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Model-based Robust Transient Control of Reusable
Liquid-Propellant Rocket Engines

Sergio Pérez-Roca, Julien Marzat, Hélène Piet-Lahanier, Nicolas Langlois, Marco Galeotta, François Farago and
Serge Le Gonidec

Abstract—Reusable liquid-propellant rocket engines (LPREs)
imply more demanding robustness requirements than expendable
ones due to their extended capabilities. Therefore, the goal of this
work was to develop a control loop adapted to all the operating
phases of LPRE, including transients, and robust to internal
parametric variations. Firstly, thermo-fluid-dynamic simulators
representative of the gas-generator-cycle engines were built.
These simulators were subsequently translated into nonlinear
state-space models. Based on these models, the continuous sub-
phase of the start-up transient is controlled to track pre-
computed reference trajectories. Beyond the start-up, throttling
scenarios are managed with end-state-tracking algorithm. Model
Predictive Control has been applied in a linearised manner with
robustness considerations to both scenarios, in which a set of
hard state and control constraints must be respected. Tracking
of pressure (thrust) and mixture-ratio operating points within
the design envelope is achieved in simulation while respecting
constraints. Robustness to variations in the predominant param-
eters, to external state perturbations and to the possible impact
of an observer on the loop, is demonstrated.

Index Terms—Liquid-propellant rocket engines, control-
oriented nonlinear modelling, transients, Model Predictive Con-
trol (MPC), robustness, parameter-varying, trajectory planning

I. INTRODUCTION

THE current context of launcher vehicles design is strongly
related to the reusability feature. From the automatic

control perspective, this potential need for reusable liquid-
propellant rocket engines (LPREs) is translated into stricter
robustness requirements, mainly forced by their multi-restart
and thrust-modulation capabilities. These demanding require-
ments arise from the possible endogenous perturbations due to
components faults or evolving parameters and from exogenous
perturbations related to the more complex mission profiles
envisaged by new launchers. In LPREs, the control references
generally correspond to the two variables defining their operat-
ing envelope: combustion-chamber pressure (related to thrust)
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6 chemin de la Vauve aux Granges, 91123 Palaiseau, France and CNES -
Direction des Lanceurs, 52 Rue Jacques Hillairet, 75612 Paris, France (e-
mail: sergio.perez roca@onera.fr).

J. Marzat and H. Piet-Lahanier are with DTIS, ONERA, Université Paris-
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NOMENCLATURE
α Valve opening angle [°]
αP Auxiliary variable in QIH
X,U State and control-inputs trajectories
x,u States and control inputs
z Integrator decision variables
∆ Uncertainty in dynamic matrices
ṁ Mass flow [kg/s]
γ Minimised scalar in epigraph minimax
ω Rotational speed [rad/s]
A Area // Valve section [m2]
A,B State-space matrices
ai − hi Internal-parameter composites in ODE
C∗ Characteristic exhaust speed [m/s]
I Scenarios indices set
i Igniter/starter activation flag // Perturbed scenario
J Cost function
Jperf Global performance criterion
KI MPC integrator gain matrix
MR Mixture ratio [-]
n,m Number of states and of control inputs
Np, Nu Prediction and control horizons in steps
P Positive-definite LYAPUNOV matrix
p Pressure [bar]
Q,R, S Weight matrices in cost
T Temperature [K]
t Time [s]
wt Exogenous input

and mixture ratio (oxidiser to fuel ratio), which are usually
controlled by means of adjustable valves. One of the design
capabilities of the future European PROMETHEUS engine is
to throttle down to 30% of thrust [1]. Tracking and robustness
have to be maintained at those low throttle levels, where
physical phenomena are more difficult to anticipate.
In the literature, this problematic has been partially faced,
generally attaining narrow and non-continuous throttling en-
velopes [2]. Reference [3] remarks that thrust and mixture-
ratio control in real flights can be achieved in open loop
(OL) if a high accuracy is not required, or if off-line op-
timisation strategies are pertinent [4], [5]. However, steady-
state closed-loop (CL) control is performed in the majority
of publications. Most of authors have selected conventional
PID-based techniques for controlling around a given nominal
point making use of linearised models [6]–[11]. The only
reference making use of closed-loop nonlinear techniques [12],
considered damage modelling and control in their loop, as
other NASA reusable-engine publications have done [4], [13],
[14]. Other more complex approaches present in the literature,
incorporating some hybrid [14], [15] or robust techniques
facing uncertainties and some faulty scenarios [14], [16], [17],
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enhance certain aspects of performance and robustness in some
engine cycles. Further references and their review are included
in the survey article [18].
The pre-defined sequences of transient engine operation, such
as start-up, are commonly performed in OL with narrow adap-
tation margins. The first part of the start-up transient presents
a succession of discrete events including valves openings
and chambers ignitions. Once these commands have all been
activated, the second part of the transient, which is completely
continuous, takes place until the steady state is reached. The
main reasons for carrying out open-loop control in the initial
(discrete-event) phase, exposed in [9], are controllability and
observability scarcities at very low mass flows. Transient CL
control via valves becomes possible once all events have taken
place. This observation has also been considered in this article,
where only the second part of the start-up transient, fully
continuous, is controlled.
The main objective of this work is to robustify the control
of the transient phases of pump-fed LPREs. Concretely, the
tracking of combustion pressure and mixture ratio all along
transients, the start-up and throttling phases, is targeted. Si-
multaneously, a set of hard operational constraints has to
be respected, related to mixture ratios, turbopumps rotational
speeds and valves actuators angular velocities. The LPRE
benchmark studied is the gas-generator-cycle engine, but the
method here is conceived to be applicable to other cycles. The
main contribution of this article lies in meeting all these goals
in LPRE simulations by means of Model Predictive Control
(MPC) techniques based on a novel control-oriented model.
None of the aforementioned references addressed all these
industrial needs at once (including transients) with advanced
control techniques such as MPC. This method has been
selected as the most adequate for this type of complex systems
with hard constraints. Indeed, it is gaining popularity at
academic and industrial levels and can incorporate robustness
[19] or hybrid aspects, which are relevant for future work on
this topic. It has been applied to fluid systems such as wind
tunnels [20].
This article is organised as follows. In Section II the control-
oriented modelling approach is described, concerning the
engine simulator and state-space system. In Section III, the
derived models are analysed, especially from the point of
view of sensitivity to parameters variations. In Section IV
the different control strategies carried out are explained. The
main results are presented and analysed in Section V. Finally,
Section VI serves as a conclusion.

II. MODELLING APPROACH

The modelling approach considered in these studies was
first described in [21] and revisited in [22]–[24]. Firstly, it is
relevant to clarify that several model structures are employed
in the different blocks of the control loop in this article. A
simulator for representing the real plant, to which the control
is applied, was constructed in the first place.
This simulator, whose structure is built component-wise, con-
tains the basic thermo-fluid-dynamics and mechanics of LPRE
elements: mass, energy and momentum conservation equa-
tions. Simplified 0-D models in the form of ODEs (Ordinary

Fig. 1: Vulcain 1 flow plan considered in model

Differential Equation) of resistive components (valves, pipes,
turbopumps) and capacitive ones (cavities, combustion cham-
bers) were developed, with the aim of capturing their transient
behaviour with the available engine parameters. The engine
considered in this article, representative of Vulcain 1, presents
a GG (gas generator) cycle, as the future PROMETHEUS
will. It consists in a LOX/LH2 (liquid oxygen as oxidiser,
liquid hydrogen as fuel) engine, which forces the installation
of two turbopump shafts. In Fig. 1, the Vulcain 1 cycle and
main components are depicted and the main acronyms are
summarised. The hot-gas flow necessary to drive turbines
comes from a GG, a small combustion chamber that receives
a small portion of the main propellant flow. The actuators
considered in this article are five continuously controllable
valves. Apart from those, there are three discrete actuators: two
binary chamber igniters (iCC , iGG) and one binary turbines
starter (ista). In Vulcain 1 iGG ≡ ista can be assumed, in
accordance with the sequence. That GG starter injects hot gas
into the cavity during less than 1.5s so as to start driving
turbines.
Indeed, the activations of the aforementioned actuators, both
the initial opening of valves and the ignitions, constitute
the first and discrete sub-phase of the start-up transient.
Subsequently, during the continuous sub-phase, valves are
continuously adjusted so as to reach a desired steady state.
Valves angles (α), which present a nonlinear but direct relation
to sections (A), control the flows to the main combustion
chamber (VCH and VCO), to the GG (VGH, VGO), and to the
oxidiser turbine (VGC). The latter is the main contributor to
adjusting mixture ratio (MR), defined as the quotient between
oxidiser (O) and fuel (F, H) mass flow rates MR = ṁO

