
the exact solution to be in ĨnK is approximately equal to 99.7%.

5 A hybrid parareal Monte Carlo algorithm
We want to build a hybrid parareal scheme with a coarse propagator G given by a deterministic solver, and
a fine propagator F given by a Monte Carlo solver. Let Un ∈ Rm be the deterministic solution. When
the finite element method and the discontinuous Galerkin method are employed m = N int

h , and when the
cell-centered finite volume method is considered, m = Nsp. The statistical representation of Un is still
denoted by Xn and to simplify the notations, we denote by F∆T (Un) the whole Monte Carlo computation.
In fact, in this notation is gathered the statistical representation Xn of Un, the fine discrete evolution over
a time range of ∆T , and the averaging step (4.7). Let 1 ≤ k ≤ K, be the parareal index such that Un+1

k is
the approximation of Un+1.

The numerical solution obtained for a batch j ∈ [1, p] at parareal iteration k is denoted by Un+1
k,j . Then,

the final solution Un+1
k is obtained by the averaging

Un+1
k :=

1

p

p∑
j=1

Un+1
k,j . (5.1)

In the sequel, M ′ > 1 is the number of particles. The hybrid Monte Carlo algorithm that we propose is the
following.
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Algorithm 1 Hybrid Monte Carlo Algorithm

1. Initialization: Choose an initial vector U0 ∈ Rm and compute a coarse approximation Un+1
k=0 ∈ Rm

of the numerical unknown Un+1 ∈ Rm at each time observable (n+ 1) ∆T , 0 ≤ n ≤ N − 1, by the coarse
propagator

Un+1
k=0 := G∆T (Un

k=0) where U0
k=0 := U0. (5.2)

for k = 1 : K
for j = 1 : p (in parallel)

for n = 0 : N − 1 (in parallel)

2. if k = 1
Compute the statistical representation Xn

0,j ∈RM
′
using the

sampling procedure 4.1 from Un
0 with uniform weights.

else
When n = 0, use the statistical representation X0

0,j with
uniform weights. Otherwise, employ the statistical
representation obtained before the average F∆T (Un−1

k−2,j)
and modify each particle weight according to (5.5).

end

3. Compute the Monte Carlo propagation and the average.
4. Compute the correction term:

F∆T (Un
k−1,j)/G∆T (Un

k−1,j). (5.3)

end
for n = 0 : N − 1

5. Compute the prediction term G∆T (Un
k,j) and next the hybrid

solution at the time observable (n+ 1) ∆T :

Un+1
k,j := G∆T (Un

k,j)×
(
F∆T (Un

k−1,j)/G∆T (Un
k−1,j)

)
. (5.4)

6. Update the statistical weights:[
ωn+1
k,j

]
|i∈K :=

[
ω̃nk−1,j

]
|i∈K ×

(
Un+1
k,j /F∆T (Un

k−1,j)
)
|K (5.5)

where
[
ω̃nk−1,j

]
|i∈K is the weight of the particle i ∈ K at time

step n and parareal step k − 1 after the use of the kernel
transport (4.4) (before averaging). See also Remark 5.3.

end
end

for n = 0 : N − 1 (loop for parareal update)

7. Compute Un+1
k :=

1

p

p∑
j=1

Un+1
k,j . Check the stopping criterion:

sup
∣∣Un+1

k −Un+1
k−1

∣∣≤ C√
M

with C > 0 a fixed parameter. If satisfied,
set Un+1 = Un+1

k . If not, set k := k + 1 and go back to the loop
indexed by k.

end
end

Remark 5.1. The first stage of Algorithm 1 provides a coarse approximation of the solution at each ob-
servation time Tn = n∆T . Furthermore, the initial coarse deterministic approximations provided by (5.2)
are equal in all batch j ∈ [1, p]. However, the corresponding statistical versions Xn+1

k=0,j are different in
each batch j ∈ [1, p]. For the sake of clarity, we have used the notation Un+1

k=0,j to indicate the presence of
the sampling procedure on a given batch when where used the fine propagator. Next, observe that U1

k,j is
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constant ∀k ≥ 1 since

U1
k+1,j = G∆T (U0

k+1,j)×
F∆T (U0

k,j)

G∆T (U0
k,j)

= F∆T (U0).

