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Abstract In this paper, we propose, discuss, and validate an
online Nonlinear Model Predictive Control (NMPC) method
for multi-rotor aerial systems with arbitrarily positioned and
oriented rotors which simultaneously addresses the local ref-
erence trajectory planning and tracking problems. This work
brings into question some common modeling and control
design choices that are typically adopted to guarantee ro-
bustness and reliability but which may severely limit the at-
tainable performance. Unlike most of state of the art works,
the proposed method takes advantages of a unified nonlinear
model which aims to describe the whole robot dynamics by
explicitly including a realistic physical description of the ac-
tuator dynamics and limitations. As a matter of fact, our so-
lution does not resort to common simplifications such as: 1)
linear model approximation, 2) cascaded control paradigm
used to decouple the translational and the rotational dynam-
ics of the rigid body, 3) use of low-level reactive trackers for
the stabilization of the internal loop, and 4) unconstrained
optimization resolution or use of fictitious constraints. More
in detail, we consider as control inputs the derivatives of
the propeller forces and propose a novel method to suit-
ably identify the actuator limitations by leveraging experi-
mental data. Differently from previous approaches, the con-
straints of the optimization problem are defined only by the
real physics of the actuators, avoiding conservative – and of-
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ten not physical – input/state saturations which are present,
e.g., in cascaded approaches. The control algorithm is im-
plemented using a state-of-the-art Real Time Iteration (RTI)
scheme with partial sensitivity update method. The perfor-
mances of the control system are finally validated by means
of real-time simulations and in real experiments, with a large
spectrum of heterogeneous multi-rotor systems: an under-
actuated quadrotor, a fully-actuated hexarotor, a multi-rotor
with orientable propellers, and a multi-rotor with an unex-
pected rotor failure. To the best of our knowledge, this is
the first time that a predictive controller framework with all
the valuable aforementioned features is presented and exten-
sively validated in real-time experiments and simulations.

Keywords Model Predictive Control · Multi-Rotor Aerial
Vehicles ·Multi-Directional Thrust · Actuator Constraints

1 Introduction

In the last decade, thanks to the development of both new
hardware technologies and software algorithms, the employ-
ment of Multi-Rotor Aerial Vehicles (MRAVs) has signifi-
cantly spread across a wide set of challenging real-life appli-
cations, thanks to their vertical take-off and landing (VTOL)
and hovering capabilities, their agility, relatively compact
structure, good robustness, and low cost. Classical multi-
rotor platforms with under-actuated dynamics (e.g., the pop-
ular quadrotors), have been extensively studied by the scien-
tific community and widely employed in contact-less civil
applications such as aerial photography, visual inspection of
infrastructures, area patrolling, crop monitoring, and urban
search and rescue (USAR) missions [1]. The total thrust di-
rection in the body frame of these platforms is fixed and
a re-orientation of the robot chassis is needed to continu-
ously steer the exerted force towards the desired direction.
We refer to the vehicles in this class as unidirectional-thrust
(UDT) aerial vehicles.
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On the other hand, recent platforms characterized by par-
ticular actuator arrangements can exploit the multidirection-
al-thrust (MDT) capability, i.e., the possibility to exert forces
in more than one direction without the need to re-orient their
body frame, allowing to partially decouple the robot rota-
tional dynamics from the translational one. A subset of this
class is represented by the so-called fully-actuated systems,
for which the control force can be varied in all directions,
disregarding the actuator constraints. Vehicles of this kind
have been demonstrated to be particularly suitable for the ac-
complishment of aerial physical interactions tasks [2,3], i.e.,
operations which require an active contact and a consequent
exchange of energy between the robots and the surround-
ing environment. Examples of such operations are grasping,
transportation, and manipulation of loads, contact-based in-
spection tasks, and building/decommissioning of structures.

Many different control strategies for MRAVs have been
designed for trajectory tracking. The most common con-
trollers implemented on these systems are PIDs (i.e., Propor-
tional, Integrative and Derivative) designed based on mod-
els, either linearized around the hovering condition as in [24],
or obtained with feedback linearization as in [25–27]. Other
control methods applied to MRAV include, but are not lim-
ited to, adaptive control [28], back-stepping and sliding-mo-
de [29]. The interested reader is addressed to [30] for a de-
tailed overview about available control strategies for under-
actuated MRAVs, while an extension of [25] to the fully-
actuated case has been proposed in our previous work [31].
The main limitations of the mentioned algorithms are: (i)
they are not predictive, in the sense that the control input at
any time instant is not computed with the objective of op-
timizing the system performance on a future time horizon,
possibly based on a reference motion trajectory; (ii) they are
not able to enforce the fulfillment of limitations on input and
state variables, which might be crucial for safety reasons.

In the last decades, intense research has been devoted to
the development, testing, and implementation of Model Pre-
dictive Control (MPC), a model-based optimization-based
predictive control method which has gained large popularity
especially in the process and chemical industries. More re-
cently, thanks to the growing availability of increasingly effi-
cient embedded computers, the popularity of MPC is broad-
ening to safety and time-critical applications with fast dy-
namics, e.g., in the automotive and robotic fields. MPC is
nowadays theoretically well founded and its popularity is
mainly related to the following facts. First, it is able to op-
timize, in a predictive fashion, the system behavior on a
given future time horizon based on the system model. Also,
in view of the fact that (at least in its most common im-
plementation) it is based on the iterative solution of a con-
strained optimal control problem (OCP), it allows to enforce
dynamic constraints on the state and the inputs of a physical
system. Furthermore, since the related OCP is solved at each

sampling instant as new state measurements get available, it
is able to mitigate for possible model perturbations.

Regarding the application of MPC to MRAVs, several
notable works have been done in the past few years. On the
one hand, some papers tackle the problems of offline gen-
erating (by solving a suitable OCP) a reference trajectory,
feasible with respect to (w.r.t.) the state limits of the system
while avoiding possible fixed obstacles, e.g., [16, 18–20].
Other references to MPC in this perspective can be found
in a recent review of motion planning methods for swarms
of aerial robots [32]. Other works, instead, are devoted to
closed-loop schemes, that allow for stabilization of the ve-
hicle dynamics and possibly for local trajectory planning.

Here we will focus on the latter class. In this framework,
cascaded control schemes are very common, that rely on the
decoupling between the translational and the rotational dy-
namics of the rigid body. In the majority of the works that
rely on this approach, e.g., [5, 7, 9, 10, 14], MPC is used for
position control, while the inner-loop attitude control task
is obtained using unconstrained regulators (e.g., Lyapunov-
based, PIDs, etc.). On the contrary, in [13, 15], the authors
employ MPC for control of the inner rotational loop. In ei-
ther ways, the common strategy is to stabilize the rotational
dynamics in an inner loop and to use the rotation configura-
tion (or the angular velocity) as a virtual input commanded
by the outer position-control loop. However, cascaded con-
trol methods do not allow to exploit the potentialities of the
vehicles at their best, in our opinion. Indeed, the problem
with this decoupled approach is the introduction of fictitious
(non-real from a physical point of view) constraints in the
virtual inputs, i.e., in the state variables that represent the
interface between the two nested controlled systems. As a
matter of fact, any constraint imposed on state variables such
as the linear velocity, acceleration, jerk, snap, or on the ori-
entation (e.g., Euler angles) and the angular velocity, consti-
tutes a heuristic limitation which does not model accurately
the real physical constraints of the real system. On the other
hand, in our work, the complete system dynamics is mod-
eled in a non-cascaded way and only the limitations on the
individual motor thrust forces and their rates are enforced.

As a matter of fact, the only constraints that play the ma-
jor role in the platform dynamics are the maximum and min-
imum torques that can be attained by the motors which drive
the propellers. Such limits cause a maximum speed (mainly
due to air drag), a minimum speed (mainly due to elec-
tronic reactions), a maximum acceleration (mainly due to
motor/propeller inertia), and a maximum deceleration (main-
ly due to nonlinear active breaking). Any simplification which
replaces such real constraints with fictitious constraints in
the configuration/state of the platform results, unavoidably,
in a reduced control performance w.r.t. the real dynamic po-
tential of the robot. In support for the need for a “whole
system” control, a few recent works, e.g., [10–12, 17, 21],
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Table 1 Overview of the paper contributions w.r.t. relevant works in the state of the art. A: capability to drive platforms that can independently
control (at least partially) their position and orientation, B: full nonlinear model and control (non-cascaded) of the system dynamics, C: ex-
tended/enhanced model of the actuators dynamics including low level constraints, D: controller validated through real experiments with online
computation, E: framework suitable to control arbitrarily-designed MRAVs. 3: implemented, 7: not implemented.
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avoid cascaded configuration as well. However, such works
either do not include any realistic model of the actuator dy-
namics and constraints in the control design, or they do not
demonstrate the capability of the proposed methods to per-
form online control of the robot in challenging real experi-
ments. Furthermore, they do not offer a generic framework
for the seamless control of both under-actuated and fully-
actuated MRAVs with generic designs. On the other hand,
the simultaneous accomplishment of all these three objec-
tives constitute the main contribution of this paper.

Another common source of performance limitation is the
use of linear/linearized models, see e.g., in [5–10, 12, 23].
Such models have the advantage of typically requiring less
computation, in relation to the online resolution of the OCP,
but at the detriment of maximum attainable performance.
On the other hand, the MPC scheme for local planning and
tracking presented in this paper uses a full-order nonlinear
model which includes an innovative data-driven description
of the actuator dynamics. To effectively limit the increased
computational burden, the control algorithm is implemented
using a state-of-the-art RTI scheme with partial sensitivity
update method, as further explained in the paper.

Therefore, despite the field of MPC-based control for
MRAVs is already deeply studied, we believe there is still
a considerable margin for interesting research investigation,
in particular in relation to the employment of more precise
models which take into account more representative con-
straints for the actuators, can be applied to arbitrarily-de-
signed MRAVs, and are validated through real experiments
with online computation, as demonstrated by the novel and
unique results in this regard presented in this paper.

To summarize, the contributions of this paper are three-
fold. First, the take advantage of a novel actuator model that
allows to consider as control inputs the derivatives of the
forces generated by the multi-rotor vehicle and to leverage
the vehicle dynamic capabilities in a better way. Second, the
development of a control framework suitable to seamlessly
deal with UDT and MDT MRAVs. Third, an extensive and
comprehensive validation of the controller by means of real-

time simulations and experiments performed with hetero-
geneous MRAVs, i.e., both with under-actuated and fully-
actuated aerial robots, and both with fixed and orientable
propellers. To the best of our knowledge, this is the first time
that a framework with all such relevant characteristics is suc-
cessfully tested online to control non-specific aerial vehicles
with arbitrary propeller arrangements. Following the discus-
sion above, Table 1 provides a summary of the contribution
of this paper compared to the main works in the literature.

This paper is structured as follows. First, the mathemat-
ical model of a MDT MRAV is described in details, with fo-
cus on the novel actuator model development and identifica-
tion. Then, we describe the MPC implementation details. Fi-
nally, we present an extensive and thorough validation cam-
paign, conducted with four heterogeneous robot platforms.
The results of both realistic simulations and real experiments
for the control of an under-actuated, a fully-actuated, and a
convertible MRAV are presented, compared, and discussed.
Furthermore, the stabilization of a fully-actuated platform
subject to a rotor failure is also targeted. A few summarizing
considerations and hints on future work conclude the article.

Notation. In this paper, we denote (column) vectors and
matrices in bold font, with lower and upper cases, respec-
tively. The transpose operator is indicated with the super-
script •>. Letter superscripts of vectors represent the ref-
erence frame w.r.t which these vectors are expressed. 1i,j

denotes the matrix with i rows and j columns with all the
elements equal to 1. A ⊗B denotes the Kronecker product
between the matrices A and B. For the reader’s ease, we
collected in Tab. 2 the main symbols related to the modeling
used in the paper.

2 Modeling of MRAVs with generic design

2.1 Model of a multi-rotor platform

Multi-rotor platforms are modeled as rigid bodies having
mass m, actuated by n ∈ N \ {0} spinning motors cou-
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Table 2 Overview of the main symbols used in this paper.

