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ABSTRACT

Context. Data-driven methods play an increasingly important role in the field of astrophysics. In the context of large spectroscopic surveys of
stars, data-driven methods are key in deducing physical parameters for millions of spectra in a short time. Convolutional neural networks (CNNs)
enable us to connect observables (e.g. spectra, stellar magnitudes) to physical properties (atmospheric parameters, chemical abundances, or labels
in general).
Aims. We test whether it is possible to transfer the labels derived from a high-resolution stellar survey to intermediate-resolution spectra of another
survey by using a CNN.
Methods. We trained a CNN, adopting stellar atmospheric parameters and chemical abundances from APOGEE DR16 (resolution R = 22 500)
data as training set labels. As input, we used parts of the intermediate-resolution RAVE DR6 spectra (R ∼ 7500) overlapping with the APOGEE
DR16 data as well as broad-band ALL_WISE and 2MASS photometry, together with Gaia DR2 photometry and parallaxes.
Results. We derived precise atmospheric parameters Teff , log(g), and [M/H], along with the chemical abundances of [Fe/H], [α/M], [Mg/Fe],
[Si/Fe], [Al/Fe], and [Ni/Fe] for 420 165 RAVE spectra. The precision typically amounts to 60 K in Teff , 0.06 in log(g) and 0.02−0.04 dex for
individual chemical abundances. Incorporating photometry and astrometry as additional constraints substantially improves the results in terms of
the accuracy and precision of the derived labels, as long as we operate in those parts of the parameter space that are well-covered by the training
sample. Scientific validation confirms the robustness of the CNN results. We provide a catalogue of CNN-trained atmospheric parameters and
abundances along with their uncertainties for 420 165 stars in the RAVE survey.
Conclusions. CNN-based methods provide a powerful way to combine spectroscopic, photometric, and astrometric data without the need to apply
any priors in the form of stellar evolutionary models. The developed procedure can extend the scientific output of RAVE spectra beyond DR6 to
ongoing and planned surveys such as Gaia RVS, 4MOST, and WEAVE. We call on the community to place a particular collective emphasis and
on efforts to create unbiased training samples for such future spectroscopic surveys.
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1. Introduction

Stellar chemical abundances are key tracers of the star formation
history of the Milky Way and they are indicators of the timing
of successive star formation events. The relative chemical abun-
dances of stars thus allow us to disentangle stellar populations
and to put constraints on the nucleosynthetic origin of the respec-
tive elements (Yoshii 1981; Freeman & Bland-Hawthorn 2002).
It allows us to constrain the composition of the gas cloud from
which a star was formed and the variations of the initial mass
function, particularly at the high-mass end (Wyse & Gilmore
1988; Matteucci & Francois 1989). However, in order to per-
form this exercise on the scale of the Galaxy, it is necessary to
observe and reduce spectra for some hundreds of thousands of
long-lived stars that are representative of the broad kinematic,
chemical, and age distributions of Galactic populations (Hayden
et al. 2015; Buder et al. 2019).

Over the last two decades, multiple efforts have been
undertaken to provide the community with high-quality stellar
spectra, largely drawn from dedicated spectroscopic surveys.
? The catalogue of atmospheric parameters and chemical abundances

presented in Sect. 10 is publicly available on the RAVE website:
https://doi.org/10.17876/rave/dr.6/020.

The RAdial Velocity Experiment (RAVE) was the first sys-
tematic spectroscopic Galactic archaeology survey (Steinmetz
2003; Steinmetz et al. 2020a), targeting half a million stars.
While the initial aim was to measure radial velocities of stars
(Steinmetz et al. 2006), RAVE data processing was later
extended to include stellar atmospheric parameters (Zwitter et al.
2008; Kordopatis et al. 2013), chemical abundances (Boeche
et al. 2011; Steinmetz et al. 2020b), and Gaia proper motions
(Kunder et al. 2017), thus enabling chemo-dynamical applica-
tions (Ruchti et al. 2010, 2011; Boeche et al. 2013a,b, 2014;
Minchev et al. 2014, 2019; Kordopatis et al. 2015; Antoja
et al. 2017). Together with RAVE, the Geneva-Copenhagen sur-
vey (GCS, Nordström et al. 2004) yielded pioneering work
in the comprehension of our Galaxy, solely based on ∼17 000
nearby stars. The RAVE and GCS surveys were followed by
numerous spectroscopic surveys with a broad variety of spec-
tral resolving power. The Sloan Extension for Galactic Under-
standing and Exploration survey (SEGUE, Yanny et al. 2009)
obtained roughly 240 000 low-resolution spectra (R = 1800).
The Gaia-ESO survey carried out a high-resolution inves-
tigation of 105 stars, based on the UVES (Ultraviolet and
Visual Echelle Spectrograph, R = 48 000) and GIRAFFE
(R = 16 000) spectrographs of the Very Large Telescope (VLT,

Article published by EDP Sciences A168, page 1 of 29

https://doi.org/10.1051/0004-6361/202038271
https://www.aanda.org
https://doi.org/10.17876/rave/dr.6/020
https://www.edpsciences.org


A&A 644, A168 (2020)

Gilmore et al. 2012). At a lower resolution (R = 1800),
the ongoing Large sky Area Multi-Object Fibre Spectro-
scopic Telescope (LAMOST) observed about one million stars
in the northern hemisphere (Zhang et al. 2019). The ongo-
ing Apache Point Observatory Galactic Evolution Experiment
(APOGEE) just released their Data Release 16 (Ahumada et al.
2020; Jönsson et al. 2020). This survey observed ∼400 000
stars in both hemispheres using a high-resolution near-infrared
spectrograph (R∼ 22 500). The Galactic ArchaeoLogy with
HERMES project (GALAH), an ongoing survey dedicated to
chemical tagging, has targeted nearly 350 000 stars at high reso-
lution (R∼ 28 000, Buder et al. 2018) to provide detailed chem-
ical abundances. A common feature of all these endeavors is
that automated and eventually unsupervised data reductions and
parameter determination algorithms have to be employed, owing
to the sheer number of spectra.

In the near future, the WHT Enhanced Area Velocity
Explorer (WEAVE, Dalton et al. 2018) and the 4-metre Multi-
Object Spectroscopic Telescope (4MOST, de Jong et al. 2019)
will deliver intermediate and high-resolution observations of
several millions of stars (see Chiappini et al. 2019; Bensby et al.
2019 for details on the 4MOST low- and high-resolution sur-
veys of the bulge and discs, respectively). The need for automatic
and fast software for the parameterisation of stellar spectra will
become even greater.

To derive atmospheric parameters and chemical abundances,
standard pipelines usually compare spectral models to observa-
tions, either localised around selected spectral lines or, alterna-
tively, over a broader wavelength range. Methods range from
the curve-of-growth fitting of spectral lines (e.g. Boeche et al.
2011, SP_Ace Boeche & Grebel 2018), on-the-fly spectrum
syntheses such as Spectroscopy Made Easy (SME, Valenti
& Piskunov 1996), on-the-fly flux ratios such as A Tool for
HOmogenizing Stellar parameters (ATHOS, Hanke et al. 2018),
or a comparison based on a synthetic spectra grid (FERRE,
Allende Prieto et al. 2006; MATISSE, Recio-Blanco et al. 2006;
GAUGUIN, Bijaoui et al. 2012; Guiglion et al. 2016). These
methods have shown their efficiency in deriving precise and
accurate abundances (Jofré et al. 2019) for various spectral
ranges and spectral resolutions in the context of the major current
spectoscopic surveys, such as the Gaia-ESO Survey, APOGEE,
GALAH, and RAVE. These families of standard pipelines are
essential because they are based on the physics of stellar interi-
ors, deriving atmospheric parameters and chemical abundances
that can be used as stellar labels in the context of data-driven
methods.

Indeed, data-driven approaches have started to play an
important role in estimating these stellar labels. Such methods
transfer the knowledge from a reference set of data, so-called
training samples, to infer stellar labels.

The Cannon (Ness et al. 2015) is one of the pioneering data-
driven analysis packages and its reliability was demonstrated
through applications to spectroscopic surveys such as APOGEE
and RAVE (Casey et al. 2016, 2017). The Payne (Ting et al.
2019) recently demonstrated that it is possible to couple stellar
spectra modeling and a model-driven approach to reflect stel-
lar labels. We note that the Cannon uses observed spectra (with
the same set-up, but higher signal-to-noise than the survey) as
the training data, whereas the Payne uses synthetic spectra as its
training set.

A few recent studies have used convolutional neural net-
works (CNNs) to infer atmospheric parameters and chemical
abundances from high-resolution spectra. Leung & Bovy (2019)
derived 22 stellar parameters and chemical abundances based on

APOGEE DR14 spectra and labels, utilising their astroNN tool
and purely observational data. On the other hand, Fabbro et al.
(2018) developed the StarNet pipeline, which is based on a CNN
and an input synthetic spectra grid. They applied their StarNet to
high-resolution data of APOGEE and, more recently, to Gaia-
ESO Survey UVES spectra (Bialek et al. 2020). Zhang et al.
(2019) used StarNet to estimate atmospheric parameters and
chemical abundances of LAMOST spectra, based on APOGEE
results.

Combining spectoscopy and photometry has been explored
by Schönrich & Bergemann (2014) with physical modelling and
a Bayesian approach on SEGUE data. The goal of the present
paper is to show that a CNN-based approach can be employed for
an efficient transfer of stellar labels from high resolution spectra
to intermediate-resolution spectra. This is done in conjunction
with additional observables in the form of stellar magnitudes
and parallaxes. We aim to derive atmospheric parameters and
chemical abundances from intermediate-resolution RAVE DR6
spectra, based on a training sample of common stars with higher
resolution APOGEE DR16 (Ahumada et al. 2020) spectra. We
also show that using broad-band infrared photometry and paral-
lax measurements as an extra set of constraints during the train-
ing phase improves the atmospheric parameters considerably.
This study represents a complementary approach to the RAVE
project’s main parameter pipeline, and enhances the scientific
output of the RAVE spectra. This work also has a good synergy
with the next full Gaia release (Gaia DR3), which will provide
spectra from the Radial Velocity Spectrometer (RVS), which are
very similar to RAVE spectra in terms of wavelength coverage
and resolution.

The paper is laid out as follows. In Sect. 2, we present the
data we used to build the training sample. In Sect. 3, we present
the main features of the CNN and provide details of the training
phase. In Sect. 4, we deduce the atmospheric parameters and
chemical abundances for more than 420 000 RAVE spectra, with
the error budget treated in Sect. 5. In Sect. 6, we compare and
validate the tests with respect to external data sets. The scientific
verification for some typical Galactic archaeology applications
is presented in Sect. 8.