Remark 5.2. Also, observe that our hybrid numerical solution computed from (5.4) is different from the
one presented in (1.1). Indeed, the solution of the diffusion model (2.1) should be nonnegative and thus the
formula (5.4) is more convenient. Note also that in the definition of the correction factor (5.3), G∆T (Un

k−1,j)
should be nonzero in all mesh elements. To tackle this difficulty, one can add to G∆T (Un

k−1,j) the quantity
ε ≈ C/M .

Remark 5.3. On a given batch j ∈ [1, p], when the hybrid solution Un+1
k,j is computed we need its statistical

version Xn+1
k,j to compute the subsequent parareal solution Un+2

k+1,j. Instead of sampling Un+1
k,j and thus

introducing a bias in the Monte Carlo solver, we employ the statistical version of the deterministic object
F∆T (Un

k−1,j) (that we denote for instance by F̃∆T (Un
k−1,j)) which is available but we modify each of its

particles weight as provided by (5.5). With this construction, the normalized histogram (i.e. the number of
particles that fall in each element divided by the total number of particles) of the population F̃∆T (Un

k−1,j)

weighted by ωn+1
k,j provided by (5.5) gives the deterministic representation Un+1

k,j . The formula (5.5) could
also be seen as the evolution of the statistical weights.

Remark 5.4. In terms of CPU cost, the Monte Carlo algorithm presented in Section 4.4 employs in its best
performance p processors. The hybrid parareal strategy presented here computes at a fixed iteration k the
propagations F∆T (Un

k−1,j) in parallel and the prediction term which has a low cost. This strategy provides
a total number of processors equal to p × (N − 1) which allows a computational speed-up of the standard
Monte Carlo resolution.

6 Numerical benchmark experiments
This section illustrates numerically the behavior of the hybrid parareal scheme proposed above. We consider
a one dimensional domain Ω consisting in a segment of length L = 5 m. We then solve the model

∂tu−D∂2
xxu = 0 in Ω× ]0, T [ ,

u = 0 on ∂Ω× ]0, T [ ,

u(x, 0) = u0(x) in Ω.

(6.1)

We test our hybrid strategy with a coarse P1 finite element propagator where the time steps are supposed
constant ∆tn = ∆t = ∆T := 2 s ∀1 ≤ n ≤ Nt, and a fine diffusion Monte Carlo propagator having a
constant time step δtn = δt := 2× 10−4 s. The definition of Nt is provided in the two following test cases.
We consider M ′ := 104 particles and we use p := 103 independent replicas so that the total number of
simulated particles is M := M ′× p = 107. Here, Algorithm 1 is thus repeated p = 103 times independently.
Furthermore, the parameter C in the stopping criterion 7. of Algorithm 1 is chosen as C = 2. For the sake
of clarity, the exact solution of (2.1) is denoted by u, the solution obtained by a full Monte Carlo algorithm
is denoted by uMC, the solution provided by the coarse finite element solver is denoted by uFEM, and the
solution given by our hybrid strategy is denoted by uHYB. The exact solution u ∈ C0([0, T ] × Ω) for this
benchmark problem can be obtained explicitly and reads

u(x, t) :=
2

L

∫ L

0

u0(ξ)

∞∑
n=1

sin
(nπx
L

)
sin

(
nπξ

L

)
exp

(
−Dn

2π2t

L2

)
dξ. (6.2)

We compare the performances of the full Monte Carlo algorithm and the one of the hybrid parareal algorithm.
We suppose that p processors are available to speed-up the Monte Carlo algorithm (one processor for each
batch). It means that on one dedicated processor, we study the displacement of M ′ = 104 particles and we
compute the Monte Carlo expectation (4.7). Besides, when the hybrid parareal solver is used, p× (Nt − 1)
processors are available (p for the number of batches, Nt − 1 for the number of time steps where the
parallelization occurs in Algorithm 1). To sample the initial distribution u0, we employ the inverse of the
cumulative procedure as described in Section 4.1.1.
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Figure 1: Coarse finite element resolution and statistical Monte Carlo error at time step n = 1 (top left),
n = 3 (top right), n = 4 (bottom left), and n = 5 (bottom right).