ṁF
. This

ratio, a major behaviour indicator in LPREs, is established at
three levels: at an engine’s global level (MRPI , at pump inlet),
taking pumped propellants into account; in the combustion
chamber (MRCC) and in the GG (MRGG). A simplified
approach to capture the influence of discrete events on the



PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 3

combustion pressure models has been applied. Concretely, the
binary variables corresponding to igniter and starter activations
manage combustion-related terms in differential equations (as
in (8)-(9)).
After its construction, the Vulcain 1 simulator was validated
qualitatively in terms of transient behaviour and throttling
and quantitatively in terms of the nominal steady state. The
entire start-up transient, which is the main operation that the
simulator has to capture, is satisfactorily predicted in terms of
pressures, mass flows and rotational speeds, as validated by
experts.
The developed engine simulator was then translated into
nonlinear state-space models by joining components equations
symbolically. That is to say, a global expression of systems
dynamic behaviour as a function of its state variables, internal
parameters and control inputs was targeted. This process was
performed via the symbolic mathematical environment Maple,
taking into account the internal definition of each LPRE
component and of the global system (causal interconnection
of equations, following the schematics in Fig. 1).
At this stage, the model is referred to as complex NLSS
(nonlinear state-space) or fc:

ẋ = fc(x,uc,ud,wt), (1)

where x is the state vector, uc is the vector of continuous
inputs, ud is the vector of discrete inputs and wt is an exoge-
nous time-varying input corresponding to the injected starter
mass flow. Along the symbolic component-connection process,
some simplifications with respect to simulators equations had
to be performed so as to obtain globally defined expressions.
That is to say, equations containing internal state-conditional
or delayed-feedback statements distancing the model from
the mainly continuous state-space formalism were modified.
Even so, this first state-space model presented an excessive
complexity for control design, since many ODEs contained a
high number of coupled nonlinearities in states and control
inputs. Thus, it was further reduced until attaining the here-
called simplified NLSS such that ẋ = fs(x,uc,ud,wt),
more tractable for the derivation of control laws. Physical
assumptions and mathematical rewriting were carried out in
order to reduce state dependencies and the amount of terms in
equations (more details in [21]). The same amount of states
and inputs has been maintained since all of them are relevant
to systems dynamics, having similar time scales and coupling
effects.
The number of states is n = 12 and the number of control in-
puts is m = 5. Here, the state vector x comprises turbopumps
speeds, the several pressures in the system (combustion cham-
ber, GG, and pre-turbine cavities), and mass flows streaming
through valves and pre-turbine pipes, as:

xV = [ωH ωO pCC pGG pLTH pV GC ṁLTH

ṁV CH ṁV CO ṁV GH ṁV GO ṁV GC ]T . (2)

The states with higher tracking importance are incorporated
into a reduced state vector xz (of length nz):

xz = [pCC ṁV CH ṁV CO ṁV GH ṁV GO]T . (3)

The control vectors contain inputs of continuous and discrete
nature, which renders the model hybrid from the control
perspective. The sections of control valves are the continuous
ones:

uc = [AV CH AV CO AV GH AV GO AV GC ]T , (4)

whereas igniter and starter activations consist in the discrete
ones:

ud = [iCC iGG]T . (5)

Besides, all equations, states and control variables are ren-
dered non-dimensional with respect to the nominal equilibrium
values. An overview of the Vulcain 1 simplified state-space
system ẋ = fs(x,uc,ud,wt) is presented in (6)-(17), where
ai, bi, . . . , hi ∈ R+ are internal-parameters composites that
serve to express the ODE in a more compact manner. Since
they are only dependent on parameters and on the exoge-
nous input influence (wt), they are either constant or time-
dependent (indicated by subscript t). Temperatures TCC and
TGG are considered as varying parameters depending on MR
(polynomial regressions).

ẋ1 =

(
− a1,t√

TGG
x5x1 + b1,tx5 − c1(x8 + x10)x1

−d1(x28 + x8x10)
)
ud2 , (6)

ẋ2 =

(
a2x2

2 − b2,t√
TGG

x6x2 + c2,tx6 − d2(x9 + x11)x2

−e2(x29 + x9x11)
)
ud2 (7)

ẋ3 =(a3 − b3TCC) (x8 + x9)ud1 + (c3 + d3TCC)(x8 + x9)

− e3
√
TCCx3, (8)

ẋ4 =(a4 − b4,tTGG) (x10 + x11)ud2

+ (c4,t + d4,tTGG)(x10 + x11)− e4,tTGG(x7 + x12)

+ (f4,t + g4,tTGG)wt, (9)

ẋ5 =a5,tTGGx7 − b5,t
√
TGGx5, (10)

ẋ6 =a6,tTGGx12 − b6,t
√
TGGx6, (11)

ẋ7 =a7(x4 − x5)− b7,tTGGx
2
7

x4
, (12)

ẋ8 =

(
a8x

2
1 − b8x28 − c8x10x8 − d8x3 + e8

)
uc1

2 − f8x28
(g8uc1 + h8)uc1

,

(13)

ẋ9 =
(
a9x

2
2 − b9x9x2 − c9x92 − d9x3 + e9

)
uc2 −

f9x9
2

uc2
,

(14)

ẋ10 =
(
a10x1

2 − b10x82 − c10x10x8 − d10x102 − e10x4

+f10)uc3 −
g10x10

2

uc3
, (15)

ẋ11 =
(
a11x2

2 − b11x9x2 − c11x92 − d11x112 − e11x4

+f11)uc4 −
g11x11

2

uc4
, (16)

ẋ12 =

(
x4 − x6 −

a12,tTGGx12
2

x4uc5
2

)
uc5 . (17)

It is clear that this system representation, even if it has been
simplified, presents numerous nonlinearities and is non-affine
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with respect to control inputs. These GG-LPRE state-space
system representations for control purposes with time-varying
coefficients and discrete inputs consist in one of the main
contributions of this work, as reviewed in [18]. The most usual
modelling approaches had concerned linear or linearised mod-
els coming from identification or simplified fluid mechanics.
The closest control-oriented nonlinear modelling approach is
the staged-combustion LPRE model in [25], used in the articles
[4], [12], [26], [27]. That approach also considered causal
component interconnections but concerned time-invariant co-
efficients and only continuous inputs. The PROMETHEUS
engine has also been modelled via the approach in this article
in [23].

