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This review deals with Restricted Boltzmann Machine (RBM) under the light of statistical physics. The RBM is a
classical family of Machine learning (ML) models which played a central role in the development of deep learning. Viewing
it as a Spin Glass model and exhibiting various links with other models of statistical physics, we gather recent results dealing
with mean-field theory in this context. First the functioning of the RBM can be analyzed via the phase diagrams obtained
for various statistical ensembles of RBM leading in particular to identify a compositional phase where a small number of
features or modes are combined to form complex patterns. Then we discuss recent works either able to devise mean-field
based learning algorithms; either able to reproduce generic aspects of the learning process from some ensemble dynamics
equations or/and from linear stability arguments.
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1. Introduction
During the last decade, machine learning has experienced a rapid development, both in everyday life with the incredible suc-

cess of image recognition used in various applications, and in research[1,2] where many different communities are now involved.
This common effort involves fundamental aspects such as why it works or how to build new architectures and at the same time
a search for new applications of machine learning to other fields, like for instance improving biomedical images segmentation[3]

or detecting automatically phase transitions in physical system.[4] Machine learning classical tasks are divided into at least two
big categories: supervised and unsupervised learning (putting aside reinforcement learning and the more recently introduced ap-
proach of self-supervised learning). Supervised learning consists in learning a specific task — for instance recognizing an object
on an image or a word in a speech— by giving the machine a set of samples together with the correct answer and correcting the
prediction of the machine by minimizing a well-design and easy computable loss function. Unsupervised learning consists in
learning a representation of the data given an explicit or implicit probability distribution, hence adjusting a likelihood function
on the data. In this latter case, no label is assigned to the data and the result depends thus solely on the structure of the considered
model and of the dataset.

In this review, we are interested in a particular model: the Restricted Boltzmann Machine (RBM). Originally called
Harmonium[5] or product of experts,[6] RBMs were designed[7] to perform unsupervised tasks even though they can also be
used to accomplish supervised learning in some sense. RBMs are part of what is called generative models which aim to learn a
latent representation of the data in order to later be used to generate statistically similar new data —but different from those of
the training set. There are Markov Random Fields (or Ising model for physicists), that were designed as a way to automatically
interpret an image using a parallel architecture including a direct encoding of the probability of each “hypothesis” (latent de-
scription of a small portion of an image). Later on, RBMs started to take an important role in the Machine Learning community,
when a simple learning algorithm introduced by Hinton et al.,[6] the contrastive divergence (CD), managed to learn a non trivial
dataset such as MNIST.[8] It was in the same period that RBMs became very popular in the ML community for its capability to
pre-train deep neural networks (for instance deep auto-encoder), in a layer wise style. And, it was then showed that RBMs are
universal approximator[9] of discrete distributions, that is, an arbitrary large RBM can approximate arbitrarily well any discrete
distribution (which led to many rigorous results about the modelization mechanism of RBMs[10]). In addition, RBMs offer the
possibility to be stacked to form a multi-layer generative model known as a deep Boltzmann machine (DBM).[11] In the more
recent years, RBMs continued to attract scientific interest. Firstly because it can be used on continuous or discrete variable very
easily.[12–15] Secondly, because the possible interpretations of the hidden nodes can be very useful.[16,17] Interestingly, in some
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cases, more elaborate methods such as GAN[18] are not working better.[19] Finally it can be used for other tasks as well such
as classification or representation learning.[20] Besides all these positive aspects, the learning process itself of the RBM remains
poorly understood. The reasons are twofold: firstly, the gradient can be computed only in an approximated way as we will see;
secondly, simple changes may have terrible impact on the learning or, messed up completely with the other meta-parameters.
For instance making a naive change of variable in the MNIST dataset[21,22] can affect importantly the training performance.
Another example, when varying the number of hidden nodes, keeping the other mete-parameters fixed, will affect not only the
representational power of the rbm but also the learning dynamics itself.

The statistical physics community, on its side, has a long tradition of studying inference and learning process with its own
tools. Using idealized inference problems, it has managed in the past to shed light on the learning process of many ML models.
For instance, in the Hopfield model,[23–26] a retrieval phase was characterized where the maximum number of patterns that can
be retrieved can be expressed as a function of the temperature. Another example is the computation of the storage capacity of
the Perceptron[27] on synthetic datasets.[28,29] In these approaches, the formalism of statistical physics explains the macroscopic
behavior of the model in term of its position on a phase diagram in the large size limit.

From a purely technical point of view, the RBM can be seen for a physicist as a disordered Ising model on a bipartite graph.
Yet, the difference with respect to the usual models that are studied in statistical physics is that the phase diagram of a trained
RBM involves a highly non-trivial coupling matrix where the components are correlated as a result of the learning process.
These dependencies make it non-trivial to adapt classical tools from statistical mechanics, such as the replica theory.[30] We will
illustrate in this article how methods from statistical physics still have helped to characterize both the equilibrium phase of an
idealized RBM where the coupling matrix has a structured spectrum, and how the learning dynamics can be analyzed in some
specific regimes, both results being obtained with traditional mean-field approaches.

The paper is organized as follows. We will first give the definition of the RBM and review the typical learning algorithm used
to train the model in Section 2. Then, in Section 3., we will review different types of RBMs by changing the prior on its variables
and show explicit links with other models. In Section 4., we will review two approaches that characterize the phase diagram of
the RBM and in particular its compositional phase, based on two different hypothesis over the structure of the parameters of the
model. Finally, in Section 5. we will show some theoretical development helping to understand the formation of patterns inside
the machine and how we can use the mean-field or TAP equations to learn the model.

2. Definition of the model and learning equations
2.1. Definition of the RBM

The RBM is an Ising model (or equivalently, a Markov random field), defined on a bipartite graph structure over two layers
of variables: the visible nodes si, for i = 1, . . . ,Nv and the hidden nodes τa = 1, . . . ,Nh, denoting Nv and Nh the number of visible
and hidden nodes respectively. In the following, we will use i, j,k, . . . to enumerate the visible variables and a,b,c, . . . for the
hidden ones. No connection between any pair of visible or hidden nodes occurs . Hence, we will call 𝑤 the coupling or weight
matrix and denote its elements as wia since no other interactions are present (such as wi j or wab). In addition to the pairwise
coupling matrix 𝑤, each visible and hidden node can have a local magnetic field, or local bias (we will refer to it as bias in the
rest of the article), respectively named θi and ηa. We can introduce the following Hamiltonian

ℋ[𝑠,𝜏 ] =−∑
ia

siwiaτa −∑
i

θisi −∑
a

ηaτa, (1)

from which we define a Boltzmann distribution

p(𝑠,𝜏 ) =
1
Z

exp(−ℋ[𝑠,𝜏 ]).

where Z is given by
Z = ∑

{𝑠},{𝜏}
exp(−ℋ[𝑠,𝜏 ]).

The structure of the RBM is represented on Figure 1 where the visible nodes are represented by black dots, the hidden nodes by
red dots and the weight matrix by blue dotted lines.

The benefit of having a bipartite structure is that, when keeping fixed an entire layer, in our case all the visible or all the
hidden nodes, the variables of the other layer become statistically independent. In other words, the measure p(𝑠|𝜏 ) and p(𝜏 |𝑠)

In MNIST, it is usual to consider binary variable {0,1} to describe the dataset. Taking instead {±1} naively will affect dramatically the learning of the
RBM.
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factorizes over the visible/hidden nodes respectively. This is an important property to keep in mind since it will be used in the
learning procedure of the model. We will see that this property is widely used during the learning in order to draw new samples
using a Monte-Carlo Markov Chain (MCMC) by Gibbs sampling.

Fig. 1. Bipartite structure of the RBM.

Historically, the RBM was first defined with binary {0,1} variables for both the visible and the hidden nodes in line with the
sigmoid activation function of the perceptron, hence being directly intepretable as spin-glass model of statistical mechanics. A
more general definition is considered here by introducing a prior distribution function for both the visible and hidden variables,
allowing us to consider discrete or continuous variables. This generalization will allow us to see the links between RBMs and
other well-known models of machine learning. From now on we will write all the equations for the generic case using the
notation qv(σ) and qh(τ) to indicate an arbitrary choice of “prior” distribution. Averaging over the RBM measure corresponding
to Hamiltonian (1) will then be denoted by

⟨ f (𝑠,𝜏 )⟩ℋ = ∑
{s,τ}

p(𝑠,𝜏 ) f (𝑠,𝜏 ) (2)

where here Σ can represent both discrete sums or integrals and with the RBM distribution defined from now on as

p(𝑠,𝜏 ) =
1
Z

qv(𝑠)qh(𝜏 )exp(−ℋ[𝑠,𝜏 ]). (3)

It is worth mentioning that, the choice of the prior distribution can be rephrased in terms of an activation function on the condi-
tioned distribution over the visible or hidden variables. Therefore, when specifying a prior distribution, we will systematically
indicate the corresponding activation function for the hidden layer, that is p(𝜏 |𝑠), which is obtained using the Bayes theorem

p(𝜏 |𝑠) = p(𝑠,𝜏 )
∑τ p(𝑠,𝜏 )

=
qh(𝜏 )exp(−ℋ[𝑠,𝜏 ])

∑{𝜏} qh(𝜏 )exp(−ℋ[𝑠,𝜏 ])

Before entering more into the technical details about the RBM, it is important to recall that it has been designed as a “learnable”
generative model in practice. In that sense, the usual procedure is to feed the RBM with a dataset, tune its parameter w, θ and
η such that the equilibrium properties of the learned RBM reproduce faithfully the correlations (or the patterns) present in the
dataset. In other words, it is expected that the learned model is able to produce new data statistically similar but distinct from
the training set. To do so, the classical procedure is to proceed with a stochastic gradient ascent (to be explained in Section 2.2.)
of the likelihood function that can be easily expressed. Usually the learning of ML models involves the minimization of a loss
function which happens here to be minus the log likelihood, thus in the following we will refer to Stochastic Gradient Descent
(SGD) instead. First, consider a set of datapoints {s(d)i }, where d = 1, . . . ,M is the index of the data. The log-likelihood is given
by

ℒ=
1
M

M

∑
d=1

log

(
∑
{𝜏}

p(𝑠(d),𝜏 )

)
=

1
M

M

∑
d=1

log
(

p(𝑠(d))
)

=
1
M

M

∑
d=1

[
log
(

∑
τ

qv(𝑠
(d))qh(𝜏 )exp

(
−ℋ[𝑠(d),𝜏 ]

))]
− log(Z)

=
1
M

M

∑
d=1

[
∑

i
θis

(d)
i + log

(
qv(𝑠

(d))
)
+∑

a
log

(
∑
τa

qh(τa)exp
(
∑

i
s(d)i wiaτa +ηaτa

))]
− log(Z)
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The gradient w.r.t. the different parameters will then take a simple form. Let us detail the computation of the gradient w.r.t. the
weight matrix. By deriving the log-likelihood w.r.t. the weight matrix we get

∂ℒ
∂wia

=
1
M

M

∑
d=1

∑τa qh(τa)s
(d)
i τae∑i s(d)i wiaτa+ηaτa

∑τa qh(τa)e∑i s(d)i wiaτa+ηaτa
−⟨siτa⟩ℋ

=
1
M

M

∑
d=1

s(d)i ∑
τa

τa p(τa|𝑠(d))−⟨siτa⟩ℋ

= ⟨siτa⟩data −⟨siτa⟩ℋ (4)

where we used the following notation

⟨ f (𝑠,𝜏 )⟩data =
1
M

M

∑
d=1

∑
{𝜏}

f (𝑠(d),𝜏 )p(𝜏 |𝑠(d)). (5)

The gradients for the biases (or magnetic fields) are

∂ℒ
∂θi

= ⟨si⟩data −⟨si⟩ℋ (6)

∂ℒ
∂ηa

= ⟨τa⟩data −⟨ηa⟩ℋ (7)

It is interesting to note that, in expression (4), the gradient is very similar to the one obtained in the traditional inverse Ising
problem with the difference that in the inverse Ising problem the first term (sometimes coined “positive term”) depends only on
the data, while for the RBM, we have a dependence on the model (yet simple to compute). Once the gradient is computed, the
parameters of the model are updated in the following way

w(t+1)
ia = w(t)

ia + γ
∂ℒ

∂wia

∣∣∣
w(t)

ia ,θ
(t)
i ,η

(t)
a

(8)

θ
(t+1)
i = θ

(t)
i + γ

∂ℒ
∂θi

∣∣∣
w(t)

ia ,θ
(t)
i ,η

(t)
a

(9)

η
(t+1)
a = η

(t)
a + γ

∂ℒ
∂ηa

∣∣∣
w(t)

ia ,θ
(t)
i ,η

(t)
a

(10)

where γ called the learning rate tunes the speed at which the parameters are updated in a given direction, the superscript t being
the index of iteration. A continuous limit of the learning process can be formally defined by considering t real and replacing t+1
by t +dt, γ by γdt and letting dt → 0.