6.1 A first test case
The final simulation time is set to T = 10 s and then the number of time steps Nt = 5. The diffusion

coefficient D is equal to 0.5m2.s−1. The initial condition u0 is taken as u0(x) :=
1

L
such that

∫ L

0

u0(x) dx =

1. Each particle i of the statistical representation of u0 has a statistical weight ωi = 1.
In Figure 1, we display the shape of the coarse finite element solution uFEM for four selected time values:

t = 2 s, t = 6 s, t = 8 s and t = 10 s. We observe that the coarse solution uFEM is not compatible with the
Monte Carlo uncertainty defined in (4.9). It thus proves that the coarse propagator G∆T is a poor predictor.
Here, the Monte Carlo solution uMC is considered as the reference method. The analytical solution u is
obviously contained in the Monte Carlo uncertainty given by (4.9) which is not the case for uFEM.

In Figure 2, we have represented for one selected batch (j = 1) the behavior of the coarse propagator
G∆T and the behavior of the fine propagator F∆T at the time step n = 5. Recall that

U5
k=1,j := G∆T (U4

k=1,j)︸ ︷︷ ︸
prediction

×
F∆T (U4

k=0,j)

G∆T (U4
k=0,j)︸ ︷︷ ︸

correction

and

U5
k=2,j := G∆T (U4

k=2,j)︸ ︷︷ ︸
prediction

×
F∆T (U4

k=1,j)

G∆T (U4
k=1,j)︸ ︷︷ ︸

correction

.
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Figure 2: Construction of the hybrid solution U5
k=1,j (left), and coarse propagators (right) at time iteration

n = 5 for the batch j = 1.
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Figure 3: Shape of the hybrid solution at k = 0 and k = 1 (left) and shape of the exact solution and hybrid
solution at k = 1 and k = 2 (right).

In the left Figure 2, the red curve displaying G∆T (U4
k=1,j) represents the prediction terms, as computed

by the coarse propagator based on the FEM method. It is computed fastly. Next, the ratio of the green
curve F∆T (U4

k=0,j) and the blue curve G∆T (U4
k=0,j) is the correction term. It lifts the coarse approximation

G∆T (U4
k=1,j) to obtain the numerical solution U5

k=1,j . Also observe that the shape of the hybrid solution
follows the shape of the result of the fine propagator F∆T (U4

k=0,j) up to a small constant shift. This latter
is given by the ratio provided in the second graph of Figure 2 (green curve). Furthermore, we observe that

the ratio
G∆T (U4

k=2,j)

G∆T (U4
k=1,j)

tends to 1, which means that, from k = 2, the approximation is achieved by the

accuracy of the fine propagator F∆T .
In Figure 3, we have displayed for the time step n = 5, the shape of the hybrid solution when k = 0, k = 1,

k = 2, and the shape of the exact solution u given by (6.2). At k = 0, which corresponds to the initial step
of the hybrid Algorithm 1, we observe that the solution U5

k=0 is far from the exact solution u and lies outside
the Monte Carlo uncertainty. Such observation is coherent with the fact that the initial stage corresponds
to a poor prediction of the numerical solution. Next, at k = 1, a correction step is performed yielding

an accurate numerical solution as we can see in the second graph. Note that here, U5
k=1 :=

1

p

p∑
j=1

U5
k=1,j .