2. Training sample

One of the main goals of this study is to show that high-
resolution stellar labels can be used to deduce atmospheric
parameters and chemical abundances from lower resolution
spectra. For this purpose, we need to build a training set that
contains the labels – namely, the parameters we wish to derive
(in our case, the atmospheric parameters and chemical abun-
dances) and the observables (the spectra and photometric mea-
surements). Here, we chose to work with labels provided by
the APOGEE survey and observables from the RAVE spectro-
scopic survey, complemented by 2MASS (Skrutskie et al. 2006),
Gaia DR2 (Gaia Collaboration 2018a), and ALL_WISE pho-
tometry (Wright et al. 2010) as well as Gaia DR2 astrometry
(Lindegren et al. 2018). Since the APOGEE survey, on average,
offers higher resolution and higher signal-to-noise ratios (S/N)
than the RAVE survey, we can translate the higher quality of the
derived APOGEE labels to RAVE.

We take advantage of the latest release of APOGEE, namely,
DR16 (Ahumada et al. 2020; Jönsson et al. 2020), which
provides high-quality atmospheric parameters and chem-
ical abundances. The APOGEE spectra are taken at near-
infrared wavelengths with high resolution (R = 22 500 and
λ ∈ [1.5−1.7] µm). The RAVE DR6 spectra have a spectral
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resolving power of R∼ 7500. We re-sampled the spectra to a
common wavelength coverage of λ ∈ [8420−8780] Å, with
equally spaced 0.4 Å pixels.

We performed a cross-match based on the Gaia DR2 Source
IDs between the 518 387 RAVE DR6 observations and the
473 307 observations of APOGEE DR16, resulting in a sample
of ∼7000 sources. In order to build a clean and coherent training
sample based on APOGEE stellar labels and RAVE spectra, we
cleaned this cross-matched sample in the following way.

Firstly, we required that a given star has available measure-
ments of Teff , log(g), [M/H], [Fe/H], [α/M], [Mg/Fe], [Si/Fe],
[Al/Fe], [Ni/Fe] and their associated errors in the APOGEE set.
We excluded parameters for stars with S/N_APOGEE< 60 (per
pixel) and required the ASPCAP1 parameterisation flag to be
aspcap_flag = 0. The mean APOGEE S/N of the sample is 420
per pixel. We filtered stars with a bad flag on chemical abun-
dances, that is, selecting only X_Fe_FLAG = 0. The ASPCAP
pipeline uses spectral templates for matching any observations.
Such procedures can lead to systematics (due for example to
incomplete line list) that will be transferred by the CNN.

Secondly, we adopted the normalised, radial-velocity-
corrected spectra from the DR6 of RAVE. The normalisation has
been performed by the RAVE survey, with an iterative second-
order polynomial fitting procedure (see Steinmetz et al. 2020a
for more details). We required that the spectra have at least
S/N > 30 per pixel. We excluded spectra showing signs of
binarity or continuum issues (“c”, “b”, and “w” according to the
RAVE DR6 classification scheme, see Steinmetz et al. 2020a).

Finally, as detailed in Sect. 3.2, we used absolute magni-
tudes during the training process. We required that a star has an
apparent magnitude available in the 2MASS JHKs, ALL_WISE
W1&2 pass-bands, and Gaia DR2 G, GBP GRP, and Gaia paral-
laxes (with parallax errors ep < 15%). As such apparent magni-
tudes can suffer from dust extinction, we took advantage of the
StarHorse catalogue, which provides improved extinction mea-
surements based on RAVE and Gaia DR2 data (Queiroz et al.
2020, see also Santiago et al. 2016; Queiroz et al. 2018 for details
on the method). We required that all spectra have an available
StarHorse extinction (AV ).

The resulting common sample between APOGEE DR16 and
RAVE DR6 consists of 3904 high-quality RAVE spectra and
high-quality atmospheric parameters and chemical abundances.
The RAVE S/N distribution of this sample is presented in Fig. 1.
We carefully checked the spectra of the 3904 stars of the sam-
ple in order to reject any misclassified stars, possibly having a
very low S/N. Some examples of RAVE spectra are presented in
Fig. 2, for typical metal-poor and metal-rich dwarfs and giants.
Kiel diagrams of the 3904 targets based on APOGEE DR16
parameters are presented in the left panels of Fig. 7.

3. Training the network

An artificial neural network consists of several layers of neurons
that are interconnected. The strength of connections between the
neurons is governed by the weight of each connection. This fea-
ture enables the network to translate the input data vector to the
desired output labels. The weights need to be set to values with
which the translation becomes meaningful. For example, a stel-
lar spectrum sampled at N wavelength points is fed into a neu-
ral network with N input neurons and the network produces an
output in the form of, for instance, effective temperature. The

1 APOGEE Stellar Parameter and Chemical Abundance Pipeline
(García Pérez et al. 2016).
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Fig. 1. Normalised distribution of S/N of RAVE DR6 spectra in the
observed sample (blue dashed line, 420 165 stars) and in the training and
test samples (solid orange line 3904 stars in common between RAVE
DR6 and APOGEE DR16).

setting of weights is done through training. This is a process of
passing a limited set of data vectors through the network and
gradually adjusting the weights so that the output matches the
pre-determined labels of the data vectors. Each passing of the
input data and adjustment of the weights is known as an epoch
and many epochs are needed to successfully train the network.
Once this is done, a new data vector can be passed through the
network and we obtain its label as a result. We note that con-
vergence is reached when the error from the model has been
sufficiently minimised. In theory, it could be the case that the
desired level of error minimisation is never reached and the net-
work would run indefinitely. We detail in Sect. 3.3 how we stop
the training in such cases.

3.1. Architecture of the CNN

In Fig. 3, we present the architecture of the neural network used
in this study. It is composed of three convolutional layers and
two fully connected or dense layers. In the subsection below, we
justify the reason for utilizing these features. We used the Keras
python libraries for coding the network (Chollet et al. 2015). The
stellar labels are normalised, ranging from 0 to 1 by using a Min-
max normalisation.

3.1.1. Convolution and dense layers

Convolution layers are the key for detecting patterns and fea-
tures in images (see e.g. Cireşan et al. 2011 for more details on
this topic). In the present study, we work with one-dimensional
normalised stellar spectra characterised by spectral line features.
Such spectral features are indicators of the physical properties of
the stars (temperature, gravity, chemical composition, etc.). The
ability to capture the relations between the different wavelength
pixels in a spectrum, as opposed to treating them as independent
entities, is the key to improved performance and this is provided
by the convolutional layers.

To understand the impact of these types of layers we exper-
imented with training our network with and without the convo-
lution stage. In comparison to the network with the convolution
stage, the training phase to find a stable solution is three to four
times longer for the non-convolutional network. In addition to a
lengthier training period, the output parameters are not recovered
as precisely. This applies in particular to chemical abundances.
After trying many different layouts, we adopted a network with
three convolution layers that contain eight, four, and two filters,
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Fig. 2. Example of four typical metal-poor and metal-rich dwarfs and giants RAVE spectra from the training sample. The RAVE_OBS_IDs and
the atmospheric parameters are indicated in the top left corner of each panel. Apart from the prominent CaII triplet lines, the RAVE spectra also
show a variety of more subtle spectral features (main chemical abundance diagnostic lines are over-plotted).

respectively (as shown in Fig. 3). We adopted a kernel size of
ten pixels for all three layers. Tests revealed that kernel sizes
between 5 and 20 pixels tend to extract features efficiently. Much
larger kernels (>40 pixels) degrade the performance2.

Between the convolution layers and the fully connected part
of the network, we used a dropout layer that ensures that a cer-
tain randomly chosen fraction of the neurons are not used at each
of the epochs during the training phase. This type of regularisa-
tion prevents the over-fitting the network and also prevents the
algorithm from relying on a smaller part of the network alone.
We tested a range of fractions from 10 to 30%, with no major
change in the training phase. We adopted 20% for the final anal-
ysis.

The fully connected layers (also called “dense” layers) fol-
lowing the convolutional stage are a more common type of neu-
ral network layers. They receive the output of the convolutional
stage in the form of learned spectral features and convert them
to the output labels (atmospheric parameters, abundances) that
are sought. We must allow enough complexity in the network
at this stage for it to be able to model the non-linear relations
between features and labels. We adopted the Leaky Rectified
Linear Units (Leaky ReLU) activation function instead of Rec-
tified Linear Units (ReLU), allowing us to face the dead ReLU
problem (i.e. null or negative ReLU leading to no learning in the
layers below the dead ReLU). We are, thus, less sensitive to the
initialisation of the network.

3.1.2. Initialisers and cost function

The weights of the CNN must be initialised prior to the train-
ing. The choice of how we initialise them can influence the per-
formance of the network. We adopted the default initialiser for
our convolution and dense layers, namely, the “glorot_uniform”
and the default bias initialiser, “zeros”, meaning that the weights
prior to training are drawn from a uniform distribution within a
certain range.

To train the network, we need a cost function that evaluates
how good the network’s performance is at each iteration and
which would also allow us to compute the gradient in the weight

2 We note that the performance of the network is not impacted by a
random uniform shift of a spectrum’s continuum of up to 20% in flux.
This implies that that the network does not extract information from the
overall level of the continuum.

space so the difference between the output and pre-determined
labels can be minimised. The choice of this function is impor-
tant. We experimented with a simple mean-squared error loss-
function and a negative log-likelihood criterion. Tests performed
on the negative log-likelihood criterion revealed that such a cri-
terion appears to be inferior for our science case, and it adds too
much complexity to the framework.

3.1.3. Effect of noise in the training phase

The training and test samples include in total 3904 stars with
S/N > 30 per pixel. As a test, we constrained this range to S/N >
40 (2529 stars) and S/N > 50 (1289 stars). With a lower number
of stars, the performance naturally tends to degrade. We believe,
however, that this lack in performance is only due to the fact that
we have a limited common sample with APOGEE. In general,
high S/N data and sufficient statistics lead to a better training
phase, but lower S/N spectra also come with a higher degree of
correlated noise, which the network is likely to learn.

As another check, we extended the S/N range to S/N > 20,
S/N > 15 and S/N > 10 per pixel, leading to 4802, 5023, and
5136 stars in the training sample. We concluded that including
such low-S/N data in the training phase tends to reduce the qual-
ity of the training and degrades the overall performance.