The difficulty to train an RBM resides in the difficulty to compute the second term of the gradient, the so-called “negative
term”, which represents , in the gradient over the weight matrix, the correlation between a visible node i and a hidden node a
under the RBM distribution. Similarly, the gradient over the biases is difficult to compute, where here the negative term is given
by the mean value over the visible/hidden nodes. Depending on the value of the parameters of the model (the couplings and the
biases), we can either be in a phase where it is easy to sample configurations from p(𝑠,𝜏 ), (usually called paramagnetic phase);
either be (if unlucky) in a spin glass phase, where it is exponentially hard to escape from the spurious free energy minima; either
be (if lucky) in a ”recall” phase where the dominant states correspond to data-like configurations. But even in the latter case, it
might be difficult to transit from one state to another one with random jumps if these states are separated by large energy or free
energy barriers, as in the Hopfield model for instance.

2.2. Stochastic Gradient Descent

Considering the difficulty to use the Eq. (4) to learn the model (the computation of the negative term scales exponentially
with the system size, and Monte Caro Markov chains (MCMC) can be very slow to converge), an efficient approximative scheme
name contrastive divergence[6] (CD) has been developed in order to approximate this term. First of all, the dataset is partitioned
into small subsets called minibatches, and the gradient ascent is performed sequentially over all these minibatches in a random
order. As a result each gradient step is performed only over a small subset of the whole dataset at a time. In order to estimate
the negative term, the principle of CD is to start many Monte-Carlo chains in parallel, as many as the number of samples in
a minibatch, and to use each sample of the minibatch as an initial condition for the chain. The idea being that starting from
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desired equilibrium configurations and making k steps — the number of MC steps is coined in the method : CD-k—, we expect
to explore nearby configurations representative of the dataset when the machine is learned; if otherwise the chains flow away
they will “teach” the RBM how to adjust the parameters. The interpretation of CD is that it tends to create a basin of ”attraction”
centered on the datapoints where nearby configurations will be attractive to these datapoint under the Gibbs dynamics. In practice,
starting from a datapoint 𝑠d a random configuration of the hidden layer is sampled; in turn given this a configuration of the visible
layer is sampled and so on for k steps. For this we take advantage of the bipartite structure of the model to draw a whole visible
or hidden layer at once thanks to the factorization of the conditional distribution p(𝑠|𝜏 ) and p(𝜏 |𝑠):

𝑠d → 𝜏0 ∼ p(𝜏 |𝑠d)→ 𝑠1 ∼ p(𝑠|𝜏0)→ ·· · → 𝑠k ∼ p(𝑠|𝜏k−1)→ 𝜏k ∼ p(𝜏 |𝑠k) (11)

finally 𝑠k and 𝜏k are used to estimate the negative term. It is clear that the CD-k is not directly minimizing the likelihood, or
equivalently the Kullback Leibler (KL) divergence between the data distribution p0(𝑠) and the Boltzmann one p(𝑠). In reality
it minimizes the KL divergence DKL(p0||pk) between the data distribution p0 and the distribution obtained after k MC steps pk

that is defined as

DKL(p0||pk) = ∑
{𝑠}

p0(𝑠) log
pk(𝑠)

p0(𝑠)

pk(𝑠k) = ∑
{s0,...,sk−1}

∑
{τ0,...,τk−1}

[
k

∏
l=1

p(𝑠l |𝜏l−1)p(𝜏l−1|𝑠l−1)

]
p0(𝑠0)

In Ref. [31] it is argued that this procedure is roughly equivalent to minimizing the following KL difference

ℒCDk = DKL(p0||p)−DKL(pk||p),

up to an extra term considered to be small without much theoretical guaranty. The major drawback of this method is that the
phase space of the learned RBM is never explored since we limit ourselves to k MC steps around the data configurations, therefore
it can lead to estimate very poorly the probability distribution for configurations that lie “far away” from the dataset. A simple
modification has been proposed to deal with this issue in Ref. [32]. The new algorithm is called persistent-CD (pCD) and consists
of having again a set of parallel MC chains, but instead of using the dataset as initial condition, they are first initialized from
random initial conditions and then the state of the chains is saved from one update of the parameters to the next one. In other
words, the chains are initialized one time at the beginning of the learning and are then constantly updated a few MC steps further
at each update of the parameters. In that case, it is not longer needed to have as many chains as the number of samples in the
mini-batch even though in order to keep the statistical error comparable between the positive and the negative term it should
be of the same order. More details can be found in Ref. [32] about PCD and in Ref. [33] for a more general introduction to
the learning behavior using MC. In Section 5. we will intend to understand some theoretical and numerical aspect of the RBMs
learning process.

3. Overview of various RBM settings
Before investigating the learning behavior of RBMs, let us have a glimpse at various RBM settings and their relation to other

models, by looking at common possible priors used for the visible and hidden nodes.

3.1. Gaussian-Gaussian RBM

The most elementary setting is the linear RBM, where both visible and hidden nodes have Gaussian priors:

qv(si) =
1√

2πσ2
v

exp
(
− s2

i
2σ2

v

)
qh(τa) =

1√
2πσ2

h

exp
(
− τ2

a

2σ2
h

)

with σv and σh the intrinsic variance of the visible and hidden variables respectively. After summing over hidden variables we
get a multi-variate Gaussian distribution over the visible ones. If not very sophisticated, the model is yet interesting because
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it presents a non-trivial learning dynamics that can be written exactly.[34–37] When using Gaussian prior, the corresponding
activation function p(𝜏 |𝑠) are Gaussian centered on σ2

h ∑i wiasi:

p(𝜏 |𝑠) ∝ ∏
a

exp

(
− τ2

a

2σ2
h
+ τa ∑

i
wiasi

)
.

Let us write the marginal distribution over the visible nodes p(𝑠) (we omit the hidden bias since it can be canceled by a
redefinition of the visible one), starting from Eq. (3) and integrating over the hidden variables we get

p(𝑠) =
1
Z ∏

i

(
e
− s2

i
2σ2v

+siθi

)
∏

a

[∫
dτa exp

(
− τ2

a

2σ2
h
+∑

i
siwiaτa

)]

=
1
Z ∏

i

(
e
− s2

i
2σ2v

+siθi

)
∏

a
exp

(
σ2

h
2 ∑

i j
siwiaw jas j

)

=
1
Z

exp
(
−𝑠T

[
1

2σ2
v
−

σ2
h

2
𝑤𝑤T

]
𝑠+𝑠T𝜃

)
=

1
Z

exp
(
−𝑠T𝐴𝑠+𝑠T𝜃

)
(12)

where we define the precision matrix 𝐴 ≡ 1
2σ2

v
− σ2

h
2 𝑤𝑤T . Now we can also identify the conditions for the existence of the

measure p(𝑠). We need the matrix 𝐴 to be strictly positive definite, hence that the highest eigenvalue of 𝑤𝑤T remains strictly
below 1/(σ2

v σ2
h ). More interestingly, the Gaussian prior let us write in closed form the stochastic gradients (in fact we solve the

deterministic equation, not the stochastic one), hence given us some hints on the nature of the learning dynamics of non-linear
RBMs, since in any case we expect a linear regime to take place at the beginning of the learning process. In the present case, we
can rewrite Eq. (4) as

∂ℒ
∂wia

=
1
M ∑

d
s(d)i σ

2
h ∑

j
s(d)j w ja −σ

2
h ⟨si ∑

j
s j⟩w ja

= σ
2
h

(
∑

j
Ci jw ja −∑

j
⟨sis j⟩w ja

)

= σ
2
h

(
∑

j
Ci jw ja −∑

j
A−1

i j w ja

)
(13)

where Ci j = ⟨sis j⟩data = M−1
∑d s(d)i s(d)j is the correlation between the nodes i and j in the dataset, and 𝐴−1 the inverse of the

precision matrix. At this point, following,[36] it is convenient to use the singular value decomposition (SVD) of 𝑤. We note
wia = ∑α uα

i wα vα
a the eigen-decomposition of the rectangular weight matrix 𝑤, where the matrix 𝑢 and 𝑣 correspond to the left

(resp. right) eigenvectors of 𝑤 associated to the visible (resp. hidden) variables and wα the eigenvalue associated to the mode α .
As can be seen in Eq. (12), this transformation will diagonalize the interaction term of the Hamiltonian of the system. We can
now make the following change of variables

ŝα = ∑
i

uα
i si and τ̂α = ∑

a
vα

a τa

under this change of variable, the Gaussian measure factorizes where ∑i, j,a siwiaw jas j = ∑α ŝα w2
α ŝα and therefore

−𝑠T𝐴𝑠=−1
2 ∑

α

ŝα

1−σ2
v σ2

h w2
α

σ2
v

ŝα

Writing the distribution in this new basis we obtain

p(�̂�) ∝ ∏
α

exp
(
− ŝ2

α

2
1−σ2

v σ2
h w2

α

σ2
v

)
Hence, we can obtain an exact equation for the gradient in the basis of the SVD of the weight matrix 𝑤. First, we project the
equation Eq. (13) on the modes α −β of the SVD of 𝑤(

∂ℒ
∂𝑤

)
αβ

= ∑
ia

uα
i

∂ℒ
∂wia

vβ
a = ∑

ia
uα

i [⟨siτa⟩data −⟨siτa⟩ℋ]vβ
a
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= ⟨ŝα τ̂β ⟩data −⟨ŝα τ̂β ⟩ℋ

Now to simplify we discard the fluctuations associated to the stochastic gradient, by considering instead the full gradient and an
infinitesimal learning rate such that we can consider the iteration time to be continuous and identify ∂ℒ

∂wia
∼ dwia

dt . As a result we
obtain the time derivative of the matrix 𝑤 decomposed over its eigenmodes(

d𝑤
dt

)
αβ

= ∑
ia

uα
i

(
d
dt ∑

γ

uγ

i wγ vγ
a

)
vβ

a

= ∑
iaγ

uα
i uγ

i
dwγ

dt
vγ

avβ
a +uα

i
duγ

i
dt

wγ vγ
avβ

a +uα
i uγ

i wγ

dvγ
a

dt
vβ

a

= δαβ

dwα

dt
+(1−δαβ )

(
𝑢α d𝑢β

dt
wα +wβ

d𝑣α

dt
𝑣β

)