III. ANALYSIS OF PROPOSED MODELS FOR CONTROL
PURPOSES

The analysis of the previous models is necessary in order to
select and build the most appropriate control strategy. Several
aspects can be analysed, ranging from the effect of simplifi-
cations, stability, observability, controllability and sensitivity
to parameter variations. A concise, less detailed analysis was
provided in [23]. An example of control-oriented analysis of
thermodynamic systems is [28]. The first aspect to introduce
is the fact that the derived nonlinear state-space models do
not present an analytical solution to their equilibrium point
ẋ = 0 even in their simplified form. Knowledge on the
desired equilibrium point in some states is used to numerically
reconstruct a full-state equilibrium vector in Section IV, as a
part of the controller.

a) Effect of simplifications: the different simplifications
carried out, such as the consideration of some constant ther-
modynamic properties in fs, obviously increase the modelling
error slightly. It is specially present in mass flows, which can
present a mismatch in start-up simulations up to 15% at each
step of simplification (simulator, fc and fs). Errors in the
rest of states remain below 12% at each step. The steady-
state value of pCC is predicted within 1% accuracy and slope
changes and time scales are well synchronised. Linearised
models are accurate along a short interval around a selected
equilibrium point (±0.1s in start-up).

b) Stability: stability is an inherent property of these GG-
LPRE models, which describe a system that self-compensates
disturbance in the flow cycle due to its high coupling [29]. The
possible high-frequency destabilising phenomena in LPREs,
such as combustion instabilities or frequency couplings, are
not modelled here since their control is out of scope with
the available actuators (bandwidth under 10Hz). Hence, when
analysing linearised models about transient trajectories, all
eigenvalues present negative real parts.

c) Observability: the state is assumed to be completely
measurable in the real engine. This is a realistic assumption
for ω and p. However, mass flows are normally not measured
in LPREs, but estimated through pressure, temperature and
volumetric flow measurements [30]. During the discrete part of
the transient, observability scarcities can appear due to the low
volumetric flows characteristic of that phase [9]. During the
fully continuous phases, the linearised models derived in this

work locally fulfil the observability criteria for time-invariant
systems.

d) Controllability: controllability can be verified after
linearising fs about the whole continuous start-up trajectory. In
other words, all states can be controlled via valves during the
continuous sub-phase. However, as commented for observabil-
ity, controllability is not ensured during the discrete sub-phase,
where there are valves that have to remain closed in order to
execute a safe sequence. The analysis shows that the system
is controllable with the GG valves alone, the last ones to open
in the sequence.

e) Parameters sensitivity: in the case of the SSME
(Space Shuttle Main Engine), studies on parameter estimation
via genetic algorithms have been carried out [31]. Engine
parameters in this work have been provided for the nominal
case. In order to analyse the effect of their variations on the
transient behaviour of the engine, which is relevant to this
control problem, a series of sensitivity analyses have been
performed. The list of considered varying engine parameters
is summarised in Table I. There may be different sources of
deviation. Some parameters might vary during operation or
between different engine runs. Others are estimated for mod-
elling and hence are not 100% certain. Inter-engine material
discrepancy can also be a source of variation. Indeed, tanks
pressures and combustion efficiencies might oscillate during
flight or between engine executions. Fluidic resistances, iner-
tias and combustion efficiencies cannot be easily determined;
they have to be estimated from tests or simulations. Orifices
in the cycle may present varying effective hydraulic sections
during operation and/or inter-engine discrepancies.
The Sobol global sensitivity analysis method [32] has been
applied. It is of interest here to study the variations in terms of
a global performance criterion Jperf , defined as the weighted
addition of several simulated indicators:

Jperf = |errpCC |+|errMRCC |+|errMRGG|+|errMRPI |
+ 0.001 · |ApCC |+0.01 · |ospCC |, (18)

where err are static steady-state errors in the main operating
quantities (contained in xz), os is overshoot (in %) and ApCC
is the surface between the perturbed pCC start-up transient
curve and the nominal desired one (in %). Thus, the lower
the criterion the better the performance. The sampling of
parameters variations according to Table I has been carried
out via the Latin Hypercube Sampling (LHS), recommended
for calculating the Sobol global indices. In this fashion, a set
of 1000 parameter-variation combinations, with their corre-
sponding output Jperf (computed with the simulator model),
is provided to a Kriging-based Sobol algorithm based on [33].
This algorithm creates a Kriging model [34] based on the
provided input-output data, which serves as an interpolator
and hence avoids the execution of further costly simulations.
After running 1 million Monte Carlo evaluations of that less
expensive model, the most influential parameters, related to
the higher Sobol global indices, can be identified. These are
AthCC, AthT and pPI , whose indices present an order of
magnitude of 0.1 (normalised with respect to one), whereas
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Parameter Definition Considered vari-
ation range [%]

Variation source

pPI Tanks pressures, coupled with inlet densities
and temperatures

±10 Oscillation during/between operations

ResLC LC lines fluidic resistances ±10 Modelling uncertainty
ResI Injectors fluidic resistances ±10 Modelling uncertainty
ResCR Cooling-circuit fluidic resistance ±10 Modelling uncertainty
IneCR Cooling-circuit fluidic inertia ±10 Modelling uncertainty
ηCC CC combustion efficiency ±5 Modelling uncertainty, oscillation during/between

operations
ηGG GG combustion efficiency ±5 Modelling uncertainty, oscillation during/between

operations
ResLTH LTH line fluidic resistance ±10 Modelling uncertainty
IneLTH LTH line fluidic inertia ±10 Modelling uncertainty
Vcav Pre-turbine cavities volume ±10 Modelling uncertainty
AthCC CC throat section ±1 Inter-engine discrepancy, alteration during/between

operations.
AthT Turbine inlet sections ±1 Inter-engine discrepancy, alteration during/between

operations.
AthLE Turbine outlet sections ±1 Inter-engine discrepancy, alteration during/between

operations.

TABLE I: List of Vulcain 1 engine parameters considered in sensitivity analysis

ResI , ResCR and ηGG indices are about 0.01. The effects
of variations in the rest of parameters can be neglected.

f) Worst-case scenario: building on the previous sensitiv-
ity analysis, it is of interest to find extreme parameter-varying
cases that would degrade the performance criterion (18) to a
higher extent. This information is used later in robust control
design (Section IV). From the practical experience of LPRE
system behaviour in simulations and in flight, it is known
that pPI can more probably vary in reality, especially in the
new reusability scenarios. Thus, a higher priority is put on
them in the following. Furthermore, a worst-case scenario of
variations of the previous shortlist of influential parameters has
also been computed. A Kriging-based black-box maximisation
of the performance criterion (18) based on the EGO algorithm
[35], as a function of the possible combinations of parameters
variations, defined in Table I, has been carried out. The
outcome of this search, which practically attains the bounds
of intervals, corresponds to a degradation of 106% in Jperf
with respect to the nominal OL.

IV. CONTROL APPROACHES

The control goals on this system mainly concern reaching
a desired end-state or following a predefined trajectory while
complying with a set of hard constraints on x and u. This
second objective is somewhat more important than tracking
in order to avoid excessive temperatures (related to elevated
mixture ratios) or rotational speeds during engine’s operation,
which could lead to catastrophic failures or to prevent the reuse
of certain parts. The robustness of the solution against internal
parametric variations is also required. All these goals, required
for reusability, are to be attained at acceptable computational
times.
The main control diagram considered in this article is de-
picted in Fig. 2. The controller receives full state and control
references from an off-line preprocessor block and computes
the corresponding control on-line, which is sent to valves
(actuators block). To the right there is the simulation of the
rocket engine, performed via the integration of the simulator

presented in Section II. Its initial conditions, when simulating
the continuous part of the start-up transient, are taken as
the outcome of the nominal discrete sub-phase (t = 1.5s
in Vulcain 1). The inputs of the state-space model used for
control are valve sections uc (4), as explained in Section II, in
the following simply referred to as u. However, the actuators
mechanical model (internal hydraulic actuators of valves)
requires an input in terms of opening angles α. Thus, a
conversion block, characterised by static and monotone non-
linear functions, is needed. That internal actuator subsystem
is considered as a second-order system for simplification,
neglecting phenomena such as hysteresis and solid friction.
Even though the estimation has not been developed in this
article, the influence of the observer is simulated in the
robustness analysis from Section V.