Definition Symbol
World Inertial Frame FW
Multi-rotor Body Frame FB
Actuator frame (i-th) FAi
Position, velocity, acceleration of OB in FW p, ṗ, p̈
Rotation matrix representing FB w.r.t. FW R

Angular velocity of FB w.r.t. FW , expressed in FB ω

Angular acceleration of FB w.r.t. FW , expressed in FB ω̇

Position of OAi in FB pBAi
Rotation matrix representing FAi w.r.t. FB RBAi
Mass of the vehicle m

Vehicle’s inertia matrix w.r.t. to OB , expressed in FB J

Gravity acceleration g

Total force acting on the CoM fB
Total moment acting on the CoM τB

pled with propellers, i.e., n = 4 and n = 6 in the particu-
lar quadrotor and hexarotor models, respectively. Keeping n
generic allows to express the model in a non-specific form.
With reference to Fig. 1, we denote with FW = OW , {xW ,
yW , zW } and FB = OB , {xB ,yB , zB} the world inertial
frame and the body frame attached to the MRAV, respec-
tively. The origin of FB , i.e., OB , is chosen coincident with
the Center of Mass (CoM) of the aerial platform and its po-
sition w.r.t. OW , in FW , is denoted with pWB ∈ R3, shortly
indicated with p in the following. The orientation of FB
w.r.t.FW is represented by the rotation matrix RW

B ∈ R3×3,
denoted with R for ease of notation. We also define with
FAi = OAi , {xAi ,yAi , zAi} the reference frame related to
the i-th actuator, i ∈ {1, . . . , n}, with OAi attached to the
thrust generation point and zAi aligned with the thrust direc-
tion. Thanks to this convention, the actuator force expressed
in its frame is fAii = fie3, where ei, i=1, 2, 3 represents the
i-th vector of the canonical basis of R3. The position ofOAi
w.r.t OB , in FB , is indicated with pBAi , while the orienta-
tion of FAi w.r.t. FB is represented with RB

Ai
. The positive

definite matrix J ∈ R3×3 denotes the vehicle inertia ma-
trix w.r.t. OB , expressed in FB . The angular velocity of FB
w.r.t. FW , expressed in FB , is indicated with ωBB ∈ R3

and compactly denoted as ω in the following. The vehicle
orientation kinematics, accounting for the evolution of the
rotation matrix R, is described by the well-known equation

Ṙ = R [ω]× (1)

where [•]× ∈ so(3) represents, in general, the skew sym-
metric matrix associated to any vector • ∈ R3.

Using the Newton-Euler formalism, we can derive the
dynamics of the aerial platform in order to relate the motion
of its CoM, in particular its linear and angular accelerations
(p̈ and ω̇, respectively), to the sum of the forces fB and the
torques τB acting on this particular point of the rigid body.
As traditionally done, we express the translational dynam-
ics in world frame, while keeping the rotational one in body
frame. This allows to slightly simplify the form of the equa-

xW
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zW
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OB
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yB

zB

OAi

p

R
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yAi

zAi

pBAi

RB
Ai

fi
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Fig. 1 Schematic representation of a MDT MRAV with its reference
frames.

tions. Combining them in a compact form, we obtain[
mI3 03

03 J

][
p̈

ω̇

]
=

[
−mge3

−ω × Jω

]
+

[
R 03

03 I3

][
fBB

τBB

]
(2)

where g is the gravitational acceleration and I3 ∈ R3×3 is
the identity matrix of order 3. In order to expand (2), one
must explicit the dependence of the body wrench on the
forces generated by actuators. The vector fBB is the sum of
the actuator forces, properly rotated in body frame, i.e.,

fBB =

n∑
i=1

fBi =

n∑
i=1

RB
Aif

Ai
i =

n∑
i=1

RB
Aie3fi. (3)

On the other hand, the body torque is the result of the mo-
ments τfi created by the actuator forces due to their leverage
arms and the drag torques τdi which are a byproduct of the
counteracting reaction of the air to the propeller rotation.

τBB =

n∑
i=1

τBfi + τBdi =

n∑
i=1

pBAi × fBi + cic
τ
f f
B
i

=

n∑
i=1

(
[pBAi ]× + cic

τ
fI3

)
RB
Aie3fi. (4)

The constant parameter cτf > 0 is characteristic of the type
of propeller and is defined as the intensity ratio between the
thrust produced by the propeller rotation and the generated
drag torque. Furthermore, ci is a variable whose value is
equal to −1 (respectively, +1) in the case the direction of
the induced drag torque is opposite (respectively, the same)
w.r.t. the generated thrust force, that is the case for a pro-
peller spinning counter-clockwise (respectively, clockwise)
w.r.t. its thrust direction. Such coefficient models the fact
that the drag torque is always opposed w.r.t. the rotor ve-
locity. In particular, the model used in this paper assumes
that the sense of rotation of each rotor is fixed and cannot be
reversed. Furthermore, the collective pitch of the propeller
blades is modeled as constant. As a consequence, the gener-
ated thrust cannot be flipped. Thus, swash-plate designs are
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out of the scope of this work. Finally, fi is the intensity of
the produced force, which is related to the controllable spin-
ning rate wi of motor i by means of the quadratic relation

fi = cfw2
i (5)

where cf > 0 is another propeller-dependent constant pa-
rameter to be experimentally identified. Note that (5) is a
well-established model in the literature, that has been vali-
dated experimentally, e.g., in [33].

We underline that one goal of this paper is to define and
guarantee the compliance of the system with meaningful
bounds for the actuators, and not to accurately model the
physics of the thrust generation. To this purpose, the interest
reader is addressed to [34]. Leaving the dependence of the
model equations on fi, see (3)-(4), allows the proposed MPC
framework to be seamlessly adaptable to the particular thrust
generation model specified by the user. Therefore, also dif-
ferent and more accurate thrust models, such as, e.g., [35]
can be easily integrated in our framework.

From (3) and (4), the body wrench can be expressed as a
linear combination of the forces produced by the n actuators.
Once defined γ =

[
f1 · · · fn

]>
, we can write[

fBB

τBB

]
=

[
G1

G2

]
γ = Gγ (6)

where G ∈ R6×n is the allocation matrix. In particular,
its sub-blocks G1 and G2 map the actuator forces to the
body forces and moments, respectively. Moreover, the j-th
column of G, j ∈ {1, . . . , n}, refers to the contribution of
the j-th actuator force to the total body wrench, being

G(:, j) =

 RB
Aj

e3(
[pBAj ]× + cjc

τ
fI3

)
RAje3

 . (7)

The matrix G maps the vector of actuator force intensities,
that belongs to a subset1 of an n-dimensional space, to body
wrenches laying in a subset of a 6-dimensional space. Re-
mark the fact that in the case of a fully-actuated MRAV, the
allocation matrix has full-rank, while for an under-actuated
vehicle it has a number of rank deficiencies equal to its under-
actuation degree. In the particular case of a UDT platform,
we have that rank(G) = 4, with rank(G2) = 3 and rank(

G1) = 1. This reflects the vehicle capability to exert a body
torque in all the directions, disregarding the actuator lim-
its, but a body force along only one direction, i.e., the one
of the zB axis. A detailed analysis of the allocation matrix
rank has been presented in [36], in the particular configura-
tion of a hexarotor with synchronized dual-tilting propellers.
The theoretical problem of designing an omni-directional

1 Such subset is the Cartesian product of the scalar subsets Fi ⊂
R+ which contain the feasible force values that each actuator can exert.

(OD) aerial vehicle, that is a fully-actuated MRAV that can
produce any body force inside a spherical shell indepen-
dently from the body torque, has instead been investigated
in [37–39].

The model defined by the equations (2)-(4) describes the
dynamics of a MRAV with arbitrarily positioned and rotated
actuators. Nevertheless, it contains, like all models, a certain
degree of simplification w.r.t. the real system. In the partic-
ular case, it neglects the contributions of the gyroscopic ef-
fect induced by the conservation of the angular momentum
of the propellers, the blade flapping and the rotor induced
drag reactions. As far as the gyroscopic effect is concerned,
its contribution could be taken into account by adding to the
right-side part of the rotational dynamics in (2) a modified
version of (3) in [7] that takes into account the fact that the
actuators may have different orientations w.r.t. FB . As one
can easily figure out, each term in such equation is scaled
with JAi , that is the inertia tensor of the rotating part of
the i-th actuator (composed of the propeller and the rotor).
For MRAVs with actuators of small-medium size, that are
the ones on which this work focuses its attention, the entries
of this matrix are typically 2-3 orders of magnitude smaller
than the ones of J. Therefore, the contribution of the gyro-
scopic effect can be safely neglected in (2). Regarding the
blade flapping and the rotor induced drag effects, they are
mainly associated with the flexibility and the rigidity of the
rotors, respectively [40], and are generated by the interac-
tion of the air with the translating propellers. The results of
these aerodynamic effects can be typically observed in UDT
platforms as exogenous lateral forces in the x-y plane of the
rotors. In the scope of MDT MRAVs, this analysis would
be complex to be precisely evaluated and would require to
measure the relative speed of the vehicle w.r.t. the wind and
to model the possible interactions between the air-flows of
different propellers, which is outside the scope of this paper.
Moreover, it should be remarked that the behavior of small-
medium size rotor-crafts is much more dominated by their
thruster characteristics than to aerodynamic forces, cf. [34].

For these reasons, in the line of [13, 19] and many other
relevant works, further motivated by the results presented
in [33], we decided to neglect the first-order contribution of
these two reactions and all other second-order effects arising
at very high speed and highly dynamic MRAV maneuvers.

The model developed so far is known in the literature
and has been presented for completeness and self-consisten-
cy. The true contribution brought by this work regarding the
modeling of a MRAV is described in the following para-
graph, where we detail a methodology aimed to take into
account the dynamics and the limitations of the actuators in
a simple and effective way.
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2.2 State-dependent actuator bounds

In our previous work [31], we already showed the impor-
tance of keeping into account the rotor velocity constraints
in the MRAV control strategy in order to preserve the sys-
tem stability. As also claimed in [41], further improvements
in the control of MRAVs could be attained by extending the
nonlinear model in order to include the motor/blade dynam-
ics and treating the motor voltages as the commanded in-
puts. However, this would require to accurately model the
significant nonlinearities introduced by the active braking,
to control the system a high rate (≥ 1 KHz) and at low la-
tency (≤ 1 ms), and the availability of further measurements
(e.g., the motor currents and spinning velocities).

In [11] a trade-off solution is proposed, considering the
rotor accelerations as control input. This strategy allows to
put constraints on both the motor velocities and their deriva-
tives. Doing so, the simplistic hypothesis that the spinning
velocities of the rotors (and the generated forces, by conse-
quence) can be changed instantaneously, implicitly done by
other works in the literature, is abandoned. Constraints on
the rotor accelerations are enforced in the OCP resolution,
assuming the lower and upper bounds as constant.

However, as corroborated by experimental data, the ca-
pability of the rotors to accelerate depends on the motor
currents, the blade dynamics, and on other nonlinear effects
hidden in the electrical level that could additionally induce
an asymmetry between the acceleration and the deceleration
constraints, which will in turn indirectly depend on the ro-
tor velocity. For these reasons, we believe that the extended
MRAV model should rely on a methodology that can as-
sess the actuators dynamics and constraints in a more ac-
curate way. Since the presence of strong nonlinearities in
the closed-loop dynamics of the actuators prevents the use
of Bode plots analysis or other linear methods, we propose
to derive the model from available data in an alternative
way. More specifically, first we experimentally assess how
the spinning rate wi and the acceleration ẇi of the rotors,
each of which is regulated by an independent embedded
Electronic Speed Controller (ESC), should be properly con-
strained in order to prevent the risk of damaging the motors
and to guarantee an accurate force tracking. Secondly, we
derive proper constraints for the actuator forces and their
derivatives, used by the MPC, in relation to the particular
model used to describe the thrust generation. This confers
generality to our approach, making it compatible with any
other thrust generation model that one wants to adopt.

2.2.1 Experimental assessment of the limitations on the
spinning rate w and the acceleration ẇ of the rotors

In this paragraph, we present a procedure to experimentally
identify appropriate rotor acceleration limits as function of

the velocity set-points to the ESCs, allowing to account for
the aforementioned nonlinearities in a simple yet effective
way. To do this, we use a simple testbed composed of a sin-
gle Brush-Less Direct-Current BL-DC electric motor that is
fixed on a mechanical structure, endowed with a propeller
and controlled by a dedicated ESC. The latter is connected
to a computer via a serial cable. Using a suitable application,
the user should be able to specify the desired rotor velocity
wd, read the measurement w, and measure or estimate the
current in input to the motor.

As far as the lower and upper bounds for the rotor ve-
locities are concerned, they can be experimentally identified
by producing velocity commands that cause the currents to
be at the safety limits, with a certain security margin. This
information is available from the motors data-sheets. Such
velocity limits should be combined with the ones imposed
by the low-level speed controllers, if any.

In order to identify the constraints on the rotor acceler-
ations, i.e., ẇ and ẇ, the actuator should be provided with
increasing acceleration commands, centered at different ve-
locity set-points in order to appreciate the dependence of the
constraints on the rotor velocity. The profile of the desired
rotor velocity trajectory, depicted in Fig. 2, is a sequence
of ramps (highlighted with yellow rectangles) centered at
given set-points w∗h, h ∈ N\{0}, that are chosen in order to
equally span the feasible set [w,w]. The ramp segments are
designed with increasing slopes (both positive and negative)
over time and separated by rest-intervals where ẇd = 0,
needed to avoid overheating the motor. At this point, the
tracking error ef of the generated force f , mapped from
the measured rotor velocity via the thrust generation model,
w.r.t. a given desired value fd can be used as the metric to
define the acceleration bounds. Using (5), we have

ef (ew,wd) = fd − f = cf (2wdew − ew
2) (8)

where ew = wd − w is the velocity error. After a standard
post processing of the data, mostly consisting in a low-pass
filtering of the measured velocity in order to reduce high-
frequency noise, by visual inspection of the force error as-
sociated with the acceleration intervals centered at each w∗h,
the user can determine the velocity-dependent acceleration
limits in relation to the force tracking accuracy (s)he is will-
ing to achieve, i.e., those that guarantee an average force
inaccuracy below a chosen threshold εf . Connecting these
values using a linear interpolation, it is possible to have an
approximation of ẇ and ẇ as a function of w.