This equation shows that, the gradient update of 𝑤 can be decomposed when projected on the SVD basis of 𝑤 into a gradient
over the mode wα and a rotation of the matrices 𝑢α and 𝑣α . Noticing first that ⟨ŝα τ̂α⟩ = σ2

h wα⟨ŝ2
α⟩, we therefore end up with

the following dynamics for the singular values wα :

dwα

dt
=

(
d𝑤
dt

)
αα

= ⟨ŝα τ̂α⟩data −⟨ŝα τ̂α⟩ℋ

= σ
2
h wα

(
⟨ŝ2

α⟩data −⟨ŝ2
α⟩ℋ

)
= σ

2
h wα

(
⟨ŝ2

α⟩data −
σ2

v

1−σ2
v σ2

h w2
α

)
(14)

where in Eq. (14) ⟨ŝ2
α⟩data denotes the variance of the components of the data on the mode α:

⟨ŝ2
α⟩data = ∑

ia
uα

i

(
1
M ∑

i j
s(d)i s(d)j

)
uα

j

This first result tells us that when keeping the matrices 𝑢 and 𝑣 fixed, the SGD on the mode wα will adjust the value of wα such
that the r.h.s matches the variance in the direction given by 𝑢α , giving the following limit values:

w2
α =

{
⟨ŝ2

α ⟩data−σ2
v

σ2
v σ2

h ⟨ŝ
2
α ⟩data

if ⟨ŝ2
α⟩data > σ2

v

0 if ⟨ŝ2
α⟩data < σ2

v

(15)

We remark that, if the empirical variance given by the data is smaller than the prior variance of the visible variables the corre-
sponding mode is filtered out. The evolution of the matrices 𝑢α and 𝑣α can also be obtained[37] from the following expression
in the present case

Ω
u
αβ

≡
(

d𝑢α

dt

)T

𝑢β =−(1−δαβ )σ
2
h

(
wβ −wα

wα +wβ

−
wβ +wα

wα −wβ

)
⟨sα sβ ⟩data (16)

Ω
v
αβ

≡
(

d𝑣α

dt

)T

𝑣β =−(1−δαβ )σ
2
h

(
wβ −wα

wα +wβ

+
wβ +wα

wα −wβ

)
⟨sα sβ ⟩data (17)

of the infinitesimal rotations of the vectors 𝑢α and 𝑣α . In the particular case of the Gaussian-Gaussian RBM, we can note the
absence of term averaged over the model ⟨.⟩ℋ. This is due to the fact that the SVD corresponds to the eigendecomposition of the
RBM measure (that is, the Gaussian measure factorizes over the singular modes) and that the Eqs. (16-17) involve correlation
between modes α ̸= β which are zero here. From Eq. (16-17), we see that a steady state is found when a direction 𝑢α is found
that diagonalizes the empirical covariance matrix of the dataset.

In short, the Gaussian-Gaussian RBM learns the principal components of the dataset and for each principal axes the weight
matrix is adjusted until the strength of the corresponding modes wα reaches the value given by Eq. (15). Of course, modes above
threshold acquire a variance which matches the variance of the dataset in this direction ⟨s2

α⟩ℋ = ⟨s2
α⟩data. We can somehow say

that the Gaussian-Gaussian RBM is performing a sort of SVD of the dataset, keeping only the modes above a given threshold. It

Actually these equations are given with a wrong sign in Refs. [37] which is corrected here.
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is worth noting that an analysis has been done in Ref. [35] where it is shown that updating the parameters of the model using the
kCD approximation converges toward the same solution as the one obtained by maximizing the likelihood of the model.

We can illustrate the learning mechanism in simple cases where it is possible to solve explicitly the dynamics. First assume
that the RBM has found the principal axes, i.e. consider the matrices 𝑢 and 𝑣 to be fixed. In this case the quantity ⟨ŝ2

α⟩data

remains constant. Letting

xα = σ
2
v σ

2
h w2

α and δα =
⟨ŝ2

α⟩Data −σ2
v

σ2
v

,

and rescaling time as tσ2
v σ2

h → t, equation (14) then rewrites as

ẋα = 2xα

(
δα − xα

1− xα

)
and we obtain a solution of the form

xα(t) = f−1
α (δα t),

with

fα(x) = log
x

xα(0)
− 1

1+δα

log
γα − x

γα − xα(0)
, and γα =

δα

1+δα

.

For δα ≪ 1 we get a sigmoid type behaviour

xα(t)
xα(0)

=
δα eδα t

δα + xα(0)
(
eδα t −1)

.

To illustrate the rotation of the modes, consider now the situation where there are 2 modes uα , α = 1,2 which are a linear
combination of two dominant modes of the data {û1, û2} with identical orientation taken in this order, all other modes considered
to be already properly aligned with the data. Let then θ represent the angle between u1 and û1 (and also between u2 and û2 see
Figure 2. Equation (16) for this pair of modes rewrites then as

dθ

dt
=−σ

2
h

(w2
α +w2

β

w2
α −w2

β

)
⟨s1s2⟩Data(t),

with

⟨s1s2⟩Data(t) = cosθ sinθ
(
⟨s2

2⟩Data −⟨s2
1⟩Data

)
,

⟨s2
1⟩Data(t) = cos2

θ⟨s2
1⟩Data + sin2

θ⟨s2
2⟩Data

⟨s2
2⟩Data(t) = sin2

θ⟨s2
1⟩Data + cos2

θ⟨s2
2⟩Data

so that finally we get a dynamical system of the form

ẋ1 = 2x1
(
δ1 cos2

θ +δ2 sin2
θ − x1

1− x1

)
(18)

ẋ2 = 2x2
(
δ1 sin2

θ +δ2 cos2
θ − x2

1− x2

)
(19)

θ̇ =−1
2
(δ1 −δ2)

x1 + x2

x1 − x2
sin(2θ) (20)

Note that at fixed x1 and x2 the dynamics of θ corresponds to the motion of a pendulum w.r.t the variable θ ′ = 4θ shown on
Figure 2.
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Fig. 2. Angle between the reference basis given by the data and the moving one given by the RBM shown on the up left panel. Equivalence with
the motion of a pendulum is indicated on the left bottom panel. Solution of (18,19,20) of two coupled modes in the linear RBM (right panel).

3.2. Gaussian-Spherical

The Gaussian-Gaussian case is interesting as a solvable model of RBM but of limited scope, since p(𝑠) reduces in the end
to a multivariate Gaussian. Next, a simple non-linear RBM which remains exactly solvable is based on the so-called spherical
model.[38,39] For this model, it is possible to compute the phase diagram and the equilibrium states once the coupling matrix is
given —more precisely, when the spectral density of the coupling matrix is given. Here we chose the following priors to impose
a spherical constraint on the hidden nodes:

qv(si) =
1√

2πσ2
v

exp
(
− s2

i
2σ2

v

)
qh(𝜏 ) = δ

(
∑
a

τ
2
a − σ̄

√
NhNv

)
where σ̄ is a parameter of the model.[40] The interest of such an RBM is first that the spherical constraint can be dealt with
analytically.[40,41] Secondly the model can exhibit a phase transition unlike the Gaussian-Gaussian case. Absorbing the parameter
σ2

v in the definition of the weight matrix, to follow the computation of Ref. [40], a simple analysis in the thermodynamic limit
tells us that the phase transition takes place when the parameter σ̄ exceeds the value σc, where σc depends on the value of the
highest mode wmax and of the form of the spectrum of 𝑤 (typically, σ2

c ∝ 1/w2
max, where the pre-factor depends on the form of

the spectrum). The condensation along this mode of the visible (resp. hidden) magnetization is then given by

mα =
1√
L ∑

i
uα

i ⟨si⟩ℋ = wmaxσ̄

√
σ̄2 − σ̄2

c

m̄2
α =

1√
L ∑

a
vα

a ⟨τa⟩ℋ =
√

σ̄2 − σ̄2
c

where we defined L =
√

NvNh. This type of RBM is again of limited scope to represent data. In the thermodynamic limit a finite
number n = 𝒪(1) of modes can condense. They necessarily accumulate at the top of the spectrum of the weight matrix and
represent a distribution concentrated on an n-dimensional sphere in absence of external fields while other non-condensed modes
are responsible for transverse Gaussian fluctuations. The dynamical aspect of this model will be discussed in Section 5..

To end up this section let us also mention that the finite size regime is amenable to an exact analysis when restricting the
weight matrix spectrum to have the property of being doubly degenerated (see Ref. [40] for details).

3.3. Gaussian-Softmax

The case of the Gaussian mixture if rarely viewed like that, fits actually perfectly the RBM architecture. Consider here
the case of Gaussian visible nodes and a set of discrete {0,1} hidden variables with a constraint corresponding to the softmax
activation function:[42]

qv(si) =
1√

2πσ2
v

exp
(
− s2

i
2σ2

v

)
,
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qh(𝜏 ) = ∏
a
(δτa,0 +δτa,1)δ∑b τb,1.

With this formulation, we indeed see that the conditional probability of activating a hidden node is a softmax function

p(τa = 1|𝑠) = exp(∑i wiasi +ηa)

∑b exp(∑i wibsi +ηb)
.

It is easy from this expression to recognize the equations of the Gaussian mixture model (GMM),[43,44] where the latent variable
τa indicates if a sample belong or not to the center a. The position of the associated center is given by the vector 𝑤a. It is even
clearer when writing the marginal over the visible nodes after summing over the hidden nodes in Eq. (3)

p(𝑠) =
1
Z ∑

a
exp

(
ηa +∑

i
− s2

i
2σ2

v
+θisi + siwia

)

=
1
Z ∑

a
exp

(
ηa +∑

i
− 1

2σ2
v

(
si −σ

2
v [wia +θi]

2)2
+

1
2

σ
2
v [wia +θi]

)

=
1
Z′ ∑

a
ρa exp

(
∑

i
− 1

2σ2
v

(
si −σ

2
v [wia +θi]

2)2
)

by identifying

ρa ≡
exp
(

ηa +∑i
(
σ2

v wia +σ2
v θi
)2
)

∑b exp
(

ηb +∑i (σ
2
v wib +σ2

v θi)
2
) (21)

the weight of the mode a in the Gaussian mixture centered in 𝑤a. Now we can see that the extra parameter θi can be absorbed
in the definition of the weight matrix w′

ia = wia +θi. It turns out that the positive term of the gradient in equation (4) (ignoring
ρa) corresponds to the gradient that is obtained in the GMM. This can be reformulated into the Expectation Maximization (EM)
update by considering that p(τa|𝑠) do not depend on wia, hence doing the “expectation” step:

⟨siτa⟩data =
1
M ∑

d

(
s(d)i −σ

2
v wia

)
p(τa|𝑠(d)) (22)

If we impose that the gradient is zero, doing now the “maximization” step, we obtain

w(t+1)
ia =

∑d s(d)i p(τa|𝑠(d))
σ2

v ∑d p(τa|𝑠(d))
(23)

where the l.h.s. is to be understood as the new values for the parameters wia while the conditional distribution on the r.h.s.
depends on w(t)

ia . For an RBM, one would also compute the negative term of the gradient, involving the derivative of ρa w.r.t. wia.
We obtain the negative term

⟨siτa⟩ℋ =
1
M ∑

d
σ

2
v wia

[
p(τa|𝑠(d))−ρa

]
(24)

Again, we can recover with equation (24) the EM update for the density of the Gaussian mode a in the GMM, by first considering
that the conditioned distribution p(τa|𝑠(d)) does not depend on wia (expectation step) and by putting the l.h.s. to zero (maximiza-
tion step). The fact that when using the RBM formalism we do not obtain directly the same EM equations as in the GMM is due
to the different parametrization of the parameters. In the GMM, the density of each Gaussian is defined right from the beginning
as an independent parameter while when using the RBM, the density of the Gaussian depends on other parameters such as the
weight matrix 𝑤.