We tried to train a network with a sample composed only
of stars with S/N < 30, finding that no robust solution could
be reached, probably owing to to the spectral information being
too hidden by noise. Especially for the chemical abundances,
the network is unable to reproduce the main Galactic trends and
basically fits a straight line in the [α/M] versus [M/H] plane
instead of reproducing the α-rich and α-poor sequences. A sim-
ilar finding also holds for other elements. Our conclusion is that
an efficient training cannot be performed if only low S/N stars
are present in the training set.

We recommend that for future spectroscopic surveys partic-
ular attention should be given when defining the training sample
S/N range, because too low S/N spectra lead to worse training
and performance for the CNN.

3.2. Feeding absolute magnitudes to the neural network

In addition to spectra, our input includes broad-band photom-
etry. Absolute magnitudes provide strong constraints on the
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Fig. 3. Representation of the architecture of the Keras model used in
this study. The input layer (the spectra) is passed through three steps of
convolution (Conv1D). Then, we randomly drop 20% of the neurons at
each epoch of training with the dropout layer in order to prevent over-
fitting. We then flatten the output for the next dense layer (also called a
fully connected layer). As an additional input, we include eight absolute
magnitudes (2MASS JHKs, ALL_WISE W1&2, and Gaia DR2 G, GBP
GRP passbands) and one AV correction (input layer with shape of 9). We
concatenate it to the main part of the network in the form of 27 neu-
rons. The fully connected part of the network is then composed of two
dense layers. The output is an array of nine parameters (atmospheric
parameters and six chemical abundances).

effective temperature and the surface gravity of a star. We
adopted the 2MASS apparent magnitudes m in the passbands
JHKs (1.235, 1.662, and 2.159 µm, respectively), ALL_WISE
W1 and W2 pass-bands (3.4, and 4.6 µm) and Gaia DR2
GBP (328.3−671.4 nm), and GRP (629.6−1 063.7 nm) and G
(332.1−1 051.5 nm) bands, using the cross-matches provided in
RAVE DR6 (Steinmetz et al. 2020a). The distributions of these
apparent magnitudes are shown in Fig. 4.

We computed absolute magnitudes, M, using the paral-
laxes (p) from the second data release of the Gaia satellite (Gaia
Collaboration 2018b), using M = m + 5 × [log10(p) + 1]. We
selected the best measurements for which we required the errors
on the parallax, ep, to be better that 20% (96.5% of the spectra
of the initial cross-match with APOGEE DR16 fulfil this crite-
rion). We discuss the performances of the CNN parameterisation
for stars with parallax errors larger than 20% in Appendix A.

As stellar magnitudes can suffer from dust extinction even in
the infrared passbands, we adopted the extinction correction AV
from StarHorse (see Queiroz et al. 2018; Anders et al. 2019 for
more details). The distributions of AV for the training, test, and
observed sample are presented in Fig. 4. We find that 78% of
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Fig. 4. Normalised distribution of Gaia, 2MASS, ALL_WISE apparent
magnitudes and extinction (AV ) for the training sample (blue, solid), the
test sample (orange, dotted), and the observed sample (green, dashed).
Those magnitudes are converted to absolute magnitudes and are used
during the training phase.

our stars have an extinction lower than AV = 0.5 mag. Our tests
found that stars with AV > 0.8 show a smaller error in Teff by
20 K if we include this correction.

Our choice to compute absolute magnitudes from parallaxes
instead of, for example, StarHorse distances was motivated by
the fact that we want to restrict our model dependency as much
as possible. As a test, we computed absolute magnitudes using
StarHorse distances, but no notable difference in the training was
measured.

The eight absolute magnitudes and the extinction corrections
were then added smoothly to the CNN architecture, directly in
the fully connected part, as 27 neurons (see scheme in Fig. 3).
We tested several layer sizes for this part: below 27, the perfor-
mances tended to degrade and above 27, no further improvement
was notable. We note that we did not directly apply the AV cor-
rection to the absolute magnitudes, thus leaving the network with
more flexibility to learn from it.

It has been shown that Gaia DR2 astrometric measurements
have small systematic errors, in particular, an offset of the paral-
lax zero-point that varies across the sky. This parallax zero-point
offset is dependent on magnitude and colour (Lindegren et al.
2018; Arenou et al. 2018). This offset is roughly of the order of
50 µas. Following the way we compute our absolute magnitudes,
this parallax offset translates into a shift of the order of 0.01 mag.
In the context of this study, this offset is negligible. We refer the
reader to Sect. 7 for a discussion on the advantage of adding
photometry during the training process.

3.3. Training an ensemble of 100 CNNs

From the quality cuts and selection process detailed above, our
starting sample is thus composed of 3905 stars, with stellar labels
corresponding to atmospheric parameters and chemical abun-
dances. Before training the CNN, we split the data into a train-
ing sample and a test sample, as is a common practice in the
machine-learning community. We adopted a fraction of 6% for
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Fig. 5. Top: value of the cost function for the test sample (Test_loss) for
the 100 CNN runs as a function of the epoch. Middle: accuracy com-
puted on the test sample (Test_acc) as a function of the epoch. Bottom:
distribution of 100 values of Test_loss after the training was completed.
Vertical black line indicates the 80th percentile of the distribution.

the test sample to retain a large training sample. This led to 3669
stars in the training sample and 235 stars in the test sample. We
tested several test and training fractions, from 3 to 40%, with no
major difference in terms of training. In order to provide stable
results and errors, we built an ensemble of 100 trained CNNs,
all of them initialised differently. A similar method was recently
used by Bialek et al. (2020).

One challenge while using a CNN is to stop the learning
phase at the right time. The model can under-fit the training and
test samples in case of insufficient training. On the other hand,
in cases of over-fitting, the training sample will perfectly fit the
model, but the performances on the test sample will degrade
drastically (which is the main reason behind the training-test
split). One solution is to stop the training phase when the per-
formance on a validation dataset starts to degrade. In this con-
text, we adopted the commonly used early-stop procedure. If
after 40 epochs (the so called patience period), the solution does
not improve, we stop the training. We tried different levels of
patience, finding that 40 epochs provide the best compromise
between final accuracy and computation time.

Typical curves of the cost functions “Test_loss” for the test
sample are presented in Fig. 5 for the 100 runs, as well as the
accuracy Test_acc. It is clear that the training phase takes no
more than 120 epochs. Training the CNN takes between 70 and
90 s per run. We can also see that the last value of the cost func-
tion of the test sample (Last_Test_loss) can vary from one run
to another. We plot such values in the bottom panel of Fig. 5.
We excluded networks with too large a value of Last_Test_loss
(everything inside of the lower 20th percentile of the distribu-
tion).

3.4. Result of the training

In Fig. 6, we compare the labels used as input of our CNN (from
APOGEE DR16) to those trained by the network (averaged over
the 80 runs). The network is able to learn a significant amount of
information about the main atmospheric parameters Teff , log(g),
[M/H] as well as [Fe/H]. No obvious systematic trends are vis-
ible while the dispersion is low, for both training and test sam-
ples. The mappings of Teff and log(g) are very similar between
the training and test samples, as seen in the distributions. Abun-
dances [α/M], [Si/Fe], [Mg/Fe], [Al/Fe], and [Ni/Fe] compare
well with the input labels. Because of the poor mapping of the
parameter space, the stars with very low or very high abundance
ratios can suffer from systematic trends, especially in the metal-
poor regime. It is, for example, visible for the [Al/Fe]-poor tail.
In general, the dispersion in the test sample is similar to the one
in the training sample, indicating that we do not over-fit our data.
Finally, we note that for [Al/Fe] and [Ni/Fe], the comparison
with the input APOGEE DR16 labels does not track the 1-to-1
relation, even for the bulk of the data, meaning that the model
predicted during the training could suffer from systematic trends
for those two elements. In general, we warn the reader that sys-
tematics a low S/N, typically S/N < 30, can be present in the
data. The abundances for those stars should be thus used with
caution.

In Fig. 7, we present a Kiel diagram of Teff and log(g) from
the training sample (left columns), for the training (top) and test
(bottom) samples. In the right columns, we present the labels
as trained by the CNN. The main features in the Kiel diagram
are well recovered in both training and test samples: the position
and inclination of the red clump, the giant branch with a smooth
metallicity sequence, the turn-off sequence. The sequence of the
dwarfs spans a large Teff range, and shows low scatter even in
the very cool regime.

In the left panels of Fig. 8, we present the abundance patterns
used as input for our CNN, for both training and test samples.
We recall that those labels ([Fe/H], [α/M], [Si/Fe], [Mg/Fe],
[Al/Fe], [Ni/Fe]) are derived by APOGEE DR16. In the right
panels, we present the labels as trained by our CNN, averaged
over 80 runs. The chemical patterns of the trained labels, in
particular [Al/Fe], show slightly less scatter than the original
labels (around 0.05 dex). This effect comes mainly from the fact
that during the training, the neural network values tend to stay
within the boundaries of the data. In spite of the poor map-
ping of the parameter space in the metal-poor regime, the net-
work is still able to provide robust output in that metallicity
regime.

In Fig. 9, we present the averaged [α/M] ratios of the train-
ing sample, as a function of [M/H], for different bins of Teff

and log(g). One can see that the [α/M]−rich sequence is mainly
composed of red giant branch stars, while only a few stars are
dwarfs. Similar plots are presented in Appendix D for [Mg/Fe],
[Si/Fe], [Al/Fe], and [Ni/Fe].
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Fig. 6. One-to-one relation between the CNN trained labels (y-axis) and the input labels (x-axis, APOGEE DR16 data). The training sample is
plotted with blue circles, while the test sample is shown with orange crosses. The x- and y-axis parameters are presented as histograms with a
logarithmic scale. For each parameter, a typical mean difference and scatter are computed in both sets. We plotted the difference ∆ between the
CNN trained labels and the APOGEE DR16 input labels with the same symbols and colours, and its histogram with a logarithmic scale.

4. Estimation of atmospheric parameters and
abundances of RAVE DR6 spectra

In this section, we provide details of the way we built an
observed sample of stars based on RAVE DR6 spectra, then
we present the predicted atmospheric parameters and chemical
abundances of this observed sample.

4.1. Creation of the observed sample

Our observed sample is based on RAVE DR6 normalised radial-
velocity-corrected spectra (Steinmetz et al. 2020a). We required
that a spectrum has ALL_WISE W1&2, 2MASS JHKs pho-
tometry and Gaia DR2 G, GBP, GRP bands available as well as
its Gaia DR2 parallax (no cut on parallax errors). We checked
that all spectra have StarHorse extinction measurements (AV ,
Queiroz et al. 2020). Finally, we restricted our observed sample
to a range of S/N>10 per pixel (as determined by RAVE DR6),
removing stars with problematic spectra (“c” and “w” according

to the RAVE DR6 classification). This leads to an observed sam-
ple composed of 420 165 stars with S/N > 10 per pixel. The S/N
distribution of the observed sample is presented in Fig. 1.

