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Several brain disorders are associated with abnormal brain asymmetries (asymmetric anomalies). Several computerbased methods aim to detect such anomalies automatically. Recent advances in this area use automatic unsupervised techniques that extract pairs of symmetric supervoxels in the hemispheres, model normal brain asymmetries for each pair from healthy subjects, and treat outliers as anomalies. Yet, there is no deep understanding of the impact of the supervoxel segmentation quality for abnormal asymmetry detection, especially for small anomalies, nor of the added value of using a specialized model for each supervoxel pair instead of a single global appearance model. We aim to answer these questions by a detailed evaluation of different scenarios for supervoxel segmentation and classification for detecting abnormal brain asymmetries. Experimental results on 3D MR-T1 brain images of stroke patients confirm the importance of high-quality supervoxels fit anomalies and the use of a specific classifier for each supervoxel. Next, we present a refinement of the detection method that reduces the number of false-positive supervoxels, thereby making the detection method easier to use for visual inspection and analysis of the found anomalies.

Introduction

Magnetic resonance imaging (MRI) is usually the standard image modality for structural brain analysis, as it provides detailed 3D images with high spatial resolution and high contrast for soft tissues [START_REF] Akkus | Deep learning for brain MRI segmentation: state of the art and future directions[END_REF]. Quantitative analysis of MR brain images has been used extensively for the characterization of brain disorders, such as stroke, tumors, and multiple sclerosis. Such methods rely on delineating objects of interest -(sub)cortical structures or lesions -trying to solve detection and segmentation simultaneously for tasks such as quantitative lesion assessment (e.g., volume), surgical planning, treatment assessment, and overall anatomic understanding [START_REF] Kamnitsas | Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[END_REF][START_REF] Chen | VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images[END_REF][START_REF] Soltaninejad | Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI[END_REF].

The simplest strategy to detect brain anomalies consists of a visual slice-by-slice inspection by one or multiple specialists. This process is very time-consuming and even impracticable when large data amounts need to be processed, and it is also inaccurate due to human errors. Continuous efforts have been made for automatic anomaly detection that delineates anomalies with accuracy close to that of human experts. However, this goal is challenging and complex due to the large variability in shape, size, and location among different anomalies, even when the same disease causes these (see, e.g., Fig. 1).

Recently, a method called Supervoxel-based Abnormal Asymmetry Detection (SAAD) [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF] was proposed to detect abnormal asymmetries in MR brain images. Unlike many methods that focus on detecting lesions specific to some disease, or morphology, SAAD aims to detect generic lesions focusing on their asymmetry. This is especially interesting since many neurological diseases are associated with abnormal brain asymmetries [START_REF] Wang | Statistical analysis of hippocampal asymmetry in schizophrenia[END_REF]. By using a supervoxel segmentation, combined with a oneclass per-supervoxel classifier, SAAD claims to obtain higher detection accuracy even for small lesions compared to state-of-the-art detection methods as deep generative neural networks. However, two key questions are still open for SAAD: (i) what is the impact of supervoxel segmentation in SAAD on the quality of the The different appearance of brain anomalies. Top: axial slices of three stroke patients with lesions (gold-standard borders in pink) that significantly differ in location, shape, and size. Bottom: slices of a 3D heatmap show the location frequency of stroke lesions across the brain. Although caused by the same disease, the lesions are sparsely distributed in the brain resulting in low-concentrated regions. The 3D heatmap was built from aligned manual lesion segmentation of stroke patients from the ATLAS dataset [START_REF] Liew | A large, open source dataset of stroke anatomical brain images and manual lesion segmentations[END_REF] after registration to a standard template.

abnormal asymmetry detection? (ii) why use a specialized one-class classifier for each supervoxel instead of a global classifier?

In this paper, we answer these questions by a detailed evaluation of different scenarios for supervoxel segmentation and classification to detect abnormal asymmetries in MR-T1 brain images using the SAAD method. Experimental results on 3D MR-T1 brain images with asymmetric stroke lesions confirm the importance of a high-quality fit of supervoxels to lesions and the use of a specific classifier for each supervoxel. Using these insights, we also show how we can improve the detection accuracy quantitatively compared to the original results of SAAD.

The remainder of this paper is organized as follows. Section 2 discusses related work on automatic brain lesion detection and segmentation. Section 3 introduces SAAD with a focus on its supervoxel segmentation step. Section 4 describes the experimental setup we used to analyze how SAAD's performance depends on the supervoxel segmentation and classification scheme used. Section 5 presents and discusses the obtained results. Section 6 concludes the paper.

Related work

Broadly speaking, automatic brain lesion detection/segmentation methods can be grouped into five classes. From the least to the most versatile, these are as follows:

Atlas-based methods. These methods use the a priori knowledge about the object's shapes in a training atlas set registered on a standard template, where each atlas consists of a source 3D image and its corresponding 3D label image with the mask of each 3D object of interest [START_REF] Martins | An adaptive probabilistic atlas for anomalous brain segmentation in MR images[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF][START_REF] Lötjönen | Fast and robust multi-atlas segmentation of brain magnetic resonance images[END_REF][START_REF] Manjón | volBrain: An online MRI brain volumetry system[END_REF][START_REF] González-Villà | Brain structure segmentation in the presence of multiple sclerosis lesions[END_REF]. Shape-constraints are often encoded either on a probabilistic atlas [START_REF] Martins | An adaptive probabilistic atlas for anomalous brain segmentation in MR images[END_REF] (each voxel has a prior probability of belonging to a given object) or by combining all segmentation masks by label fusion techniques [START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF]. Although atlas methods show impressive segmentation results for healthy tissues [START_REF] Martins | An adaptive probabilistic atlas for anomalous brain segmentation in MR images[END_REF][START_REF] Manjón | volBrain: An online MRI brain volumetry system[END_REF], they fail to delineate anomalies, especially given the latter's arbitrary shapes and locations (see, e.g., Fig. 1).

Supervised learning with hand-crafted features. These methods use different classifiers trained from various hand-crafted image features (e.g., edge detectors and texture features) to delineate anomalies by classifying voxels or regions of the target image [START_REF] Soltaninejad | Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI[END_REF][START_REF] Goetz | Extremely randomized trees based brain tumor segmentation[END_REF][START_REF] Geremia | Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images[END_REF][START_REF] Pinto | Brain tumour segmentation based on extremely randomized forest with high-level features[END_REF]. Such methods usually do not generalize well since the used features have limited representation capability considering the significant variation of the lesions' appearances. Moreover, these methods work well only for detecting anomalies related to diseases present in the training set.