Phase transition in the learning process — an interesting phenomena occurs in this model when learning position of
the centers of the Gaussian while submitting the variances σv of the Gaussian to an annealing process.[45] First of all, starting
from a very high variance (equivalently, very high temperature), we can convince ourselves that the learning will end up finding
the center of mass of the dataset. Let us therefore consider that we centered the dataset beforehand: ∑d s(d)i = 0, ∀i. Then,
reducing slowly the variance of each component of the mixture, we can look for the moment at which point the degenerate
solution corresponding to all the centers placed at the center of masses of the dataset becomes unstable. Linearizing the EM
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equations (23) around this point with ηa = 0 and wia ≈ 0+ εia, where the 𝜖 are small perturbations, we can derive the threshold
where the linear perturbations get amplified. The linear stability analysis leads to the following equations for the perturbation ε:

ε
(t+1)
ia ≈

∑d s(d)i (1+∑ j s(d)j ε
(t)
ja − 1

Nh
∑ jb s(d)j ε

(t)
jb )

σ2
v ∑d(1+∑ j s(d)j ε

(t)
ja − 1

Nh
∑ jb s(d)j ε

(t)
jb )

=
1

σ2
v

∑
j

ci j

(
ε
(t)
ja − 1

Nh
∑
b

ε
(t)
jb

)

where ci j is the covariance matrix of the dataset. From this expression, one sees that when the variance is higher that the largest
eigenvalue ΛC of 𝑐, i.e. σ2

v > ΛC, the solution wia = 0 is stable. Then, when σ2
v < ΛC, the solution is unstable and the system

starts to learn something more about the dataset besides its center of mass. It is interesting to note that this threshold is very
similar to the one obtained in equation (15) for the Gaussian-Gaussian RBM. In this model, it is then possible to study the
cascade of phase transition, occurring in a hierarchical way on structured datasets.[46,47] We stress here that, even if it is possible
to project the learning equations on the SVD of the weight matrix as in the two previous analysis, it does not provide much more
insight since this case cannot be solved exactly by this transformation.

It is also interesting to investigate the behavior of the exact gradient (not using EM) in the presence of a learning rate γ .
When using the gradient, the update equations are given by w(t+1)

ia = w(t)
ia + γ∆wia. In that case we obtain the following equation

for the linear stability

ε
(t+1)
ia = (1− γ)ε

(t)
ia +

γ

σ2
v

∑
j

ci j

(
ε
(t)
ja − 1

Nh
∑
b

ε
(t)
jb

)
.

Interestingly, the threshold does not depend on the value of γ in that case, meaning that the instability is a generic properties of
the learning dynamics. The only change is the speed with which the instabilities will develop.

3.4. Bernoulli-Gaussian RBM

The next case is the Bernoulli-Gaussian RBM where we consider the following prior

qv(si) =
1
2
(δsi,0 +δsi,1) ,

qh(τa) =
1√

2πσ2
h

exp
(
− τ2

a

2σ2
h

)
.

Again, a Gaussian prior implies that the activation function is Gaussian. It is interesting to consider this version of the RBM
through its relation with the Hopfield model[23] realized in Ref. [48]. Since the hidden variables are Gaussian they can be
integrated out which leads to a simple analytical form for the marginals of the visible variables. In some recent works, the
opposite approach has been done, starting with an Hopfield model and expressing it as a RBM using the Hubbard-Stratonovitch
(HS) transformation (expressing the exponential of a square as Gaussian integral) to decouple the interactions between each
spin.[49,50] After integrating over the hidden nodes in Eq. (3), we end up with the following distribution

p(𝑠) =
1
Z

exp

(
σ2

h
2 ∑

i j
sis j

[
∑
a

wiaw ja

])

We recognize a Hopfield model where the patterns are given by the weights wia of the RBM and the effective coupling between
two variables i and j is Ji j = ∑a wiaw ja. We can also consider that the variances of the hidden nodes is related to the temperature
of the model.

Some experiments have been conducted in Ref. [51] in order to compare the learning process of the Hopfield model versus
the Bernoulli-Gaussian RBM on artificial data generated from an Hopfield model with dicrete patterns. It is interesting to note
that, when assuming discrete patterns, the inverse procedure can be formulated in terms of an approximated Hopfield model.
Thus, the inference of the pattern can be done directly using a set of TAP equations of the Hopfield model, and it has been shown
that the artificial patterns were inferred exacltly. When using the RBM’s formulation, in the absence of information over the
patterns, only the subspace covered by the patterns were retrieved with a weak overlap with the true patterns. In fact, in that case
the marginal over the visible nodes is a function of 𝑤𝑤T , which is invariant by rotation of the 𝑣 matrix. It explains why the
learned weight matrix in the RBM context does not overlap with the true patterns.
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With this machine, it is also possible to impose a maximum rank in order to reduce the number of parameters needed to
describe the dataset giving the possibility of a trade-off between a good description of the dataset and the number of parameters.
This properties has been used in Ref. [50] to find global patterns in protein foldings, using the RBM version of the Hopfield
model with q discrete states.

3.5. Gaussian-Bernoulli RBM

At this point we now focus on models where the hidden layers will have a stronger impact. The integration of the hidden
layer will not end up in a simple analytical form and therefore will make it difficult to understand the effect of the features and to
characterize properly the learning dynamics. We first mention the Gaussian-Bernoulli case dealing with the following priors:

qv(si) =
1√

2πσ2
v

exp
(
− s2

i
2σ2

v

)
, (25)

qh(τa) =
1
2
(δτa,0 +δτa,1) . (26)

When using the discrete {0,1} variables, we obtain the sigmoid activation function for the hidden nodes

p(τa = 1|𝑠) = 1
1+ exp(−∑i wiasi +ηa)

.

With this parameterization, it is natural to interpret a hidden node τ as an active feature when τ = 1 and an inactive one if
τ = 0. When responding to a given input through the conditional probability p(𝜏 |𝑠), the machine is turning on the hidden
nodes corresponding to overlapping features with the input. Therefore, the input undergoes a non-linear decomposition on the
learned features. Saying it that way, it is somewhat reminiscent of the Independent Component Analysis[52] where a matrix X is
factorized on a set of independent sources or components 𝑦: 𝑥 =𝐴𝑦. The sources here are independent in the sense that they
are independently distributed. In the context of ICA, the goal is to find the inverse of the mixing matrix in order to recover the
sources from the received signal. Concerning this particular RBM, it is proven[35] that under some assumptions — (i) having the
same number of visible and hidden nodes, (ii) that the signal comes from a set of independent sources and (iii) that the variance
of the visible variables is much smaller than the mean of the signal— there exists a stable solution for the learning dynamics
where the learned weight matrix corresponds to the un-mixing matrix of the signal. In this regime, the RBM acts as an ICA. In
other words, if the signal 𝑠d used as an input for the RBM can be written as a mixture of sources: 𝑠 =𝐴𝑦, a stable solution of
the learning process consists in recovering the inverse mixing matrix in the weight matrix: 𝑤 =𝐴−1.

To end up with this variant of the RBM, it is interesting to note that the prior variance of the visible variables here is in
principle a fixed parameter. It has been noted that when using the prior (25-26) the mean of the conditional distribution over the
visible p(si|𝜏 ) is stretched by the variance σv. It might be useful to remove this effect by renormalizing the weight matrix and
the visible biases as in Ref. [14]: 𝑤 →𝑤/σ2

v and θi → θi/σ2
v . Using this parametrization, we obtain

p(si|𝜏 )≈𝒩 (θi +∑
a

wiaτa,σ
2
v ),

where 𝒩 represents the normal distribution. Note that it is possible to include the learning of these parameters in the likelihood
ascent as in Ref. [14]. It is however important to stress here that even if appealing, the possibility to tune the variance of each
visible node doesn’t solve the problem of learning individual variances of separated clusters in a dataset. Indeed, consider the
problem where the dataset is formed of many well-separated clusters with distinct variances. For a given visible node i, its
variance computed over the whole dataset or instead over a given cluster have no reason to coincide. And the the prior variance if
properly learned will only account for the global variance of this node. This should involve a more complex setting of the RBM
which we won’t discuss here in order to account for individual variances of clusters in a complex dataset.

3.6. Bernoulli-Bernoulli RBM

The last model here is traditionally the one which is implied when speaking of RBM. In that case both the visible and hidden
nodes are in {0,1} with the following priors

qv(si) =
1
2
(δsi,0 +δsi,1) ,

qh(τa) =
1
2
(δτa,0 +δτa,1) .
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The activation functions are sigmoid functions, for both the hidden and visible nodes

p(si = 1|𝜏 ) = 1
1+ exp(−∑a wiaτa +θi)

, (27)

p(τa = 1|𝑠) = 1
1+ exp(−∑i wiasi +ηa)

. (28)

In that case, the prior distribution has the advantage of not having any free parameter to be determined. In practice this model is
used when dealing with a discrete dataset while the Gaussian-Benoulli is for continuous ones.

Rectified Linear Units (RELU) — Let us briefly mention how the Bernoulli prior on the hidden nodes can be linked to
the RELU activation function[53] for the RBM. In a work by Teh et al.,[54] was highlighted one important shortcoming with
Bernoulli prior. With the hidden variable in {0,1}, a given pattern can be expressed τ = 1, or not τ = 0. Therefore the influence
of a feature is binary, either 0, either a fixed amount given by the value of 𝑤: it is not possible to tune this amount as a function
of how strongly a hidden node responds to a visible configuration. Of course it is possible for the machine to learn many times
the same pattern, but this doesn’t seem very efficient. A simple idea to correct this problem is to duplicate many time a hidden
node, keeping the same features and bias values. Then, if the probability of turning on this hidden node is p, the average number
of activated hidden nodes for this feature will be N p giving the possibility to tune the intensity of the feature.

Generalizing this idea, it is possible to construct an infinite number of replica,[55] adjusting the bias for each of them such
that in order to activate more and more neurons it is necessary that the signal ∑i wisi is stronger and stronger. Let us focus for a
moment on a single hidden nodes with a feature wi and a bias η along with its replicas a′ = 1, . . . ,Nr. We denote r = ∑i wisi +η

the potential associated for this neuron given the signal 𝑠. The number of activated replica will be given by

1√
Nr

Nr−1

∑
a′=0

sig
(
r(1−a′/

√
Nr
)
) ≈

Nr→∞
log(1+ exp(r)) (29)

where we defined the sigmoid function sig(x) = (1+ exp(−x))−1. The r.h.s. of Eq. (29) is very close to the RELU activation
function RELU(x) = max(0,x), hence showing that having all these replicas gives a similar activation function as RELU. In
practice, it is not very efficient to have a large number of sigmoids for the training algorithm. An approximation is found by
using the truncated Gaussian distribution. The average number of activated replica is then given by

τa = max(0,r+𝒩 (0,σa)) (30)

where now τa is a RELU hidden node and σa is the variance associated with the number of activated replicas for the hidden node
a. Eq. (30) can now be seen as an approximation of the Truncated-Gaussian prior for the hidden nodes

qh(τa) ∝ δτa>0 exp(− τ2
a

2σh
) (31)

In the following section, we will focus mainly on the Bernoulli-Bernoulli setting, its equilibrium phase diagram and its
learning dynamics in the mean-field regime.