A. Preprocessing: reference generator

The preprocessing block, first presented in [22], serves as a
novel model-based off-line reference generator for multivari-
able LPRE controllers. Indeed, the set of steady-state reference
commands derived from launcher needs and considered in this
work, a total of four, concern thrust or pCC (interrelated) and
mixture ratios in chambers (CC and GG) and in global terms.
Since x presents twelve states (presented in Section II for the
Vulcain 1 case (2)), the desired references are not sufficient
to provide a complete target equilibrium point to an engine
controller based on these models. A way of restoring full state
and control reference vectors is necessary. Indeed, without
these final (xr, ur), the posterior controllers would not attain
the tracking goal with high precision, since they are used for
linearisation and to build reference trajectories.
The four reference inputs are pCC,r, MRPI,r, MRCC,r and
MRGG,r. The last three, in contrast to pCC , do not directly
correspond to states in the model. They establish relations
between ˜̇mi. In the following, the presence of a tilde (˜ ) on
top of a quantity means that it is dimensional and its absence
means the contrary. In the first place, thanks to the selected
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Fig. 2: General control-loop diagram

pressure pCC,r and MRCC,r, the choked-flow static equation

ṁCC =
pCCAth
C∗

(19)

can provide the injected mass flows into the CC ṁV CH,r and
ṁV CO,r, seeing that the characteristic velocity C∗ depends
on MR. Ath is throat area. Then, the rest of states at
equilibrium, concerning rotational speeds, pressures in GG and
pre-turbine cavities and the remaining mass flows, as well as
the control inputs ur making that state possible, are to be
computed. Discrete control inputs ud are considered active
since a running steady-state is sought. The first two valve
sections in uc, corresponding to CC valves, are chosen to be
opened at their nominal position (100%). This choice stems
from the observation that the throttability of the engine is
directly related to the GG valves, which can govern the whole
state. The tuning of CC valves is not convenient in this kind of
engines, even if off-nominal operating points are targeted. All
the remaining equilibrium variables are determined by solving
the following overdetermined system of nonlinear equations:

ẋ = fc(xr,ur) = 0 \ (ṗCC = 0)
˜
ṁV CO+

˜
ṁV GO

˜
ṁV CH+

˜
ṁV GH

= MRPI,r
ṁV GO

ṁV GH
= MRGG,r

˜̇mV GH + ˜̇mV GO = ˜̇mLTH + ˜̇mV GC .

(20)

The first set of equations forces the ODEs of the complex
NLSS in Vulcain 1 to be at equilibrium, the second and
the third ones determine the indicated MR and the last one
enforces the equilibrium of

∑
˜̇mi in the GG. The resolution is

performed numerically via nonlinear least squares due to the
unavailability of an analytic solution of the system, of either
fc or fs. The complex model fc has been chosen to increase
the accuracy with respect to the simulator and hence the
real engine. This computation lasts around 2-3s by means of
the MATLAB® lsqnonlin function. In the case of off-nominal
points, the resulting ur serves as a reference OL control in the
event that closed-loop would not be available in the engine. In

flight, it is usually the case that ad-hoc parameters are tuned
to achieve an alternative thrust level. Thus, this method can
be useful for performing a 120%-thrust start-up for instance,
even though robustness is not guaranteed at all. Performance
indicators of these OL controllers in different scenarios are
included in the comparison Tables II and III.

a) Reference-trajectories generation: once these end tar-
gets (xr,ur) have been computed, a reference start-up tra-
jectory (Xt,U t) from some given initial xk and u0 can be
built, as introduced in [24]. Throughout the article, the index k
denotes the current time step and X and U are stacked vectors
with future x and u at each time step j along a horizon N
(Np for states and Nu for control inputs):

X = [xk, ...,xk+j , ...,xk+Np
]T

U = [uk, ...,uk+j , ...,uk+Nu ]T
(21)

Thus, xk represents the initial state, which in this work is
assumed to be measurable.
In order to compute start-up trajectories, which is a new
approach with respect to the LPRE-control literature, an
optimisation and model predictive-based scheme is used. It
can be regarded as an OL finite-horizon MPC scheme in
which the prediction horizon is set to cover the duration of
the start-up build-up transient, considered between 1.5s, the
end of the discrete sequential phase, and 2.5s, the desired
reference-crossing time in the studied engine Vulcain 1. This
is a common approach in the literature of trajectory planning
[36]. Other trajectory-planning methods have been proposed,
especially in the field of robotic and UAV (unmanned aerial
vehicle) motion, but they are also mostly based on optimisation
[37], [38]. Here, it is of interest to take advantage of the
nonlinear models developed.
This algorithm is based on the minimisation of the discretised
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quadratic cost function JOL, defined as:

(22)

JOL(Xt,U t) =

Np,OL∑
j=0

∆xTt,k+jQOL∆xt,k+j

+

Nu,OL∑
j=0

∆uTt,k+jROL∆ut,k+j

∆t,

where ∆xt,k = xt,k − xr and ∆ut,k = ut,k − ur are
the variables to cancel. QOL = In and ROL are the weight
matrices associated to states and control respectively. Diagonal
terms in ROL are set to 1010 so as to minimise control action.
Np,OL and Nu,OL are states and control prediction horizons,
which in this case are taken equal to the horizon (1s) over
a discretisation time of ∆t = 10ms. This selection of ∆t is
constrained by control limitations.
Concerning the dynamics considered to predict the behaviour
at each time step k + j, as shown in Section II, the system
is highly nonlinear. Neglecting nonlinear dynamics at points
far from the equilibrium can lead to non-negligible prediction
errors. However, the main repercussion of imposing nonlinear
constraints in optimisation problems is generally the loss of
convexity of the optimised function and hence the increase in
resolution complexity. The compromise chosen here, related
to the specific behaviour of the system, is the inclusion of
nonlinear dynamic constraints until the system approaches its
reference values to within 90% (step j = Np,OL90%). This
coincides approximately with the first half of the transient,
where modelling errors of linearisation would be relevant if
linear dynamics were used. Concretely, the aforementioned
simplified NLSS fs (6)-(17) is discretised via an Euler implicit
scheme:

xt,k+j+1 = xt,k+j + fs(xt,k+j+1,ut,k+j+1,wt,k+j+1)∆t,

j ∈ [0, Np,OL90% − 1]. (23)

This scheme has been selected since it is the most numerically
stable among the first-order integration methods, required
for lowering the complexity of the optimisation by reducing
the interdependencies between decision variables. Once the
pressure pCC (x3 or xz,1) attains its reference value, the xz
states (3) (the most relevant for tracking) are forced to be
equal to the end-reference values and only linear dynamics
is imposed, in order to simplify the optimisation. Linear
dynamics (Ac, Bc) stems from the end-state linearisation of fs
about (xr, ur), which is then discretised via zero-order hold
(exact discretisation) at ∆t (Ad, Bd):

∆xt,k+j+1 = Ad(xr,ur)∆xt,k+j +Bd(xr,ur)∆ut,k+j ,

j ∈ [Np,OL90%, Np,OL − 1]. (24)

Having defined the different dynamics, the optimisation al-
gorithm which is executed once for the whole horizon (OL

trajectory planning) under constraints is the following:

min
Xt,Ut

JOL(Xt,U t) (25)

s.t. Xt ∈ XOL, U t ∈ UOL (26)

Aineq,OL[Xt U t]
T ≤ bineq,OL (27)

xt,k+j+1 ≤ xt,k+j

+ fs(xt,k+j+1,ut,k+j+1,wt,k+j+1)∆t+ ε,

∀j ∈ [0, Np,OL90% − 1] (28)

xt,k+j+1 ≥ xt,k+j

+ fs(xt,k+j+1,ut,k+j+1,wt,k+j+1)∆t− ε,

∀j ∈ [0, Np,OL90% − 1] (29)

Aeq,OL[∆Xt ∆U t]
T = beq,OL

(including xt,Np,OL
= xr).

(30)

XOL and UOL from (26) are the allowable sets for states
and control (compact subsets of Rn(Np,OL+1) and RmNu,OL

respectively). Regarding the rest of constraints, (25) contains
linear inequality constraints (27) (defined by Aineq,OL and
bineq,OL), for satisfying MR and actuators sectional-velocity
bounds, as well as for defining a monotonically increasing
pressure build-up. Nonlinear dynamic constraints (28) and (29)
are not defined as strict equality constraints, but are treated
as inequalities with a small margin ε = 10−2 × 1n×1 (non-
dimensional) so as to simplify the computation of a feasible
solution. Linear dynamics (24), initial conditions, and end-
state reaching are considered in the equality constraints (30)
(defined by Aeq,OL and beq,OL). The interior-point optimi-
sation software IPOPT [39] is used to solve (25)-(30). Due
to the inclusion of nonlinear constraints in this quadratic-cost
optimisation problem, the solution might not be global. Even
so, reference values are attained while respecting constraints.
Computation times in MATLAB® are about 1 minute in a
standard computer. Graphical results concerning control-inputs
trajectories can be found in [24].