Discriminative deep learning. These techniques have emerged as a powerful alternative to the previous class of methods, given their ability to learn highly discriminative features for a particular task. In particular, convolutional neural networks [START_REF] Lecun | Deep learning[END_REF] have become a mainstay of the computer vision community due to breakthrough performance in several applications [START_REF] Pouyanfar | A survey on deep learning: Algorithms, techniques, and applications[END_REF] as compared to approaches using hand-crafted features. Deep learning has gained popularity in medical image analysis as well [START_REF] Vasilakos | Neural networks for computer-aided diagnosis in medicine: A review[END_REF][START_REF] Kooi | Large scale deep learning for computer aided detection of mammographic lesions[END_REF][START_REF] Havaei | Brain tumor segmentation with deep neural networks[END_REF][START_REF] Aslani | Deep 2D encoderdecoder convolutional neural network for multiple sclerosis lesion segmentation in brain MRI[END_REF]. Such methods learn deep feature representations (e.g., convolutional features) in a datadriven way without any kind of feature engineering being required. Yet, there are some limitations:

(i) They require a large number of training images that must be previously annotated by specialists (e.g., lesion segmentation masks); (ii) Typically require weight fine-tuning (retraining) when used for a new set of images due to image variability across scanners and acquisition protocols; (iii) They are only designed for the anomalies found in the training set, just as the supervised methods outlined before; and (iv) The success of such methods on new images is limited by the absence of large, high-quality, anno-tated training sets for most medical image analysis problems [START_REF] Akkus | Deep learning for brain MRI segmentation: state of the art and future directions[END_REF].

Deep generative neural networks. Also known as Encoder-Decoder Neural Networks (EDNNs), or autoencoders, these methods have been used for unsupervised anomaly detection by modeling the distribution of healthy brain tissues and next detecting outliers as anomalies. The underlying hypothesis is that this model can reconstruct healthy brain anatomies while failing to reconstruct anomalies in images with some disorder. EDDNs learn to reconstruct training images from healthy individuals only by first compressing (encoding) them into a low-dimensional representation (latent features) and then decompressing that representation to minimize the reconstruction error between the input data and its reconstruction. Some methods [START_REF] Sato | A primitive study on unsupervised anomaly detection with an autoencoder in emergency head ct volumes[END_REF][START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF][START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF][START_REF] Chen | Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders[END_REF][START_REF] Atlason | Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder[END_REF] delineate anomalies by thresholding the resulting reconstruction errors, i.e., the residual image between the input image vs its reconstruction. Other methods [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF][START_REF] Tang | Abnormal chest X-ray identification with generative adversarial one-class classifier[END_REF] train a one-class classifier from latent features to classify if an image (or region of interest) has some anomaly [START_REF] Tang | Abnormal chest X-ray identification with generative adversarial one-class classifier[END_REF][START_REF] Martins | Modeling normal brain asymmetry in MR images applied to anomaly detection without segmentation and data annotation[END_REF]. Although these methods can detect extensive lesions in MR-T2 and CT [START_REF] Sato | A primitive study on unsupervised anomaly detection with an autoencoder in emergency head ct volumes[END_REF][START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF], they show inferior results in MR-T1 images and completely fail with small lesions, which are the most challenging cases.

Unsupervised approaches. All the above limitations of supervised methods motivate research on unsupervised anomaly detection approaches [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF][START_REF] Sato | A primitive study on unsupervised anomaly detection with an autoencoder in emergency head ct volumes[END_REF][START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF][START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF][START_REF] Guo | Automated lesion detection on MRI scans using combined unsupervised and supervised methods[END_REF]. These methods aim to learn a model from control images of healthy subjects only by encoding general knowledge or assumptions (priors) from healthy tissues. This model is next used to guide brain segmentation so that outliers who break such general priors are considered anomalies [START_REF] Guo | Automated lesion detection on MRI scans using combined unsupervised and supervised methods[END_REF]. However, as they do not use annotated samples, these methods may not accurately capture subtle differences between lesions and their surrounding healthy tissues. Shen et al. [START_REF] Shen | Detection of infarct lesions from single mri modality using inconsistency between voxel intensity and spatial location-a 3D automatic approach[END_REF] proved that the voxelintensity-based segmentation and the spatial-locationbased tissue distribution (based on a probabilistic atlas) in the lesions are inconsistent with those in healthy tissues. They use the conventional Fuzzy C-Mean algorithm and probabilistic maps from a template to quantify such inconsistencies, and then apply a threshold to obtain a binary lesion segmentation. Juan-Albarracin et al. [START_REF] Juan-Albarracín | Au-tomated glioblastoma segmentation based on a multiparametric structured unsupervised classification[END_REF] propose a more complex method that uses four different image modalities of MRI for a given patient to segment the brain tumors of the BraTS dataset [START_REF] Menze | The multimodal brain tumor image segmentation benchmark (brats)[END_REF]. All image voxels are grouped in a few clusters classified as normal or outlier, based on probabilistic maps from a template. However, this method is not practical in clinical routine because it requires many image modalities and only detects large lesions, as present, e.g., in BraTS. Since many neurological diseases are associated with abnormal brain asymmetries [START_REF] Wang | Statistical analysis of hippocampal asymmetry in schizophrenia[END_REF], a method called Supervoxel-based Abnormal Asymmetry Detection (SAAD) [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF] was recently proposed to detect abnormal asymmetries in MR brain images. SAAD registers all images to the same symmetric template, then computes asymmetries between the two hemispheres by using their mid-sagittal plane (MSP) as reference. Next, a new supervoxel segmentation method, named SymmISF, is used to extract pairs of symmetric supervoxels from the left and right hemispheres for each test image, guided by their asymmetries. Each pair generates a one-class classifier trained on control images to find supervoxels with abnormal asymmetries on the test image. SAAD was further extended to detect abnormal asymmetries in the own native image space of each test image [START_REF] Martins | Extending supervoxelbased abnormal brain asymmetry detection to the native image space[END_REF]. SAAD yields higher anomaly detection accuracy than deep generative neural networks [START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF][START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF]. However, as outlined in Section 1, the effect of the supervoxel segmentation quality and the use of a one-class classifier on the SAAD's detection accuracy are unknown.

Description of SAAD

We next describe the SAAD method (see also Fig. 2) and the supervoxel segmentation methods that we will use in conjunction to it. The method consists of four steps: 3D image preprocessing, asymmetry computation, supervoxel segmentation, and classification, described next. SAAD can detect abnormal asymmetries in any stage of a brain disorder, but it should preferably be used in clinical trials of initial stages to help early diagnosis and timely treatment.