4. Phase diagram of the Bernoulli-Bernoulli RBM
In this section, we discuss various aspects of the phase diagram of the Bernoulli-Bernoulli RBM. In the rest of the section

we will use {±1} instead of the usual {0,1} for commodity. There are (at least) two series of works dealing with the RBM in
the thermodynamic limit, each of them making different hypothesis on the statistical ensemble from which the RBM is taken.
In the first one[56,57] the weight matrix is taken from a simple statistical ensemble with iid elements and possibly additional
sparse constraints on the patterns as will be explained in Section 4.1.. In the second one[36,37] it is assumes that the weight
matrix contains a structured part of rank K = 𝒪(1) in addition to a random matrix corresponding to noise; the main results of
this approach will be exposed in Section 4.2.. Both approaches are based on the replica computation[30] of the free energy. For
systems with quenched disorder, this is a classical approach (the replicas or its equivalent formulation) to find the macroscopic
behavior.[56,58–61]

4.1. Mean-field approach, the random-RBM

This MF approach to the macroscopic behavior of the RBM is based on statistical ensembles with iid elements of the weight
matrix. Here, a random ensemble for the weight matrix is defined as follows. The weight matrix will be constructed using binary
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pattern: wia =
ξia√
Nv

. Now, each pattern is selected to be

ξia =

 0 pr ∼ 1− pi
+1 pr ∼ pi/2
−1 pr ∼ pi/2

(32)

Using this definition, the degree of sparsity of the system is p = ∑i pi/Nv. The term random-RBM was coined by Tubiana
et al.[57] but Agliari et al.[62,63] worked on a similar model although with a different theoretical approach. In particular, they
computed the phase diagram in Ref. [56]. We start by reproducing here the argument of Agliari that was developed for the RBM
with a finite number of patterns before switching to the replica computation done in Tubiana’s thesis.[59]

Parallel retrieving — the usual definition of the Hopfield model (which we recall here is analogous to a Binary-Gauss
RBM, see Section 3.), consists in using extensive pattern ξ a

i = ±1/
√

Nv for all i = 1, . . . ,Nv, where a = 1, . . . ,P, P being the
number of patterns. The Hopfield model in the low storage regime, where the number of pattern is fixed, or scales logarithmically
with the system size, is characterized by a low temperature regime made of configurations with an extensive overlap with one of
the patterns. This model can be recovered from a binary-binary RBM where the number of hidden nodes has the same scaling.
Hence, having Nh ∼ log(Nv), we can write exactly the partition function of the binary-binary RBM in the limit of large system
size

Z = ∑
{𝑠},{𝜏}

exp

(
β ∑

i,a
siwiaτa

)

= ∑
{𝑠}

∏
a

cosh

(
β√
Nv

∑
i

wiasi

)
≈ ∑

{𝑠}
exp

(
β 2

2Nv
∑
i, j

∑
a

wiaw jasis j

)

= ∑
{𝑠}

exp
(

Nvβ 2

2 ∑
a

ma(𝑠)
2
)

recovering the Hopfield model with a square inverse temperature, and where we define the magnetization along the pattern a
as ma(𝑠). In Ref. [62], the authors considered a weight dilution as in Eq. (32) applied to the above binary-binary RBM, or
equivalently to a Hopfield model with a rescaled temperature. It is important to mention that it is a different procedure than
diluting the network itself, see Ref. [64] for more details on the other case. Having sparse patterns allows the network to retrieve
more than one pattern at a time. In particular, global minima of the free energy can have an overlap with many patterns and
locally stable states can be composed of a complex mixture of patterns. We reproduce below on Figure 3 the plot from the
article[62] showing the overlap over three and six patterns in the (almost) zero temperature limit. We observe on the left panel that
one pattern is fully retrieved when the dilution is low. Then, when increasing pi, more and more patterns are retrieved together
until the system enters a paramagnetic phase at high dilution.

Fig. 3. From Ref. [62]. Overlap with different patterns when varying the dilution factor p (named d on the figure) at low temperature.
Left: a case with 3 patterns where we can observe how at small dilution, only one pattern is fully retrieved while the second and third
one appear for larger dilution. Right: a case with 6 patterns where the figure is zoomed in the high dilution region where the branching
phenomena is occurring and all the overlaps converge toward the same value.

Replica approach of the random-RBM — We will now follow the approach of Tubiana et al.[59] and give more details on
the derivation. This approach is based on a Bernoulli-RELU architecture giving the possibility to have continuous positive value
for the hidden variables.
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The characterization of the phase diagram is based on the determination of the free energy in thermodynamic limits. Given
the weight ensemble (see Eq. (32)), the weight matrix is now made of independent and sparse elements. In this context, the
replica analysis can be used to perform the quenched average. The replicated interaction term can be first easily computed and
gives

E𝑤

[
exp

(
β ∑

p
sp

i wiaτ
p
a

)]
≈ exp

(
piβ

2

2N ∑
pq

sp
i sq

i τ
p
a τ

q
a

)

for the interaction term (ia). The interaction between the visible and hidden nodes can be decoupled using the HS transformation

exp

(
p2

i β 2

2N ∑
pq

sp
i sq

i τ
p
a τ

q
a

)
∼
∫

∏
pq

dqpqdq̄pq

2π
exp
(
−Nβ (qpqq̄pq −qpq

pi

p
sp

i sq
i −

1
2

β pτ
p
a τ

q
a )

)

introducing the spin-glass order parameter over the replicas (we denoted by p,q, . . . , the replica index):

q̄pq ∼Ew[⟨τq
a τ

p
a ⟩]

qpq ∼Ew[⟨(pi/p)sq
i sp

i ⟩]

where we note that the parameters over the visible nodes are weighted by the sparsity of the network. Using the replica symmetric
ansatz, the quenched free energy can be computed and from it a set of order parameters emerges. An new order parameter is
introduced in their derivation: the number L̃ of hidden nodes that have a macroscopic activation ∼𝒪(m

√
N), while the other ones

remain silents (of order 1). This parameter is reminiscent from the replica approach of the Hopfield model.[24–26] In this approach,
the number of pattern that can be expressed is fixed, in order to investigate the stability of retrieving one or more patterns. The
important difference here is that the sparsity p imposes that the diluted weights can let many patterns to be expressed at the same
time. Hence, the phase diagram will be characterized by, the value of the weight sparsity p and L̃ the number of activated hidden
nodes. The phase diagram is computed numerically, by scanning the possible value for the order parameters (see Ref. [59] for
more details). It is found that when

• p = 1 and L̃ = 1: no sparsity and only one hidden node is activated. At low temperature, it gives back the behavior of
the well-known Hopfield model having a recall phase of the patterns. An interesting additional result when using ReLu
activations is that the capacity of the network can be increased by playing with the bias on the hidden nodes, at the cost of
reducing the basin of attraction of the patterns.

• p < 1 a ferromagnetic transition is found when imposing L̃ = 1, where one pattern is recalled at a time.

• p < 1, when all the hidden nodes are all weakly activated, a SG phase is found.

• p < 1 and L̃ is such that 1 ≪ L̃ ≪ Nh; a compositional phase is numerically identified. It is characterized by an intermediate
number of hidden nodes strongly activated.

In this analysis, it is demonstrated that in the possible equilibrium behaviors of the random-RBM, an interesting phase mixing
many patterns is present that characterizes in some way the efficient working regime of a learned RBM. It is of course a simplified
case where the patterns are {±1} with a certain dilution factor. Now, the fact that there exists a family of weights where this
phase exists is quite different from showing that the learning dynamics converges toward such a phase and how. In Tubiana’s
thesis, a stability analysis of the different phases is done showing that for a range of parameters of the RBM, the compositional
phase is indeed the dominant one. Then, a certain number of numerical results are provided on the MNIST dataset which tends
to confirm that the behavior of the learned RBM looks similar to a ”compositional phase”. It would therefore be of great interest
to characterize the learning curve theoretically in order to understand how this phase is reached. It is also interesting to mention
a recent work investigating the role of the diluted weights[65] during the learning in a RBM with one hidden node. In this article,
it is shown that the proportion of diluted weights tends to vanish during the learning procedure. This might be a signal that when
the number of hidden features is very low, the RBM automatically adjusts itself in the ferromagnetic phase described above,
learning a global pattern of the dataset.
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4.2. Mean-field approach using rank K weight matrix

The difficulty with the RBM is to be able to study the phase diagram of the model without discarding the fact that during the
learning, the weights wia become correlated between each others: starting from independently distributed wia, we can observe
how the spectrum of the weight matrix is modified during the learning (see Figure 11 for instance). Classical approaches in
statistical mechanics consider a set of independent weights, all identically distributed, before trying to compute the quenched
free energy of the system by the replica trick. In the present case the hypothesis of independent weights cannot hold, as can be
seen by looking at the spectrum of the weight matrix at the beginning of the learning and a few iterations later. The absorption
of information by the machine prompts the development of strong correlations. This phenomena is illustrated in Section 5.3. on
Figure 11. In order to understand how these eigenvalues affect the phase diagram of the system, it is reasonable to assume a
particular statistical ensemble of the weight matrix of the form

wia =
K

∑
α=1

uα
i wα vα

a + ria (33)

where K ≪ Nv, assuming a low-rank decomposition of the weight matrix plus some random noise ria, where 𝑟 is a random matrix
with iid centered Gaussian elements with variance σ . With this decomposition we assume that the eigenvalues wα correspond to
some intrinsic property of a learned dataset, while the matrix, 𝑟, 𝑢 and 𝑣 can be treated as quenched disorder and averaged over.
The set of vectors 𝑢α and 𝑣α correspond approximately to the left and right eigenvectors of the matrix 𝑤. We can thus start to
average Zn over all these variables. Starting with the average over the random matrix 𝑟, it introduces the following interaction
term ∑ia,p ̸=q sp

i sq
i τ

p
a τ

q
a , where p,q runs over the n replicas. In this term, it is possible to decouple the interaction between the

visible and the hidden nodes by introducing the overlap parameters

Qpq ∼Er,v,u[⟨τq
a τ

p
a ⟩] (34)

Q̄pq ∼Er,v,u[⟨sq
i sp

i ⟩] (35)

Then, the form of the weight matrix, Eq. (33) leads to the following change of variable

sα =
1√
L ∑

i
siuα

i

τα =
1√
L ∑

a
τavα

a

where L =
√

NvNh. It corresponds to the projection of the visible and hidden variables over the matrix 𝑢 and 𝑣 coming from the
SVD of 𝑤. With this projection we will be able to define the order parameters of the system as the condensation of the visible
and hidden nodes over the SVD modes of 𝑤. Using again the Hubbard-Stratanovitch (HS) transformation in order to define the
replicated magnetization

exp

(
∑
ia

sp
i wiaτ

p
a

)
= exp

(
∑
α

wα sp
α τ

p
α

)
∝

∫
∏
α

dmp
α dm̄p

α

2π
exp
(
−L∑

α

wα(m
p
α m̄p

α −mp
α sp

α − m̄p
α τ

p
α)

)
we obtain two additional order parameters

mp
α ∼Er,v,u[⟨τ p

a ⟩]
m̄p

α ∼Er,v,u[⟨sp
i ⟩]

namely the condensation of the visible (resp. hidden) nodes along the SVD modes of 𝑤. After some computation, the replicated
free energy is obtained

Eu,v,r[Zn] =
∫

∏
p,α

dmp
α dm̄p

α

2π
∏
p̸=q

dQpqdQ̄pq

2π

× exp
{
−L
(
∑
p,α

wα mp
α m̄p

α +
σ2

2 ∑
p̸=q

QpqQ̄pq −
1√
κ

A[m,Q]−
√

κB[m̄, Q̄]
)}

(36)

in few words, considering the quantity Zn for a given (integer) n, where Z is the partition function, for small n, we can develop Zn ≈ 1+n log(Z). The key
point here is that it is generally possible to compute the quenched Zn and then making a small n expansion.
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where E indicates an average over the variables that are in subscripts and κ = Nh/Nv. The quantities A and B are given by

A[m,Q]≡ log
[

∑
Sa∈{−1,1}

Eu

(
e
√

κσ2
2 ∑ p̸=q QpqSpSq+κ

1
4 ∑p,α (wα mp

α−ηα )uα Sp
)]

, (37)

B[m̄, Q̄]≡ log
[

∑
Sp∈{−1,1}

Ev

(
e
√

κσ2
2 ∑p ̸=q Q̄pqτ pτq+κ

− 1
4 ∑p,α (wα m̄p

α−θα )vα τ p
)]

. (38)

In order to avoid more cumbersome computations we will skip the details, the interested reader being referred to Ref. [36].
The phase diagram of the model is based on the behaviour of the order parameters Q, Q̄, m and m̄. After taking the saddle point
of the free energy in the limit L → ∞ keeping κ fixed, using the replica symmetric ansatz and letting the number of replica go
to zero, it is possible to distinguish different phases according to the values of the order parameters solutions to the saddle point
equations. The order parameters of the systems in the replica symmetric phase are the condensation over the SVD modes (both
for the visible and hidden nodes) m̂α and mα and the overlaps q̂ and q. The saddle point equations of the free energy leads to the
following self-consistent equations for the order parameters:

mα = κ
1
4 Ev,x

[
vα tanh

(
h̄(x,v)

)]
q = Ev,x

[
tanh2(h̄(x,v))], (39)

m̄α = κ
− 1

4 Eu,x

[
uα tanh

(
h(x,u)

)]
q̄ = Eu,x

[
tanh2(h(x,u))], (40)

where

h(x,u) = κ
1
4
(
σ
√

qx+∑
γ

(wγ mγ −ηγ)uγ
)
,

h̄(x,v) = κ
− 1

4
(
σ
√

q̄x+∑
γ

(wγ m̄γ −θγ)vγ
)
.