2.2.2 Definition of the constraints on f and ḟ

First of all, the values w and w can be translated into the
force constraints f and f by using the force generation mo-
del (5). Secondly, once the functions ẇ(w) and ẇ(w) are
available, in order to convert them into constraints on force
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Fig. 2 Trajectory for the identification of the input limits at w∗ = 70
Hz (that is the average spinning rotor velocities while the platform
hovers) for the hexarotor setup. A series of ramps with increasing
slope, which corresponds to growing acceleration commands, is sent
to one actuator. The top and bottom sub-plots outline intervals where
the tracking of the velocity command is good and bad, respectively. In
particular, remark on the green ellipse that once the motor is activated,
it has a minimum spinning velocity w = 16 Hz below which it can’t
physically rotate. This has to be kept into account by the MPC.

derivatives, one can easily compute the time-derivative of (5),
obtaining

ḟ =
∂f

∂w
∂w
∂t

= 2cfwẇ. (9)

The expression of the state dependent input constraints ḟ(f)

and ḟ(f) are finally obtained from (5) and (9). We stress the
fact that another model for the thrust generation might be
used. In that case (5), and consequently (8) and (9), should
be changed according to the new thrust model.

As a final remark, it should be noted that the proposed
procedure does not require a force/torque sensor.

2.2.3 Application of the identification procedure to
hardware setup

In the following, we describe how we concretely apply the
previously-described procedure to two different hardware
setups. The first one, shortly named setup I, is composed
of a MikroKopter2 electric motor MK3638 coupled with a
12X4.5’ propeller and controlled by a BL-Ctrl V2.0 ESC.
The low-level control of the rotor velocity is performed in
closed-loop employing the Adaptive Bias Adaptive Gain (AB-
AG) algorithm, whose details can be found in [42].

In this setup, being the one of our (custom-made) fully-
actuated hexarotors, the constraints on the minimum and
maximum velocities are related to the properties of the closed-
loop rotor velocity controller. Specifically, the actual rotor
velocity is estimated by the low-level controller without any
additional sensor and the quality of such estimation is pro-
portional to the rotor speed. This causes the velocity to have
a lower bound, in order to be properly estimated by the con-
troller with a certain precision. On the other hand, the lim-
ited arithmetic capabilities of the ESC micro-controller (which

2 http://www.mikrokopter.de/en/home

allows only 8-bit additions and has no floating point unit)
translates into a velocity upper bound, cf. [42]. In this case,
we identified w = 16 Hz and w = 102 Hz. In particular,
the upper limit satisfies the maximum current limitation of
20 A reported in the motor data-sheet. Finally, using (5) we
obtained the limits f ≈ 0.25 N and f ≈ 10.3 N used to
constrain the OCP resolution in the MPC algorithm.

As far as the identification of the acceleration limits is
concerned, we generated a set of increasing ẇ spanning the
range ±[20, 300] Hz/s with a step of 10 Hz/s, centered at a
given average velocity level w∗h. Each ramp fragment takes
values in the set [w∗h − δh,w∗h + δh], with δh = 10Hz. With
reference to Fig. 2, for each ramp we select the 30% of the
total samples which are centered in the middle of the interval
(highlighted with orange rectangles in Fig. 2) and compute
the correspondent force error using (8). The operation is re-
peated at different set-points w∗h in the set [30, 90] Hz with a
step of 10 Hz, in order to span the set of admissible veloci-
ties previously estimated. The plots of the force error trends
related to setup I are shown in Fig. 4. In each subplot, no-
tice that the number of samples related to increasing values
of |ẇ| is gradually decreasing. This happens because an in-
crease in the ramp slopes is associated with a decrease in the
time duration associated with the segments. Remark three
facts: (i) At the same velocity set-points, increasing force
errors are associated with increasing acceleration values, on
average. This suggests that high acceleration references (of
both signs) are difficult to be tracked and fosters the idea to
constrain them with lower and upper bounds. (ii) For differ-
ent set-point velocities, the profile of the force error at cor-
responding acceleration intervals is different. This confirms
the claim that the limits are velocity-dependent. In partic-
ular, we observe that while increasing values of set-points
seem to cause increasing force error for positive accelera-
tions, such trend is not pursued by negative accelerations.
A reasonable explanation for such effect could be the fact
that the active braking, which intervenes only for negative
accelerations, is not behaving in the same way for different
velocity levels. (iii) At the same velocity set-points, the force
error ef associated with negative accelerations is larger, on
average, w.r.t. the one associated with positive accelerations.
This reveals that, despite the use of the active-braking, the
deceleration of a rotor produces a worse force tracking than
the corresponding acceleration.

In order to identify the acceleration limits ẇ and ẇ, we
defined εf ≈ 0.2 N as the force error threshold, admitting

Table 3 Identified acceleration limits for setup I.

w [Hz] 30 40 50 60 70 80 90

ẇ [Hz/s] −120 −160 −200 −140 −160 −160 −140

ẇ [Hz/s] 200 200 200 160 180 180 180
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Fig. 3 State and input constraints given to the NMPC in relation to
the two hardware setups used in the experiments. Darker and lighter
colored lines are referred to setup I and setup II, respectively.

slightly bigger values (≈ 0.3 N) at high velocity set-points.
As we will see in the experimental validation plots, such
value generates conservative limits that preserve the plat-
form stability also during agile trajectory tracking. As a gen-
eral rule, such threshold value shall depend on the particular
robot task. The identified acceleration limits related to setup
I are collected in Tab. 3, where velocity data are expressed
in Hz, while acceleration ones in Hz/s. Interpolating these
values with linear functions and using (5) and (9), allowed
us to obtain the force derivative constraints as function of
the instantaneous thrust forces.

A second hardware setup (setup II) is analyzed, i.e., that
one of the available under-actuated quadrotor, which com-
bines a MK2832/35 motor with a 10X4.5’ propeller from
MikroKopter, controlled by the same ESC and closed-loop
algorithm of setup I. The profile of the constraints for the ac-
tuator forces and their derivatives, related to the two setups,
are depicted with different colors in the plot of Fig. 3, where
the admissible set of values for both cases are represented
with the yellow area. Consistently with the previous results,
the limits on positive and negative thrust derivatives are not
perfectly symmetric.

2.3 State-space model for discrete-time control

Let us define the state vector x and the input vector u as

x :=
[
p> ṗ> η> ω> γ>

]>
(10)

u := γ̇ (11)

with η ∈ Rnη being the vector used for concisely repre-
senting the platform orientation. Specifically, for the exper-
imental validation we chose a minimum representation with
three angles (see the section related to the experimental val-
idation for a detailed discussion about pros and cons of min-
imal representations). With reference to (10), it is worth to
remark the fact that the actuator forces γ, which in other
works were either discarded from the model or assumed as
the input, are considered here as part of the state. In partic-
ular, all the quantities which compose the state are assumed

to be measurable (cf. Sec. 4.1 for a discussion of the em-
ployed sensors). In view of this, the control scheme will be
implemented without resorting to a dedicated state-observer.

The expression of the map f(•) relating ẋ to x and u,
i.e.,

ẋ(t) = f(x(t),u(t)), (12)

can be obtained from (1)-(4), according to the previous defi-
nition of x and u. For digital control purposes, the continuous-
time model in (12) is discretized (in the particualr case using
a fixed step 4th order explicit Runge-Kutta integrator) yield-
ing the following discrete-time model

xk+1 = φ(xk,uk), k = 0, 1, . . . , N − 1 (13)

where, for ease of notation, xk = x(kT ) being T the MPC
sampling time and u(t) = uk for t ∈ [kT, (k + 1)T ).

3 NMPC for MRAVs with generic design

The goal of this section is to devise an MPC controller able
to simultaneously address the problem of local reference
trajectory planning and that of stabilizing the vehicle dy-
namics. Specifically, we aim to track a reference trajectory
denoted (pr(t),ηr(t)) given by a generic global planner.
We assume (pr(t),ηr(t)) to be twice continuously differ-
entiable. In order to guarantee smoothness properties of the
generated trajectory, we force our algorithm to be able to
drive also the derivatives of the state variables toward the
corresponding ones of the reference trajectory. Therefore,
we introduce the following enlarged reference signal

yr(t) =
[
p>r (t) ṗ>r (t) p̈>r (t) η>r (t) ω>r (t) ω̇>r (t)

]>
(14)

and, accordingly, we define the output map as

y(t) = h (x(t),u(t)) =



p(t)

ṗ(t)

p̈ (x(t),u(t))

η(t)

ω(t)

ω̇ (x(t),u(t))

 . (15)

For clarity observe that p(t), ṗ(t),η(t),ω(t) are measured
sub-vectors of the state, while p̈, ω̇ are functions of x(t),u(t),
and, in particular, sub-components of the map f in (12).

Finally, we define yr,k, yk as the discretized version of
yr(t) and y(t), respectively, i.e., yr,k = yr(kT ), yk =

y(kT ). The OCP to be solved at time kT , given the current
state xk, is formulated as
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Fig. 4 Plots of the force error trends, associated to the acceleration intervals at different set-point velocities w∗h, related to setup I. Positive and
negative acc. are depicted on the left and right column, respectively. The acceleration-dependent errors are represented with different color shades.

min
x̂0, . . . , x̂N

û0, . . . , ûN−1

N−1∑
h=0

{
‖ŷh − yr,k+h‖2Qh

+ ‖ûh‖2Rh

}
+

+ ‖ŷN − yr,k+N‖2QN
(16)

s.t. x̂0 = xk (17)

x̂h+1 = φ(x̂h, ûh), h=0,1,...,N−1, (18)

ŷh = h(x̂h, ûh), h=0,1,...,N, (19)

γ ≤Mx̂h ≤ γ, h=0,1,...,N, (20)

γ̇
k+h
≤ ûh ≤ γ̇k+h, h=0,1,...,N−1, (21)

where Qh, Rh are semidefinite positive matrices and matrix
M is defined in order to select only the n elements of the
state x corresponding to the actuator forces, that is,

M =
[
0n×(9+nη) In

]
. (22)

The bounds γ,γ, depend on the quantities f , f character-
ized in the previous section and, compactly, they are defined
as

γ = 16×1 ⊗ f (23)

γ = 16×1 ⊗ f. (24)
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Furthermore, the bounds γ̇
k+h

, γ̇k+h, h = 0, 1, . . . , N − 1,
depend on the time-varying and state dependent quantities
ḟ(f), ḟ(f) and, precisely, they should be defined as

γ̇k+h =
[
ḟ(f1,k+h), . . . , ḟ(fn,k+h)

]>
(25)

γ̇
k+h

=
[
ḟ(f1,k+h), . . . , ḟ(fn,k+h)

]>
(26)

Observe that constraints in (21), with γ̇k+h and γ̇
k+h

de-
fined as above are highly non-linear. In order to retain lin-
earity of these constraints in the OCP, we consider the fol-
lowing alternative definition for γ̇k+h and γ̇

k+h

γ̇k+h =
[
ḟ(f̃1,k+h), . . . , ḟ(f̃n,k+h)

]>
(27)

γ̇
k+h

=
[
ḟ(f̃1,k+h), . . . , ḟ(f̃n,k+h)

]>
(28)

where f̃i,k+h are independent of the decision variables of
the OCP at time t = kT . Different choices can be taken, for
example keeping the constraints constant along the horizon

f̃i,k+h = fi,k, h = 0, . . . , N − 1.

Alternatively, f̃i,k+h can be selected in a time-varying fash-
ion based on the solution of the previous OCP obtained at
instant t = (k − 1)T .

The solution to the OCP, at a given time step k con-
sists of the optimal values x̂0|k, . . ., x̂N |k, û0|k, . . ., ûN−1|k.
According to the receding horizon principle [43], the input
value uk = û0|k is applied, and the procedure is repeated at
the subsequent time step k + 1.

Some remarks are due at this point, concerning the prob-
lem formulation. Regarding the stability-related properties
of our scheme, first of all note that the problem addressed
here consists of tracking a trajectory generated, possibly with-
out any regard of the vehicle model, by a generic global
planner. In particular, we avoid on purpose any feasibility
assumptions of the reference trajectory w.r.t. the robot, in
order to test the NMPC framework capability to locally re-
generate and track a trajectory which is compatible with the
system dynamics and with the actuator constraints. This mo-
tivates the claim that the proposed algorithm can seamlessly
deal with arbitrarily-designed MRAVs, without the need for
a preliminary analysis on the system dynamics. For exam-
ple, if the system is under-actuated and differentially flat,
our framework will automatically recognize such property
and exploit it, thus considerably simplifying the reference
trajectory generation problem.

Under this general assumption, stability (in a strict sense)
of the reference trajectory cannot be guaranteed, since the
guarantee to track the given set-point is ensured only pro-
vided that the trajectory is generated compatibly with the

system dynamics and the actuator constraints. For partic-
ular implementations of nonlinear MPC, in case of feasi-
ble set-points or reference trajectories, the stability of the
closed-loop system can be conferred, for example, by de-
signing particular terminal constraints and appropriate ter-
minal penalties on the state. A compelling work review-
ing the main essential principles that ensures stability has
been presented in the survey [43]. However, the difficulty in
explicitly computing the terminal set and the terminal cost
function for general nonlinear systems remains quite dissua-
sive in real-life applications [44].