3D Image Preprocessing

Automated analysis of MR images is very challenging due to inherent image acquisition problems such as noise, intensity heterogeneity, and variability of the intensity range and contrast. To alleviate these and make images more similar to each other, we use typical preprocessing steps known in the literature [START_REF] Akkus | Deep learning for brain MRI segmentation: state of the art and future directions[END_REF][START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF][START_REF] Manjón | volBrain: An online MRI brain volumetry system[END_REF][START_REF] Juan-Albarracín | Au-tomated glioblastoma segmentation based on a multiparametric structured unsupervised classification[END_REF], as shown in Fig. 3.

We preprocess the training control image set and the test image (Steps 1 and 4 in Fig. 2, respectively) by first performing noise reduction by median filtering, followed by mid-sagittal plane (MSP) alignment, and bias field correction by N4 [START_REF] Tustison | N4ITK: improved N3 bias correction[END_REF]. Since voxels from irrelevant tissues/organs for the addressed problem (e.g., neck and bones) can negatively impact the image registration and intensity normalization, we use the probabilistic atlasbased method AdaPro [START_REF] Martins | An adaptive probabilistic atlas for anomalous brain segmentation in MR images[END_REF] for skull stripping (Fig. 3b). To attenuate differences in brightness and contrast among images, we first apply a histogram matching between the segmented images and the template (inside its predefined brain segmentation mask). This operation only considers voxels inside the brain (Fig. 3d). We then perform deformable registration to place all images in the coordinate space of the ICBM 2009c Nonlinear Symmetric template [START_REF] Fonov | Unbiased nonlinear average age-appropriate brain templates from birth to adulthood[END_REF], whose hemisphere masks and MSP are well defined. This is a popular and widely used template in the literature constructed by averaging 152 brain 3D MT-T1 images from healthy subjects aged 18-43 years. This averaging process relies on several image-preprocessing operators, such as intensity normalization and nonlinear registration. We refer to [START_REF] Fonov | Unbiased nonlinear average age-appropriate brain templates from birth to adulthood[END_REF] for more details regarding the template construction. All registrations are performed by Elastix [START_REF] Klein | elastix: A toolbox for intensity-based medical image registration[END_REF]. 1Finally, we perform another histogram matching between the registered images and the template, and use the brain segmentation mask from the template and its MSP to separate the left and right brain hemispheres in each image for further asymmetry computation (Fig. 3e).

Asymmetry Computation

Let X be the set of registered training 3D images (output of Step 1) and I the test 3D image after preprocessing (output of Step 4). We obtain the set of asymmetry maps A X for all X by computing the voxel-wise absolute differences between left and right hemispheres concerning the template's MSP (Step 2).

Next, we create a normal asymmetry map A X (Step 3) by averaging the absolute difference values of A X (Fig. 4a). We use this map to reduce the detection of false-positive asymmetries in I in commonly asymmetric brain regions (e.g., cortex), as detailed next in Section 5. Finally, we compute voxel-wise absolute differences between the hemispheres for I (Figs. 4b-c) and then subtract A X from them. Resulting positive values form a final asymmetry map A I (Fig. 4d) for the test image I (Step 5).

Symmetric Supervoxel Segmentation

Directly comparing the flipped, segmented, and registered hemispheres is not helpful as it will not tell us where small-scale asymmetries occur [START_REF] Martins | Extending supervoxelbased abnormal brain asymmetry detection to the native image space[END_REF]. At the other extreme, comparing every voxel pair in these hemispheres is risky, since individual voxels contain too little information to capture asymmetries. These difficulties motivate the use of supervoxels as the unit of comparison (Step 6).

An ideal supervoxel segmentation should create precisely one supervoxel per anomaly. This is, of course, highly unlikely to succeed, given the high variability of size, shape, and position of anomalies (see again Fig. 1). At any rate, too small supervoxels should be avoided as they oversegment larger anomalies and thus cannot capture their essence, and also will confuse the end users when visually exploring the results. Too large supervoxels, in contrast, should be avoided as they cannot precisely delineate small-scale anomalies from the background (undersegmentation).

SAAD uses a method called SymmISF [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF] to extract symmetrical supervoxels from left and right brain hemispheres simultaneously. SymmISF is based on the recent Iterative Spanning Forest (ISF) framework [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF] for superpixel segmentation and has three steps: (i) initial seed estimation; multiple iterations of (ii) connected supervoxel delineation; and (iii) seed recomputation to improve delineation (Fig. 5), as follows. Initial seed estimation is a crucial step for the success of ISF. The adopted strategy for that, however, depends on the target problem, which, in turn, may have specific constraints. For the problem of this work, the simplest approach to find initial seeds is to select N seeds uniformly distributed in the right hemisphere defined by a segmentation mask for the template. We call this strategy Uniform SymmISF next. However, there are no guarantees this strategy will place at least one seed within each asymmetric anomaly, so this can easily lead to undersegmentation.

The initial seed estimation strategy proposed by SAAD, called next Asymmetry-guided SymmISF, is guided by the hemispheric asymmetries of the image when selecting one seed per local maximum in A I (see the asymmetry-guided seeds in Fig. 5). It computes the local maxima of the foreground of a binarized A I at γ×τ, where τ is Otsu's threshold [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. The higher the factor γ is, the lower is the number of asymmetric components in the binarized A I . This seed-set is next extended with a fixed number (e.g., 100) of seeds by uniform grid sampling the low-asymmetry regions of the binarized image. A detailed comparison of Uniform SymmISF with Asymmetry-guided SymmISF is presented next in Section 5.1.

As the cortex is typically very asymmetric, we can still remove seeds placed very close to the hemisphere borders to reduce the number of false positives in such regions and also to weight the normal asymmetry map to attenuate other asymmetries further. Both strategies are evaluated and discussed in detail in Section 5.2.

By stacking the right hemisphere with the left hemi-sphere -flipped using the MSP -as the input 2-band volume (Fig. 5), SymmISF applies ISF only inside the right hemisphere from the initial seeds. ISF relies on a cost function controlled by two parameters: α and β. This yields a label map in which each supervoxel is given a distinct label. Finally, SymmISF flips these supervoxels to obtain the symmetrical supervoxels in the left hemisphere, which yields the final label map L (output of Step 6). Note that one can proceed conversely, i.e., apply SymmISF on the left hemisphere, and map the result to the right hemisphere.