Adopting the orbital data from Steinmetz et al. (2020b), we
carefully checked that both the training and observed samples
probe the same Galactic volume, in terms of mean Galactocen-
tric radii and height above the Galactic plane. Also, as the stellar
age distribution can vary from one sample to another we took
advantage of the StarHorse ages of Queiroz et al. (2020) to check
the age distributions of both the training and observed samples.
The age distributions cover the same range and their shapes are
consistent. Tests performed with BDASP ages from Steinmetz
et al. (2020b) have led to the same conclusion.

4.2. Prediction of atmospheric parameters and abundances

Once a given CNN is trained, we can predict atmospheric param-
eters and chemical abundances for the entire observed sample.
Predicting nine parameters for 420 165 stars is quick, lasting ten
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Fig. 7. Top left: Kiel diagram of the APOGEE DR16 stars (used in the training sample), colour-coded with overall [M/H]. Top right: for the
same stars, trained labels, averaged over 80 trained CNN. Bottom left: APOGEE DR16 parameters of the test sample. Bottom right: trained labels,
averaged over 80 trained CNN, for the same test sample. Right panels: what the network learns from the APOGEE parameters (left panels).

seconds on a simple GPU unit. Thus, estimating parameters for
80 CNN runs does not take more than 15 min. We then computed
a set of parameters averaged over the 80 runs, as well a typical
dispersion used as error (see Sect. 5).

4.2.1. Atmospheric parameters

In Fig. 10, we present a Kiel diagram of the observed sample,
sliced in S/N, for 371 967 stars with S/N > 20 per pixel, and
parallax errors better than 20%. We plotted such a diagram in
two different fashions: colour-coded with overall metallicity, and
normalised-density map. For such a plot, we selected normal and
hot stars (“n” and “o”) according to the RAVE DR6 classification
scheme (Steinmetz et al. 2020a).

At low S/N, we recover the main features of a typical Kiel
diagram, especially the cool main sequence and the location of
the red clump. The bottom of the cool main sequence shows a
gradient in metallicity, while the turn-off shows no clear gradi-
ent. For very high S/N, the cool dwarf sequence is very narrow,
while the red giant branch shows a slight warp as in the train-
ing sample. At low temperatures (Teff < 4300 K), we are able
to properly characterise giants and dwarfs, putting them on the
right sequence, with no degeneracy observed.

In Fig. 11, we present normalised distributions of Teff , log(g),
[M/H], and [Fe/H] of the training, test, and observed sample, for
S/N > 40. We also added distributions of RAVE DR6 parame-
ters for the same stars (with algo_conv_madera = 0, correspond-
ing to the best solutions, see Steinmetz et al. 2020b for more
details). We first see that the training and test sample distribu-
tions tend to track each other very well and that the observed
sample is well defined in the training and test sample limits
(defined by the grey areas). The same behaviour is observed
for [Fe/H], because APOGEE DR16 [Fe/H] and [M/H] tend
to track very well each other (Jönsson et al. 2020). Both Teff

and log(g) from RAVE DR6 track pretty well the CNN distribu-
tions. In addition, both RAVE DR6 [M/H] and [Fe/H] present
a metallicity-dependent shift with respect to our study, varying
basically for zero in the metal-rich regime to roughly 0.1 dex in
the metal-poor regime. It is a known systematic shift between
RAVE DR6 and APOGEE DR16; see, for example, Fig. 22 in
Steinmetz et al. (2020b).

4.2.2. Individual chemical abundances

In Fig. 12, we present abundance patterns for [α/M] as a function
of the overall metallicity [M/H]. We selected 301 076 stars with
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Fig. 8. Left panels: abundance patterns of the APOGEE DR16 labels
used as input for our CNN, for the training sample (blue) and for the
test sample (orange). Right panels: abundance patterns of the averaged
labels trained over 80 CNNs.

S/N > 30 per pixel, RAVE DR6 “n&o” classification (“normal”
and “hot” stars) and parallax errors lower than 20%. In order to
disentangle the different stellar classes, we decomposed our sam-
ple in bins of 500 K in Teff , and 1 dex in log(g), and present the
[α/M] vs. [M/H] trends for different locations in the Kiel dia-
gram (see Appendix D for similar plots with [Si/Fe], [Mg/Fe],
[Al/Fe], and [Ni/Fe]).

Dwarf stars exhibit typical low-[α/M] sequences, while
giants populate both the low-[α/M] and high-[α/M] range up to
halo chemistry. Red clump stars show a smooth transition from
the low- to the high-[α/M] regime, with a strongly decreasing
density. On the other hand, in the range of 4000 < Teff < 4500 K
and 1 < log(g) < 2, the high-[α/M] regime is clearly marked by
a continuum of stars from solar-α up to 0.25 dex. Such behaviour

is also observed when plotting [Si/Fe] and [Mg/Fe] as a function
of [Fe/H] (see Appendix D).

We note that the low-metallicity high-[α/M] plateau shows
different behaviours in different regions of the Kiel diagram.
This is mainly driven by the fact that we only have a few stars
for [M/H] < −1 dex in the training sample, showing quite differ-
ent trends. For future machine-learning applications, we should
put substantial efforts into properly mapping the parameter space
when creating a training sample. The case of [Al/Fe] is dis-
cussed in Appendix D.

We have shown that in using a CNN approach and high-
resolution stellar labels, we are able to provide reliable [α/M]
values for more than 301 076 stars, thus extending the scientific
output of RAVE spectra beyond RAVE DR6.

In Fig. 11, we present normalised distributions on CNN
chemical abundances in the training, test, and observed sample,
as well as the corresponding values from RAVE DR6 ([α/Fe],
[Al/Fe], [Ni/Fe], Steinmetz et al. 2020b). We first note that both
training and test sample distributions show basically the same
shape. For [Mg/Fe], the bi-modality is not well represented in
the test sample, because of a larger scatter in [Mg/Fe] at a given
[Fe/H]. As for the atmospheric parameters, the chemical abun-
dances in the observed sample track pretty well the training and
test sample, for this regime of S/N (S/N > 40). We note that
for lower S/N regimes, the distributions of the observed sample
present larger tails than the training sample. Finally the [α/Fe],
[Al/Fe], and [Ni/Fe] ratios from RAVE DR6 present broader
distributions than the present study. Such an effect is already
visible in Fig. 22 of Steinmetz et al. (2020b), where RAVE DR6
and APOGEE DR16 are compared. The RAVE DR6 abundances
show a larger scatter at a given metallicity, mainly because of
lower spectra resolution. In the present study, besides the inter-
mediate resolution of the RAVE spectra, our CNN is able to
provide more precise abundances, showing narrower distribu-
tions. We compare further [α/Fe] ratios between our study and
RAVE DR6 in Sect. 6.5.

5. Determination of uncertainties

Despite the fact that we employ the same input labels in every
run, the CNN does not provide the same trained labels because a
new set of weights is automatically generated by the CNN during
each run and the trained labels then change slightly. We showed
the resulting average trained labels in Sect. 3.4. Here we present
the resulting errors (precision), defined as the dispersion of each
label for the 80 runs. As a result, the errors in both test and
observed samples are derived in the same fashion. In Fig. 13, we
present the error on our nine atmospheric parameters and abun-
dances as a function of Teff , log(g) and [M/H], for 391 035 stars
with S/N > 20 per pixel. The uncertainty for the nine parame-
ters tend to increase for both the hot and the cool tails. The same
effect is visible for the stars with log(g) < 2. On average, the
dwarf stars tend to show larger errors than the giants. The uncer-
tainties on the nine parameters tend to increase with respect to
the bulk of errors for the metal-poor tail. In the same figure, we
present normalised distributions of uncertainties for the observed
sample, together with the training and test samples. Overall, the
trained labels show on average smaller errors than the test and
the observed sample, mostly because the training sample covers
a higher S/N range. The test and observed sample tend to track
each other well, meaning that we do not over-fit our model.

As a test, we added random offsets to the labels of the train-
ing sample, drawn from Gaussians with widths given by the
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Fig. 9. Averaged trained abundance patterns [α/M] vs. [M/H] for the training sample (red dots). Trends are shown for sub-samples in Teff (500 K
bins) and log(g) (1 dex bins) shown as in-set Kiel diagrams, where the overall stellar distribution is plotted in blue with the selected subsample
highlighted in red. The number of stars is indicated in the top right corner of each panel.

quoted uncertainties from APOGEE DR16. We observed that the
resulting error distributions barely change.

A recent study by Bialek et al. (2020) adopted a negative
log-likelihood criterion instead of a mean squared error loss-
function as employed in our study. In that way, they were able to
derive the individuals error of the predicted atmospheric param-
eters. We explored such a criterion. Because of the limited num-
ber of stars in our training sample, this criterion did not provide
improved results. We therefore kept a simple mean squared error
loss-function and errors derived over several CNN runs.

The present uncertainties reflect, in fact, the internal disper-
sion of the CNN. Figure 13 shows that the method is internally
precise and stable if we consider such types of series of train-
ings (Monte-Carlo type). As a consequence, such uncertainties
could be then underestimated, with respect to typical external
errors that we would expect at such a resolution. Typical external
errors for classical pipelines using RAVE spectra report errors of
roughly 100 K in Teff , 0.15−0.2 dex in log(g), and 0.10−0.15 dex
in metallicity and chemical abundances (see for example
Steinmetz et al. 2020b). However, as presented in Fig. 17, we
note that the dispersion in atmospheric parameters and abun-
dances for a star with several RAVE observations is very com-
patible with the uncertainties derived with our method.

Machine-learning methods are, within limits, able to extrap-
olate and provide parametrisations for stars outside the bound-
aries of the training sample parameter space. Together with
individual uncertainties on the parameters and abundances, we

provide individual flags for such stars. As an example, a star
parametrised with an effective temperature inside the training
sample space will have flag_teff = 0, while the flag will be
equal to 1 if Teff is outside that range. Stars with flags equal to 1
may suffer from systematics caused by extrapolation outside the
training sample parameter space.

6. Validation of atmospheric parameters and
abundances

In this section, we proceed to several comparisons with respect to
external datasets in order to validate our atmospheric parameters
and chemical abundances. We refer the reader to Appendix B
for a comparison with stellar clusters and to Appendix C for a
comparison of our CNN results with a sample of HR data.