B. MPC controllers design

After the analysis of the state-space models from Section III,
and having reviewed alternative robust control methods (such
as H∞ [17], [40], Linear Parameter-Varying (LPV) systems
[41] or Lyapunov-based design [42]) the main selected control
method in this article has been MPC. This approach, not
used in LPRE to date, predicts the future system behaviour
along a horizon, and optimises control inputs according to
a cost function usually related to a reference trajectory or
to an end state. It has already been used in other aerospace
applications, such as in fighter aircraft manoeuvring [43] and
in rocket landing guidance [44]. Indeed, the complexity of
the models in this article, being highly nonlinear and non-
affine in control; the relatively high number of states to be
controlled by few inputs and the need for a strict verification
of hard constraints during transients motivated the selection
of this approach. Moreover, it can be extended to include
robustness considerations. The versatility of the controller with
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respect to different engines and cycles was also a design
goal. The MPC approach described in this section is easy to
adapt to distinct engines, provided that a similar modelling
approach (as in Section II) is carried out. The availability of
symbolic nonlinear and linearised models describing the whole
operating span of LPREs is a valuable asset which can be
exploited with this model-based control approach.
The start point for the on-line MPC schemes designed in this
article is the generic continuous-time nominal MPC formula-
tion [19]:

min
u

J(x(t),u(t))

s.t. x ∈ X ∀t ∈ [t, t+ Tp]

u ∈ U ∀t ∈ [t, t+ Tu]

ẋ(t) = f(x(t),u(t)) ∀t ∈ [t, t+ Tp],

(31)

where J is an integral quadratic cost function over time, X and
U are allowable sets for states and inputs, and Tp and Tu are
the continuous prediction and control horizons respectively.
In this article, different controllers are proposed according to
the scenario that the engine is facing. As explained before,
one of the goals of this work is to control the continuous sub-
phases of start-up transients in CL. Apart from the start-up,
operating-point changes or throttling scenarios (fully continu-
ous) are also targeted. The tracking goal is different whether
throttling or start-up is to be controlled. Preliminary versions
of these controllers, with differences in terms of robustness
considerations and optimal tuning, were presented in [22]–
[24].

1) Throttling via end-state-tracking MPC (E.MPC): An
operating-point change is performed here by tracking a new
desired end equilibrium (xr, ur), without specifying a refer-
ence trajectory and respecting constraints on x and u. There
is a special focus on having a small tracking error in pCC and
in the three different MR, at the CC, GG and pump inlets, all
represented in xz .

a) Dynamics: the dynamic model used in this state-
feedback MPC controller is considered as a linearisation of
the continuous-time nonlinear fs (6)-(17) about the previously
computed (xr,ur) from (20). The MPC problem is initially
considered in continuous time (31). However, in order to solve
it numerically, it is discretised via zero-order hold at the same
∆t stated before, 10ms:

∆xk+1 = Ad(xr,ur)∆xk +Bd(xr,ur)∆uk. (32)

Nonlinear models have also been tested for determining
dynamic relationships. However, the on-line resolution of
the optimisation problem defined later in this section was
not practical, requiring longer computational times (∼ ×10)
and usually leading to unfeasible and sub-optimal solutions.
Therefore, linear dynamics has been implemented. Since the
exogenous input wt is zero at final equilibrium points, it has
been omitted in (32). Besides, internal-actuators characteristics
are directly considered in constraints.

b) Quasi-infinite horizon (QIH): the approach here is
partially based on the QIH approach by [45], because it
presents proofs for CL stability and feasibility of MPC by
incorporating the notion of a terminal region Ω. In [45], a

terminal-state nonlinear inequality constraint and a penalty
term are defined to enforce those features as Lyapunov argu-
ments. The related P ∈ Rn×n matrix of the Lyapunov function
V (x) = ∆xTP∆x can be computed via a continuous-
time Lyapunov equation. The terminal-region constraint is
expressed as V (xk+Np) ≤ αP , where αP is iteratively
calculated as indicated in the aforementioned reference.

c) Integral action: an integral action is also included
to enforce a more precise tracking on xz , based on [46].
Indeed, the CL performance of model-based control is highly
dependent on modelling errors and disturbances. One way to
mitigate it is augmenting the decision variables with states
representing tracking-error integration, as in [46]. The addi-
tional integral decision variables are denoted here by z and
present a corresponding weight matrix S ∈ Rnz×nz in the cost,
whose diagonal is [1, 0.1, 0.1, 0.1, 0.1]. The dynamics of these
z variables is defined in constraints (41), where the constant
gain matrix KI,end ∈ Rnz×n determines the velocity of their
response. If this gain is set too large, unwanted oscillations in
the related states can appear.

d) Cost definition: thus, the discretised MPC cost Jend
is defined in a first step as:

Jend(X,U ,Z) =

Np−1∑
j=0

∆xTk+jQend∆xk+j

+

Nu∑
j=0

∆uTk+jRend∆uk+j +

Np−1∑
j=01

zTk+jSzk+j

∆t

+ V (xk+Np
), (33)

which consists in the traditional quadratic cost on states and
controls plus the added integral and terminal costs, with a
prediction horizon Np = 10 steps (Tp = 0.1s) and a control
horizon Nu = 5 (Tu = 0.05s). Implicitly, the last control
uk+Nu

is used for j ≥ Nu. Further extensions of these
horizons did not improve the solutions in terms of tracking or
constraints satisfaction. Qend and Rend are positive-definite
symmetric weighting matrices Qend ∈ Rn×n, Rend ∈ Rm×m,
whose diagonals have been computed off-line via Kriging-
based black-box optimisation as in [35]. An analogous proce-
dure to the search of a worst-case scenario from Section III
has been employed here. In this optimal weight selection, a
Kriging model is built upon the following input-output data.
Inputs consist in the diagonal terms of Qend and Rend and the
chosen output is the simulated performance criterion (18). The
required simulations to quantify this criterion are executed on
the whole CL during the nominal transient. An EGO scheme
based on EI is then used on the resulting Kriging model to
minimise that criterion by varying the inputs. In order to obtain
this optimal tuning on the case studies considered (Section V),
about 500 iterations, implying around 60 hours of calculation,
are required.

e) Robustness considerations: moreover, some robust
considerations have been implemented. The minimisation of
the previous Jend (33) under constraints is not intrinsically
robust. Indeed, robustness against parameters and initial con-
ditions variations, perturbations and modelling error is very
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important in this application. Robust MPC approaches gen-
erally make use of the minimax optimisation, which min-
imises the worst-case scenario of endogenous or exogenous
perturbations. Other approaches are the tube-based MPC [47]
or explicit robust MPC [48]. The robust minimax approach
has been selected due to the elevated complexity of build-
ing invariant sets along trajectories (tube-based) or off-line
state partitions (explicit MPC) seeing the highly multivariable
nature of this system. However, solving generic minimax for
compact uncertainty sets ∆c is generally not tractable on-line
[49], and especially too costly in this application. Hence, a
finite set of uncertain scenarios has been selected, within the
so-called scenario-based MPC [50]. In addition, the equivalent
epigraph formulation based on [49] has been implemented
so as to avoid the maximisation. Concretely, this formulation
allows to shift the robustness considerations into the list of
constraints and hence pose the problem as a minimisation of
a scalar γ ∈ R+, which is equivalent to performing scenario-
based minimax. In this approach, that γ constrains the Jend
(33) of the nominal non-robust problem evaluated at several
perturbed states propagations Xi:

Xi = [xi,k, ...,xi,k+j , ...,xi,k+Np
]T , i ∈ I,

∆xi,k+1 = Ad(xr,ur,∆i,k)∆xi,k +Bd(xr,ur,∆i,k)∆uk,

i ∈ I, (34)

where ∆i,k are certain selected internal parameter variations
belonging to the non-compact ∆I = {∆i,k, i ∈ I}. I is a finite
set, which serves to index the considered perturbed cases. The
series of ∆i, where I = {1, 2, 3, 4}, are taken constant for all
k and j and represent the following parameter-variation cases,
selected according to the sensitivity and worst-case analysis
from Section III:

• i = 1: nominal parameters.
• i = 2: the most probably varying parameters are in-

creased by 10%: interdependent tanks pressures pPI and
temperatures TPI .