On the other hand, it has been shown that under the as-
sumption that the reference trajectory is consistent with the
vehicle dynamics (e.g., as in [45]), stability guarantees could
be provided by selecting a sufficiently large prediction hori-
zon length N relying on [46, 47]. Such approach has been
applied for path following in a robotic scenario, e.g., in [48].
In line with many other works dealing with NMPC applied
to aerial vehicles, we preferred to heuristically follow this
methodology. To determine the minimum length of the hori-
zon, which directly affects the dimension of the optimization
problem, we have performed preliminary simulations with
different trajectories, robot models, and prediction horizon
lengths, carrying out a trade-off between stability perfor-
mance and computational burden. Considering that a formal
proof of the controller stability is out of the scope of this
paper, we leave the analytic study of the optimal prediction
horizon length as well as a formal discussion of the closed-
loop system stability for future work. Practically, throughout
all the experimental tests, the NMPC algorithm was always
able to stabilize the robot along a re-computed trajectory,
even in case the reference one is (on purpose) not feasible
with respect to the robot dynamics and actuator constraints.

In relation to the stability problem, it is worth to briefly
discuss the controllability and observability of the systems
to be controlled. Regarding the former property, which is re-
lated to the capability of the input to affect the evolution of
the system state, we leveraged previous theoretical results to
assess the existence of feasible input trajectories capable to
steer the state of the system towards the tested reference tra-
jectories. Whenever the specific motion was not feasible for
the particular dynamic constraints of the platform at hand,
we allowed the local re-generation of a feasible trajectory. In
this way, we ensure the system controllability to “the clos-
est” feasible trajectory in relation to the original reference.
In particular, while fully-actuated systems can track a full-
pose decoupled trajectory provided that the actuator con-
straints are not violated [31], we know from previous the-
oretical results that the trajectory of under-actuated vehicles
has to satisfy the flatness-property [49]. Moreover, results
on the reduced controllability of particular fully-actuated
MRAVs after a propeller failure are available from [50, 51].
Ultimately, we also tested the controllability of all the pre-
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Fig. 5 Block diagram of the experimental setup architecture. The main components are highlighted with different colors.

sented MRAV systems in relation to the target trajectories in
a preliminary phase of extensive simulations.

As far as the observability is concerned, which describes
the possibility of inferring the internal state of a system from
knowledge of its external outputs, we do not have any con-
cern in this sense as the full state of the aerial vehicle, cf. (10),
is assumed measurable from the available sensors. Consid-
ering that we do not make use of any state estimator in
this work, a formal analysis of the system observability is
not needed, in this case. Details on the design of a fault-
tolerance NMPC scheme for systems with sensor faults, which
falls outside the scope of this paper, can be found in [52].

Another important feature of MPC-based algorithms is
recursive feasibility, i.e., the guarantee that the OCP always
admits a solution. In our practical implementation we have
adopted the widespread solution of guaranteeing it by en-
forcing the (slightly tightened) constraints in a soft way us-
ing slack variables. Practically, alongside our extensive ex-
perimental campaign, the algorithm was always able to find
a solution.

To conclude the extensive presentation of the proposed
NMC scheme, the implementation details related to the res-
olution of the OCP are discussed in the following.

3.1 Implementation details for the OCP resolution

The control algorithm is implemented using the state-of-
the-art Real Time Iteration (RTI) scheme, see [53], embed-
ding the multiple shooting method, cf. [54]. The RTI scheme
performs a single sequential quadratic Programming (SQP)
iteration to solve the OCP. To do this, a linearization of
the system constraints (18) and (19) is performed to ob-
tain a quadratic programming (QP) problem, to be solved
at each sampling time. To reduce the computational time,
in [55] a procedure called partial sensitivity update is pro-
posed, where the constraint linearization is updated only if
the dynamics around the generated trajectory exhibits a cer-
tain degree of nonlinearity. To reduce the computational com-
plexity, the QP problem is condensed using the algorithms
discussed in [56]. The required linear algebra routines are
implemented using OpenBLAS 3. The resulting dense QP
is solved by qpOASES, see [57], which employs on-line
active-set method with warm-start strategy.

3 https://github.com/xianyi/OpenBLAS

According to the common practice, the sampling time
must be selected to be as small as possible, to make the con-
trol system sufficiently reactive. On the other hand, it must
also be sufficiently larger than the average computational
time. However note that, despite this, there is no guarantee
that a solution to the OCP is always available in due time
at each time step. If, at a given instant (say at step k), the
time required to compute the solution is occasionally larger
than a given threshold, a back-up solution must be taken to
guarantee reliability of the control system. In this paper, this
solution consists of taking the possibly sub-optimal but ad-
missible value uk = û1|k−1, computed as part of the solu-
tion to the OCP at time k − 1.

4 Experimental validation

In this section we show and thoroughly discuss the experi-
mental results obtained from the application of the proposed
NMPC algorithm to the aerial robot prototypes built, and in
some cases conceived, in the laboratory facility of LAAS-
CNRS - the interested reader is as well referred to the at-
tached multimedia file. First of all, we present the exper-
imental setup, with a focus on the description of both the
hardware and the software components, and on the imple-
mentation details of the NMPC strategy. Then, we analyze
the outcomes of the experiments achieved with two differ-
ent kinds of MRAVs, i.e., an under-actuated UDT quadrotor
and a MDT (in particular, also fully-actuated) hexarotor with
tilted propellers. The goal of this investigation is to demon-
strate the precision of our approach and, above all, its po-
tential applicability to any arbitrarily-designed MRAV. The
robots are required to perform tracking experiments: the ref-
erence trajectories are designed both to test the re-generation
capability of the algorithm, to highlight the different behav-
iors of UDT and MDT platforms, and to assess the solution
compliance with the constraints previously identified in the
case of fast maneuvers.

In order to better appreciate the results achieved in the
experimental validation with the proposed NMPC frame-
work, we point the reader to the attached video.
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Fig. 6 Photos of the quadrotor (left) and the Tilt-Hex (right).

4.1 Experimental setup

The experimental setup architecture, whose block diagram
is portrayed in Fig. 5, can be conceptually divided into three
main components: the NMPC controller, which periodically
computes the input of the actuator controllers (the ESCs),
the physical aerial robot to be controlled, and the sensors,
used to retrieve the information about the MRAV state that
is employed as feedback in the closed-loop control strategy.
Each block exchanges information with the others thanks to
a properly-designed software architecture.

The predictive controller is implemented using MAT-
MPC, a recently-developed MATLAB-based nonlinear MPC
toolbox, see [58]. Its algorithmic routines are written using
MATLAB C API and available as MEX functions. The tool
supports fixed step Runge-Kutta (RK) integrator for multi-
ple shooting and obtains the derivatives that are needed to
perform the optimization from the toolbox CasADi4. The
OCP described by (16)-(21) is solved by the external solver
qpOASES5 by [57], integrating the RTI algorithm. Such an
implementation has been chosen mainly due to the partic-
ular ease of test and development of MATLAB/Simulink R©

compared to pure C/C++. The presented NMPC algorithm
is executed on a ground-station PC equipped with an Intel R©

2.60GHz CoreTM i7-6700HQ CPU (x8) and 32 GB RAM
which runs the Linux Ubuntu 16.04 LTS operating system.
As it can be observed from Fig. 5, the control input u, which
provides the actuators’ force derivatives references, is inte-
grated and then converted into a rotor velocity command
w, thanks to the inversion of the force generation model.
The resulting velocity set-points are finally transferred to the
module of the low-level controllers on-board the aerial plat-
form, by means of a serial cable.

As far as the aerial robots are concerned, we tested our
control algorithm with the two heterogeneous MRAVs de-
picted in Fig. 6. The first one, shown on the left, is an under-
actuated UDT platform, a quadrotor, with four collinear ro-
tors. Apart from some custom-made features realized in-
house with 3D printed components, like the battery sup-
port, most of the platform is built by assembling off-the-
shelf parts from MikroKopter. The second robot, illustrated
on the right of the Fig. 6, is a fully-actuated MDT platform
with six non-collinear tilted rotors, from which it inherits the

4 https://github.com/casadi/casadi/wiki
5 https://projects.coin-or.org/qpOASES/wiki

Table 4 Physical parameters of the quadrotor.

Quadrotor
Parameter Value Unit

m 1.042 Kg

J(:, 1) [0.015 0 0]> Kg m2

J(:, 2) [0 0.015 0]> Kg m2

J(:, 3) [0 0 0.015]> Kg m2

ci (−1)i−1 [ ]

cτf 1.69e−2 m

cf 5.95e−4 N/Hz2

RBAi Rz
(
(i− 1)π

2
)
)
Rx(α)Ry(β) [ ]

pBAi Rz
(
(i− 1)π

2
)
)
[l 0 0]> [ ]

α 0 deg

β 0 deg

l 0.23 m

name ‘Tilt-Hex’. In this case, the prototype has been com-
pletely designed and manufactured in our laboratory, and
has already been presented in some of our previous contri-
butions [2, 31]. The values of the physical parameters used
in the MRAVs models are summarized in Tabs. 4 and 5. In
particular, α and β are defined as the actuator rotation angles
around xAi and yAi , respectively, as shown in Fig. 1.

The main sensors integrated in our experimental frame-
work are the onboard gyroscope, the Motion Capture sys-
tem, and speedometers of each propeller rotational speed:

– the Gyroscope measures the rotational velocity of the ve-
hicle around each of the body frame axis;

– the Motion Capture (MoCap) system provides the infor-
mation regarding the robot position and orientation w.r.t.
the inertial reference frame, whose origin is fixed in a
particular point of the robots workspace. The platform
linear velocity is numerically computed online from the
position measurements, using multi-sample least squares
model fitting;

– the rotor spinning velocities are measured by the low-
level ESC controller by computing the time elapsed be-
tween two phase switches (which depends on the motor
number of poles) and reducing the measurement noise
with an exponential moving average filter. Ultimately,
the rotor velocities are converted into the actuator forces,
thanks to the force generation model, and used to com-
plete the information of the measured full-state x̂ of the
MRAV.

Note that the accelerometers have been disregarded from
the sensor fusion since we assessed that the noise in their
measurements was causing an offset in the estimation of
the linear velocity, which motivated the numerical compu-
tation of the latter. In general, the effect of such velocity
offset on the tracking performance is quite more evident on
predictive controllers w.r.t. reactive ones, given the fact that
a wrong state estimation generates an erroneous evolution
of the model internally simulated and, in turn, a misleading
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Table 5 Physical parameters of the Tilt-Hex.

Tilt-Hex
Parameter Value Unit

m 1.86 Kg

J(:, 1) [0.11 0 0]> Kg m2

J(:, 2) [0 0.11 0]> Kg m2

J(:, 3) [0 0 0.19]> Kg m2

ci (−1)i−1 [ ]

cτf 1.9e−2 m

cf 9.9e−4 N/Hz2

RBAi Rz
(
(i− 1)π

3
)
)
Rx(αi)Ry(β) [ ]

pBAi Rz
(
(i− 1)π

3
)
)
[` 0 0]> [ ]

αi (−1)i 35 deg

β −25 deg

` 0.368 m

control input that finally produces an inaccurate trajectory
tracking.

In order to design the software architecture, we rely on
the GenoM36 abstraction level, which allows to encapsulate
software functions inside independent components. More in
detail, it is used as a wrapper for the robot low-level con-
troller and the sensors. This allows to obtain high flexibil-
ity in the development and in the use of the components.
With reference to our architecture, the software in MATLAB
/Simulink R© communicates with the GenoM3 modules using
the Robot Operating System (ROS) middleware, which is
compliant with the soft real-time constraints required for our
experiments, i.e., a control bandwidth larger than 200Hz and
a latency smaller than 10ms. Since MATLAB/Simulink R©

is not meant for a hard real-time execution, the hardware is
commanded via the GenoM3 components, which essentially
behave like drivers.

4.1.1 Implementation details

For all the experiments presented in this paper, we chose
a prediction horizon of tH = 1s, sampled at N + 1 =

11 shooting points. Therefore, the discretization time of the
nonlinear MPC algorithm, being the length of one of the
N intervals, results T = 0.1s. Even though the internal
MPC prediction is performed at 10Hz, the controller runs
at a frequency always larger than 200Hz. Such technique,
employed by many state-of-the-art contributions, e.g., [14],
allows the predictive algorithm to simulate the model along
a wider prediction horizon with less computational effort.
Indeed, as observed by [59], the number of discretization
nodes roughly increases the computational time tsolv by O(

N2). Basically, one should guarantees a control sample time
Tctrl at least equal to time tsolv needed for the algorithm to
solve the OCP. On the other hand, the prediction horizon

6 https://git.openrobots.org/projects/genom3/
wiki

should be long enough to cover at least the time of one con-
troller iteration. In mathematical terms, this translates in the
following chain of inequalities

tsolv ≤ Tctrl ≤ T ≤ tH (29)

As far as the representation of the robot orientation is
concerned, for the particular experiments presented in this
paper we decided to use a minimal parametrization with
three angles, in particular the 3−2−1 one (yaw-pitch-roll),
i.e.,

η =
[
φ θ ψ

]>
(30)

With reference to this ordered sequence, we have that

R = Rz(ψ)Ry(θ)Rx(φ)

=

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (31)

where R•(α) denotes a rotation around one of the main
body frame axes {x, y, z}B of an angle α, while sα, cα
indicate sin(α) and cos(α), respectively. Using this conven-
tion, we can express the body frame angular velocity as a
function of the vector η̇, that contains the so-called Euler
rates

ω = Tη̇ (32)

In particular, with reference to the specific parametrization
of (31), we have

T =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

 . (33)

Inverting (32) allows to write explicitly the Euler rates as
a function of the body angular velocity (expressed in body
frame) in the NMPC model dynamics. This representation,
like all the minimal parametrizations given by three angles,
has a singularity, which in the specific case occurs when
θ = π/2. In general, all these conventions should be avoided
if the robot orientation is supposed to evolve in the com-
plete SO(3) manifold. However, in the particular case of
the trajectories that we have tested, we safely used this rep-
resentation by explicitly avoiding singular configurations for
the platform pose. We chose to not use the re-arranged ele-
ments of R or a unit quaternion for a simple matter of con-
venience. Indeed, in such cases a larger state vector would
have been needed. Furthermore, additional constraints, e.g.,
the orthogonality of the rotation matrix or the unitary-norm
for the quaternion, should have been added in the resolution
of the OCP, thus increasing the solver computational time
and, by consequence, slowing down the available bandwidth
of the controller. This can easily be dealt with, of course, by
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using a more powerful computation unit. It should be under-
lined that the proposed framework does not depend on the
particular orientation representation and easily adapts to the
others without the need to deal with additional theoretical
issues.