6.1. Validation of surface gravities with asteroseismic data

The asteroseismology of stars with solar-like oscillations is now
widely used in large spectroscopic surveys as an additional con-
straint since it ultimately calibrates the log(g) measured from
spectra (RAVE: Valentini et al. 2017; GES: Pancino & Gaia-ESO
Survey Consortium 2012; APOGEE: Pinsonneault et al. 2018;
LAMOST: Wang et al. 2016; GALAH: Kos et al. 2017). For
stars with solar-like oscillations, as well as red giants, ∆ν, the
frequency at maximum oscillation power, is used for determin-
ing log(g)seismo using only the additional parameter, Teff . The
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Fig. 10. Kiel diagram of 371 967 stars of the observed sample, sliced in
S/N, colour-coded by [M/H] (left column) and plotted as a normalised
density map (right column). Only stars with “n” and “o” classification
(normal and hot stars), and parallax errors better than 20% are plot-
ted. The main features of the Kiel diagram are well recovered in the
observed sample. The 6 blue triangles in the bottom panel correspond
to the yellow supergiant Gaia “5983723702088571392”, discussed in
Sect. 6.6.

log(g)seismo value depends very weakly3 on Teff , making this
quantity reliable even for surveys affected by degeneracies such
as RAVE (Kordopatis et al. 2011a, 2013).

The RAVE survey has some overlap with the fields observed
by the K2 mission, the re-purposed Kepler satellite (Van Cleve
et al. 2016). In Valentini et al. (2017), a first comparison
(and consequent calibration) of the RAVE spectroscopic log(g)
with the seismic value was performed using 89 targets in K2-

3 According to Morel & Miglio (2012), a shift of 100 K in Teff changes
log(g)seismo only by 0.005 dex.
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Fig. 11. Normalised distribution of atmospheric parameters and abun-
dances in the training sample (blue), in the test sample (yellow), and
the observed sample (red). For the same stars of the observed sample,
we show a normalised distribution of the corresponding RAVE DR6
parameters (taken from Steinmetz et al. 2020b). The grey areas define
the zones outside the limits of the training sample parameters space.

Campaign 1. Information on the RAVE-K2 sample, the reduc-
tion of the seismic data, and the calculation of the seismic log(g)
can be found in Valentini et al. (2017). In the first six Campaigns
of K2, solar-like oscillations were detected for 462 red giants
(Steinmetz et al. 2020b; Valentini et al., in prep.) and the seis-
mic log(g) was derived. Here, we compare these seismic log(g)
values with the values determined using our CNN.

Figure 14 shows that the labels (APOGEE DR16) and the K2
log(g) values exhibit a tight and un-biased 1-to-1 relation (left
panel, bias = −0.03 dex and dispersion σ = 0.04 dex). The K2
log(g) values also agree well with the labels trained by the CNN
(middle panel), with a slightly higher scatter (σ = 0.09 dex).
Finally, in the right panel of Fig. 14, we compare the predicted
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Fig. 12. [α/M] vs. [M/H] for 301 076 stars of the observed sample with S/N > 30 per pixel, RAVE DR6 “n&o” classification, and parallax errors
lower than 20%. The sample is presented in panels corresponding to cuts in effective temperature and surface gravity (steps of 500 K in Teff and
1 dex in log(g). For each panel, we overplotted a Teff−log(g) diagram with the location of the plotted stars marked in red.

surface gravity for 433 common stars of our observed sample
with K2 data, finding an very good agreement with a very small
bias and a dispersion of 0.14 dex. We note that the log(g) val-
ues from RAVE DR6 show a larger scatter with respect to K2
data than our CNN log(g) values (see Fig. 23 of Steinmetz et al.
2020a).

Keeping in mind that we are limited by the narrow spectral
range of the RAVE spectra, those comparisons illustrate all the
potential of a method based on CNN. A more detailed discussion
on the impact of the use of photometry can be found in Sect. 7.

6.2. Comparison with RAVE DR6 BDASP log (g)

In the latest data release of RAVE (DR6, Steinmetz et al. 2020b),
improved log(g) estimates based on Gaia DR2 parallaxes and
Bayesian isochrone fitting are provided, thanks to the BDASP
pipeline (McMillan et al. 2018). This section is dedicated to
comparing RAVE/BDASP surface gravities to those derived by
our CNN in the present study.

The left panel of Fig. 15 compares the input APOGEE DR16
log(g) with those of BDASP. The dwarfs (log(g) > 3.5) show a
shift of about +0.1 dex, while the giants do not show any bias
with respect to RAVE DR6. The typical dispersion is 0.14 dex
for both types of stars with a bias of 0.05 dex. We notice that the
surface gravities provided by APOGEE DR16 show a smaller
dispersion around the red clump as compared to RAVE DR6,
hence, the presence of a diagonal line at log(g) ∼ 2.5.

Concerning the labels trained by our CNN, the bias decreases
slightly (+0.04 dex), while the scatter drops to 0.09 dex. This
decrease in the scatter is directly due to the fact that we use
absolute magnitudes during the training process, leading to more
precise log(g) values (see Sect. 7 for more details). If no abso-
lute magnitudes are used during the training phase, the scatter
doubles to 0.17.

Finally, in the right column of Fig. 15 we compare the sur-
face gravities predicted for 388 299 stars of the observed sample
(S/N > 20) with respect to RAVE DR6. Again, the biases for
giants and dwarfs keep the same shape as in the previous com-
parisons, and the scatter tends to still be quite low (0.12 dex). We
notice that the scatter σ increases to 0.37 dex when no photom-
etry is used in the training phase. A discussion on the impact of
the use of photometry can be found in Sect. 7.

As a final note on this topic, we recall that the input Teff of the
BDASP pipeline is the InfraRed Flux Method Teff (see Steinmetz
et al. 2020b for more details). The BDASP Teff tends to be very
similar to this input. We explicitly compare our Teff to Teff IRFM
in the next section.

6.3. Validation of effective temperatures with IRFM
temperatures

A data product of the sixth data release of RAVE is the effec-
tive temperature derived via to the Infrared Flux Method (IRFM,
Casagrande et al. 2006, 2010, see Steinmetz et al. 2020b for
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Fig. 13. Errors of atmospheric parameters and chemical abundances
plotted as a function of Teff , log(g) and [M/H] for 391 005 stars of the
observed sample. We also present normalised distribution of errors in
the trained labels (blue, dotted), the test sample (green, dashed), and the
observed sample (red, solid).

more details). In this section, we compare our effective temper-
atures to those provided by RAVE DR6. We compared the Teff

used in the training sample (APOGEE DR16 Teff), those learned
by the network, and those derived for the observed sample (for
S/N > 20).

The results are presented in Fig. 16. We first see that there
is a shift between the effective temperatures used as labels in
our study and those of Steinmetz et al. (2020b) for hot stars
(Teff > 5200 K) which are offset by −250 K (constant with

temperature, with 260 K scatter). Those stars are mainly dwarfs.
On the other hand, the cool stars of the training sample (Teff <
5200 K, mostly giants) show a tight and unbiased one-to-one
relation with respect to the IRFM temperatures (mean difference
of −20 K and dispersion of 90 K). Overall, the dispersion is about
220 K for the 3515 stars of the training sample.

We note that stars with Teff > 5200 K tend to be cooler by
250 K with respect to the IRFM Teff . The log(g) of such stars will
be then systematically higher. This could serve as an explana-
tion for the higher log(g) measured by our CNN with respect to
BDASP log(g) (see previous section, Fig. 15). Once the CNN is
trained, the effective temperatures still show the same behaviour
with respect to the IRFM Teff .

Finally, we can see that the measured Teff in 371 166 stars
of the observed sample match in the same way the RAVE IRFM
Teff , with a larger scatter than the training sample mainly due to
the presence of stars with lower S/N. Overall, the effective tem-
peratures used in the training sample (from APOGEE DR16),
those trained, and those predicted agree rather well with the Teff

IRFM from Steinmetz et al. (2020b). Finally, we note that this
comparison only provides an assessment of the biases and scat-
ter with respect to APOGEE DR16.

6.4. Validation with repeat observations

Another way to show the reliability of our atmospheric parame-
ters and chemical abundances is to investigate stars with repeated
observations. We follow the same procedure as in Steinmetz
et al. (2020a,b). Briefly, for a given star with several observa-
tions, we computed the differences in atmospheric parameters
and chemical abundances. For all stars with multiple repeats, we
analyzed the distribution of those differences. We approximated
the distribution function by a combination of two Gaussians
using a least-squares fit. The results are presented in Fig. 17,
for all repeats (80 342 stars, S/N > 20). Firstly, we can see
that the distributions are roughly similar in shape for Teff , log(g),
[M/H], and [Fe/H]. On the other hand, the chemical abundances
of [α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] present asym-
metric tails. The typical dispersion of the distribution for the
effective temperature is about ∼50 K, while for the surface grav-
ity, the dispersion is below 0.05 dex. The dispersion increases to
80 K for Teff and 0.14 dex for log(g) if we do not use photome-
try to introduce additional information. For [M/H] and [Fe/H],
the typical dispersion over all repeats is of the order of 0.05 dex.
Finally, for [α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe], a
dispersion of 0.02−0.03 dex is measured over all repeats. These
results imply that the CNN is precise (low dispersion within
repeats) and accurate (overall difference distributions centered
on zero) in determining atmospheric parameters and chemi-
cal abundances of RAVE spectra. We note that such disper-
sion within repeats in consistent with the typical uncertainties
reported in Sect. 5 for both atmospheric parameters and chemi-
cal abundances.

6.5. Comparison with RAVE DR6 [α/M] ratios

The RAVE spectra cover the near-infrared CaII triplet, which
is a key spectral feature in the process of placing con-
straints on the overall α enrichment of stars. In this section,
we compare the [α/M] derived in the present study by our
CNN to the [α/Fe] derived in Steinmetz et al. (2020b) by a
more classical approach (synthetic spectra grid + optimisation
method). Both quantities were derived using the same observed
spectra.
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Fig. 14. Comparison of surface gravities from the present study with K2 asteroseismic data. Left: comparison with the log(g) labels from APOGEE
DR16 used as input by our CNN. Middle: comparison with averaged labels trained by the CNN. Right: comparison with averaged log(g) predicted
for common stars in the observed sample. Mean difference and scatter are indicated in the top left corner of each panel.

In Fig. 18, we present an abundance pattern comparison
between the present study ([α/M] vs. [M/H]) and RAVE DR6
([α/Fe] vs. [Fe/H]), for 47 263 dwarfs and giants (S/N > 20).
We adopt the same quality criteria presented in Steinmetz et al.
(2020b) to select the best RAVE DR6 [α/Fe] ratios.