• i = 3: the most probably varying parameters are de-
creased by 10%: interdependent pPI and TPI .

• i = 4: worst-case variations combination defined in Sec-
tion III. This off-line estimation of an extreme dynamics-
perturbing scenario would correspond to the compact
uncertainty set ∆c (related to Table I), for which a costly
minimax would be necessary.

f) Optimisation problem: the resulting NLP is convex,
which is highly important in order to compute real-time
solutions in aerospace systems, as pointed out in [51]. This
smooth convex NLP, in which decision variables are extended

to consider all Xi, is:

min
Xi,U ,Zi,γ

γ (35)

s.t. Jend(Xi,U ,Zi) ≤ γ ∀i ∈ I (36)
Xi ∈ X, U ∈ U ∀i ∈ I (37)

Aineq[Xi U ]T ≤ bineq ∀i ∈ I (38)

Ai,eq,end[Xi U ]T = bi,eq,end ∀i ∈ I (39)

∆xTi,k+Np
Pi∆xi,k+Np ≤ αP ∀i ∈ I (40)

zi,k+j+1 = zi,k+j + ∆tKI,end∆xz,i,k+j

∀i ∈ I, j ∈ [0, Np − 1]. (41)

X and U in (37) are the allowable sets for states and control
(compact subsets of Rn(Np+1) and RmNu respectively). The
set U for the first control uMPC ≡ uk, the one which is
really applied to the plant, is specially bounded to comply
with actuators capacity [52]:

uMPC ∈ [max(U,u0 − u̇max∆t),min(U,u0 + u̇max∆t)],
(42)

where u0 is the previous-step control (warm start is performed
by feed-backing the entire U ), u̇max is the maximum sectional
velocity of valves and U and U are the inferior and superior
bounds of U . Thanks to saving the full U0 computed in the
previous step, from which only the first control is transmitted
to the plant, an initial guess for the whole Xi can be made by
propagating dynamics (34) from xk ≡ x0. The initial value
of γ is set large enough (105).
Regarding the rest of constraints, (35) contains equality con-
straints (39) (defined by Ai,eq,end and bi,eq,end) for determin-
ing initial conditions and the different linear dynamics (34)
along the whole horizon. Linear inequality constraints (38)
(defined by Aineq and bineq) are set for complying with MR
and actuators sectional-velocity limits for all Xi. Indeed, the
vital mixture ratios limits establish linear inequalities between
states; and actuators constraints are defined similarly to (42).
The difference in control inputs between two time steps must
not exceed ±u̇max∆t.
Inequalities (40) represent the nonlinear terminal-region con-
straints [45], where a different Pi is used according to each
perturbed scenario i. Imposing these constraints helps the algo-
rithm to find the optimum more quickly, enhancing feasibility.
The last constraints (41) correspond to the integrator dynamics
[46], where the KI,end matrix has been computed off-line in
the same manner as Qend and Rend. Performance indicators
are very sensitive to these gains.
It is important to emphasise the fact that the resulting U
obtained in (35)-(41) has been confronted to all these scenarios
and that all propagated perturbed states must comply with all
constraints, thereby improving the robustness of the controller.
This approach with equality constraints within an uncertain
problem is only valid because of the finite choice of ∆i,k.

2) Start-up via trajectory-tracking MPC (T.MPC): If the
start-up transient is to be executed, another approach is pro-
posed, in which the set of planned trajectories is tracked, and
not only a final point. Trajectory tracking is more convenient
in this case where the system evolves in a highly nonlinear
way and where trajectories can be pre-computed without tight
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computational-time limits. In a quick throttling request, there
might not be enough time to generate adequate trajectories
(around 1min. in MATLAB), but only an end reference (about
3s).
The main MPC structure hitherto explained is reused in this
case, with certain differences so as to track the pre-generated
trajectories (Xt, U t) from (25). The main control goals,
including the verification of constraints, remain the same.
However, the target of the controller is to drive X and U
to Xt and U t respectively. Dynamics in this controller is
predicted in a linearised way for tractability reasons. Indeed,
the discrete-time matrices Ad and Bd are evaluated about each
step in the trajectory, improving the prediction representative-
ness with respect to the use of single end-state matrices in
(34):

∆xi,k+1 = Ad(xt,k,ut,k,wt,k,∆i,k)∆xi,k

+Bd(xt,k,ut,k,wt,k,∆i,k)∆uk, i ∈ I. (43)

The matrix Ad is always stable along the trajectory. Therefore,
the discretised cost Jtraj to be minimised in nominal MPC is
defined as:

Jtraj(X,U ,Z) =Np−1∑
j=0

(xk+j − xt,k+j)
TQtraj(xk+j − xt,k+j)

+

Nu∑
j=0

(uk+j − ut,k+j)
TRtraj(uk+j − ut,k+j)

+

Np−1∑
j=0

zTk+jSzk+j

∆t+

(xk+Np − xt,k+Np)TP (xk+Np − xt,k+Np). (44)

The same Np = 10 and Nu = 5 are used. Qtraj and Rtraj are
positive-definite symmetric weighting matrices Qtraj ∈ Rn×n,
Rtraj ∈ Rm×m, whose diagonals have also been tuned off-line
via Kriging-based black-box optimisation as in [35], leading
to values different to E.MPC. This controller also incorporates
the QIH notions from [45], with some differences concerning
the linearised dynamics. The Lyapunov equation is modified
and solved every k for the continuous-time matrices evaluated
at the end of the on-line horizons (Np, Nu), which slide with
time, and for every perturbed case i ∈ I . The same αP can
be obtained for all cases. This promotes CL stability and
feasibility in all scenarios. Robustness is treated likewise to
E.MPC. Thus, the minimisation problem for trajectory tracking

accounting for all Xi is:

min
Xi,U ,Zi,γ

γ (45)

s.t. Jtraj(Xi,U ,Zi) ≤ γ ∀i ∈ I (46)
Xi ∈ X, U ∈ U ∀i ∈ I (47)

Aineq[Xi U ]T ≤ bineq ∀i ∈ I (48)

Ai,eq,traj [Xi U ]T = bi,eq,traj ∀i ∈ I (49)

(xi,k+Np
− xt,k+Np

)TPi(xi,k+Np
− xt,k+Np

)

≤ αP ∀i ∈ I (50)
zi,k+j+1 = zi,k+j

+ ∆tKI,traj(xz,i,k+j − xz,t,k+j)

∀i ∈ I, j ∈ [0, Np − 1]. (51)

Apart from the already defined bounds X and U , in (45) there
are also equality constraints (49) (defined by Ai,eq,traj and
bi,eq,traj) for initial conditions (measured xk) and the different
linear dynamics along the whole horizon (43). Besides, the
same linear inequality constraints (48) as in E.MPC (38) are
applied to all Xi. Integrator dynamics (51) is also analogous,
but different values for KI,traj have been computed off-line
in the same manner as Qtraj and Rtraj . In (50), a specific Pi
is used in each perturbed case and MPC step since matrices
are varying.