The cost function weights in (16) are specified at the be-
ginning of the description of each experiment and simula-
tion. In general, they have been chosen on a case-dependent
basis taking into account heuristic considerations and often
following a trial-and-error procedure. The automatic tun-
ing of such weights is an important topic which is left for
future work. Throughout all experiments and simulations
presented in the paper, the input terms in the cost function
have not been considered, i.e., the entries of the weights Rh

related to the input are equal to zero. This has been done
with the goal to exploit the MRAVs potentialities until their
limits by taking advantage of the actuator dynamics up to
their bounds. Therefore, we decided to test our NMPC al-
gorithm by discarding these regularization terms. In all the
performed tests, including the most agile ones, we never en-
countered problems in the regularity of the input evolution.
Furthermore, despite the strong accelerations of some of the
reference state trajectories to the NMPC algorithm, we never
triggered the activation of the slack variables.

Finally, regarding the choice of the input bounds along
the prediction horizon, we selected

f̃i,k+h = fi,k, h = 0, . . . , N − 1 (34)

i.e., the limits are kept constant along the future window.
This choice has been motivated by a matter of simplicity
of implementation. A more rigorous choice could be to se-
lect the time-varying f̃i,k+h in relation to the predicted state
evolution at the previous control step for t = (k − 1)T . The
comparison within the results produced by these two config-
urations is also left as future investigation.

4.2 Experiments with the quadrotor

According to the choices we made for the state and input
vectors, defined by (10)-(11), and for the orientation descrip-
tion associated to (30), in the case of the quadrotor model we
have x ∈ R16 and u ∈ R4. With this configuration, the av-
erage NMPC solver time is tsolv = 3.5ms. In the following,
we present the tracking results obtained by the quadrotor
with two different trajectories. The first one combines a si-
nusoidal chirp motion along one component of the position
with a steadily horizontal and constant-heading desired ori-
entation. Such dynamic and decoupled motion, which was
designed on purpose to be dynamically unfeasible for this
vehicle (see previous discussion), is also given as reference
to the Tilt-Hex in order to compare the performances of the
two platforms and, in particular, to highlight the different

Table 6 Parameters used in the quadrotor experiments.

Parameter Value Unit

ν 1.2 m

ξ 0.025 rad
s2

t̄ 44.84 s

εp [−0.5 0.2 0.2]> m

ρ 0.125 : 0.125 : 1.75 [ ]

Qp(j, j)|j=1,2,3 500, 300, 300 [ ]

Qṗ(j, j)|j=1,2,3 1.9, 1.9, 1.9 [ ]

Qη(j, j)|j=1,2,3 0.1, 0.1, 40 [ ]

Qω(j, j)|j=1,2,3 0.15, 0.15, 0.15 [ ]

Qp̈(j, j)|j=1,2,3 0, 0, 0 [ ]

Qω̇(j, j)|j=1,2,3 0, 0, 0 [ ]

Rh(j, j)|j=1,...,4 0, 0, 0, 0 [ ]

behaviors of UDT and MDT aerial robots. For a numeri-
cal comparison of the results, we refer the reader to Tab. 8.
On the other hand, we designed the second reference mo-
tion in order to test the controller compliance with the actu-
ator bounds, when dealing with a discontinuous trajectory.
In particular, these tests highlight the importance of the con-
trol compliance with the input constraints for the preserva-
tion of the system stability. Also in this case, comparative
numerical results are outlined in Tab. 8.

4.2.1 Position chirp trajectory

In the first experiment, the quadrotor is required to track a
position reference pr = [c(t) 0 0]>, where the chirp sig-
nal c(t) is a sine with varying frequency, with amplitude
ν = 1.2 m, and a triangular frequency that linearly increases
from ξ0 = 0 rad/s to ξt̄ = 1.12 rad/s with a slope ξ = 0.025

rad/s2 in the interval [0, t̄[, t̄ = 44.84 s, and then decreases
with a slope−ξ in the interval [t̄, 2t̄[. In mathematical terms,
this translates into

c(t)=ν sin
(
ξ(t) t

)
, ξ(t)=

{
ξt if t ∈ [0, t̄[

ξ(t̄− t) if t ∈ [t̄, 2t̄[
(35)

On the other hand, the attitude reference is constantly ηr =

[0 0 0]>. Moreover, the desired position derivatives ṗr, p̈r
and the rotational derivatives ωr, ω̇r are consistent with the
definitions of pr and ηr, respectively. Regarding the form of
the diagonal matrices employed to weight the different error
terms inside the cost function, we used Qk = diag(Qp,Qṗ,

Qη,Qω,Qp̈,Qω̇), ∀k ∈ {0, . . . , N}. The values of the
trajectory parameters and the diagonal sub-blocks Q• cho-
sen for the quadrotor experiments are displayed in Tab. 6.
The latter ones are the result of a trial-and-error procedure
that we performed, in compliance with some heuristic guide-
lines, in order to obtain satisfactory tracking performance.
In particular, the weights associated with the orientation er-
ror have been selected much smaller than the ones related
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to the position error, given the impossibility for the partic-
ular platform to track the roll and pitch references. On the
other hand, the yaw error has a larger impact w.r.t. the other
two angular components, as the authority around this axis
is still present despite the under-actuation. Finally, the feed-
forward terms related to p̈d and ω̇d turned out to be not very
relevant in these experiments. This explains why their en-
tries are weighted with null gains.

With reference to the desired trajectory, the platform is
required (if possible) to keep a flat orientation while mov-
ing laterally along the x-axis. This motion is unfeasible for
a UDT aerial vehicle, since the only way it has to steer the
thrust force is by re-orienting its body chassis, with no pos-
sibility to keep it horizontal. We provided an unfeasible ro-
tational profile on purpose with the intent of showing that
the proposed NMPC scheme can manage the re-generation
and tracking of a generic trajectory, subject to the limitations
imposed by the particular MRAV under analysis, without
the need to resort, e.g., to differential flatness. In this way,
the user does not need to explicitly compute the particular
platform-dependent feasible trajectory, but can delegate this
task to the predictive controller, which automatically adapts
the reference profile according to the robot constraints. Of
course, position errors are made even smaller if a feasible
reference trajectory is available and is provided to the con-
troller. However, this was not the major point to be shown in
the experiments.

The plots related to the trajectory tracking are depicted
in Fig. 7. As it is visible from the first one, related to the
position tracking, the trajectory is symmetric w.r.t. the time
instant t = t̄. While the position and the linear velocity are
globally well tracked, the second components of the orienta-
tion and the angular velocity deviate consistently from their
reference signals. This is a natural consequence of the plat-
form inability to produce any lateral force in body frame,
which causes its under-actuation. More in detail, the peaks
in the measured robot pitch θ in the third plot are synchro-
nized with the ones of the position px in the first plot. In-
deed, the edge points on the sine corresponds to the mo-
ments of maximum lateral acceleration, which can be at-
tained only by a re-orientation of the platform frame. With
regard to the position error, illustrated in the fifth plot from
the top, it is possible to observe that the negative peaks are
more pronounced w.r.t. the positive ones. This asymmetry
is caused by the lateral force disturbance acting on the plat-
form due to the presence of the serial data cable, which pulls
the robot in a more severe way towards the positive direc-
tion of the x-axis. The very same outcome can be consis-
tently recognized also in the corresponding plot of Fig. 12,
since the cable configuration remains unchanged throughout
the experiments. Apart from the contribution of the external
disturbance, the inexact position tracking is also a side ef-
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Fig. 7 Plots of the quadrotor performing a chirp trajectory on the x-
axis. From top to bottom, the position, linear velocity, orientation and
angular velocity tracking, the position and orientation errors, and the
actuator spinning velocities.

fect of the unfeasible flat orientation given as reference to
the predictive controller.

The velocities of the MRAV rotors, whose plot is illus-
trated in the bottom of Fig. 7, are centered on the mean value
needed to compensate the gravity force while the aerial ve-
hicle is hovering. The small offset between the velocity of
rotors 1-3 and 2-4 suggests that the serial cable also gen-
erates a small clockwise torque around the z-axis, which is
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Fig. 8 Plots of the quadrotor performing a chirp trajectory on the x-
axis. From top to bottom, the actuator forces and their derivatives. In
particular, all the signals remain inside the feasible region delimited
by the identified constraints. Notably, the noisy references ui are over-
lapped by their filtered profiles.

balanced in order to keep the platform aligned with the yaw
reference. In particular remark the fact that, even if the tra-
jectory is rapidly-varying (with a linear acceleration peak of
5.85m/s2), the rotor velocities (equivalently their produced
forces, presented in the first of plot of Fig. 8) take values
close to the hovering set-point, without the need to span a
large set of values. This happens because the body torque
needed to re-orient the aerial vehicle requires just small dif-
ferences between the rotor spinning rates. As a consequence,
in this experiment the actuator force derivatives do not need
to assume large values. This intuition is confirmed by the
plots 2-5 of Fig. 8, which show that the input components ui,
represented in blue, remain distinctively far from their lower
and upper bounds, drawn in black and red, respectively. This
evidence suggests that in the case of UDT-MRAVs, the lim-
its on the input and on the state components related to the
actuator forces can be reached only with rapidly-varying tra-

jectories, designed in order to produce sudden changes in the
rotor commands. This motivated the next experiment.

4.2.2 Discontinuous trajectory

Since in the chirp experiment the input limits were far from
being approached, we designed a discontinuous trajectory
to test the controller stability and its compliance to the ac-
tuator constraints in a critical case. For this purpose, we
generated as position reference signal a sequence of steps
from an initial position p1 to a final one p2 = p1 + εp,
with εp = [−0.5 0.2 0.2]>m. On the other hand, all the
other reference profiles were set to zero. In this way, the
vehicle was always required to reach the next hovering con-
figuration, with an horizontal attitude and zero translational
and rotational velocities, in a short time. Moreover, in or-
der to make the experiment even more challenging, we lim-
ited on purpose the predictive capability of the controller,
i.e., the NMPC algorithm was made aware about the transi-
tions in the position reference only at the time in which such
changes effectively occurred. This strategy emulated an un-
foreseen event against which the algorithm had to promptly
and safely react. In this way, the instantaneous appearance
of a consistent error in the controller easily pushed the ac-
tuator commands towards their limitations. Throughout this
experiment, the identified input constraints on the actuator
force derivative were re-scaled with gains ρ, taking values
in [0.125, 1.75], spanning from very conservative - obtained
with ρ = 0.125 - to larger than the identified ones - ob-
tained with ρ = 1.75. The input limits in the controller were
manually increased, after each discontinuous motions of the
robot, by the operator by means of a joystick connected to
the ground station. This allowed us to empirically assess the
validity of the bounds resulting from our identification.