We first show a typical Kiel diagram for each sample (CNN
top-left, RAVE DR6 top-right). Using our CNN approach with
combined spectroscopy, photometry and astrometry, we are able
to tackle the degeneracy caused by RAVE’s narrow wavelength
range, especially in the very cool regime.

The abundances derived by RAVE DR6 show a larger scatter
at a given metallicity. In the metal-poor regime, the CNN results
show a tight [α/M] sequence. Overall, both studies show the
same main chemical features, for both giants and dwarfs. They
also cover the same metallicity range. We note that in the metal-
licity range of −1 < [M/H] < +0 dex, the CNN [M/H] present a
shift of +0.14 dex with respect to RAVE DR6 [Fe/H], while for
both metal-poor and metal-rich tails, the bias is basically null.
The differences in trends and zero-points originate from a differ-
ent calibration between the two studies, one based on APOGEE
data, while the RAVE DR6 is based on synthetic spectra grid.

6.6. Exotic star detection capabilities

Neural networks are particularly efficient with regard to classify-
ing objects. In addition, peculiar stars are expected to be detected
by such a machine-learning pipeline; by peculiar, we mean that
the CNN is able to parameterise stars in regions where the training
sample parameter space is poorly covered. We illustrate this point
by the example of the known yellow supergiant (spectral type F3I,

Houk 1978, Gaia_sourceid = “5983723702088571392”), which
has been observed six times by the RAVE survey. The normalised
RAVE DR6 spectra are presented in Fig. 19. This star has been
characterised as “normal” by RAVE DR6. Its Gaia DR2 paral-
lax error is 10%. The mean atmospheric parameters and errors
derived by our CNN from the six repeats are the following: Teff =
5423 ± 355 K, log(g) = 1.02 ± 0.53, [M/H] = −0.36 ± 0.20 dex.
The average RAVE DR6 parameters derived with the BDASP
pipeline (using Gaia DR2 and isochrone fitting) are the follow-
ing: Teff = 5047 ± 213 K, log(g) = 1.39 ± 0.08, [M/H] =
+0.28 ± 0.15 dex. In spite of the differences in the approach, the
CNN and BDASP methods tend to put this star in the same region
of the Kiel diagram, within 1-σ errors. The overall metallicity
shows the largest scatter, with CNN and BDASP consistent within
2-σ.

On the other hand, the RAVE DR6 parameters by the
MADERA pipeline (pure spectroscopy) are the following: Teff =
5986 ± 95 K, log(g) = 3.63 ± 0.15, [M/H] = +0.51 ± 0.09 dex.
Those parameters are consistent to those derived by our CNN,
only using spectroscopic data (no photometry or parallaxes),
within 2-σ in Teff and 1-σ in log(g) and [M/H]: Teff = 6401 ±
150 K, log(g) = 3.90 ± 0.20, [M/H] = +0.50 ± 0.11 dex.

7. Including versus excluding photometry

We show here that adding absolute photometric magnitudes dur-
ing the training phase of the CNN significantly improves the
quality of the derived effective temperature and surface grav-
ity, and, to a lesser extent, the overall metallicity. We recall
that colours are key indicators of effective temperatures and
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Fig. 15. Left: comparisons of the log(g) values used as input labels of our CNN (APOGEE DR16 log(g)) with respect to log(g) values of Steinmetz
et al. (2020b). We also show a residual plot and an histogram of the difference. Mean difference and scatter are indicated in the top-left corner.
Middle: comparison of log(g) values trained by our CNN with respect to log(g) values of Steinmetz et al. (2020b). Right: comparison of the log(g)
values derived by our CNN for 388 299 stars of our observed sample with respect to the log(g) values of Steinmetz et al. (2020b).

that colours and absolute magnitudes help to constrain surface
gravities.

To do so, we simply re-trained our CNN a hundred times,
with the same overall architecture but removing the photomet-
ric neurons, meaning that we only use pure spectroscopic data
from RAVE. We kept the same training sample. We simulta-
neously predicted Teff , log(g), [M/H], [Fe/H], plus individual
abundances for the observed data.

In Fig. 20, we present the resulting Kiel diagram of Teff

and log(g), colour-coded in [M/H]. We only show data with
S/N > 40, that is, stars with good observational data. Compared

to the Kiel diagram derived including absolute magnitudes, the
pure spectroscopic results still have all the typical features, like
the cool dwarf sequence, the turn-off, or the giant branch. On
the other hand, the cool dwarfs sequence suffers from large
scatter, while degeneracies appear for very cool giants (large
log(g) scatter for a given Teff). The red giant branch appears
as a straight sequence. Finally, the metallicity sequence in the
giant branch is not as well-defined as when absolute magnitudes
are used. The wavelength range around the CaII triplet is known
to suffer from degeneracies when deriving atmospheric param-
eters (Kordopatis et al. 2011a). We note that including absolute
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Fig. 16. Left: comparisons of the input label Teff for our CNN (APOGEE DR16 labels) with the IRFM temperatures of Steinmetz et al. (2020b).
Mean difference and scatter are indicated in the top-left corner. We also show a residual plot and an histogram of the difference. Middle: comparison
of the labels Teff trained by the CNN with the IRFM temperatures of Steinmetz et al. (2020b). Right: comparison of the Teff values derived for our
whole observed data-set (for S/N > 20) with the IRFM temperatures of Steinmetz et al. (2020b).

magnitudes helps us to break these degeneracies, without apply-
ing any prior or restraining the parameter space of the training
sample. The mean error in Teff is increased by ∼20 K when no
absolute magnitudes are used.

We then compare our surface gravities with those from
RAVE BDASP log(g). When using 2MASS+ALL_WISE+Gaia,
we can see that the average difference between both studies is
one quarter of the one based purely on spectroscopy, while the
dispersion drops from 0.23 to 0.10 dex.

Next, we compare our purely spectroscopic log(g) values to
those provided by K2. Without photometric input, the scatter is
much larger (0.26 dex) with a tiny bias. We note that the purely

spectroscopic Teff values show a slightly higher dispersion with
respect to those derived including absolute magnitudes during
the training phase.

Finally, we compare Teff , log(g), and [M/H] derived from
purely spectroscopic data by our CNN to those of the high-
resolution sample presented in Appendix C (only stars with S/N >
20). Without absolute magnitudes, we observed a significantly
larger dispersion in log(g) (0.59 dex) and bias (+0.33 dex), as
compared to the high-resolution sample. This is also the case for
the effective temperature, with a slightly larger bias (77 K instead
of no bias) and a dispersion larger by 94 K. Finally, the metallicity
derived purely by spectroscopic data suffers from a slightly higher
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Fig. 17. Differences in atmospheric parameters and chemical abundances for 80 342 stars based on several observations and S/N > 20.
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Fig. 18. Top: Teff vs. log(g) for 47263 stars, derived with our CNN
(left) and derived by RAVE DR6 (right). Middle: abundance pattern
for 17 634 dwarfs, derived by our CNN (left) and RAVE DR6 (right).
Bottom: same plots for 29 629 giants.

bias and dispersion with respect to the literature sample. The main
improvement is actually notable for [M/H] < −1.5 dex, consis-
tent with previous remarks on the Kiel diagram.
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Fig. 19. Normalised RAVE DR6 spectra of the target Gaia
“5983723702088571392”. The six spectra are plotted in different
colours.

With these comparisons, we demonstrate that purely spectro-
scopic data can still provide quite satisfying outputs, however,
adding photometry as well as astrometric parallaxes provides
a major gain with a strong increase in precision and accuracy,
mainly for effective temperature and surface gravity. We are able
to efficiently break the degeneracies in the Teff−log(g) space,
caused by limited spectral range of RAVE spectra, particularly
in the cool regime.

8. Science verification

8.1. Abundance-kinematical properties of the Milky Way
components

Here, we investigate some implications for the chemical and
kinematical properties of the Milky Way. We adopted the kine-
matics from RAVE DR6 (Steinmetz et al. 2020b) and followed
the same approach as Gratton et al. (2003) and Boeche et al.
(2013a). We first kinematically selected a thin disc component
with low eccentricity stars (e < 0.25) and low maximum altitude
(Zmax < 0.8 kpc). We identified a dissipative collapse compo-
nent, mainly composed of thick disc and halo stars with e > 0.25,
Zmax > 0.8 kpc, and Vφ > 40 km s−1. Finally, we characterised
an accretion component, composed of halo and accreted stars
(Vφ < 40 km s−1).
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Fig. 20. Systematic comparisons of parameters from our CNN with or without photometry (2MASS+ALL_WISE+GaiaDR2) and astrometry
(Gaia DR2). Top-left: Kiel diagrams are colour-codded in [M/H] for 198 106 stars (“n&o” classification) with S/N > 40 and parallax errors lower
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Kordopatis et al. 2011b; Lee et al. 2011).
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Fig. 22. [α/M] ratio as a function of [Fe/H] for several bins of R and |Z|. [α/M] and [Fe/H] were derived through our CNN while the R and |Z|
come from the DR6 of RAVE (Steinmetz et al. 2020b). Hexagonal bins and contour plots of the data are presented together. In total, we present
trends for 185 569 stars with S/N > 30, parallax errors lower than 20%, and RAVE “n&o” classification.

In Fig. 21, we present the [α/M] pattern for these three com-
ponents for giant stars (log(g) < 3.5). The thin disc is mainly
confined to [M/H] > −1 dex, while the dissipative collapse com-
ponent shows a large metallicity range, a few metal-rich stars,
including halo stars with metallicities higher than −2 dex, and a
narrow [α/M] sequence. The accretion component is only com-
posed of metal-poor stars, in the range −2.0 < [M/H] < −0.5.
We note that the mean error on [M/H] and [α/M] increases with
decreasing metallicity for the three components. These findings
are in good agreement with Boeche et al. (2013a).

We measured the gradients of Vφ vs. [M/H] in both the thin
disc and dissipative collapse components. The thin disc compo-
nent shows an anti-correlation (∇ = −20 km s−1 dex−1), while
a strong correlation is visible in the dissipative collapse com-

ponent (∇ = +54 km s−1 dex−1). Such gradients are consistent
with previous works, like for example Lee et al. (2011) with
SEGUE data or Kordopatis et al. (2011b), despite different selec-
tion functions. We note, however, that the positive gradient in
the dissipative collapse components results from the superpo-
sition of mono-[α/M] sub-populations with negative slopes, as
was recently shown using RAVE DR5 data (Wojno et al. 2018;
Minchev et al. 2019). These simple science applications show
the potential of the CNN abundances.