V. RESULTS AND DISCUSSION

Simulations of the control loop of Fig. 2 are run in
Simulink® at a maximum integration time step of 10−5s, as
required by the developed engine simulator. However, the
maximum computation frequency allowed to the controller is
100Hz, i.e., control orders are sent every 10ms. Integration
is performed with a fixed step and ode3 (Bogacki-Shampine
scheme), seeing that higher-order and variable-step methods
led to identical results despite the associated longer simulation
times. The interior-point optimisation software IPOPT [39]
has been used to solve the smooth convex NLP (35) and (45)
within the MATLAB® environment. This tool has been selected
instead of MATLAB® fmincon or other solvers within YALMIP
[53] owing to its efficient interior-point conception, which
intrinsically respects barriers on decision variables; and to its
coding flexibility, allowing the introduction of user-defined
gradients, Jacobians and Hessians in the calculation. This,
together with the consideration of sparse matrices, alleviate the
computational burden. The resulting computational times in
MATLAB® are of the order of ten times longer than real time,
which does not rule out a future real-machine implementation.
The number of decision variables considered in the selected
MPC design is length(I) × (Np + 1) × n + (Nu + 1) ×
m+ length(I)×Np × nz + 1 (for γ)= 759. Apart from the
individual bound constraints on those variables, the number
of equality and inequality constraints combined is 1904. As
explained throughout the article, two main continuous-control
scenarios are simulated: the continuous sub-phase of the start-
up transient as well as the throttling operation, which consists
in a change of operating point.
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Fig. 3: T.MPC start-up tracking results in combustion-chamber
pressure pCC for pCC,r = 1 (nominal), pCC,r = 0.7 (minimum)
and pCC,r = 1.2 (maximum)

1.5 2 2.5 3
Time [s]

0

2

4

6

8

10

M
ix

tu
re

 r
at

io
 [-

]

Mixture-ratios tracking and constraints

MRCC,max

MRGG,max

MRmin

MRCC,nom

MRGG,nom

MRPI,nom

MRCC,ref

MRGG,ref

MRPI,ref

Fig. 4: T.MPC start-up tracking results in mixture ratios MR for
pCC,r = 1 (nominal)

a) Start-up transient: the control of the start-up transient
is performed via T.MPC, solving (45) during the time frame
between tcont = 1.5s and 3s after the start command. That
interval corresponds to the time window in which continuous
control is possible in engine start-up transients. Fig. 3
illustrates the results of pCC tracking for three main operating
points in Vulcain 1 design envelope (70%, 100% and 120%).
The reference mixture ratios remain the same MRCC,r = 6,
MRGG,r = [0.8, 1.1] and MRPI,r = 5.25. MR tracking for
the 100% case is shown in Fig. 4. These ratios naturally start in
these transients from values very far from the allowable area,
due to the low initial mass flows that hinder the definition
of quotients. Indeed, chambers are not physically fully ignited
during the first instants (even if igniters are active); hence, MR
are not really representative there. Tracking is accomplished
with sufficient accuracy in pCC for all cases (under 0.064%
in nominal thrust and under 0.94% in off-nominal) and with
little error in MR (under 0.32% in nominal, under 3.2%
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Fig. 5: E.MPC throttling tracking results in pressures and mixture
ratios for throttle-down to pCC,r = 0.7 from pCC,r = 1 (100% to
70%)

in off-nominal). Simultaneously, constraints are respected up
from the time when it is considered feasible and acceptable
to respect them in practice (t ≈ 1.9s). The slight overshoot
present until around t = 2.5s, before achieving the final
tracking, is generated by the nonlinear exogenous influence
of the GG-starter input mass flow. It is more pronounced
in the minimum case since the relative influence of the
starter is more elevated. All these performance indicators are
explicitly listed in Table II. The controller is able to achieve
analogous tracking performance after altered initial conditions
(independent, uniformly distributed random ±50%) coming
from the sequential transient.

b) Throttling transient: a throttle-down operation from
nominal to minimum thrust (100% to 70%) has been selected
as a representative case. This is a scenario that reusable LPREs
must face during their operation. Fig. 5 depicts the pressure
and MR tracking results via the E.MPC controller (35). The
engine is already active at its nominal state at t = 3s and
a step-wise order to track 70% of thrust is sent, with the
corresponding pre-calculated (xr, ur). It can be seen that the
operation shift is safely performed (no constraints violated)
within 0.34s. Precise performance indicators are summarised
in Table II. Other throttling scenarios such as an increase to
120% are also satisfactorily accomplished.

A. Comparison with OL and PID/LQR

Table II summarises the comparison between these MPC
tracking proposals, conventional PID or LQR controllers (the
most adapted to each case) and OL applied to the selected
scenarios, in terms of some performance indicators: settling
time to 99% of pCC,r, the start of constraints verification,
overshoot in pCC , static errors in pCC , MRCC , MRGG and
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MRPI , and the overall-performance criterion Jperf (18). The
nominal OL is engine’s original command, which is precisely
tuned for the standard case, as traditionally done in flight-
ready engines. Conversely, the minimum and maximum OL
constant commands have been computed by means of the
preprocessor from Section IV-A. These OL commands already
represent relevant solutions for the off-nominal steady-state
multivariable control. The improvement of CL with respect
to OL can be observed in the reduction in Jperf in all cases
(minimum value is the best case), even though some individual
indicators deteriorate during the start-up transient. Indeed, the
real gain of this CL MPC control appears for operating points
different from the nominal, where multivariable tracking was
difficult to achieve with high performance while respecting
constraints during the transient. Furthermore, valves openings
are not saturated with this predictive approach, even for the
maximum thrust case. The enhancement in the down-throttling
operation is also noticeable in all indicators. Even though
conventional PID and LQR controllers stand out in certain
indicators, their overall performance is inferior to MPC. More-
over, these techniques do not guarantee constraints satisfaction.
Especially in the maximum thrust case, rotational speeds limits
are violated with those controllers, as shown in [22].

B. Robustness analysis

In Section IV-B, the different perturbed cases have been
listed. The system has to be robust to those scenarios, and
hence they have been simulated by intentionally altering
the involved parameters in the simulator. Furthermore, other
sources of perturbation, not explicitly considered in the control
algorithm, have been simultaneously introduced for testing
robustness. These are namely the effects of external, additive
perturbations in the state and the possible impact that a
state estimator would represent, not considered in previous
works by the authors [22]–[24]. For the former, a band-
limited white-noise block has been added to the simulator
differential equations before integration, with a power spectral
density corresponding to perturbation spans of ±10% of
the nominal state. For the latter, a unitary delay (of 10ms)
and an estimation error source (multiplication by a uniform
random number) have been inserted in the measurement fed
back to the controller, remaining within ±1% of the true
values. The resulting performance indicators obtained in the
different perturbed scenarios for attaining a nominal-thrust
start-up and a throttle-down to 70% are shown in Table III.

It is observable that results point to considerably greater
robustness to parameters variations with respect to OL in
both transient phases simulated. Constraints are satisfied when
required and overshoot and tracking errors generally diminish
with respect to OL control, especially the mixture-ratios errors.
The performance criterion Jperf diminishes in all scenarios.
The impact of a possible estimator and external perturbations
are also well mitigated. Hence it can be concluded that these
synthesised MPC controllers fulfil the control goals defined in
Section IV.

VI. CONCLUSIONS

The evolving design of reusable launchers and their associ-
ated liquid-propellant rocket engines (LPREs) imposes more
demanding robustness requirements on control systems. Tran-
sient phases like start-up have traditionally been executed in
OL, which does not guarantee robustness to possible parameter
variations in the engine. In this article, approaches to control
the continuous transient phases of GG-cycle LPREs have
been proposed. The main objective is to track combustion-
chamber pressure and mixture ratios via valve-opening ad-
justment while satisfying engine constraints. Engines transient
behaviour was first captured in 0-D simulators via thermo-
fluid-dynamic and mechanical conservation equations based
on the available parameters. Secondly, these simulators were
re-expressed in the form of state-space models. The most in-
fluential parameters and the worst-case scenario of parametric
variations have been identified via Sobol analysis and Kriging-
based EGO respectively. Based on these models, strategies
relying on Model Predictive Control (MPC) have then been de-
veloped for the different transient scenarios that these engines
face. An end-state-tracking algorithm for throttling operations,
as well as a trajectory-tracking one for the start-up transient,
have been synthesised. These linearised MPC controllers with
integral action and quasi-infinite horizon are able to track the
reference signals with acceptable accuracy within the design
envelope and constraints are respected when necessary in sim-
ulations. Robustness to the set of more influential parameters
in the model is also considered (scenario-based minimax in
epigraph formulation) and demonstrated. Furthermore, neither
the simulated impact of a possible future state observer nor
external perturbations deteriorate performance to a relevant
extent.
Future work will involve the development of state estimators,
since mass flows might not be measurable in real engines.
Discrete inputs to the system, involved in the start-up se-
quence, are also to be managed in order to robustify that
sequence, as in [54]. A first proposal to optimise the planning
of events timing was published in [23], which still needs to
be validated in more extensive simulations. Further verification
steps will consist in hardware-in-the-loop simulations and test-
bench operation.
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The authors thank Émilien Flayac (ONERA) and Mircea
Lazar (TU Eindhoven) for their valuable advice throughout
the development of this work.