A first look at the equations for the magnetization over the mode α tells us that they correspond to the usual mean-field
equations of the Sherrington-Kirkpatrick model[66] projected on the SVD decomposition of the weight matrix. The same is
true for the overlap, with the difference that we have an overlap parameter for each layer. Analyzing these equations, we can
distinguish three phases.

• A Paramagnetic phase: it correponds to the case where q = 0, q̂ = 0, mα = 0 and m̂α = 0. In the high temperature phase
there exists only one minimum to the free energy.

• A Ferromagnetic phase: given by q, q̄,mα , m̄α ̸= 0. In this phase, the magnetization of the system is polarized toward
one or many modes α .

• A Spin Glass phase: where q, q̄ ̸= 0, but mα = m̂α = 0. In that phase, the system is trapped into one of the many minima
of the free energy that are completely uncorrelated with the SVD modes of the weight matrix.
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On left panel of Figure 4 is shown the phase diagram as a function of 1/σ and of wmax/σ , the ratio of strongest mode of 𝑤
to the variance σ of the noise.

Fig. 4. Left: the phase diagram of the model. The y-axis corresponds to the variance of the noise matrix, the x-axis to the value of the strongest
mode of 𝑤. We see that the ferromagnetic phase is characterized by having strong mode eigenvalues. In this phase, the system can behave
either by recalling one eigenmode of 𝑤 or by composing many modes together (compositional phase). For the sake of completeness, we
indicate the AT region where the replica symmetric solution is unstable, but for practical purpose we are not interested in this phase. Right: An
example of a learning trajectory on the MNIST dataset (in red) and on a synthetic dataset (in blue). It shows that starting from the paramagnetic
phase, the learning dynamics brings the system toward the ferromagnetic phase by learning a few strong modes.

From the learning perspective, the interesting phase is the ferromagnetic one. It seems also important that the learning avoid
entering into the spin glass (SG) phase. The SG phase, apart from being uncorrelated with the SVD of 𝑤, can affect very badly
the MCMC that is used to compute the gradient. By inspecting the phase diagram on the left panel of Figure 4, we understand
that at the beginning of the learning it is important to start with a weight matrix with a small variance σ in order to avoid starting
from the SG phase. Then, we expect during learning that one or many eigenvalues wα will be expressed and that the trajectory
will drift toward the ferromagnetic phase.

The nature of the ferromagnetic phase — it is instructive to look more in details at the ferromagnetic phase to understand
the behavior of the RBM. We can distinguish two cases: in the first one only one eigenvalue wα is learned (wα > σ) and the other
ones are close to zero; in the second scenario, many eigenvalues are expressed. In fact the first case is quite simple. Since only
one mode has been learned the system will condense along this mode and it will be very similar to a ferromagnet. In the second
scenario, we may have many wα that have been learned, i.e. which are above noise threshold. The question then is whether
the system will preferentially condense along one single mode taken out of the learned ones or whether it will be able to make
compositions by condensing on several modes at the same time. In order to analyze this second scenario, it is important to recall
that in order to derive the phase diagram one has to perform the quenched averaging over the matrices 𝑢 and 𝑣. The results will
depend on the distribution that is used for the averaging. In Ref. [36], it is shown that depending on the kurtosis of the distribution
taken over 𝑢 and 𝑣, the system can behave in different ways. Denoting with γ the relative kurtosis (w.r.t. the normal distribution)
three different behaviors are identified:

• γ = 0, e.g. the Gaussian distribution. In that case, only the strongest mode is stable, and the weaker ones are unstable w.r.t.
to the strongest one. Here, the system will condense along the strongest mode only.

• γ < 0 e.g. the uniform or the Bernoulli distribution. Here the weaker modes can be metastable if they are not “too far
away” from the strongest one. However the system will condense only toward one mode.

• γ > 0 e.g. a sparse Bernoulli, or the Laplace distribution. In that case, the strongest mode is unstable w.r.t. weaker ones,
leaving the possibility to have condensation over many modes at the same time. This corresponds to a dual compositional
phase, by reference to the terminology introduced in Ref. [57] which corresponds to combination of features instead of
modes.

Hence depending on the form that will take the matrices 𝑢 and 𝑣 during the learning, different types of condensation may
appear. This give us some insight on the way the statistical properties of the SVD of the weight matrix are reflected on the recall
phase. In some cases the system might recall one macroscopic state, in another one an equilibrium state can be made of a mixture
of modes. We illustrate on the right panel of Figure 4 the learning trajectory on the phase diagram obtained both on artificial and
MNIST data.
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5. Learning RBM
Let us now discuss possible mechanisms at work during the learning of a RBM, which as we expect should have something

to do with pattern formation mechanisms.[67] We start by summarizing what is understood in exactly solvable models such as the
Gaussian-Gaussian and Gaussian-Spherical RBMs. Then we will review a recent work[68] showing how the learning dynamics
on a simple dataset for the Bernoulli-Bernoulli RBM with one hidden node can be cast into a spatial diffusion equation. Then we
will investigate numerically the behavior of the RBM on the MNIST dataset. In particular, how the learned features at short time
can be interpreted using the SVD of the weight matrix and how, at later time, they seem to change completely. Then leaving aside
the classical approach based on the Monte-Carlo computation of the gradient — contrastive divergence,[6] persistent contrastive
divergence,[32] parallel tempering[59,69,70]— we will show how to use the MF self-consistent equations in order to compute the
negative term to perform the learning. Finally, we will focus on the ensemble average equations for the learning, where we show
how the MF theory developed in Section 4.2. can be integrated numerically and lead to the learning curve of the weight matrix
𝑤.

5.1. Learning dynamics for exactly solvable RBMs

Gaussian-Gaussian RBM — We have already seen, in Section 3.1. that the gradient of the Gaussian-Gaussian RBM can
be computed exactly and how to characterize the growth of the eigenmodes of the weight matrix when freezing the rotation of
the matrices 𝑢α and 𝑣α . We put additional results here, operated on an artificial dataset[37] containing 4 well-separated Gaussian
clusters. Recall that the modes of the SVD of the dataset that are higher than the intrinsic variance of the visible modes σ2

v

will be expressed, and the vectors of rotation 𝑢α will aligned themselves with the principal directions of the dataset owing to
Eqs. (14,16,17). We can observe on Figure 5 the learning curve obtained for the first eigenmodes of the system coming out of
the bulk. We can also see that the first eigenvectors 𝑢α , associated to the expressed eigenvalues of 𝑤, are aligning with the first
principal directions of the SVD of the dataset. In parallel, we see that the likelihood — that can be computed exactly here— of
the system increases stepwise after each new mode is learned.

Fig. 5. On this artificial dataset, we observe that eigenvalues that follows ⟨sα ⟩2 > σ2
v are learned and reach the threshold indicated by

Eq. (15). In the inset, the alignment of the first four principal directions of the matrix 𝑢α of the SVD of 𝑤 and of the dataset. In red, we
observe that the likelihood function is increasing each time that a new mode emerges.

Gaussian-Spherical RBM — In the case of the Gaussian-Spherical case, it is again possible to obtain an exact analytical
expression for the response function of the RBM ⟨sα τβ ⟩[40] for both the positive and negative terms, where the average is
performed respectively over the dataset and the model distribution. The qualitative pictures is very similar to the previous one.
As for the linear model, linear correlations between different modes vanish and therefore the matrix 𝑢 has to rotate until it is
properly aligned with the principal directions of the dataset. At the same time singular values get either amplified or damped. In
contrary to the linear case they do not evolve independently. Instead, as seen on the left panel of Figure 6 lower modes willing
to condense exert some pressure on higher modes and accumulate at the top of the spectrum, hence pushing the whole spectrum
upward. On the right panel of Figure 6, to illustrate the result of mode condensation, we show a scatter plot containing data from
the training dataset and data generated on the trained model when two modes condense.
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Fig. 6. Left: the learning curves for the modes wα using an RBM with (Nv,Nh) = (100,100) learned on a synthetic dataset distributed in
the neighborhood of a 20d ellipsoid embedded into a 100d space. Here the modes interact together: the weaker modes push the stronger
ones higher, and they all accumulate at the top of the spectrum, as explained in Section 3.2.. Right: a scatter plot projected on the first two
SVD modes of the training (blue) and sampled data from the learned RBM (red) for a problem in dimension Nv = 50 with two condensed
modes. We can see that the learned matrix 𝑢 captures relevant directions and that the RBM generates data perfectly similar to the one of
the training set.

5.2. Pattern formation in the 1D Ising chain

In a recent work,[68] the formation of features is studied analytically on a RBM with one hidden node. The training dataset
is generated from a 1D Ising chain with a uniform coupling constant and periodic boundary conditions. The model used for
generating the data has a translational symmetry which is exploited to solve the learning dynamics exactly. There is indeed
available a closed form expression for the correlation function. Thanks to the translation invariance this depends only on the
relative distance between the variables. Numerically, it is found that:

• the weights 𝑤 function of the visible node index have a peak value for one of the visible node and decay with distance to
this node. Since the position of the center breaks the translation symmetry it tends to diffuse over the system during the
learning.

• Using more hidden nodes (but still few), it is observed that each feature is peaked at different places an repel each other to
encode the correlation patterns of the data. Again, the position of the peaks diffuse with time even though some repulsive
interaction seems to forbid them to cross. See Figure 7 taken from[68] illustrating this phenomena.

Fig. 7. Left: figure from Ref. [68], the value of wi for each visible site of a RBM with 3 hidden nodes trained on the dataset of the 1D homogeneous
Ising model with periodic boundary condition. We see three similarly peak shaped potentials with a decreasing magnitude of similar order for the three.
Each peak intends to reproduce the correlation pattern around a central node, and therefore cannot reproduce the translational symmetry of the problem.
Right: figure from Ref. [68], the position of the three peaks as a function of the number of training epochs. We observe that the peaks diffuse while
repelling each others. The diffusion aims at reproducing the correlation patterns of the translational symmetry, while the repelling interaction ensure
that two peaks will not overlap..

Now in Ref. [68], the author compute the gradient of a system with one hidden node

∂ logℒ
∂wi

=

〈
si tanh

(
β ∑

j
s jw j

)〉
data

− tanh(wi)

This expression can be developed up to the fourth order in w (and β ), giving in the case of the 1D Ising chain

∂ logℒ
∂wi

≈ β (wi+1 +wi−1)−wi ∑
k

w2
k +w3

i +𝒪(w4,βw3)
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It is easy to identify in the first two terms the 1D discrete spatial diffusion. This equation can be cast into a spatial diffusion
equation with additional term in the continuous time limit (see Ref. [68] for more details). From this small coupling expansion
it is also possible to study the stationary solution in the one hidden node case and show that it is consistent with experimental
results: it describes a peaked function decreasing rapidly as the distance from the center increases. An approximated weak
coupling equations can also be derived in the case of two hidden units. In that case, an effective coupling between the two
features vectors w1 and w2 is present and responsible for a repulsive interaction between the two peaks.