Furthermore, observe that
∥∥(u− uHYB

)
(x, T )

∥∥
L∞(Ω)

≈ 3×10−4 which is in agreement with the Monte Carlo
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Figure 4: Hybrid solution at time iteration n = 5 and at parareal iteration k = 1, k = 2, and Monte Carlo
error bar.
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Figure 5: Error in the L∞(0, T ;L∞(Ω)) norm between u and uMC, and error in the L∞(0, T ;L∞(Ω))
between u and uHYB as a function of the number of particles.

convergence speed. Next, we observe that the solutions U5
k=1 and U5

k=2 coincide on the spatial domain Ω
in the sense that the stopping criterion 7. of Algorithm 1 is satisfied. Thus our hybrid strategy requires
only 1 parareal iteration to converge for the current time step. Note that we observed numerically the same
phenomenon for all time intervals tn = n∆t.

Figure 4 is a crucial complement to Figure 3, as it shows that the hybrid solutions U5
k=1 and U5

k=2 lies
within the Monte Carlo uncertainty. We zoomed on the the right cells of Figure 3.

In Figure 5, we represented for the full Monte Carlo resolution and the hybrid parareal resolution the
error in the L∞(0, T ;L∞(Ω)) norm as a function of the number of particles. Recall that∥∥u− uMC

∥∥
L∞(0,T ;L∞(Ω))

= max
t∈[0,T ]

max
x∈Ω
|
(
u− uMC

)
(x, t)| (6.3)

and ∥∥u− uHYB
∥∥
L∞(0,T ;L∞(Ω))

= max
t∈[0,T ]

max
x∈Ω
|
(
u− uHYB

)
(x, T )|. (6.4)

We observe that the curves of the Monte Carlo error and of the hybrid error behave like
1√
M

which is in

agreement with the Monte Carlo convergence rate.
The details of the efficiency of our Hybrid strategy can finally be appreciated in Figure 6 and Table 1.

We compared in Figure 6 the global CPU time of the simulation for two different strategies: when the
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Figure 6: CPU time for each batch (left) and cumulated CPU time with no parallelization per batch (right).

Number
of

particles

Number
of

batch

Parallelized
Monte Carlo

Hybrid
parallelized
Monte Carlo

k = 1

Hybrid
parallelized
Monte Carlo

k = 2

Gain factor
k = 1

Gain factor
k = 2

105 102 1653.4 s 335.76 s 534.16 s 4.92 3.04

104 103 164.09 s 33.05 s 7.97 s 4.96 3.09

103 104 16.86 s 3.39 s 0.83 s 4.97 3.07

102 105 1.78 s 0.35 s 0.11 s 5.08 3.02

Table 1: Computational cost of the full Monte Carlo resolution and of the hybrid resolution

parallelization per batch is used (left Figure 6), and when no parallelization per batch is used (right Figure 6).
More precisely, on the left Figure, one processor is assigned to each batch. For the full Monte Carlo
algorithm, 103 processors are therefore available. For the hybrid parareal strategy p × (Nt − 1) processors
are available for the computation of the numerical solution. When no parallelization per batch occurs (right
Figure) the standard Monte Carlo algorithm computes the expectation sequentially (only one processor
is available). However, the hybrid strategy employs Nt − 1 processors for the correction step. In both
situations, the hybrid parareal strategy employs more processors. We observe from the left Figure that the
full Monte Carlo expectation is computed in each batch after roughly 164 seconds. The average CPU time
for the standard Monte Carlo simulation (with parallelization) is equal to about 164 seconds (see Table 1). It
is roughly 1000 times less than the sequential Monte Carlo resolution (right Figure). Concerning our hybrid
parareal strategy, the solution for each batch is computed only after roughly 33 seconds (see the left Figure)
which is much faster than the parallelized Monte Carlo resolution. Besides, the total cumulated CPU time
when no parallelization per batches occurs is equal to 3.3 × 104 seconds which is also less expensive than
the sequential Monte Carlo algorithm. Finally, when parallelized Monte Carlo is considered, our hybrid
parareal strategy yields a gain factor in the overall CPU time of around 5. For the sake of completness,
we also test in Table 1 the influence of the number of particles/batches on the CPU time. We see that the
hybrid resolution is always much faster than the standard full Monte Carlo resolution with a gain factor
roughly equal to 5 when 1 parareal iteration is performed and equal to 3 when 2 parareal iterations are
performed. The ideal scaling is equal to Nt/k.