The tracking results related to the trajectory of this spe-
cific experiment are shown in Fig. 9, where the yellow re-
gion highlights the time interval in which the enforced lim-
its correspond exactly to the ones previously identified. The
position tracking, depicted in the first plot from the top,
shows that very conservative bounds for the actuators, i.e.,
ρ ∈ [ 1

8
1
4 ], cause step responses with a remarkable settling

time and extended oscillations. Furthermore, the reduced ca-
pability to produce a change in the actuator forces seems to
affect the tracking of the yaw, that has a non-negligible error
for low values of ρ. As already ascertained in the previous
experiment, this disturbance is induced by the communica-
tion cable. On the other hand, the oscillations in the step
responses result much more restrained as soon as the con-
trol saturations approach the identified ones. Nevertheless,
an additional increase in the control bounds imply growing
overshoots, especially on the z-axis. Ultimately, the instabil-
ity is reached at t ≈ 84s, when ρ = 7

4 . In this moment, the
associated limits become almost the double of the identified
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Fig. 9 Plots of the quadrotor tracking a discontinuous trajectory with
steps in the position, while the controller limits are increased (the
yellow region highlights the use of the identified ones). From top to
bottom, the position, linear velocity, orientation and angular velocity
tracking, the position and orientation errors, and the actuator spinning
velocities.

ones and they induce the platform to reach a configuration
from which it was not able to recover. This is confirmed by
the plot of the orientation error, where the pitch error reaches
almost eθ = 60 deg. The MRAV instability, which causes
the experiment to abort, can be particularly well appreciated
from the multimedia attachment. Regarding this point, it is
worthwhile to make some considerations. First, the track-
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Fig. 10 Plots of the quadrotor tracking a discontinuous trajectory with
steps in the position, while the controller limits are increased (the yel-
low region highlights the use of the identified ones). From top to bot-
tom, the actuator forces and their derivatives. In particular, all the sig-
nals remain inside the feasible region delimited by the constraints.

ing results suggest the identified limits to be suitable to en-
sure the platform stability, also in such a critical experiment.
Moreover, this is true within some robustness margin, which
was sought in order to avoid an excessive stress for the mo-
tor currents. Finally, the plots of Fig. 10 deserve a particular
attention. With reference to the first one, we can observe
that the aerial vehicle becomes unstable even if the actuator
forces never reach their limitations, even when instability
finally happens. On the other hand, we see from the other
plots that their derivatives closely approach the lower and
upper bounds. This fact suggests that, neglecting the con-
straints on the force derivatives, as done in other works, may
jeopardize, not only the system performances, but also its
stability properties.
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Table 7 Parameters used in the Tilt-Hex experiment.

Parameter Value Unit

ν 1.2 m

ξ 0.025 rad
s2

t̄ 44.84 s

εp [−0.4 0.3 0.2]> m

ρ 0.125 : 0.125 : 1.75 [ ]

Qp(j, j)|j=1,2,3 500, 200, 200 [ ]

Qṗ(j, j)|j=1,2,3 25, 20, 20 [ ]

Qη(j, j)|j=1,2,3 10, 6, 10 [ ]

Qω(j, j)|j=1,2,3 0.5, 0.5, 0.5 [ ]

Qp̈(j, j)|j=1,2,3 0.01, 0.01, 0.01 [ ]

Qω̇(j, j)|j=1,2,3 0, 0, 0 [ ]

Rh(j, j)|j=1,...,6 0, 0, 0, 0, 0, 0 [ ]

4.3 Experiments with the Tilt-Hex

Compared to the quadrotor model, the one of the Tilt-Hex
is characterized by two more state and input components to
describe the dynamics related to the presence of the addi-
tional actuators. As a matter of fact, x ∈ R18 and u ∈ R6.
With this configuration, the average NMPC solver time is
tsolv = 4.1ms. In the validation campaign, we made the
Tilt-Hex track both the trajectories presented in the previ-
ous experiments. The values for the cost function diagonal
matrices used in this experiment are reported in Tab. 7.

4.3.1 Position chirp trajectory

Thanks to the tilting of its actuators, the Tilt-Hex can exert
a 3D set of forces which is not anymore restrained to the
body-frame z-axis. In particular, the polytope of forces with
zero moment, computed in compliance with all the admis-
sible actuator forces, can be appreciated from the left side
of Fig. 3 in our previous work [31]. Thanks to this feature,
the vehicle can track decoupled references in position and
orientation. However, despite this additional capability, the
Tilt-Hex cannot track any decoupled trajectory, due to the
unavoidable limitations still present in the actuators.

It should be appreciated that the previously defined chirp
trajectory was generated with the goal to be unfeasible also
w.r.t. the Tilt-Hex actuation capabilities. In fact, by plugging

0 20 40 60 80
-6
-4
-2
0
2
4
6
8

10
12

Fig. 11 Desired profile for the actuators forces obtained by inverting
the model dynamics. This chirp trajectory results unfeasible also with
respect to the Tilt-Hex limitations.

Table 8 Numerical comparison of the NMPC performance achieved
in the experimental validation with different MRAVs.

Chirp trajectory

Parameter [•] Quadrotor Tilt-Hex

ep,MAX [m] [0.146, 0.036, 0.076]> [0.064, 0.025, 0.018]>

ep,RMS [m] [0.054, 0.010, 0.014]> [0.015, 0.006, 0.007]>

eη,MAX [deg] [6.7, 30.4, 4.3]> [5.1, 13.3, 7.3]>

eη,RMS [deg] [1.2, 10.0, 1.6]> [1.2, 3.9, 1.4]>

fi,MIN, fi,MAX [N] 1.495, 3.876 0.231, 10.251

ḟi,MIN, ḟi,MAX [N/s] −15.264, 13.998 −25.320, 28.321
Step trajectory with identified input limits (ρ = 1)

Parameter [•] Quadrotor Tilt-Hex

eη,MAX [deg] [12.6, 30.1, 6.9]> [4.0, 5.1, 2.0]>

eη,RMS [deg] [3.4, 7.9, 2.6]> [1.1, 1.1, 1.2]>

fi,MIN, fi,MAX [N] 1.031, 4.396 0.972, 8.054

ḟi,MIN, ḟi,MAX [N/s] −15.162, 15.204 −25.348, 28.103

the desired trajectory and the physical parameters in (2) and
isolating the vector [f>B τ

>
B ]>, we obtain the analytic expres-

sion of the wrench needed to ideally follow the 6D reference
profile. At this point, inverting (6) – which is possible in this
case since G is square and full-rank – provides the ideal (no
noise or disturbance were involved in this computation) evo-
lution of the actuator forces. As shown in Fig. 11, the desired
actuator force trajectories, obtained via such dynamic inver-
sion, are not compliant with the lower and upper bounds.
This means that, also in this case, a new feasible trajectory
has to be re-computed by the NMPC strategy. Nevertheless,
we expect to obtain improved tracking performances com-
pared to the quadrotor experiment.

The plots related to the trajectory tracking for this ex-
periment are shown in Fig. 12. As shown on the two top
sub-figures, the translational references are followed in a
more precise way compared to Fig. 7. In particular, this is
true also around the central peaks, which correspond to the
most rapidly-varying part of the trajectory, i.e., where the
lateral acceleration takes the largest values. From the third
and the fourth plots it can be observed that the deviations
from the orientation and the angular velocity references are
significantly reduced w.r.t. the ones produced by the quadro-
tor with the very same trajectory. Such remarkable improve-
ment is a direct consequence of the benefits induced by the
multi-directionality of the thrust. On the other hand, also
the position error is consistently reduced, with a maximum
peak of 6.4cm (in absolute value) against the 14.5cm of
the quadrotor experiment. This suggests that the full actu-
ation also helps improving the position tracking, as already
observed in our previous work. With reference to the fifth
plot, the systematic small asymmetry in the position error is
caused again by the cable disturbance. To ease the reader’s
analysis of the experimental results, we translated the graph-
ical comparison offered by the plots into a quantitative anal-
ysis of the data, which we present in Tab. 8.
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Fig. 12 Plots of the Tilt-Hex performing a chirp trajectory on the x-
axis. From top to bottom, the position, linear velocity, orientation and
angular velocity tracking, the position and orientation errors, and the
actuator velocities.

As far as the actuator data are concerned, consider the
last plot of Fig. 7 and the bottom one in Fig. 12. The rotor
velocities in the second case span the feasible set in a wider
way. While in the quadrotor experiment the rotor speed con-
straints are not even approached, in the Tilt-Hex case they
become frequently active. The same applies for the gener-
ated thrust forces, as shown in the first plots of Fig. 8 and
Fig. 13. In the specific case, the fact that the lower bounds
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Fig. 13 Plots of the Tilt-Hex performing a chirp trajectory on the x-
axis. From top to bottom, the actuator forces and their derivatives. In
particular, all the signals remain inside the feasible region delimited by
the constraints.

are reached more often than the upper ones is simply due to
the platform mass. Indeed, from the first plot of Fig. 13 we
can see that the mean hovering value per actuator is approx-
imately 4N, which is closer to the lower saturation level.
On the other hand, the velocities of a more massive vehi-
cle would have approached more easily the upper part of
the plot. Finally, from the other plots of Fig. 13 it should be
appreciated how the Tilt-Hex force derivatives related to ac-
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Table 9 Numerical comparison of the performance achieved in the ex-
perimental validation with the NMPC presented in this paper and the
static-feedback reactive controller in [31].

Chirp trajectory

Parameter [•] Tiltex (CTRL [31]) Tilt-Hex (NMPC)

ep,MAX [m] [0.076, 0.032, 0.041]> [0.064, 0.025, 0.018]>

ep,RMS [m] [0.020, 0.009, 0.013]> [0.015, 0.006, 0.007]>

eη,MAX [deg] [2.2, 23.2, 1.7]> [5.1, 13.3, 7.3]>

eη,RMS [deg] [0.8, 6.0, 0.6]> [1.2, 3.9, 1.4]>

fi,MIN, fi,MAX [N] 1.803, 6.836 0.231, 10.251

tuators {2, 3, 5, 6} and their state-dependent limitations os-
cillate in a much more dynamic way compared to the ones
of the quadrotor, depicted in Fig. 8. This is due to the larger
span of the feasible force set required by the controller to
these actuators, as a consequence of their geometric arrange-
ment, for the tracking of the same trajectory.

We now shortly compare the results achieved by this
NMPC algorithm with the ones obtained by the reactive static-
feedback controller designed in our previous work [31]. In
particular, Fig. 5 of [31] presents the tracking results related
to the same trajectory and the same MRAV. To provide a
better mean for the reader to appreciate the experimental
results, we report a quantitative comparison of the data ob-
tained with the two controllers in Tab. 9. Regarding the posi-
tion error, we achieved a reduced root mean square position
(RMS) error with the NMPC regulator, in particular in the
two lateral tails of the trajectory, where the error is always
bounded within 4cm). Furthermore, while the error profile
obtained with the reactive controller was more or less uni-
formly distributed along the trajectory, in the present case its
trend seems to be proportional to the chirp frequency, which
also has a triangular envelope. This effect could be explained
by the predictive nature of the algorithm discussed in this pa-
per. Indeed, while the reactive regulator always acts in rela-
tion to the instantaneous value of the desired trajectory, the
NMPC response is affected by the future evolution of the
former, which depends on the chirp frequency. As far as the
orientation tracking is concerned, a relevant improvement is
achieved. As a matter of fact, the maximum pitch error is
reduced from 23 deg to 13 deg, i.e., a decrease of more than
43%. Furthermore, analyzing the plot of the rotor velocities
we see that now they evolve in a larger range, meaning that
the NMPC regulator is exploiting the actuator capabilities in
a more efficient way. This is a consequence of the fact that
the previous controller deals with a less precise – and more
conservative – model of the platform.

4.3.2 Discontinuous trajectory

To assess the effectiveness of our procedure in identifying
meaningful actuator limitations for a non-specific hardware
setup, we replicated the experiment described in 4.2.2 using
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Fig. 14 Plots of the Tilt-Hex tracking a discontinuous trajectory with
steps in the position, while the controller limits are increased (the
yellow region highlights the use of the identified ones). From top to
bottom, the position, linear velocity, orientation and angular velocity
tracking, the position and orientation errors, and the actuator spinning
velocities.

the Tilt-Hex robot. The plots related to this test are depicted
in Fig. 14 and in Fig. 15. For this experiment, the limits to
the NMPC were scaled by the user after two consecutive
jumps of the MRAV, while εp = [−0.5 0.3 0.2]>m. The
experiment outcomes show that the best step responses are
achieved when the actuator limits are closer to the identified
ones. This confirms again the validity of our approach. Fur-
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Fig. 15 Plots of the Tilt-Hex tracking a discontinuous trajectory with
steps in the position, while the controller limits are increased (the yel-
low region highlights the use of the identified ones). From top to bot-
tom, the actuator forces and their derivatives. In particular, all the sig-
nals remain inside the feasible region delimited by the constraints.

thermore, also in this case, the instability is reached when
ρ = 7

4 , i.e., when the force derivative bounds are almost
the double of the identified ones, which shows an adequate
margin of conservativeness for the chosen limits. Also for
this experiment, a numerical comparison of the most inter-
esting results obtained with the two aforementioned aerial
vehicles driven with the identified limits (ρ = 1), is pro-
vided in Tab. 8. Given the discontinuous nature of the ref-

Fig. 16 Photos of the FAST-Hex (left) and the rotor failed Tilt-Hex
(right).

erence position trajectory, it is not very meaningful to ana-
lyze the maximum or the RMS position error, in this case.
On the other hand, it is much more interesting to compare
the orientation tracking in the two cases. While the UDT
platform has to consistently deviate from the reference flat-
hovering orientation in order to generate the needed lateral
force to track the position step, the MDT robot almost does
not need any re-orientation of its chassis. Such remarkable
effect can be visually appreciated in the attached multime-
dia content, where the motion of the two MRAVs have been
juxtaposed. To conclude, we highlight that also in this case
a bigger span of the feasible rotor velocities is obtained with
the MDT MRAV.

5 Validation with real-time simulations

In order to support the claim that our framework can deal
with a generic MRAV design, we provide additional nu-
merical validations with two other different vehicle mod-
els, shown in Fig. 16. The first one, depicted on the left, is
called FAST-Hex, i.e., Fully-Actuated by Synchronized Tilt-
ing propellers hexarotor. This original MRAV, introduced in
our previous work [60], has the capability of synchronously
modifying the orientation of its actuators, thanks to a sin-
gle additional servo-motor. Exploiting this further degree of
freedom, the FAST-Hex can actively regulate the angle α,
c.f. Fig. 1, allowing the robot to pass from an UDT configu-
ration to an MDT one, and conversely. Moreover, the value
of α can be automatically regulated, i.e., without the need of
an external planner. The physical parameters of the FAST-
Hex are condensed in Tab. 10.