This illustrates nicely how the features learned by the RBM tend to describe local correlations between variables. In addition,
these features diffuse over the whole system during the learning to restore the translational symmetry without crossing thanks to
a repulsive interactions between them. In the next section, we will focus on the learning behavior on the MNIST dataset and see
that in that case, the learned features similarly describe local correlations.

5.3. Pattern formation in MNIST: from SVD to ICA?

The pattern formation mechanism can be studied numerically on the MNIST dataset. MNIST[8] is one of the most used real
dataset in Machine Learning, it contains 60000 images of black and white handwritten digits of 28× 28 pixels, ranging from 0
to 9. The digits are about all the same size and are at the center of the image. They are illustrated on Figure 8.

Fig. 8. A subset of the MNIST dataset.

To investigate how the patterns emerge from the learning process, we inspect the features during the learning on the
Bernoulli-Bernoulli RBM. The first phase of the learning can be understood thanks to a standard linear stability analysis.[36,37]

For this let us recall the learning behavior of the Gaussian-Gaussian RBM analyzed in Section 3.1.. In this simple case, the
learning was triggered by the SVD of the dataset, and the growth of the modes wα was controlled by how strong was the mode
projected in the principal direction of the matrix 𝑢. Consider now the Bernoulli-Bernoulli RBM with {±1} visible and hidden
variables (to simplify), and expand the log-likelihood gradient in the limit of small 𝑤 (putting the local biases to zero):

∂ℒ
∂wia

=
1
M ∑

d
s(d)i tanh

(
∑

j
s(d)j w ja

)
−⟨siτa⟩ℋ

≈ 1
M ∑

d
s(d)i ∑

j
s(d)j w ja −wia

= ∑
j

Ci jw ja −wia

If we project these equations on the SVD modes of 𝑤 as in Section 3.1., we obtain the learning dynamics

dwα

dt
= wα

[
⟨ŝ2

α⟩−1
]
,
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identical at first order in wα to (14) in the Gaussian-Gaussian case, when σv = σh = 1. Hence, at the beginning of the learning,

this RBM follows the same trajectory as the Gaussian-Gaussian one, where the mode wα are amplified by the principal modes of

the dataset. Similarly, it can be shown that the matrix 𝑢 will start to align with the principal direction of the dataset. To see how

the features evolve in the non-linear regime, we train an RBM with a very low learning rate and 500 hidden nodes on MNIST.

On Figure 9 we observe as expected from the linear stability analysis, that at the beginning of the learning the first modes of

the weight matrix are almost identical to the one of the SVD of the dataset. We see in particular that the features themselves

correspond to modes of the dataset, meaning that the RBM starts by learning global features.

Fig. 9. Left: the first 10 modes of the MNIST dataset (top) and the RBM (bottom) at the beginning of the learning. The similarity between
most of them is clearly visible. Right: 100 random features of the RBM at the same moment of the learning. We can see that most features
correspond to a mode of the dataset when comparing with the left-top panel.

Additionally, at this stage of the learning the MC samples obtained from the RBM are typically prototypes: each sample is

almost identical (or have a large overlap) with a learned feature. In fact, during the training, if we monitor samples at each epoch

(keeping a low learning rate), we can see that the samples have a high overlap with one mode at the beginning, then later on with

combinations of modes. To be more precise, we can distinguish different stages of the learning by inspecting the features, the

produced samples and the distance between the discretize features (taking the sign of each feature and computing the overlap).

We illustrate these different stages on Figure 10.
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Fig. 10. The column represents respectively (i) the first hundred learned features, (ii) the histogram of distances between the binarized
features: W±1 = sign(W) and (iii) 100 samples generated from the learned RBM. The first row corresponds to the beginning of the learning
when only one feature is learned. Looking at the histogram, we see that most of the features have a high overlap. Also, the MC samples
are all similar to the learned features. On the second row, the RBM has learned many features, and therefore the histogram is wider but
still centered at zero. The MC sampling however is only capable of reproducing one of the learned features. On the last row the learning
is much more advanced. The features tend to be very localized and the samples correspond now to digits.

Finally at the end of the learning we recover localized features as in the study-case of the previous section. It has been
noticed many times that these localized features are very similar to the ones given by an ICA. To which extent this aspect of
learning is affected by the dataset that is considered is an open and interesting question. If we push further the learning, we
observe that the RBM keeps learning more and more modes. It is not clear if the system enters in another phase (spin-glass or
something else) or if it just overfits the dataset. To end up with these numerical experiments, let us look at the spectrum of 𝑤, at
the beginning, at an intermediate stage and at the end of the learning. On Figure 11, we see that starting from a Marchenko-Pastur
law, coming from the spectrum of a Gaussian random matrix, quite quickly, many eigenvalues get out of the bulk as they are
learned by the machine.

To summarize we have identified the following stages:

• Stage 1: at initialization, the features are completely random and therefore the histogram of distances is Gaussian and
centered at zero. The spectrum of 𝑤 follows the Marchenko-Pastur distribution. The RBM starts from the paramagnetic
phase.

• Stage 2: the RBM enters the ferromagnetic phase, the first strongest mode of the SVD is learned by all features, giving a
high positive or negative overlap in the inter-features distances while the generated samples have a high overlap with the
learned features.
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• Stage 3: where many modes have emerged, but the learned features remain global and close to the modes of the dataset.
The histogram of distances becomes much broader but the generated sample correspond basically to the learned features
with few variety. The RBM is in a pure Mattis phase analogous to the recall phase of the Hopfield model.

• Stage 4: finally, after a much longer period, we observed that the learned features are much alike an ICA decomposition
while the distances between features is still centered in zero but with a much smaller variance. Finally the generated
samples look very similar to the provided dataset. The RBM is in a compositional phase, both regarding the features and
the modes (the dual one).

• Stage 5: empirically, we observe that the learning of the modes of 𝑤 never stops. Hence, a macroscopic number of modes
is expressed and it is not clear anymore what would be the behavior of the machine in this regime, whether this corresponds
to a standard spin-glass phase[61] or another unknown disordered phase.

In future works, it could be interesting to understand the mechanism leading to the localization of the features, in particular
whether this is related to some specific tail distribution of the weight matrix spectrum. An aspect of RBMs completely absent
from the previous description of the learning process is the behaviour of the biases associated to hidden nodes. These are
very important since they determine the threshold above which the features are activated and their learning dynamics is quite
intertwined with the modes dynamics. This aspect of the learning could be worth studying especially to improve present learning
algorithms.

Fig. 11. (a) Singular values distribution of the initial random matrix compared to the Marchenko-Pastur law. (b) As the training proceeds we
observe singular values passing above the threshold set by the Marchenko-Pastur law. (c) Distribution of the singular values after a long training:
the Marchenko-Pastur distribution has disappeared and been replaced by a fat tailed distribution of eigenvalues mainly spread above threshold and
a peak of below-threshold singular values near zero. The distribution of eigenvalues do not get close to any standard random matrix ensemble
spectrum.

5.4. Learning RBM using TAP equations

The difficulty of learning an RBM comes as already said from the negative term which requires to compute the thermal
average of correlations between a visible and hidden nodes. In particular, when the machine starts to learn many modes, it
becomes more and more difficult to estimate this term correctly using Monte-Carlo methods due to the eventually large relaxation
time. In addition, to get a precise measurement, it is necessary to get many statistically independent samples in order to reduce
the statistical error.

In this section we will derive the mean-field self-consistent equations that can be used to approximate the negative term by
using a high-temperature expansion of the Boltzmann measure. We illustrate the method showing the result of Gabrié et. al[70]

where a RBM has been trained by using the TAP equations.
High-Temperature (Plefka) expansion — We review here a famous approach using a high-temperature expansion of the

system in order to compute the mean-field magnetization. This method is both very simple to implement and also provides a way
to approximate the free energy of the system in the weak couplings regime. Recent successful approaches[71,72] showed how it is
possible to train a RBM using these mean-field equations. For this subsection, we will use {±1} binary variables for simplicity.

For the Ising model, it is well-known that the (na?ve) mean-field (nMF) approximation can be written as a set of self-
consistent equations on the magnetizations, and the associated approximation of the free energy can be computed as a function
of these magnetizations:

mi = tanh

(
∑

j
Ji jm j +hi

)
, ∀i
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F [𝑚] = ∑
i

[(
1−mi

2

)
log
(

1−mi

2

)
+

(
1+mi

2

)
log
(

1+mi

2

)]
−∑

i< j
Ji jmim j −∑

i
mihi

These equation can be translated directly to the case of the RBM, with the only need to specify clearly which variables are the
visible and hidden ones. One gets the following:

mi = tanh
(

∑
a

wiama +θi

)
ma = tanh

(
∑

i
wiami +ηa

)

F [𝑚] = ∑
i

[(
1−mi

2

)
log
(

1−mi

2

)
+

(
1+mi

2

)
log
(

1+mi

2

)]
+∑

a

[(
1−ma

2

)
log
(

1−ma

2

)
+

(
1+ma

2

)
log
(

1+ma

2

)]
−∑

i,a
wiamima −∑

i
miηi −∑

a
maθa

Here, we remind the reader that we use the indices i, j,k for the visible nodes, and a,b,c for the hidden ones. We recognize
on the first two lines of the free energy the entropy terms S(mi) and S(ma) of the model for respectively the visible and the
hidden nodes. Note first that the nMF approximation corresponds to a first order development in β (or in small 𝑤), but it can
be generalized to higher orders, recovering the so-called TAP[73] equations at the second order. Second, we can generalize
this scheme to any order using the Pfleka expansion.[74,75] Let us demonstrate first how to obtain the first and second order
approximation in the case of ±1 variables. To simplify the computation, we center all the terms around their mean value and
make the computation for a case without local bias

ℋ=−∑
i,a

siwiaτa

=−∑
ia
(si −mi)wia(τa −ma)−∑

i
(si −mi)∑

a
wiama

−∑
a
(τa −ma)∑

i
wiami −∑

ia
miwiama

Using this expression, we can follow[75] and compute the magnetization in the infinite temperature limit of the following free
energy

−βA = log

[
∑
{s,τ}

exp(−βℋ+∑
i

λi(β )(si −mi)+∑
a

λa(β )(τa −ma)

]
The relation between the magnetization and the Lagrange multipliers λ are obtained by imposing mi = ⟨si⟩β=0 = λi(0) and
similar constraints for the hidden nodes. Then, we expand the free energy in a high temperature series

−βA =−βA
∣∣∣∣
β=0

−β
∂βA
∂β

∣∣∣∣
β=0

− β 2

2
∂ 2βA
∂β 2

∣∣∣∣
β=0

+ . . .