REFERENCES

[1] P. Baiocco and C. Bonnal, “Technology demonstration for reusable
launchers,”Acta Astronautica, vol. 120, pp. 43–58, Mar. 2016.

[2] S. Le Gonidec, “An overview of connections between scientific auto-
matic topics and their applications in the propulsive systems,” in Journal
of Physics: Conference Series: 13th European Workshop on Advanced
Control and Diagnosis (ACD 2016), ser. 783/011001. Lille, France: IOP
Publishing, Jan. 2017.

[3] D. K. Huzel and D. H. Huang, “Chapter 7: Design of Rocket-Engine
Control and Conditon-Monitoring Systems,” in Modern Engineering
for Design of Liquid-Propellant Rocket Engines. AIAA Progress in
Astronautics and Aeronautics Richard Seebass, 1992.



PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 13

TABLE II: Performance-indicators comparison between MPC, PID/LQR controllers and OL for start-up and throttling transients

Operating point Nominal
start-up

Minimum
start-up

Maximum
start-up

Throttle-
down to
70%

Indicator OL LQR T.MPC OL PID T.MPC OL LQR T.MPC OL LQR E.MPC
Settling time (pCC,r ± 1%) [s] 2.76 2.54 2.54 - 2.72 2.57 2.7 - 2.51 - 0.31 0.34
Overshoot (% in pCC ) 6.29 9.98 2.84 15.18 70.77 12.01 3.43 2.98 2.9 3.19 0.026 2.29
Constraints verified from [s] 1.81 2.25 1.81 1.83 1.78 1.79 1.77 1.98 1.84 0 0.06 0
pCC static error (%) 0.21 0.044 0.064 2.67 0.003 0.94 0.45 1.14 0.43 3.19 0.026 0.498
MRCC static error (%) 0.18 1.2 0.32 2.66 2.7 3.2 3.25 2.38 0.8 2.72 4.63 0.18
MRGG static error (%) 1.41 0.65 0.069 1.35 0.075 0.23 1.28 0.46 0.31 1.37 1.09 0.05
MRPI static error (%) 1.41 0.81 0.022 2.92 3.06 2.62 3.48 2.63 1.04 2.98 3.99 0.29
Jperf overall
performance

4.16 5.9 1.27 11.45 9.63 8.43 9.54 7.92 3.49 10.29 9.74 1.04

TABLE III: Performance-indicators comparison between MPC and OL in perturbed scenarios for start-up and throttling transients

Transient Start-up to 100% Throttle-down to 70%
Perturbed cases Nominal con-

ditions
Case 2 Case 3 Case 4 (worst

case)
Nominal con-
ditions

Case 4 (worst
case)

Indicator OL T.MPC OL T.MPC OL T.MPC OL T.MPC OL E.MPC OL E.MPC
Settling time (pCC,r ± 1%) [s] 2.76 2.54 2.84 2.52 2.8 2.52 - 2.51 - 0.34 - -
Overshoot (% in pCC ) 6.29 2.84 6.5 3.31 6.18 2.95 4.39 2.94 3.19 2.29 5.86 5.2
Constraints verified from [s] 1.81 1.81 1.72 1.85 1.72 1.85 1.8 1.84 0 0 0 0
pCC static error (%) 0.21 0.064 0.78 0.54 0.47 0.35 1.34 0.36 3.19 0.498 5.86 1.07
MRCC static error (%) 0.18 0.32 0.45 0.68 0.05 0.33 1.18 0.39 2.72 0.18 4.73 0.53
MRGG static error (%) 1.41 0.069 1.39 0.44 1.42 0.39 1.62 1.3 1.37 0.05 2.68 1.14
MRPI static error (%) 1.41 0.022 1.1 0.38 1.5 0.033 2.86 0.097 2.98 0.29 4.94 1.03
Jperf overall
performance

4.16 1.27 5.03 3.51 4.65 2.6 8.08 3.45 10.29 1.04 18.29 3.82

[4] X. Dai and A. Ray, “Damage-Mitigating Control of a Reusable Rocket
Engine: Part II-Formulation of an Optimal Policy,” Journal of Dynamic
Systems, Measurement, and Control, vol. 118, no. 3, pp. 409–415, Sep.
1996.

[5] B. N. Kiforenko and A. M. Kharitonov, “Control of Thrust of Liquid
Rocket Engines: Simulation and Optimization,” Journal of Automation
and Information Sciences, vol. 32, no. 8, pp. 47–63, 2000.

[6] T. Kai, K. Niu, K. Obase, W. Sakai, Y. Fukuda, T. Hashimoto, M. Sato,
S. Takada, T. Kimura, Y. Naruo, H. Ogawa, T. Yagishita, and T. Ito,
“Engine Control System for the Main Engine of the Reusable Sounding
Rocket,” in Proceedings of the International Astronautical Congress,
IAC, ser. IAC-15,C4,3,2,x28758, vol. 10. Jerusalem, Israel: IAF, 2015,
pp. 7389–7394.

[7] M. Klein, D. Hayoun, S. Le Gonidec, and S. Reichstadt, “Method and a
circuit for regulating a rocket engine,” SNECMA (ArianeGroup), Issy-
les-Moulineaux, France, US 2017/0101963 A1, United States Patent
Application Publication.

[8] S. Le Gonidec and O. Faye, “Device for adjusting an operating variable
of an engine,” SNECMA (ArianeGroup), France, US9037380B2, United
States Patent.

[9] E. Nemeth, R. Anderson, J. Ols, and M. Olsasky, “Reusable rocket
engine intelligent control system framework design, phase 2,” Rockwell
International, Canoga Park, California, Tech. Rep. NASA Contractor
Report 187213, Sep. 1991.

[10] E. W. Otto and R. A. Flage, “Control of combustion-chamber pressure
and oxidant-fuel ratio for a regeneratively cooled hydrogen-fluorine
rocket engine,” NASA Lewis Research Center, Cleveland, USA, Tech.
Rep. Technical note D-82, 1959.

[11] H. Sunakawa, A. Kurosu, K. Okita, W. Sakai, S. Maeda, and A.
Ogawara, “Automatic Thrust and Mixture Ratio Control of the LE-X,”
in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
vol. 2008-4666. Hartford, USA. AIAA, 2008.

[12] C. F. Lorenzo, A. Ray, and M. S. Holmes, “Nonlinear control of a
reusable rocket engine for life extension,” Journal of Propulsion and
Power, vol. 17, no. 5, pp. 998–1004, 2001.

[13] C. F. Lorenzo, W. C. Merrill, J. L. Musgrave, and A. Ray, “Controls
Concepts for Next Generation Reusable Rocket Engines,” in American
Control Conference, vol. FP1-4:10. Seattle, USA. IEEE, 1995, pp. 3942–
3950.

[14] J. L. Musgrave, T. H. Guo, E. Wong, and A. Duyar, “Real-time
accommodation of actuator faults on a reusable rocket engine,” IEEE
transactions on control systems technology, vol. 5, no. 1, pp. 100–109,
1996, - NASA.

[15] F. Zheng, M. Cheng, and W. B. Gao, “Variable structure control of time-
delay systems with a simulation study on stabilizing combustion in liquid
propellant rocket motors,” Automatica, vol. 31, no. 7, pp. 1031–1037,
Jul. 1995.

[16] A. Le Fur, C. Voisin, M. H. Guillard, and M. M. Verge, “Study of control
laws of an expander-cycle rocket engine - Etude de lois de commande
pour moteur a cycle expander,” ArianeGroup, ENSAM, LAAM, Vernon,
France, ArianeGroup internal report, 1997.

[17] R. Saudemont and S. Le Gonidec, “Study of a robust control law based
on H infinity for the Vulcain rocket engine - Etude d’une commande
robuste a base de commande H infinity pour le moteur Vulcain,”
ArianeGroup, ESTACA, Vernon, France, ArianeGroup internal report,
2000.
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