8.2. Chemical cartography of [α/M] ratio in the galactic discs

In this section, we investigate the spatial transition between the
[α/M]-rich and [α/M]-poor populations of the Milky Way. We
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once again take advantage of the orbital parameters provided
by the sixth data release of RAVE (Steinmetz et al. 2020b). We
present, in Fig. 22, the behaviour of the [α/M] ratio as a func-
tion of [Fe/H] for different bins of mean Galactocentric radii
(R) and heights above the Galactic plane (|Z|). The figure shows
hexagonal density maps and contour plots for a total of 185 569
giant stars with S/N > 30, parallax errors lower than 20%, and
RAVE “n&o” classification. We observe that the [α/M]-poor
population dominates at low Galactic heights (|Z| < 0.5 kpc),
while [α/M]-rich stars are mostly located at larger height above
the plane (|Z| > 0.5 kpc). In between, there is a very smooth
transition. We note that such observations are also valid for
the [Mg/Fe] and [Si/Fe] ratios, with slightly larger scatter. We
find consistent results with the study of Hayden et al. (2015)
based on APOGEE DR12. For the same Galactic volume, our
results are a good match with the recent study by Queiroz et al.
(2020) based on APOGEE DR16. We show that we are able
to complement RAVE DR6 and ultimately provide chemical
abundance trends for a larger sample of stars with improved
precision.

9. Caveats

The present project relies entirely on the cross-match between a
few thousand RAVE and APOGEE targets, which, together with
the limitations of the two respective surveys, results in a number
of possible caveats.

Firstly, the spectral range of RAVE spectra, [8410−8795] Å,
contains plenty of features with which to derive [α/M] ratios,
such as Ca, Ti, Mg, Si, and O spectral lines. The [α/M] labels
adopted here come from the DR16 of APOGEE. This survey
uses a different wavelength range (1.51−1.70 µm), nonetheless,
its wavelength coverage contains similar elements as RAVE con-
tributing to the [α/M] mixture, apart from Ne and S. On the other
hand, it is known that the most significant contributors of the
spectral features are Ca, Ti, Si, O, and Mg. In this context, using
the RAVE spectral range to constrain [α/M] is reasonable.

Secondly, we clearly have a lack of stars at low metallicity
([M/H] . −1) in the training sample, which is mainly due to the
fact that we have few metal-poor stars in RAVE (Matijevič et al.
2017) and in the cross-match with APOGEE DR16. The map-
ping of the parameters space for those stars is quite limited. For
future studies, it is important to carefully build a training sample
with good mapping of the parameters in the metal-poor regime.
More and more metal-poor stars are being observed, for exam-
ple, in the Pristine Survey (Starkenburg et al. 2017; Youakim
et al. 2017) and they are key stars for obtaining a more homoge-
neous mapping of the parameters space.

Finally, out of the approximately 400 000 stars of the
APOGEE survey DR16, our training sample contains roughly
4000 stars in common with the RAVE survey. It is clear that in
the present study the performances of our CNN approach is lim-
ited by the small size of the training sample. We have seen that
the training and test samples can then suffer from slightly differ-
ent coverage in the parameter space. The APOGEE and RAVE
surveys are characterised by different selection functions. The
selection function of the training sample is then characterised
by traits common to both surveys. This is a caveat in our study,
but the goal for the moment is not to characterise the selection
function in full as this will be the object of a future study. Our
message here to the community is that we call for everyone to
make a special effort to creating unbiased training samples, espe-
cially for the next generation of spectroscopic surveys, such as
4MOST, Gaia and WEAVE.

10. Database and public code

Here, we present our catalogue of atmospheric parameters (Teff ,
log(g) and [M/H]), along with chemical abundances ([Fe/H],
[α/M], [Si/Fe], [Mg/Fe], [Al/Fe], and [Ni/Fe]) for 420 165
stars (summarised in Table 1). The data table is available online4.

The CNN architecture, stellar labels, stellar photometry, and
spectra used in this paper are accessible via github5. The CNN
can be easily applied to any current spectroscopic archive or sur-
vey to derive atmospheric parameters, chemical abundances, and
also other extra parameters such as rotational velocity.

11. Conclusion

Here, we list here the main results of our study.
Based on APOGEE DR16, we built a training sample com-

posed of 3904 stars in common with RAVE DR6. These stars
have high quality atmospheric parameters and chemical abun-
dances for [Fe/H], [α/M], [Si/Fe], [Mg/Fe], [Al/Fe], and
[Ni/Fe], which we use as labels. We built a CNN using the
Keras libraries in Python to train the labels defined above. Using
these trained labels, we predicted atmospheric parameters and
chemical abundances for 420 165 RAVE spectra, with our results
available online. Our catalogue covers a larger range of S/N
than RAVE DR6, and extends the scientific output of the RAVE
spectra.

Next, we used ALL_WISE W1&2, 2MASS JHKs and Gaia
DR2 G, GBP, and GRP apparent magnitudes, and extinction
estimates to derive absolute magnitudes. We included them in
the training process and showed that CNNs are efficient in
combining spectroscopic and photometric data. We gain a dra-
matic advantage in precision and accuracy, especially in Teff and
log(g), where spectral features are overly degenerate (cool main
sequence stars, metal-poor giants, and very cool giants). We
demonstrated that such a comprehensive combination of spectra,
photometry, and parallaxes allows us to efficiently break degen-
eracies when the spectral range is too narrow to provide strong
constraints on surface gravity.

In performing a hundred training phases, we derived errors
of the atmospheric parameters, which typically amount to 60 K
in Teff , 0.06 in log(g), and 0.02−0.04 dex for individual chemi-
cal abundances. Such high precision is realistic because the net-
work is able to learn the low- and high-α sequences in the Milky
Way disc. We show that for stars with several observations, the
network is able to provide precise atmospheric parameters and
abundances among the repeats that typically precise to 50 K in
Teff and 0.03−0.05 dex in abundances.

We show that the surface gravities match nicely with more
than 430 asteroseismic gravities from the K2 space mission
within 0.14 dex dispersion and no bias. We compared our effec-
tive temperature and surface gravities with respect to both the
IRFM Teff and log(g) from the DR6 of RAVE and we were able
to characterise the systematics between the two studies.

It is important to note that different trends and zero-point
offsets between this work and external studies primarily reflect
the different calibrations applied to these surveys. A systematic
comparison between different surveys is therefore crucial. Fur-
thermore, the CNN architecture and weights will be publicly
available.

Despite quite a low number statistics in the training sample
with respect to the number of free parameters to fit, we show that
such an approach can provide solid scientific output. Of course,
4 https://doi.org/10.17876/rave/dr.6/020
5 https://github.com/gguiglion/CNN_Guiglion_et_al_2020
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Table 1. Atmospheric parameters, chemical abundances, and boundary flags of the publicly available online catalogue for 420 165 stars.

Col. Format Units Label Explanations

1 char – rave_obs_id RAVE Obs ID
2 char – sourceid Gaia Source ID
3 float K teff Effective temperature
4 float K eteff Error of Teff

5 int – flag_teff Boundary flag for Teff

6 float cm s−2 logg Surface gravity
7 float cm s−2 elogg Error on log(g)
8 int – flag_logg Boundary flag for log(g)
9 float dex mh Overall metallicity
10 float dex emh Error on [M/H]
11 int – flag_mh Boundary flag for [M/H]
12 float dex feh [Fe/H] ratio
13 float dex efeh Error on [Fe/H]
14 int – flag_feh Boundary flag for [Fe/H]
15 float dex alpham [α/M] ratio
16 float dex ealpham Error on [α/M]
17 int – flag_alpham Boundary flag for [α/M]
18 float dex sife [Si/Fe] ratio
19 float dex esife Error on [Si/Fe]
20 int – flag_sife Boundary flag for [Si/Fe]
21 float dex mgfe [Mg/Fe] ratio
22 float dex emgfe Error on [Mg/Fe]
23 int – flag_mgfe Boundary flag for [Mg/Fe]
24 float dex alfe [Al/Fe] ratio
25 float dex ealfe Error on [Al/Fe]
26 int – flag_alfe Boundary flag for [Al/Fe]
27 float dex nife [Ni/Fe] ratio
28 float dex enife Error on [Ni/Fe]
29 int – flag_nife Boundary flag for [Ni/Fe]
20 float /pix snr Signal-to-noise ratio

the performance would improve a lot if the size of the train-
ing sample was three to four times larger, but this pilot study is
limited by the current overlap with APOGEE DR16. This study
allowed us to highlight possible bias and systematics induced
by using a limited-size training sample with a CNN machine-
learning method. For the next generation of surveys, the com-
munity will have to put strong efforts into producing large and
un-biased training samples.

Our study shows that CNNs are particularly efficient in trans-
ferring knowledge from one survey at high resolution, such as
APOGEE, to another at lower resolution, such as RAVE. This
study gives good insights for ongoing and future spectroscopic
surveys, such as Gaia-RVS and 4MOST. The Gaia-RVS spec-
tra are expected to be very similar to those of RAVE (R ∼
11 400) and we show that adding photometry breaks spectral
degeneracies; photometry will be available for all RVS targets.
Efficient training of Gaia-RVS data based on higher-resolution
surveys could deliver atmospheric parameters and abundances
for a larger number of RVS stars, as it is the case for RAVE in
the present paper. The low-resolution 4MOST spectra will cover
a much larger spectral range (4000−9000 Å) at a slightly lower
resolution than Gaia for the 4MIDABLE-LR low-resolution sur-
vey (Chiappini et al. 2019), and Gaia photometry will also be
available for all targets. Additional constraints could then be put
on the derivation of Teff and log(g) by coupling spectroscopy,
photometry, and astrometry. Such surveys will deliver millions
of spectra that can be analysed in only a few minutes on a single
graphics processing unit once the labels are trained.
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Appendix A: Effect of parallax errors on CNN
performance
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Fig. A.1. Kiel diagram of 3 502 stars of the observed sample, with ep > 20%, colour-coded by [M/H] (left panel) and ep (middle panel). Only stars
with S/N > 50 per pixel are plotted. The same stars are presented in the right panel in the [α/M] versus [M/H] plane, colour-coded by parallax
errors.