Feature Extraction and Classification

SAAD presents a novel approach for outlier detection -here instantiated for abnormal asymmetry detection -that designs a set of specialized one-class classifiers (OCCs) specific for each test 3D image, as shown in Fig. 6. For each 3D test image, each pair of symmetrical supervoxels is used to create a specialized OCC using as feature vector the normalized histogram of the asymmetry values inside the pair (Step 7). Classifiers are trained from control images only, thus locally modeling normal asymmetries for the entire hemispheres. Finally, SAAD uses the trained OCCs to find supervoxels with abnormal asymmetries in the corresponding testing image (Step 8). Fig. 7 illustrates the supervoxel classification. By default, SAAD yields pairs of symmetric supervoxels corresponding to the detected abnormal asymmetries. This output is useful for subsequent visual analysis as an expert can compare such regions in both hemispheres as well as their computed asymmetries. To output only the supervoxel that covers the detected asymmetric anomaly, one may simply compute the similarity from the test image with the template inside each supervoxel of the pair. The less similar supervoxel contains the anomaly. When dynamically designing specialized one-class per-supervoxel classifiers for each test image, SAAD implicitly considers the position of the supervoxels in the hemispheres when deciding upon their asymmetry. The central premise for this is that a single global classifier cannot separate normal and anomalous tissues by only using texture features. Experimental results concerning this hypothesis are presented in Section 5.3.

Even though the proposed classification scheme demands a higher processing time compared to using a single global classifier trained offline, this time is not too high (≈ 2 min) and still feasible for clinical purposes as SAAD relies on a simple and fast feature extraction (histogram) and the one-class linear Support Vector Machine [START_REF] Manevitz | One-class SVMs for document classification[END_REF]. Section 5 presents more details.

Experiments

This section describes the MR-T1 image datasets, baselines, and the evaluation protocol considered for the experiments. All computations were performed on the same Intel Core i7-7700 CPU 3.60GHz with 64GB of RAM.

Datasets

To answer our research questions (see Section 1), we need datasets with volumetric MR-T1 brain images (i) from healthy subjects (for SAAD training), and (ii) with hemispheric asymmetric lesions of different sizes (especially small ones) and their segmentation masks. For this, we first considered the CamCan dataset [START_REF] Taylor | The cambridge centre for ageing and neuroscience (cam-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample[END_REF], which has 653 MR-T1 images of 3T from healthy men and women between 18 and 88 years. For each 3D MR-T1 image, CamCan also has a corresponding 3D MR-T2 image, which we do not use in this work.

To our knowledge, CamCan is the largest public dataset with 3D images of healthy subjects acquired from different scanners. We visually inspected all MR-T1 images and removed images with bad acquisition or artifacts, yielding 524 images. 2Public datasets with different brain lesions exist. However, some only provide a subset of 2D slices for each image or interpolate slices to build a volume (e.g., BraTS [START_REF] Menze | The multimodal brain tumor image segmentation benchmark (brats)[END_REF]); others provide 3D images with only very symmetric lesions (e.g., MSSEG [START_REF] Commowick | Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure[END_REF]). Given these limitations, we settled on using the Anatomical Tracings of Lesions After Stroke (ATLAS) public dataset release 1.2 [START_REF] Liew | A large, open source dataset of stroke anatomical brain images and manual lesion segmentations[END_REF] in our experiments.

ATLAS is a challenging dataset with a large variety of manually annotated lesions and images of individuals after stroke acquired from different scanners. It contains lesions ranging from very small to large, located in several parts of the brain (see Fig. 1 for examples). All images have a mask with the primary stroke region. Some images also have additional masks with other stroke lesions.

ATLAS provides lesions from different phases/stages after stroke onset. As outlined in Section 3, although SAAD can detect abnormal asymmetries in any of these stages, it should preferably be used in the initial phase during clinical use to help early diagnosis and timely treatment -especially for stroke whose initial stage is aggressive. Other brain disorders, such as some types of cancer, can be identified in even earlier stages when such disorders are not still too aggressive as stroke. Thus, SAAD is even more helpful for these cases when providing early abnormal brain asymmetry detection. Given the absence of labeled masks for different anomalies, this evaluation only considers stroke lesions.

Since SAAD is designed to detect hemispheric abnormal asymmetries and the considered training images have a 3T field strength, we selected all 3T images from ATLAS which contain only lesions in the hemispheres (total of 229 images). All images were registered into the coordinate space of ICBM 2009c Nonlinear Symmetric template [START_REF] Fonov | Unbiased nonlinear average age-appropriate brain templates from birth to adulthood[END_REF] and preprocessed as outlined in Section 3.1.

Evaluation Protocol

Baselines: In the absence of details, available tools, and trained models for automatic anomaly detection, we compared SAAD against the convolutionalautoencoder-based approach (CAE) from Chen et al. [START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF], which is, as far as we know, the current stateof-the-art unsupervised method for the ATLAS dataset.

We considered the 2D axial slices of all preprocessed training images to train CAE, which has the following architecture: three 2D convolutional layers with 16, 8, and 8 filters of patch size 3 × 3, respectively, followed by ReLU activation and 2D max-pooling in the encoder, and the corresponding operations in the decoder. The nadam gradient optimizer minimized the mean squared error between reconstructed and expected 2D axial slices during training. The method detects anomalies by thresholding the resulting residual image of between the input image vs its reconstruction to obtain a binary segmentation, similarly to Baur et al. [START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF] and Chen et al. [START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF]. We followed Baur et al. [START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF] and selected three thresholds as the 85 th , 90 th , and 95 th percentile from the histogram of reconstruction errors on the considered training set, resulting in the brightness of 143, 194, and 282, respectively. For simplicity, we call these three versions of the method as CAE-85, CAE-90, and CAE-95, respectively, based on the chosen percentiles.

Quality metrics: Although SAAD detects abnormal asymmetries regardless of the type of anomalies, we can compute quantitative scores only over those lesions that are labeled in ATLAS, which are a subset of what SAAD can detect. For these lesions, we first computed the detection rate based on at least 15% overlap between lesions labeled in ATLAS with detected volumes of interest (VOIs) with abnormal asymmetries (Tables 123, row 1), as detected by SAAD (supervoxels) and CAE (segmented regions). We then computed the true positive rate (recall) that measures the percentage of lesion voxels correctly classified as abnormal (Tables 123, row 2). Although our focus is on detecting abnormal asymmetries, we measured the Dice score between lesions and the detected VOIs to check SAAD's potential as a segmentation method (Tables 123, row 3). However, observe that truly abnormal asymmetries detected by SAAD that are not annotated as lesions in the groundtruth masks will be incorrectly considered as false positive and, thus, underestimating the Dice score. We then also measured the Dice score by considering only supervoxels overlapped with the annotated lesions (Tables 123, row 4).