6.2 A second test case
For this second example, the final simulation time is T = 14 s. The diffusion coefficient is set to D =
0.5m2.s−1 for the fine propagator and D = 0.48m2.s−1 for the coarse propagator. We consider M ′ = 105

particles and we simulate p = 102 independant replicas (batches) so that the total number of particles is
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Figure 7: Solution at initial time t = 0 (left) and histogram of the statistical population at initial time t = 0
(right) for the second test case.

0 1 2 3 4 5

Spatial domain [m]

0

0.5

1

1.5

2

2.5

S
o
lu

ti
o
n

10 -3

3.7 3.8 3.9 4 4.1 4.2

Spatial domain [m]

0.8

0.9

1

1.1

1.2

1.3

S
o
lu

ti
o
n

10 -3

Figure 8: Shape of the hybrid solution at n = 7 and k = 0, k = 1, k = 2, and shape of the exact solution.

M = 107. The coarse propagator is a P1 finite element solver with constant time step ∆t := 2 s and the
fine propagator is the Monte Carlo solver with constant time step δt = 2× 10−4 s. Furthermore, the coarse
time step ∆t is chosen equal to the observable window ∆T . The initial condition u0 is chosen as

u0(x) =
1

L

(
1 + cos

(πx
L

))
.

Here, u0 is a PDF, and to each particle i of the statistical representation of u0 is assigned the statistical
weight ωi = 1. In Figure 7 we represent the shape of the initial guess and its statistical version. Note
that here, the repartition of the particles in each intervals follows the methodology of the inversion of the
cumulative function (see Section 4.1.1.) However, before employing the fine solver in the parareal stages we
use the table lookup method to find numerically the intervals where each particle live.

Figure 8 displays at the final time step n = 7, the shape of the analytical solution and the parareal
sequence U7

k for k = 0, k = 1, and k = 2. Note that the solution U7
k=0 corresponds to the coarse solution

obtained using the coarse solver while U7
k=1 and U7

k=2 correspond to corrected solutions as the fine solver
is applied. We observe from the left figure that the coarse solution (black curve) is far from the analytical
solution. Next, we see that a first parareal step will bring the solution (purple curve) closer to the analytical
solution (green curve) but is not sufficiently close to stop the parareal iterations. Indeed, in the right
figure we perform a zoom on several cells and we observe that a second parareal iteration (red curve) is
required to converge to the analytical solution and to have the analytical solution present in the Monte
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Figure 9: CPU time for each batch (left) and cumulated CPU time with no parallelization per batch (right).

Carlo error bar. In Figure 9 we represent for the two strategies the required CPU time. As for the first test
case, we observe that the hybrid resolution with this time k = 2 parareal iterations is less expensive than
the classical Monte Carlo resolution. The hybrid resolution computes the expectation in each batch after
roughly 540 seconds whereas the classical Monte Carlo expectation computes the expectation in each batch
after roughly 1810 seconds. Then, when parallelized Monte Carlo is considered, our hybrid stratedy yields
a gain factor in the overall CPU time at around 3.44. The figure on the right is a complement and shows
that if no parallelization per batch occurs the hybrid strategy is still better and reduces significantly the
computational cost.

7 Conclusions
In this work, we have designed a parareal hybrid version of a Monte Carlo algorithm. We used the parareal-
in-time procedure to speed-up a Monte Carlo algorithm. We showed numerically that our strategy requires
few parareal iterations to reach convergence. Besides, our hybrid resolution is very fast in terms of CPU
time compared to a standard full Monte Carlo resolution. Implementation of Boltzmann transport kernel
and extension to transport of Neutron in nuclear reactors are under investigation.
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