With our Hamiltonian, we can compute the first and second order easily

−∂βA
∂β

∣∣∣∣
β=0

= ⟨ℋ⟩= ∑
ia

miwiama

−∂ 2βA
∂β 2

∣∣∣∣
β=0

=
1
2 ∑

ia
w2

ia(1−m2
i )(1−m2

a)

where we used the following identities for the second order computation

∂ 2βA
∂β∂mi

∣∣∣∣
β=0

=−∑
a

wiama
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∂ 2βA
∂β∂ma

∣∣∣∣
β=0

=−∑
i

wiami

As show in Ref. [71], the expansion can be easily extended to the third order without a big computational cost due to the particular

topology of the RBM. Deriving the free energy obtained at this order w.r.t. the magnetization, we obtain the self-consistent set

of equations defining the TAP equations for the RBM

mi = tanh
(

∑
a

wiama −∑
a

w2
iami(1−m2

a)

)
(41)

ma = tanh

(
∑

i
wiama −∑

i
w2

iama(1−m2
i )

)
(42)

Hence, a solution of the TAP equations should satisfied Eqs. (41) and (42) and give us at the same time the approximated free

energy associated to this solution:

F [𝑚] = ∑
i

S(mi)+∑
a

S(ma)−∑
ia

wiamima +∑
ia

w2
ia

2
(1−mi)

2 (1−ma)
2 (43)

We can now use these mean-field equations to learn the RBM. First, we need to take into account the fact that many solutions to

Eqs. (41) and (42) exist, each one with a given value of the free energy. Hence, the partition function can be approximated by

Z = ∑
γ

e−F(m(γ)
i ,m(γ)

a )

where the sum runs over all the possible solution to the mean-field equations (41)–(42), weighted by the free energy given in

Eq. (43). Using this approximation in the computation of the likelihood we obtain the following gradient

∂ℒ
∂wia

= ⟨siτa⟩data −⟨mima +w2
ia(1−m2

i )(1−m2
a)⟩MF

where

⟨O⟩MF =
∑γ Oγ e−Fγ

∑γ ′ e
−F

γ ′
(44)

correspond to the model average over all the solutions of the mean-field equations. We can see here a notable difference with

the approach developed in Ref. [71]. In their work, Gabrié et al. runs the sums over all obtained fixed point from the mean-field

equations divided by the number of fixed points only. The risk is that if the mean-field equations converge toward a fixed point

that is suboptimal (have a high free energy) or even spurious (being a a maximum of the free energy) the estimation of the

negative term will be polluted by such fixed points. More details on the Plefka expansion on bipartite Ising model can be found

here.[76] As a final remark, let us insist on the fact that, even if the convergence of the TAP equations is not guaranteed, problems

of convergence are practically not met in the ferromagnetic phase. On the contrary, such problems occur quite often in the spin

glass phase which we wish to avoid in the context of learning the RBM.

Experiment with TAP learning
We show here some results obtained on MNIST using the same parameters as above but with the mean-field approximation

taken from.[71] Here, the comparison is done using the persistent chain algorithm, where a set of MC chains is maintained all

along the learning whenever using CD, nMF or the TAP approximation (in the case of nMF or TAP, the chain is updated using

the corresponding self-consistent equations), see Figure 12.
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Fig. 12. Top: —figure taken from[71]— Samples taken from the permanent chain at the end of the training of the RBM. The first two
lines correspond to samples generated using PCD. The second two lines to samples obtained using the P-nMF approximation and the last
two, using P-TAP. Bottom: A 100 features obtained after the training, we can see that they are qualitatively very similar to the ones obtain
when training the RBM with P-TAP.

First we see that the samples generated by all the three methods are qualitatively similar. Second, the features learned are
also qualitatively similar to the PCD case. Therefore, on the MNIST dataset the two machines are hardly distinguished by just
looking at the generated samples and learned features indicating that the MF/TAP approximation is working very well. It is
also important to point out here that, the advantage of the mean-field approximation in that case does not rely on any speed up
with regard to the learning procedure. But, more importantly, it provides complementary tools such as the fixed points as local
maxima of the free energy and their associated free energy. For instance, in Ref. [77] a RBM is used as a prior distribution in the
context of compressed sensing where the mean-field equations are used to infer equilibrium values of the variables. In Ref. [78],
the RBM is used to reconstruct images from partial observations, again using the mean-field formulation to infer the states of the
missing information.

5.5. Mean-Field learning: ensemble average

The mean-field equations derived in Section 4.2.for the RBM, where the weight matrix is constructed as a low rank decom-
position, can be integrated numerically in order to learn the parameters of the RBM. By contrast to the TAP equations described
in Section 5.4. which are solved on single instances, they correspond to the ensemble average (over the parameters 𝑢, 𝑣 and the
noise), i.e. are meant to represent an average case of learning.

In the approach developed in Ref. [36], using the statistical ensemble defined in Section 4.2.it is possible to have a mean-field
estimate of the response functions involved in the gradient of the log-likelihood. For the response term on the data we get

⟨sα τβ ⟩data = ⟨sα(sβ wβ −θβ )(1−qβ [𝑠])⟩data

where the parameter qβ [𝑠] is a variant attached to mode β of the spin-glass parameter taken as a function of �̄� in equation (39),
when the visible nodes are pinned to the dataset (see Ref. [36] for details). The negative term is more complicated to compute. It
depends on the fixed points obtained through equations (39) and (40) for a given set of model parameters. Once the fixed point
are obtained, the response terms of the RBM can be written

⟨sα τβ ⟩ℋ =
1

ZMF
∑
γ

e−L f (mγ ,m̄γ ,qγ ,q̄γ )mγ

α m̄γ

β
= ⟨mγ

α m̄γ

β
⟩MF

ZMF = ∑
γ

e−L f (mγ ,m̄γ ,qγ ,q̄γ )

where γ runs over the set of fixed points; f is the mean-field free energy that can be derived from Eq. (36). These response terms
allows one also to compute the skew-symmetric rotation generators of the visible and hidden singular vectors of 𝑤 through

Ω
u
αβ

=
wβ

w2
α −w2

β

(
⟨sα τβ ⟩data −⟨sα τβ ⟩ℋ

)
+

wα

w2
α −w2

β

(
⟨sβ τα⟩data −⟨sβ τα⟩ℋ

)
,

Ω
v
αβ

=
wα

w2
α −w2

β

(
⟨sα τβ ⟩data −⟨sα τβ ⟩ℋ

)
+

wβ

w2
α −w2

β

(
⟨sβ τα⟩data −⟨sβ τα⟩ℋ

)
.
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With this at hand it is therefore possible to integrate numerically the learning process of the RBM random ensemble defined
by (33) hence given the typical learning trajectory. If doable in principle with any arbitrary data, this was actually tested in
Ref. [36] on a simple synthetic dataset made of separated clusters. The result is shown on Figure 13.

Fig. 13. Top panel: Results for a RBM of size (Nv,Nh) = (1000,500) learned on a synthetic dataset of 104 samples having 20 clusters
randomly located on a sub-manifold of dimension d = 15. The learning curve for the eigemodes wα (left) and the associated likelihood
function (right-red) together with the number of obtained fixed point at each epoch. We can see that, before the first eigenvalue is learned
there is one single fixed point, then as modes are learned, the number of fixed points increases. Bottom panel: Results for a RBM of
size (Nv,Nh) = (100,50) learned on a synthetic dataset of 104 samples having 11 clusters randomly defined a sub-manifold of dimension
d = 5. On the left, the scatter plot of the training data together with the position of the fixed points projected on the first two directions of
the SVD of 𝑤. On the right, the projection along the third and fourth axis. The results are shown after learning 5 modes and where 16
fixed points are found (in fact more than the number of hidden clusters.

We see again the different eigenvalues emerging one by one, and that each newly learned eigenvalue is triggering a jump of
the likelihood together with a jump in the number of fixed points. At the end of the learning, the obtained mean-field fixed points
are located at the center of each cluster of the dataset, as can be seen on the scatter plots. In Ref. [36], it is also shown that the
behavior is qualitatively similar to what is routinely obtained when performing a standard learning based on PCD.

5.6. Other mean-field approach

Other approaches using for instance, message-passing technique such as BP have been developed in order to infer the
magnetization of RBM instances. These approaches usually are correct in the limit of weak couplings, and can be used on single
instance by iteratively updating a set of messages, here 𝒪(NhNv) until convergence (see for instance[49,79]). In these works, it is
shown how BP can be used to infer the magnetization or the free energy in few well-chosen cases. However, as far as practical
learning tasks are concerned, it is not clear that this can be used in general when dealing with the ferromagnetic phase, as can be
expected when considering structured data. In fact, it has been showed in many works that BP can have very bad convergence
properties in a ferromagnetic phase when the underlying factor-graph is not a tree[80] (particularly if the couplings are strong).
This would be most probably the case with RBMs. It is also worth mentioning that in the case of the inverse Ising model, BP
approaches never manage to succeed because of the convergence problems[80] and the TAP solution was preferred when inferring
the couplings.[81,82] However, some attempts[58,83] using BP and the replica theory on a RBM with one hidden unit were done.
In that setting, it is possible to compute the marginal over the weight matrix using BP and therefore to compute its maximum
likelihood given some observed datapoints. The results tend to show that, as the number of data increases, the learned features
become more localized as is observed in many experiments. Managing to extend this result to the case of many hidden nodes
would open the possibility to study the pattern formation using message-passing techniques. An even more recent study,[84] using
a variational approach to approximate the posterior distribution of the patterns given the RBM and a dataset shows on artificial
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data that the patterns are recovered during the learning. Once again, the missing convincing piece in that case is the applicability
to real dataset and the ability to samples complex distribution.

6. Conclusion
With this review, we strive at showing that not only is RBM part of a hectic field of study, but it is also an intriguing

puzzle with pieces which are missing in order to be able to understand the way these models can/could assimilate complex
information/more complex information. While the black box nature of the learning process starts to fade away very slowly, there
are still many key aspects that we do not understand or master for such simple models. We try to list interesting leads for the
future.

• Learning quality: Despite the fact that we are maximizing a likelihood function (which can not be computed) it is very
hard to obtain a good indicator for comparing two learned RBM. Even if many methods exist to compute the likelihood
approximately[85,86] the obtained scores are in general not commented in regard to robust statistical analysis. If for very
hard cases of image generation, it is easy to compare the results by eye inspection, there are no general method that manage
to assess the quality of the samples in terms of how well the learned distribution reproduces the dataset distribution. Some
recent work[87] introduced the notion of “ressemblance” and “privacy” that test the geometric repartition of the true data
against the generated samples. This could be a first step defining scores according to different criteria (actually, this
problem is not specific to the RBM but concerns actually most of the unsupervised learning models (GANs, VAEs, ...).

• The number of hidden nodes: It is striking that we are still unable to have a principled manner of deciding how many
hidden nodes are necessary to learn datasets which are not too complex. For instance, on MNIST, it is possible to learn a
machine with only 50 hidden nodes and it somehow manages to produce decent samples. The understanding on how much
hidden nodes are necessary to reach a given sample quality is completely missing. In addition, the number of hidden nodes
influences a lot the learning behavior of the machine, again in a way that is not fully understood.

• The landscape of free energy: When using statistical mechanics to understand RBMs, the natural question that comes in
mind is about the landscape of free energy of the learned machine. It is easy to observe the mean-field fixed point obtained
in the ferromagnetic phase and that they do correspond to prototypes of the dataset. Still, we do not know how these many
fixed points are organized: are there low free energy paths relating them one from each others? do these paths define a
network structure or instead separated clusters of low free energy?

• The landscape of learned RBMs: This is a generic question in Machine Learning : what is the landscape of “good”
learned machines in parameter space (here the weight matrix). For supervised tasks, some consensus seems to describe a
space which is globally flat where all the good model are next to one another. However this is true for deep models, in the
case of RBM, apart from the permutation symmetry of the hidden nodes, we have no clue about what this landscape looks
like.

• Link between the dataset and the learned features: We have seen that in the Gaussian-Gaussian case there is a direct
link between the eigen-decomposition of the dataset and the learned features. However, for the non-linear model, we do
not understand how the modes of the weight matrix are linked to the dataset, nor to the associated rotation matrices.
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[71] Marylou Gabrié, Eric W Tramel and Florent Krzakala 2015 Training restricted Boltzmann machine via the Thouless-Anderson-Palmer free energy. In

Advances in neural information processing systems, pages 640–648
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Theory and Experiment 2019 113301
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