Highly accurate detection methods are useful only if their false positive count is quite low. Otherwise, one needs to manually inspect the many positives to validate them, which is very costly. To gauge this, we provided false-positive (FP) scores in terms of both voxels and supervoxels with respect to the ground-truth stroke lesions of ATLAS. Hence, some regions with true abnormal asymmetries but with no labeled masks in ATLAS are considered FP (e.g., see the deformed ventricles of the third image of Fig. 1). This is the best we can do in the absence of labeled masks for all kinds of abnormalities in this dataset.

To evaluate the detection quality, we propose a set of fine-to-coarse metrics, as follows. At the finest level, we first compute the mean number of FP voxels, i.e., incorrectly classified as abnormal (Tables 123, row 5). We normalized this count regarding all classified voxels (Tables 123, row 6), i.e., the total number of voxels inside the right hemisphere for SAAD, and both hemispheres for CAE. At the next level, we estimated FP supervoxels as those whose voxels overlap less than 15% with ground-truth lesion voxels. We computed the mean number of FP supervoxels and their proportions concerning the total number of supervoxels (Tables 123, rows 7 and 8). The first metric gives us an estimation of the visual-inspection user effort. The second metric checks how imprecise is the detection regarding the total number of regions that the user has to visually analyze.

When visually analyzing FP supervoxels, it is harder to check many disconnected supervoxels spread across the brain (e.g., Fig. 8a) than a few connected ones (see, e.g., the ventricle area in Fig. 8b). Hence, at the coarsest level, we gauged visual analysis user-effort by evaluating the two metrics outlined above on the level of connected FP supervoxel components (Tables 123, rows 9 and 10).

Finally, we also computed the mean processing times of each method (Tables 123, row 11) for preprocessed images, thus excluding the mean time of the preprocessing step (Section 3.1), which is 90 seconds on average.

Results

We next discuss our results from the perspective of our key questions, stated in Section 1.

Impact of Supervoxel Segmentation Quality on Abnormal Asymmetry Detection

To check if the supervoxel segmentation influences the abnormal asymmetry detection, we used two variants of the SymmISF method to extract pairs of symmetric supervoxels (one for each hemisphere), as follows.

Uniform SymmISF. This method chooses N initial seeds uniformly distributed in a hemisphere, with N defined by the user (Section. 3.3). While simple, this strategy does not guarantee to place at least one seed within each asymmetric anomaly, especially when N is small. In turn, this leads to undersegmentation -the missed lesions will be assimilated to the background. Conversely, when N is too large, this easily leads to the oversegmentation of larger lesions into many supervoxels that have too little individual information to capture asymmetries.

Asymmetry-guided SymmISF. To better fit supervoxels with asymmetric anomalies of various morphologies, this strategy first seeds the highest-asymmetry-value brain regions (where anomalies are more likely to occur) and then seeds the remaining, more symmetric, areas with a fixed number of extra seeds (Section 3.3). Since asymmetries vary for each image, the final number of supervoxels is dynamically obtained. For the experiments, we fixed 100 extra seeds uniformly distributed on low asymmetric regions of the images.

We quantitatively compare the above two initial seeding strategies using 5-fold cross-validation on ATLAS, considering one subset for validation (46 images) and the remaining four subsets for testing (183 images) in each fold. For this initial experiment, we use the original parameters for SAAD reported in [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF], i.e., α = 0.08, β = 3.0, asymmetry histograms of 128 bins, and ν = 0.1 for the linear one-class SVM. For Uniform Sym-mISF, we consider five different numbers of seeds N: {100, 250, 400, 550, 700}. For Asymmetry-guided Sym-mISF, we use N = 100 seeds in symmetric regions.

Table 1 shows the mean results of SAAD with Uniform SymmISF for the primary stroke lesions of AT-LAS considering all five folds, and selected visual results. As expected, Uniform SymmISF presents poor detection results for low N values since anomalies are covered by large supervoxels that mix lesion and background voxels (see images in Table 1). As N increases, the chance of placing at least one seed inside each lesion is higher, even for smaller lesions, which leads to better results: We see how the detection rates, mean recall, and Dice (with only overlapped supervoxels with lesions) monotonically increase with N in Table 1 (rows 1, 2, and 4). Yet, there is no guarantee that increasing N yields increasingly-better fitting supervoxels to lesions. This is visible in the results for image 2 (insets) in Table 1, where we see that a small lesion was missed for N = 700 but found for N = 550. Moreover, the number of FP voxels and supervoxels also increases as N increases -compare rows 5, 7, and 9 of Table 1. This results in considerably high FP rates for large N values and explains the similar global Dice scores from all methods (row 3). Hence, visual inspection becomes difficult, even when the detection rate is high (compare row 1 and rows 5-10 for N = {550, 700}). Also, the Ground-truth segmentation image 3

Ground-truth segmentation more supervoxels we extract, the longer is the processing time, as shown in Table 1, row 11.

We next compare the Uniform and Asymmetryguided SymmISF versions for SAAD against three versions of CAE, as presented in Table 2. For simplic-ity, we consider only the version of Uniform-SymmISF with the best detection accuracy. Also, note that only SAAD reports false-positive supervoxel-based metrics. CAE-85 and CAE-90 present considerably higher detection scores, 0.995 and 0.943, respectively, than the 2. For instance, al-though CAE-85 almost detects all lesions, it misclassifies 40% of the hemispheres as abnormal, which is far from being reasonable and hinders the visual analysis (we expect just a small portion of the brain, e.g., 1%). These high FP rates explain the poor Dice scores for CAE in Table 2, which in turn are compatible with the ones reported in [START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF]. Additionally, CAE yields very noisy detected regions, especially in regions with transitions between white and gray matter (e.g., the cortex), which also hinders the subsequent visual inspection (see the results for the considered images in Table 2). Even though its FP voxels decrease as higher thresholds are considered, its detection score can be hugely impacted; for example, the threshold at the 95 th percentile approximately halves both the detection score and FP voxels rates compared with the results for the 90 th percentile in Table 2. CAE is speedy (running time about 2s per image) and might present better results by using a considerable large training set and/or some additional postprocessing, but this is not considered in [START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF][START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF]. CAE presents better results for other medical imaging modalities, such as CT and T2 [START_REF] Chen | Deep generative models in the real-world: An open challenge from medical imaging[END_REF][START_REF] Baur | Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[END_REF]. Asymmetry-guided SymmISF has a slightly worse detection rate (0.851) compared to Uniform SymmISF (0.86). Although it is also able to find small abnormal asymmetries (Table 2, images 1-2), it fails to detect very subtle and/or tiny asymmetries (Table 2, image 3). Also, this seeding strategy has lowest number of FP (connected) supervoxels and FP voxel scores. However, the expert still has to unnecessarily analyze about 29 FP connected supervoxels per image, which may take a considerable time. The next section details our strategy to improve SAAD with Asymmetry-guided Symm-ISF to yield higher detection rates and still attenuate FP scores.