The second vehicle, shown on the right of Fig. 16, is a
pentarotor (a multi-rotor with five propellers) obtained as a
failed Tilt-Hex MRAV, i.e., the platform already described
in the experimental validation, but after a rotor failure. In
particular the 6 − th rotor is not allowed to spin, due to,
e.g., a technical problem, and cannot exert a thrust force and
generate a drag torque. For this reason, from a control point
of view, we consider that such actuator is not present. The
rotor failure essentially modifies the available set of body
forces and torques. As already pointed out in previous con-
tributions, in case α = β = 0 it is not possible with five
uni-directional actuators to generate torques in pitch and
roll without generating a residual disturbing torque in the
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Table 10 Physical parameters of the FAST-Hex.

FAST-Hex
Parameter Value Unit

m 2.4 Kg

J(:, 1) [0.042 0 0]> Kg m2

J(:, 2) [0 0.042 0]> Kg m2

J(:, 3) [0 0 0.083]> Kg m2

ci (−1)i [ ]

cτf 1.9e−2 m

cf 9.9e−4 N/Hz2

RBAi Rz
(
(i− 1)π

3
)
)
Rx(αi)Ry(β) [ ]

pBAi Rz
(
(i− 1)π

3
)
)
[` 0 0]> [ ]

αi (−1)i−1 |α| deg

β 0 deg

` 0.315 m

yaw axis, cf. [61, 62]. In the more general case in which
(α, β) 6= (0, 0), however, the platform maintains the abil-
ity to hover, see [62]. Nevertheless, the hovering orientation
can not be flat any more, and depends of the actuator tilting
angles, cf. [51]. We show that the NMPC controller can sat-
isfactorily deal with the problem of static hovering, without
the need to a-priori compute the steady-state orientation.

5.1 Simulations with the FAST-Hex

In order to take into account the evolution of the angle α and
to let the NMPC algorithm manage its automatic regulation,
we expanded the state and the input vector, defined in (10)
and in (11), in the following way

x :=
[
p> ṗ> η> ω> γ>, α

]>
(36)

u :=
[
γ̇, α̇

]
(37)

The angle α is now a component of the state vector, while
α̇ is regarded as an additional control input to be optimized
at each control iteration. This allows to constrain the syn-
chronous tilting angle and its derivative within their feasible
sets, computed accordingly to the data of the real MRAV
prototype designed in [60]. According to this choice, for the
FAST-Hex model we have x ∈ R19 and u ∈ R7.

As it can be appreciated from Fig. 3 in [60], the larger the
angle α, the larger the set of body-frame lateral forces. This
translates also into the possibility of decoupling the control
of the body force and moment in a larger extent, which be-
comes particularly useful in many realistic scenarios, rang-
ing from 6D trajectory tracking, see [31], to aerial physical
interaction tasks, see [2,3], and disturbance rejection in gen-
eral. On the other hand, the increase of the tilting angle im-
plies also an increment in the energy consumption. In fact,
the progressive decrease in the projection of the thrust vec-
tor along zW must be compensated by an increase in the
thrust intensity. In view of these considerations, it might be

beneficial to regulate the angle α w.r.t. the particular task to
be accomplished, while trying to minimize the energy con-
sumption. In order to fulfill this requirement, we expanded
also the output vector as follows

y(t) = h (x(t),u(t)) =



p(t)

ṗ(t)

p̈ (x(t),u(t))

η(t)

ω(t)

ω̇ (x(t),u(t))

ce (x(t),u(t))


(38)

where the cost related to power consumption is taken into
account using the following additional cost

ce (x(t),u(t)) =

n∑
i=1

f2
i (39)

which is integrated along the prediction horizon. Such model
has been chosen mainly due to its simple dependency on the
state components fi, but other models can be employed.

In this context, we target the classical problem of tra-
jectory regulation to a certain 6D configuration, i.e., the flat
hovering, adding the effect of an external unknown distur-
bance from the environment, which emulates, in a simplified
but meaningful way, the scenario of a physical interaction
task or an external wind. In the first simulation, we exploit
the possibility of regulating α. In this way we show how our
NMPC algorithm can automatically and actively manipulate
the additional control input α̇, thus improving our previous
work [60]. Furthermore, in order to demonstrate the useful-
ness of this supplementary degree of freedom, we present
the results of the same simulation, where the tilting angle
α is forced to assume different fixed values and cannot be
regulated.

In order to make the simulations more realistic, we added
to the measured state a noise, obtained by filtering a zero-
mean white Gaussian noise with a first-order causal low-
pass filter having a cut-off frequency Ωfilt, whose value has
been estimated analyzing real experimental data. The noise
standard deviation values σ• are collected in Tab. 11, to-
gether with the other trajectory parameters, state/input bounds
and cost function weights. In particular, the values of σ• are
related to very unfavorable conditions compared to the use
of typical sensors such as MoCap and gyros.

5.1.1 Hovering trajectory with unknown lateral force
disturbance

Alongside the presented simulations, the FAST-Hex is re-
quired to hover maintaining a flat orientation, i.e.,

pr = [0.6 0.6 0.75]>, ṗr = p̈r = [0 0 0]>

ηr = ωr = ω̇r = [0 0 0]> (40)
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Table 11 Parameters used in the FAST-Hex simulation.

Parameter Value Unit

σp [
√

0.005
√

0.005
√

0.005]> m

σṗ [
√

0.02
√

0.02
√

0.02]> m/s

ση [
√

1
√

1
√

1]> deg

σω [
√

0.15
√

0.15
√

0.05]> deg/s

Ωfilt 25 rad/s

t1 10 s

t2 20 s

fdist(t2) 3 [cos(π
3

) sin(π
3

) 0]> N

α , α −35 , 35 deg

α̇ , α̇ −8.75 , 8.75 deg/s

Qp(j, j)|j=1,2,3 50, 50, 50 [ ]

Qṗ(j, j)|j=1,2,3 0.5, 0.5, 0.5 [ ]

Qη(j, j)|j=1,2,3 15, 15, 15 [ ]

Qω(j, j)|j=1,2,3 0.01, 0.01, 0.01 [ ]

Qp̈(j, j)|j=1,2,3 0.0001, 0.0001, 0.0001 [ ]

Qω̇(j, j)|j=1,2,3 0, 0, 0 [ ]

Rh(j, j)|j=1,...,7 0, 0, 0, 0, 0, 0, 0 [ ]

Qec 0.0005 [ ]

under the effect of a lateral force disturbance fdist with a tri-
angular profile. Such force, unknown to the controller, has a
triangular shape from t1 to t1 + t2, with a peak in module
of 3 N at t2, while it is fdist = 0N elsewhere. As the steady-
state orientation is not known a priori, the reference of the
energetic term ce,r is constantly equal to the one needed for
hovering horizontally with α = 0, i.e., ce,r =

∑n
i=1(mg6 )2.

As long as the disturbance is not active, the NMPC algo-
rithm should try to maintain α small, ideally equal to zero.
This claim is motivated by the fact that this trajectory does
not need the MDT capability in order to be tracked. On the
other hand, as soon as the lateral force is activated, the plat-
form can react to it either tilting its actuators or re-orienting
its chassis. In this choice, the relative values of the cost
function weights play a fundamental role. Intuitively, if the
energy cost is weighted consistently (w.r.t. the tracking er-
ror terms on the states), the control algorithm should try to
produce an input with low energy consumption, giving less
priority to the trajectory tracking. In particular, the task of
maintaining a flat orientation should be somehow discour-
aged by the controller, since the generation of a lateral force
in this configuration would require a consistent increase of
some of the actuator forces, thus raising up the energy con-
sumption. Conversely, if the weight related to the energy
cost is small, the controller would always privilege the tra-
jectory tracking, acting on input α.

In the first simulation, related to the case in which α is
actively regulated, we try to achieve a good trade-off be-
tween the two tasks. In the other simulations, correspond-
ing to different fixed configurations for α, all the parameters
are left untouched, in order to fairly compare the resulting
performance, in terms of the overall cost function, w.r.t. the
variable case.
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Fig. 17 Plots of the FAST-Hex (with variable α regulated from the
MPC algorithm) while hovering. The robot is disturbed with an ex-
ternal lateral force with a triangular profile. From top to bottom, the
position, linear velocity, orientation and angular velocity tracking, the
position and orientation errors, and the actuator spinning velocities.

The plots related to the trajectory tracking in the vari-
able case are depicted in Fig. 17. The first four plots, ex-
hibiting the trajectory tracking of the state components, out-
line the good performance of the controller. Indeed, the mea-
sured linear velocity, orientation, and angular velocity track-
ing keep very close to their reference profile, which are con-
stantly equal to zero on all components. On the other hand,
the measured position visibly deviates from the reference
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Fig. 18 Plots of the FAST-Hex (with variable α regulated from the
MPC algorithm) while hovering. The robot is disturbed with an exter-
nal lateral force with a triangular profile. From top to bottom, the ac-
tuator forces and their derivatives. In particular, all the signals remain
inside the feasible region delimited by the constraints.

one when the disturbance is acting on the robot. Neverthe-
less, the position error keeps bounded, with a peak of less
than 9 cm on its second component, which corresponds to
the direction mostly affected by the lateral force, as shown
in the last plot of Fig 19. This error could be considerably
reduced by increasing the relative weights inside the NMPC
algorithm cost function: this is confirmed by the sixth plot
of Fig. 17, where the MRAV maintains the orientation error
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Fig. 19 Plots of the FAST-Hex while hovering. In the first two plots,
the evolution of α in the variable case and the comparison of the total
cost function for different cases of constant α and the variable α (reg-
ulated from the MPC algorithm). Then, the comparison of the partial
costs related to the tracking and the energy terms. Finally, the profile
of the external force disturbance (in World Frame).

below 1 deg. We were able to achieve such result by prop-
erly weighting the attitude term in relation to the others, in
particular in relation to the energy cost. Moreover, the last
plot of the same figure shows that the external disturbance
can be counteracted without an excessive effort of the ro-
tors, since their spinning velocities (and so the generated
forces) safely remain with the bounds. The plots related to
the force derivatives, which are presented in Fig. 18, con-
firm that a static trajectory, combined with a slowly-varying
disturbance, does not produce large values for the inputs.

Consider the first plot of Fig. 19, which depicts the tra-
jectory of α. During the middle phase, the tilting angle is
increased up to ≈ 21 deg in order to counteract the lateral
force and to keep the platform flat at the same time. On the
other hand, the reason why α is regulated to a constant value
of ≈ 7 deg and not exactly to zero, is due to the noise intro-
duced in the simulation, in particular to the one related to
the translational part of the state [px py ṗx ṗy]>. Indeed,
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the control algorithm is informed about a non-zero error in
these components, and continuously tries to annihilate it by
selecting a small tilting angle, in order to be able to exert a
lateral force and stay horizontal at the same time.

In order to demonstrate the benefit of the active regu-
lation of the tilting angle, we additionally performed other
three simulations (with the same parameters) imposing α =

0, 10, 20 deg, respectively. The comparison of the overall
NMPC cost functions for the different fixed cases and the
variable one is displayed in the second plot of Fig. 19. As
it can be appreciated, the regulated case, denoted with αvar,
gives the best trade-off between tracking performance and
consumed energy. In the unperturbed hovering phases (lat-
eral parts of the plots), α is regulated to a small value in or-
der to avoid unnecessary energy waste, while in the middle
phase, when the disturbance force is activated, α is increased
in order to improve the trajectory tracking, in particular the
one related to the orientation. The third and the fourth plots
of the same figure outline the partial costs related to the
tracking errors and the energy cost. Among the fixed con-
figurations, the one with the largest tilting angle, i.e. α =

20 deg, generates the smallest tracking cost along all the
simulation. This confirms that the MDT capability drasti-
cally improves the MRAV tracking performance. However,
it unavoidably causes a larger energy cost as the angle takes
larger values. This is why the additional degree of freedom
on α might be very convenient in many applications.

5.2 Simulations of the Tilt-Hex with rotor failure

The problem of the robustness of a MRAV in case of a rotor
failure is not new in the literature. Indeed, the analysis and
the design of a tilted-rotor hexarotor for fault tolerance has
been considered in [62], while formal definitions as well as
the design of an analytic controller based on the identifica-
tion of a direction in the force space, along which the inten-
sity of the control force can be assigned independently from
the torque, can be found in [50, 51]. Given the importance
of such topic in the aerial robotics panorama, we decided to
target this problem, showing that our NMPC algorithm can
deal with this problem in a very efficient and general way.

The failure of one rotor in the Tilt-Hex is modeled re-
moving one state and one input, i.e., those related to the
6 − th actuator. As a matter of fact, x ∈ R17 and u ∈ R5

in this case. In the following, we present the hovering per-
formance in two different configurations of the angle β, c.f.
Fig. 1, in order to highlight the importance of such angle in
relation to the fault tolerance capabilities, c.f. [51]. The pa-
rameters related to these simulations are reported in Tab. 12.