In the present study, 94% of the RAVE DR6 targets have good
Gaia DR2 parallaxes, with an error better than 20%. Deriving
absolute magnitudes from such parallaxes and apparent magni-
tudes is then safe in the context of the present paper. This high
success rate is, however, an immediate consequence of the rel-
atively bright magnitude limit of I < 13 for RAVE, with the
majority of the stars even having I < 12. The overall Gaia
RVS survey will, however, probe considerably fainter objects.
The low-resolution surveys like Gaia RVS or 4MIDABLE-LR
of 4MOST (Chiappini et al. 2019) will probe a much larger vol-
ume than RAVE. There is then a risk that many targets suffer
from large parallax errors. Here, we discuss the impact of such
large parallax errors on the determination of atmospheric param-
eters and abundances.

In Fig. A.1, we present CNN results for 3 502 stars of the
observed sample with parallax errors, ep > 20%, and S/N > 50
per pixel. Despite the large parallax errors, we can recover a
proper giant branch with a clear metallicity sequence. Most of
the stars with ep > 40% are actually located in the upper part
of either the main sequence or the cool giant branch. Such stars
should be thus used with caution. For all stars with ep > 20%,
the [α/M] versus [M/H] abundance patterns do not show sys-
tematics, meaning that chemical abundances are less sensitive to
less precise parallaxes (absolute magnitudes constraining mainly
Teff and log(g)).

To check if the CNN could learn from lower quality data,
we added in our training sample ∼150 more stars with paral-
lax errors higher than 20%. Adding such stars did not improve
the training phase or the atmospheric parameters of the observed
sample stars with parallax errors larger than 20%.

Appendix B: Validation of atmospheric parameters
with stellar clusters

Here we compare the CNN results with 41 stars from four clus-
ters used in RAVE DR6 for calibration purposes: 47Tuc (Carretta
et al. 2009), Pleiades (Funayama et al. 2009), Blanco1 (Ford
et al. 2005), IC4651 (Pasquini et al. 2004), and Omega Cen-
tauri (Johnson & Pilachowski 2010). The results are presented
in Fig. B.1.

The giants tend to match pretty well between our study and
the literature, with slight variations from cluster to cluster. The
Pleiades show no discernible offset in log(g) and [Fe/H], while
a large mean difference is measured for Teff (−353 K). We have
both giant and dwarf stars in common with IC4651, and they
tend to show a good match with our study. The dispersion in
[Fe/H] drops to 0.03 when only considering stars with S/N >
40. We only have one star in common with Blanco 1, but we find
good agreement between the literature and our study. Finally,
the cluster 47Tuc presents an offset of +0.13 dex in [Fe/H] with
respect to the literature, while the dispersion is about 0.1 dex. We
note that we have a total of 13 stars from 47Tuc and the Pleiades
in our training sample. We have 12 giants in common with the
metal-poor globular cluster Omega Centauri. The [Fe/H] val-
ues of our CNN do not show any bias with respect to the liter-
ature, and the dispersion is about 0.1 dex. The Omega Centauri
stars span lower log(g) values that 47Tuc, mainly log(g) < 1. We
show that the CNN is able to provide reliable parameterisation
of metal-poor super-giant stars.

The systematics observed in the three parameters come
directly from systematics in the APOGEE DR16 labels. Over-
all, the typical dispersion σ in Teff and [Fe/H] tends to decrease
when selecting stars with S/N > 40, but stays constant for log(g).
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Fig. B.1. Comparison of Teff , log(g), and [Fe/H] between the present study and compilation of five stellar clusters with common stars with RAVE:
47Tuc (◦), IC4651 (×), Pleiades (�), Blanco1 (4), and Omega Centauri (O). The mean difference and dispersion are indicated together with the
cluster name.

Appendix C: Validation of atmospheric parameters
and chemical abundances with the HR sample

Here, compare our atmospheric parameters and chemical abun-
dances with those from high-resolution (HR) studies in the liter-
ature. We took a high resolution sample compiled and used for
validation purposes in RAVE DR6 (Steinmetz et al. 2020b). It
includes more than 1700 stars, taken from several studies, among
them with available chemical abundances Reddy et al. (2003,
2006), Valenti & Fischer (2005), Soubiran & Girard (2005),
Ruchti et al. (2011), Adibekyan et al. (2012), Bensby et al.
(2014) and Gaia-ESO Survey DR5.

We present a Kiel diagram and abundance patterns for stars
of the high-resolution sample and from the present study in
Fig. C.1. We only selected stars with S/N > 20. Basically,
the main and giant sequences match pretty well. The [α/M],
[Si/Fe] patterns tend to match for [Fe/H] > −0.5 dex, while
at lower metallicity the CNN abundances tend to be systemat-
ically lower. This comes from the fact that [α/M] and [Si/Fe]
do not reach values higher than +0.30 dex in APOGEE DR16.

On the other hand, [Mg/Fe] matches rather well between our
CNN results and the literature. The [Al/Fe] ratios are reason-
ably consistent around solar [Fe/H], but the scatter increases for
the metal-poor regime. Finally, [Ni/Fe] is rather flat in both sam-
ples, as expected for an Fe-peak element.

In Fig. C.2, we present the 1-to-1 relations between the
high-resolution sample and the present study. This illustrates the
differences in the trends and zero-points very well. The typical
dispersion is about 200 K in Teff (no bias), while it is around 0.3
for log(g) (bias of 0.17 dex) and [Fe/H] (0.17 bias). We observe
an increase of the scatter with decreasing [Fe/H]. We note that
the overall scatter in [Fe/H] drops to 0.2 dex if we only select
stars with S/N > 50. All other abundances show quite a small
dispersion, roughly 0.1 dex. In fact, shifts in the trends or in the
zero-points reflect more a systematic difference of the calibra-
tion between the APOGEE DR16 surveys and the test sample,
rather than an incorrect estimation of parameters or abundances.
Such differences are to be expected considering the differences
in instrument specifications, resolution, wavelength range, and
wavelength coverage.
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Fig. C.1. Kiel diagram and chemical abundances patterns for stars in common between our study (black circles) and the literature (red crosses).
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Fig. C.2. Atmospheric parameters and chemical abundances derived by our CNN, as a function of values from the literature. Mean bias and
dispersion are indicated in the top left corner of each panel.

Appendix D: Chemical abundance patterns of
[Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe]

In this section, we present chemical abundance patterns of
[Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] as a function of [Fe/H]
in the training and observed samples (S/N > 30 and “n”
stars). Figures D.1 and D.2 present [Mg/Fe] and [Si/Fe] abun-
dances patterns for 301 076 stars. The trends of both elements
look pretty similar to the trends of [α/M] presented in Fig. 12,
Si and Mg being α-elements. In Fig. D.3, we present the

chemical abundance patterns of [Al/Fe] of the same 301 076
stars. For [Fe/H] > −1 dex, [Al/Fe] behaves like an α-element
(consistent with previous findings in the literature, see for exam-
ple Smiljanic et al. 2016). For [Fe/H] < −1, we can see that the
[Al/Fe] ratio drops to solar – and even down to negative ratios.
It is mainly driven by the very few stars we have in the training
sample exhibiting low-[Al/Fe] ratios. We ought to be particu-
larly careful when using such [Al/Fe] abundances. In Fig. D.4,
we present [Ni/Fe] ratios for 301 076 stars. This ratio is rather
flat with [Fe/H], as is expected for such an Fe-peak element.
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Fig. D.1. Top: [Mg/Fe] vs. [Fe/H] for the training sample. Bottom: [Mg/Fe] vs. [Fe/H] for 301 076 stars of the observed sample with S/N > 30,
RAVE DR6 “n&o” classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff−log(g) diagram with the location of
the plotted stars marked in red.
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Fig. D.2. Top: [Si/Fe] vs. [Fe/H] for the training sample. Bottom: [Si/Fe] vs. [Fe/H] for 301 076 stars of the observed sample with S/N > 30,
RAVE DR6 “n&o” classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff−log(g) diagram with the location of
the plotted stars marked in red.
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Fig. D.3. Top: [Al/Fe] vs. [Fe/H] for the training sample. Bottom: [Al/Fe] vs. [Fe/H] for 301 076 stars of the observed sample with S/N > 30,
RAVE DR6 “n&o” classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff−log(g) diagram with the location of
the plotted stars marked in red.

A168, page 28 of 29

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038271&pdf_id=29


G. Guiglion et al.: Parameterisation of RAVE spectra based on Convolutional Neural-Network

71

1 29 475

1 48 1170 97

0.2
0.1
0.0
0.1
0.2
0.3
0.4

[N
i/F

e]

2 27 119 56 145 174

2.0 1.5 1.0 0.5 0.0
[Fe/H]

0.2
0.1
0.0
0.1
0.2
0.3
0.4

[N
i/F

e]

1

2.0 1.5 1.0 0.5 0.0
[Fe/H]

80

2.0 1.5 1.0 0.5 0.0
[Fe/H]

476

2.0 1.5 1.0 0.5 0.0
[Fe/H]

444

2.0 1.5 1.0 0.5 0.0
[Fe/H]

138

2.0 1.5 1.0 0.5 0.0
[Fe/H]

59

2.0 1.5 1.0 0.5 0.0
[Fe/H]

56

2.0 1.5 1.0 0.5 0.0 0.5
[Fe/H]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

[N
i/F

e]

475

4000500060007000
Teff (K)

0

1

2

3

4

5

lo
g(

g)

7173

87 2474 46102

57 125 5270 97695 9735

0.2
0.1
0.0
0.1
0.2
0.3
0.4

[N
i/F

e]

567 3569 8404 6500 13441 11324

2.0 1.5 1.0 0.5 0.0
[Fe/H]

0.2
0.1
0.0
0.1
0.2
0.3
0.4

[N
i/F

e]

547

2.0 1.5 1.0 0.5 0.0
[Fe/H]

5491

2.0 1.5 1.0 0.5 0.0
[Fe/H]

29750

2.0 1.5 1.0 0.5 0.0
[Fe/H]

33894

2.0 1.5 1.0 0.5 0.0
[Fe/H]

11188

2.0 1.5 1.0 0.5 0.0
[Fe/H]

4467

2.0 1.5 1.0 0.5 0.0
[Fe/H]

3216

2.0 1.5 1.0 0.5 0.0 0.5
[Fe/H]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

[N
i/F

e]

46102

4000500060007000
Teff (K)

0

1

2

3

4

5

lo
g(

g)

Fig. D.4. Top: [Ni/Fe] vs. [Fe/H] for the training sample. Bottom: [Ni/Fe] vs. [Fe/H] for 301 076 stars of the observed sample with S/N > 30,
RAVE DR6 “n&o” classification, and parallax errors lower than 20%. For each panel, we overplotted a Teff−log(g) diagram with the location of
the plotted stars marked in red.
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