Improving the end-to-end method

SAAD with Asymmetry-guided SymmISF is suitable for our task since each image's hemispheric asymmetries guide its supervoxel estimation. Moreover, as Table 2 shows, the asymmetry-guided seeding scales computationally better, being roughly twice as fast as uniform seeding for a comparable quality. Hence, we decided to improve Asymmetry-guided SymmISF by (i) optimizing its parameters by grid search aiming to increase detection accuracy; and (ii) proposing a falsepositive-attenuation (FPA) strategy. We describe these optimizations next.

For parameter optimization, we considered the validation set of each fold (Section 4) and the following search space: α ∈ {0.04, 0.06, 0.08, 0.1, 0.12}, β ∈ {1.0, 3.0, 5.0, 7.0, 9.0}, and γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. As for cost function, we considered the Intersection over Union (IoU) metric that computes the overlap of a supervoxel with each lesion. Indeed, when this overlap is maximal, each lesion is accurately covered by precisely one supervoxel. The best parameters found by the grid search were α = 0.12, β = 5, and γ = 0.5. Note that we used IoU as cost function, and not the metrics listed in Tables 1-2 since it generically looks at how supervoxels fit lesions, whereas those metrics gauge higher-level, more task-specific, concerns. Moreover, the IoU metric is continuous, making it usable for more refined parameter optimization, e.g., using gradient descent. The metrics in Tables 1-2 are, in contrast, discrete, and do not allow such refined optimization.

We repeated the same experiment by considering the optimized parameters. Table 3 presents the results for this seeding strategy, called next Optimized-SymmISF. We replicated the results of CAE-85 and CAE-90, and Asymmetry-guided SymmISF in Table 3 to make the comparison easier. We see that Optimized-SymmISF has a higher detection rate (0.939) than Asymmetryguided SymmISF (0.851), being slightly worse than CAE-90 (0.943). Optimized-SymmISF also presents the highest true positive rate (0.4889) among all compared methods. However, it still has high FP rates and has a considerable increase for the mean number of FP supervoxels and connected supervoxels (Table 3, rows 7 and 9) than Asymmetry-guided SymmISF.

To attenuate FPs, we first performed an analysis of their characteristics. Fig. 8 presents two parallel coordinate plots (PCPs) correlating the following three metrics on each FP supervoxel s: (i) distance d of centroid of s to the right hemisphere border; (ii) volume of s; and (iii) the mean asymmetry value inside s. Both PCPs are identical except by their highlighted examples (in red).

Fig. 8a highlights FP supervoxels close to the hemisphere's border (d < 5 mm), i.e., in the cortex. These supervoxels are relatively small with high variability of mean asymmetries inside them and usually cover gyri and sulci (see the brain slices below the PCP), which are naturally asymmetric. Conversely, larger FP supervoxels are farther from the hemisphere border (Fig. 8b), although their mean asymmetries have high variability. By visually inspecting them, we can also find true abnormal regions deformed by the stroke lesions in the dataset (see the ventricles in the brain slices below the second PCP). Hence, it seems reasonable to reduce false-positive supervoxels in the cortex.

To do this, we propose a false-positive-attenuation (FPA) strategy that accentuates the normal asymmetry map (Section 3.2) by adding the standard-deviation asymmetries from the training set to it. As a result, the asymmetry map of the test image (output of Step 5 in Fig. 2) is more attenuated so that only highly asymmetric supervoxels will be detected as abnormal. Next, we remove the initial seeds found by Asymmetry-guided SymmISF whose distance to the hemisphere border is To test this hypothesis, we first chose a brain image from ATLAS (Fig. 9) with a large asymmetric stroke lesion, which is not as challenging to detect as a small one. If our hypothesis were correct, this lesion should be classified easily by the global classifier. If global classification failed, then the situation would be even worse for smaller, harder to detect, lesions. To investigate this further, we projected the texture feature vectors of all symmetric supervoxels extracted by Optimized-SymmISF with FPA using t-SNE [START_REF] Maaten | Visualizing data using t-SNE[END_REF] (Fig. 9). Here, each point represents a symmetric supervoxel, colored by its overlapping percentage with the ground-truth lesion. We see that there is no clear separation between the high-overlap supervoxels (warm-colored points) and healthy-tissue supervoxels (cool colors), even though the considered lesion is very well-defined by a single supervoxel (compare the brain images in Fig. 9). It has been shown that the visual separability of classes in a t-SNE projection is highly correlated with the ability of a classifier to separate classes in the original feature space [START_REF] Rauber | Projections as visual aids for classification system design[END_REF]. Hence, since we do not find good visual separation, we conclude that a single classifier based only on texture features is insufficient to detect lesions, even large ones.

Conclusion

We presented a detailed investigation of the impact of supervoxel segmentation for unsupervised abnormal brain asymmetry detection. To this end, we chose a recent supervoxel-based approach (SAAD) that detects abnormal asymmetric lesions of a given target image by classifying extracting pairs of symmetric supervoxels by using a model (one-class classifier) trained for each pair, independently, from healthy brain anatomies only. Although SAAD presents high detection accuracies, there was, prior to our study, no evidence of the impact of supervoxels segmentation for the abnormal asymmetry detection, as well as the need to use a specialized oneclass classifier for each pair of supervoxel instead of a global classifier.

We used SAAD to detect asymmetric stroke lesions on 3D MR-T1 brain images from a wide range of different symmetric supervoxels extracted by two different methods. Experimental results show that the quality of supervoxel segmentation truly impacts anomaly detection, especially for small anomalies. This analysis also helped us to find optimal parameter values and an improved seeding strategy that further improved quantitative results (e.g., detection rate and false-positive rates) compared to the original SAAD method and a state-ofthe-art unsupervised approach. Next, we showed that a single global classifier only based on texture features is not sufficient to detect even large anomalies, since their textures are similar to some healthy brain tissues. Putting together our experimental insights, we conclude that (1) a good fit of symmetrical supervoxels to lesions and (2) using a per-supervoxel classifier are beneficial design decisions for a proper detection of abnormal asymmetries.