As already pointed out in [50], given the particular ar-
rangement of the Tilt-Hex actuators, which are symmetri-
cally disposed in a star-configuration with alternated α and

Table 12 Parameters used in the rotor-failed Tilt-Hex simulation.

Parameter Value Unit

σp [
√

0.005
√

0.005
√

0.005]> m

σṗ [
√

0.02
√

0.02
√

0.02]> m/s

ση [
√

1
√

1
√

1]> deg

σω [
√

0.15
√

0.15
√

0.05]> deg/s

Ωfilt 25 rad/s

t1 5 s

τdist
1

250
[0.68 0.39 0.62]> Nm

Qp(j, j)|j=1,2,3 10, 10, 10 [ ]

Qṗ(j, j)|j=1,2,3 0.5, 0.5, 0.5 [ ]

Qη(j, j)|j=1,2,3 1.5, 1.5, 1.5 [ ]

Qω(j, j)|j=1,2,3 0.0005, 0.0005, 0.0005 [ ]

Qp̈(j, j)|j=1,2,3 0, 0, 0 [ ]

Qω̇(j, j)|j=1,2,3 0, 0, 0 [ ]

Rh(j, j)|j=1,...,5 0, 0, 0, 0, 0 [ ]

equal β angles, it is convenient to switch off the actuator lo-
cated in the mirrored position w.r.t. the broken one, when the
failure is detected. In this case, this corresponds to the 3−rd
one. This choice represents the best solution in order to bal-
ance the control effort, c.f. [50], Fig. 3. In the following sim-
ulations, this behavior is emulated by setting f = 0N, i.e.,
letting the controller the possibility to completely switch off
the actuators.

5.2.1 Hovering trajectory with unknown torque disturbance

In this case, the reference trajectory is again a static hover-
ing,

pr = [0 0 0.75]>, ṗr = p̈r = [0 0 0]>

ηr = ωr = ω̇r = [0 0 0]>

In order to make the simulations even more realistic, in
addition to the already introduced measurement noise, we
add a torque disturbance to the platform, whose magnitude
can be compared to typical values that one could experience
in a real experiment due to parameter mismatches and/or ex-
ternal perturbations. The way this torque τdist is computed
deserves some explanations. In the case β = 0, when both
the 6 − th and the 3 − rd actuators are switched off, the
moments generated by the other four propellers lie all on a
2-dimensional plane, c.f. [51], Fig. 3. This can be verified
by analyzing the rank of the allocation sub-matrix 3G6

2 =

G2(:, 1, 2, 4, 5), i.e., the sub-part related to the torque actu-
ation deprived of the columns related to the actuators which
are broken (the 6 − th) and off (the 3 − rd), respectively.
At this point, we select the normal to such plane by find-
ing an orthonormal base {v1 v2} for the column span of
3G6

2 and operate the cross product v3 = v1 × v2. This
unit vector indicates the direction of the most unfavorable
torque disturbance for the platform when β = 0 and only
actuators {1, 2, 4, 5} are effectively working. In order ensure
that such perturbation cannot be compensated by a MRAV
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Fig. 20 Plots of the Tilt-Hex with rotor failure and β = 0 deg while
hovering. The robot is disturbed with a constant external torque. From
top to bottom, the position, linear velocity, orientation and angular ve-
locity tracking, the position and orientation errors, and the actuator
spinning velocities.

with this tilting configuration, even if the 3 − rd actuator
is actively used, we verify that v3 has a positive projec-
tion along the direction of the total torque τB3 that can be
generated by such actuator. In mathematical terms, we se-
lect v′3 = sgn(v>3 τ

B
3 )v3. Finally, we scale down the vector

norm in order to obtain a meaningful order of magnitude for
the disturbance, i.e., τdist = 1

250v
′
3. In the presented simula-

tions, it is activated at t = t1. The evolution of such pertur-
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Fig. 21 Plots of the Tilt-Hex with rotor failure and β = 0 deg while
hovering. The robot is disturbed with a constant external torque τdist,
activated at t = t1. From top to bottom, the disturbance torque, the
actuator forces and their derivatives. In particular, all the signals remain
inside the feasible region delimited by the constraints.

bation, constant in body frame, is depicted in the first plots
of Fig. 21 and Fig. 23.

The plots of this simulation related to the case β = 0 deg

are depicted in Fig. 20 and in Fig. 21, while the ones ob-
tained with β = −25 deg are portrayed in Fig. 22 and in
Fig. 23. Comparing both the position and the orientation er-
rors in the two cases, we can see that for β = 0 deg the
platform cannot hover statically, since it periodically oscil-
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Fig. 22 Plots of the Tilt-Hex with rotor failure and β = −25 deg
while hovering. The robot is disturbed with a constant external torque.
From top to bottom, the position, linear velocity, orientation and angu-
lar velocity tracking, the position and orientation errors, and the actua-
tor spinning velocities.

lates, with peaks of almost ±2 cm and ±7.5 deg, around
the steady-state configurations. On the other hand, for β =

−25 deg the MRAV can fulfill the challenging goal of re-
maining still. This is a consequence of the fact that, for β 6=
0 the span of 3G6

2 is already 3-dimensional and so the per-
turbation can be annihilated while being in static hovering.
In both cases, the first part of the simulation is character-
ized by consistent oscillations of the state components, as it
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Fig. 23 Plots of the Tilt-Hex with rotor failure and β = −25 deg
while hovering. The robot is disturbed with a constant external torque
τdist, activated at t = t1. From top to bottom, the disturbance torque,
the actuator forces and their derivatives. In particular, all the signals
remain inside the feasible region delimited by the constraints.

is clear from the plots 1-4 of the two figures. In particular,
these transients are caused by the fact that the initial robot
orientation is η0 = [0 0 0]> deg, which is not attainable in
steady-state for the MRAV in both configurations.

Some final remarks are detailed in order. First of all,
the aforementioned claim that, in this case, the 3 − rd ac-
tuator is almost never used is confirmed by the last plots
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of Fig. 20 and Fig. 22. Indeed, the control algorithm regu-
lates to zero the related force component almost everywhere.
In particular, during the initial transient phase, we see how
the rotor velocities (and so the generated thrust forces) ap-
proach their upper bounds. Regulating the spinning rate of
the 3− rd rotor to a value grater than zero, would cause the
other components to saturate, with large chances to desta-
bilize the platform. Secondly, the platform orientation con-
verges (for β = −25 deg) to a certain value, as depicted in
the third and in the sixth plots of Fig. 22. Note that such
steady-state orientation value, which depends on α, β and
on τdist, is automatically computed by the NMPC algorithm,
in relation to the state and input limitations, and it is not
a-priori given. This feature guarantees the optimality of the
trajectory w.r.t. the robot dynamic capabilities and relieves
the user from performing any explicit computations. Finally,
remark that the proposed controller can achieve better re-
sults compared to the one designed in [50, 51], since the er-
rors on the state keep bounded without diverging also in the
case β = 0, despite the addition of a constant challenging
disturbance which remain unknown to the NMPC algorithm.
This fact highlights the potentiality of predictive controllers
compared to reactive static feedback ones.

6 Conclusions

In this paper, we have presented an NMPC framework tai-
lored to generic multi-directional thrust MRAVs with ar-
bitrarily positioned and oriented rotors, which considers a
novel and more representative model for the actuators of
such systems compared to the ones often employed by other
works. More in detail, the time derivatives of the propeller
thrust forces are considered as the control inputs to be opti-
mized by the predictive controller, as they are directly re-
lated to the torques applied to the motors, which consti-
tute the lowest-level control inputs for multi-rotor systems.
Thanks to the simple but effective model for the actuator dy-
namics that we designed by leveraging available experimen-
tal data, it is possible to indirectly take into account multiple
low-level physical effects such as the ones induced by the
rotor inertia, the aerodynamic drag, and other highly nonlin-
ear hidden electrical phenomena, just by modeling the maxi-
mum force derivatives (equivalently, the maximum rotor ac-
celerations) as a function, identifiable thanks to the proposed
methodology, of the instantaneous propeller forces and the
user-defined accuracy w.r.t. the set-point thrust values. Dur-
ing the resolution of the optimal control problem, we con-
strain only the inputs and the part of the model state re-
lated to the actuators to lie within the identified feasible set,
avoiding the imposition of any fictitious limits in the robot
orientation, angular velocity, body thrust and moment, or
any other non-physical limitations. To improve its computa-
tional efficiency, the control algorithm is implemented using

a state-of-the-art real time iteration scheme with partial sen-
sitivity update method. To demonstrate its real-time capa-
bilities, the controller has been validated with four different
multi-rotor platforms, both in experiments and realistic sim-
ulations, showing its versatility and applicability to different
challenging scenarios. At the best of our knowledge, this is
the first time that an NMPC framework with all such fea-
tures is presented and extensively validated both with under-
actuated and fully-actuated aerial robots, and both with fixed
and orientable propellers. Ultimately, we have provided a
unified framework for the predictive control of generic multi-
rotor aerial vehicles which can be particularized for the spe-
cific platform at hand just by applying the proposed identi-
fication procedure for the actuators limits, which constitutes
an additional contribution of our work.

Future work includes the automatic regulation of the cost
function weights, which are a fundamental part of predic-
tive controllers, in order to reduce the tuning time and ef-
fort for the user. The use of neural networks could be envi-
sioned. Moreover, we plan to conduct additional validation
tests, e.g., including perception objectives inside the cost
function, and controlling other different MDT-MRAVs. Ul-
timately, we aim to transfer the technology presented in the
experimental validation to an outdoor MoCap-denied sce-
nario where only on-board computational resources are used.
The final goal is to be able to extend and use the presented
framework to fulfill aerial physical interaction tasks.

Appendix

Allocation matrix identification

The nominal values of the entries of the allocation matrix G

can be calculated from the system’s geometrical properties,
consistently with (7). However, the real physical parameters
of the robot could be quite different from the ideal ones,
due to mechanical inaccuracies unavoidably associated with
the manufacturing and the assembly of the robot parts. This
may dramatically affect the control system performances.
For this reason, in this work the entries of the allocation ma-
trix are identified from experimental data. In the following
we briefly outline the used identification method, which is
extensively used in the literature and very well-known from
the community, so it is not considered as a contribution.

First of all, we used the nominal allocation matrix to de-
sign a simple but robust controller, applied on the platform.
Accordingly, the so-obtained control system is used to track
suitable persistently exciting 6D trajectories. To this pur-
pose chirp signals are used, i.e., sinusoidal trajectories with
increasing frequencies. While doing this, we collected the
measured data p and R thanks to the MoCap system, used
as ground truth. In particular, we made the assumption to be
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able to measure the CoM location. Then, thanks to a prop-
erly tuned post-processing of the data which mainly con-
sisted in a constant frame-rate signal re-sampling, an anti-
causal low-pass filtering and the computation of numerical
derivatives, we were able to retrieve a precise-enough esti-
mation of p̈,ω, ω̇ defined in (2). On the other hand, γ was
reconstructed by collecting the measured spinning rates of
the motors wi and using the thrust model (5). Finally, m
was directly measured and J estimated by a precise CAD
model of the robot. At this point, we re-wrote (2) as[
mR>(p̈ + ge3)

Jω̇ + ω × Jω

]
︸ ︷︷ ︸

:=y

=

[
f1I3 . . . fnI3 03×3n

03×3n f1I3 . . . fnI3

]
︸ ︷︷ ︸

:=A

β

(41)

with A ∈ R6×6n. In such form, the equation allows to ex-
press the vector of measurable quantities y ∈ R6×1 as a lin-
ear function of a vector of parameters β ∈ R6n×1, obtained
re-arranging the entries of G

β :=
[
G1(:, 1)

>
. . . G1(:, n)

>
G2(:, 1)

>
. . .G2(:, n)

>
]>

(42)

Collecting a large number of measurements p >> 6n and
stacking them in vectorial form, we obtained

(ξ = Λβ) := (

y1

...
yp

 =

A1

...
Ap

β) (43)

At this point, applying the standard least-squares identifica-
tion method, the vector of parameters which minimizes the
2-norm of the error ||Λβ − ξ||2 is obtained as

β̂ = Λ†ξ (44)

Finally, re-arranging the element of the vector β̂ using the
convention of (42), we obtained the identified allocation ma-
trix Ĝ that we used in the presented experiments.

Comparing the entries of the nominal and the identified
allocation matrices in the hexarotor (Tilt-Hex) case, notice
that the difference between some elements is pretty consis-
tent. This confirms that the physical parameters of the real
robot can be very dissimilar from the nominal ones.

eG,% = 100

[
gi,j − ĝi,j

gi,j

]
=

 42 −12 −18 41 9 16
4 21 25 4 80 104
4 6 11 10 5 2
72 31 30 58 25 28
26 24 31 27 29 28
9 15 16 12 14 13


(45)

To conclude, we would like to point out that using the
identified matrix in the controller instead of the nominal
one allowed to consistently reduce both the position and the
orientation errors in all the experiments that we performed.
This happens already in hovering condition, as it is shown
in the box-plots of Fig. 24.
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Fig. 24 Box-plots for the position error (above) and the orientation
error (below) of the Tilt-Hex when hovering using the nominal and the
identified allocation matrices. The results for the latter case have been
highlighted with yellow bands. We can appreciate how the error mean
and variance is reduced.
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