For future work, we initially plan to improve brain asymmetry computation and investigate other feature extraction techniques for SAAD. We then intend to use additional visual analytics techniques to find challenging cases where the optimized SAAD method fails to detect complex small-scale lesions and improve seeding, asymmetry computation, feature extraction, or classification to yield better detection rates.
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Figure 1 :

 1 Figure1: The different appearance of brain anomalies. Top: axial slices of three stroke patients with lesions (gold-standard borders in pink) that significantly differ in location, shape, and size. Bottom: slices of a 3D heatmap show the location frequency of stroke lesions across the brain. Although caused by the same disease, the lesions are sparsely distributed in the brain resulting in low-concentrated regions. The 3D heatmap was built from aligned manual lesion segmentation of stroke patients from the ATLAS dataset[START_REF] Liew | A large, open source dataset of stroke anatomical brain images and manual lesion segmentations[END_REF] after registration to a standard template.

Figure 2 :Figure 3 :

 23 Figure 2: Extended pipeline of SAAD with two possible symmetric supervoxel segmentations. Steps 1 to 3 (purple part) are performed offline. Steps 4 to 8 (yellow part) are computed for each test image (detection stage). The output images from Steps 3, 5, 6, and 8 are visualized as a symmetrical image. However, the method can consider just one hemisphere. Figure based on [6].

Figure 4 :

 4 Figure 4: Asymmetry computation on a standard image space. (a) Axial slice of the normal asymmetry map for healthy subjects. (b) Axial slice of a 3D test stroke image after preprocessing and deformable registration on a symmetric template. (c) Asymmetries of (b) by computing voxel-wise absolute differences between the hemispheres with respect to its MSP. (d) Final attenuated asymmetries: positive values of the subtraction between (c) and (a).

Figure 5 :

 5 Figure5: The pipeline of SymmISF with two possible initial seed estimation strategies (red points represent seeds). The method flips the input test 3D image (volume) using its MSP and builds a 2-band volume by stacking both volumes. Then, the ISF framework[START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF] estimates supervoxels inside the hemisphere mask from the initial seeds. The resulting label map is flipped to form the final label map with pairs of symmetrical supervoxels.

Figure 6 :

 6 Figure 6: One-class classifier (OCC) training for abnormal asymmetry detection. For each pair of symmetric supervoxels from a given test 3D image, SAAD trains an OCC from the training normal asymmetry maps previously computed.)

Figure 7 :

 7 Figure 7: Abnormal asymmetry detection of a test 3D image by supervoxel classification. For each pair of symmetrical supervoxels, SAAD uses the corresponding one-class classifier to classify the asymmetries inside the pair.

  use supervoxels method does not use supervoxels two versions of SAAD: Uniform SymmISF (0.86) and Asymmetry-guided SymmISF (0.851). However, these impressive results are misleading as CAE reports drastically (about 20x) more false-positive voxels than SAAD -compare rows 5 and 6 in Table

  use supervoxels less or equal to 5mm, as suggested in Fig.8a. We repeated the same parameter optimization for SAAD using FPA, finding the optimal values α = 0.06, β = 5, and γ = 0.5. Then, we repeated the full detection experiment for the optimal parameter method (called Optimized-SymmISF with FPA).

Figure 9 :

 9 Figure 9: t-SNE projection (perplexity of 50) from texture feature vectors (normalized histogram of absolute asymmetries) for the symmetric supervoxel extracted by Optimized-SymmISF with FPA for a given stroke image. The overlapping percentage between the ground-truth lesion segmentation and each supervoxel is color-encoded in the plot.

Table 1 :

 1 Experimental results for SAAD with Uniform SymmISF for different numbers of seeds. Top part: higher values mean better accuracies. Bottom part: lower values mean better accuracies. Each result contains a box (inset) surrounding the lesion whose border color indicates if the lesion was detected (green) or missed (red). The abbreviation k denotes thousands.

					Uniform SymmISF		
			N=100	N=250	N=400	N=550	N=700
	1 Detection rate	0.389 ± 0.058	0.62 ± 0.052	0.738 ± 0.041	0.808 ± 0.033	0.86 ± 0.028
	2	True positive rate (mean recall)	0.159 ± 0.024	0.293 ± 0.025	0.364 ± 0.022	0.409 ± 0.017	0.447 ± 0.018
	3 Dice	0.12 ± 0.022	0.13 ± 0.02	0.127 ± 0.02	0.126 ± 0.019	0.123 ± 0.018
	4	Dice (only overlapped supervoxels with lesions)	0.152 ± 0.025	0.245 ± 0.025	0.298 ± 0.02	0.338 ± 0.016	0.372 ± 0.015
	5 # FP voxels	14k ± 1.36k	26k ± 1.69k	32k ± 1.71k	36k ± 1.75k	40k ± 1.77k
	6 FP voxel rate	0.018 ± 0.002	0.033 ± 0.002	0.041 ± 0.002	0.045 ± 0.002	0.05 ± 0.002
	7 # FP supervoxels	8.83 ± 0.27	30.54 ± 0.84	49.97 ± 1.20	67.12 ± 1.86	90.91 ± 2.19
	8 FP supervoxel rate	0.103 ± 0.003	0.122 ± 0.003	0.128 ± 0.003	0.128 ± 0.004	0.13 ± 0.003
	9	# FP connected supervoxels	6.39 ± 0.17	18.40 ± 0.37	26.11 ± 0.47	32.67 ± 0.68	41.03 ± 0.76
	10	FP connected supervoxel rate	0.077 ± 0.002	0.078 ± 0.002	0.071 ± 0.001	0.067 ± 0.001	0.063 ± 0.001
	11 image 1	Mean processing time (in secs) Ground-truth segmentation supervoxels result	39.35 ± 0.98	59.08 ± 0.90	83.68 ± 1.00	111.77 ± 1.49 162.24 ± 12.59
	image 2	supervoxels result					
		supervoxels					
		result					

Table 2 :

 2 Quantitative and qualitative comparison between the two versions of SAAD and CAE (with different thresholds) for the ATLAS dataset. Top part: higher values mean better accuracies. Bottom part: lower values mean better accuracies. Each result contains a box (inset) surrounding the lesion whose border color indicates if the lesion was detected (green) or missed (red). The abbreviation k denotes thousands.

			Uniform SymmISF	Asymmetry-			
			N=700	guided SymmISF	CAE-85	CAE-90	CAE-95
	1 Detection rate	0.86 ± 0.028	0.851 ± 0.016 0.995 ± 0.002 0.943 ± 0.018	0.55 ± 0.03
	2	True positive rate (mean recall)	0.447 ± 0.018	0.436 ± 0.009	0.439 ± 0.01	0.333 ± 0.011 0.199 ± 0.011
	3 Dice	0.123 ± 0.018	0.132 ± 0.02	0.018 ± 0.003 0.017 ± 0.003 0.016 ± 0.002
	4	Dice (only overlapped supervoxels with lesions)	0.372 ± 0.015	0.401 ± 0.007			
	5 # FP voxels	40k ± 1.77k	28k ± 0.55k	644k ± 2.55k	428k ± 2.1k	206k ± 3.68k
	6 FP voxel rate	0.05 ± 0.002	0.035 ± 0.001	0.4 ± 0.002	0.267 ± 0.001 0.129 ± 0.002
	7 # FP supervoxels	90.91 ± 2.19	58.21 ± 1.83			
	8 FP supervoxel rate	0.13 ± 0.003	0.194 ± 0.004			
	9	# FP connected supervoxels	41.03 ± 0.76	29.81 ± 0.88			
	10	FP connected supervoxel rate	0.063 ± 0.001	0.111 ± 0.002			
	11	Mean processing time (in secs)	162.24 ± 12.59	63.03 ± 6.73	2.13 ± 0.08	2.09 ± 0.08	2.04 ± 0.16
		Ground-truth					
		segmentation					
	image 1						

Table 3 :

 3 Quantitative and qualitative comparison between SAAD after parameter optimization, and the baselines for the ATLAS dataset. Top part: higher values mean better accuracies. Bottom part: lower values mean better accuracies. Each result contains a box (inset) surrounding the lesion whose border color indicates if the lesion was detected (green) or missed (red). The abbreviation k denotes thousands.

							Optimized-
					Asymmetry-guided	Optimized-	SymmISF with
			CAE-85	CAE-90	SymmISF	SymmISF	FPA
	1 Detection rate	0.995 ± 0.002 0.943 ± 0.018	0.851 ± 0.016	0.939 ± 0.008	0.862 ± 0.013
	2	True positive rate (mean recall)	0.439 ± 0.01 0.333 ± 0.011	0.436 ± 0.009	0.489 ± 0.006	0.451 ± 0.006
	3 Dice	0.018 ± 0.003 0.017 ± 0.003	0.132 ± 0.02	0.123 ± 0.018	0.19 ± 0.018
	4	Dice (only overlapped supervoxels with lesions)			0.401 ± 0.007	0.397 ± 0.012	0.411 ± 0.01
	5 # FP voxels	644k ± 2.55k	428k ± 2.1k	28k ± 0.55k	39k ± 1.87k	11k ± 1.17k
	6 FP voxel rate	0.4 ± 0.002	0.267 ± 0.001	0.035 ± 0.001	0.049 ± 0.002	0.014 ± 0.002
	7 # FP supervoxels			58.21 ± 1.83	98.15 ± 1.53	21.19 ± 0.87
	8 FP supervoxel rate			0.194 ± 0.004	0.176 ± 0.003	0.065 ± 0.005
	9	# FP connected supervoxels			29.81 ± 0.88	54.59 ± 0.73	15.98 ± 0.56
	10	FP connected supervoxel rate			0.111 ± 0.002	0.107 ± 0.001	0.049 ± 0.004
	11	Mean processing time (in secs)	2.13 ± 0.08	2.09 ± 0.08	63.03 ± 6.73	111.97 ± 13.65	72.36 ± 9.19
		Ground-truth					
		segmentation					
	image 1						

Table 3 (

 3 rightmost column) shows the results. Optimized-SymmISF with FPA has slightly better detection rate (0.862) and TP rate (0.451) to Asymmetryguided SymmISF. Also, it can detect subtle and tinyGround-Truth (GT) Lesion SegmentationSymm. Supervoxel with the Highest Overlapping with GT

	Overlapping
	Percentage

We used the par0000 files available at http://elastix. bigr.nl/wiki/index.php/Parameter_file_database

A list with the selected images can be found on https://github.com/lidsunicamp/CMIG20_ BrainAsymmetryDetection.
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asymmetric lesions (Table 3, image 3), which indeed are well-defined by its supervoxels. Although its detection rate is lower than Optimized-SymmISF, it attains the lowest FP rates from all considered methods (compare rows 5-10 in Table 3). This method yields, on average, only 1.40% of all voxels as FPs, and these cover only 4.9% of all connected supervoxels. Moreover, Optimized-SymmISF with FPA yields about from twice to three times less FP connected supervoxels for visual analysis than the other versions of SAAD, which decreases the user effort. Hence, Optimized-SymmISF with FPA has the best balance between high detection rates and low FP rates from all studied methods. Next, we compared Optimized-SymmISF with FPA, our best method so far, with other related methods in the literature. Such methods are usually designed for the segmentation of, e.g., organs or lesions. As we do not have access to implementations of these methods running on the same dataset as ours, except for CAE, we cannot compute all metrics shown in Table 3. The best we can do is to compare our method with these alternatives as a segmentation tool, using segmentation scores. However, note, again, that our method is designed primarily for detection, not segmentation.

Optimized-SymmISF with FPA yields the best Dice score (0.19) among all compared methods in the experiments. As outlined in Section 4.2, however, this score is underestimated as truly abnormal asymmetries detected by our method, which are not labeled as lesions in the ground-truth masks, are considered false-positive.

When considering only symmetric supervoxels overlapped with the annotated lesions (Table 3, row 4)), such a Dice score leverages to 0.411. While still low, this score is not far from state-of-the-art results (Dice score 0.4867) on the ATLAS dataset from a supervised method based on U-Net [START_REF] Qi | X-net: Brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies[END_REF]. Interestingly, our method is noticeably superior to CAE, which is an unsupervised method (like ours), reporting very low Dice scores of 0.018 and 0.017 for thresholds at the 85 th and 90 th percentile, respectively. Our method reports drastically fewer FP voxels than CAE. Also, note that these compared methods yield their above-reported Dice scores by segmenting quite large lesions; in contrast, we focus on the more challenging problem of finding many small lesions (see, e.g., image 3 in Table 3).

Per-supervoxel vs Global Classifier Design

We now investigate our second research question, i.e., whether a per-supervoxel classifier design is indeed preferable to a global classifier. Suppose (hypothetically) that supervoxel segmentation is completely irrelevant for the final detection accuracy. Thus, the features we use (normalized histogram of absolute asymmetries for each symmetrical supervoxel) should be able to yield robust texture features for detection regardless of supervoxel quality. Hence, only a single classifiernot a (specialized) classifier per supervoxel for each test image -trained from texture features of training images should be enough to obtain similar results to those in Tables 1-3.
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