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ABSTRACT

In weakly-collisional stellar systems such as some globular clusters, partial energy equipartition and mass segregation are expected
to develop as a result of the cumulative effect of stellar encounters, even in systems initially characterized by star-mass independent
density and energy distributions. In parallel, numerical simulations have demonstrated that radially-biased pressure anisotropy slowly
builds up in realistic models of globular clusters from initial isotropic conditions, leading to anisotropy profiles that, to some extent,
mimic those resulting from incomplete violent relaxation known to be relevant to elliptical galaxies. In this paper, we consider a set
of realistic simulations realized by means of Monte Carlo methods and analyze them by means of self-consistent, two-component
models. For this purpose, we refer to an underlying distribution function originally conceived to describe elliptical galaxies, which
has recently been truncated and adapted to the context of globular clusters. The two components are supposed to represent light
stars (combining all main sequence stars) and heavy stars (giants, dark remnants, and binaries). We show that this conceptually simple
family of two-component truncated models provides a reasonable description of simulated density, velocity dispersion, and anisotropy
profiles, especially for the most relaxed systems, with the ability to quantitatively express the attained levels of energy equipartition
and mass segregation. In contrast, two-component isotropic models based on the King distribution function do not offer a comparably
satisfactory representation of the simulated globular clusters. With this work, we provide a new reliable diagnostic tool applicable to
nonrotating globular clusters that are characterized by significant gradients in the local value of the mass-to-light ratio, beyond the
commonly used one-component dynamical models. In particular, these models are supposed to be an optimal tool for the clusters that
underfill the volume associated with the boundary surface determined by the tidal interaction with the host galaxy.

Key words. globular clusters: general – stars: kinematics and dynamics

1. Introduction

The underlying strategy for the construction of several
physically-based dynamical models of stellar systems may be
summarized in the following steps. A picture of formation and
evolution for the stellar systems under consideration is adopted.
As for the dynamical mechanisms that are involved, and to
the end-products of the formation scenario, the picture is fur-
ther explored by means of dedicated simulations. The simula-
tions provide clues on the phase-space structure of the stellar
systems under investigation, generally well beyond the reach
of direct observations. These clues are used to identify (pos-
sibly simple) candidate distribution functions to incorporate
the desired dynamical features, and to construct self-consistent
solutions from the Vlasov-Poisson system of equations. A com-
parison with the observed stellar systems is performed by con-
verting the properties of the selected dynamical models into
surface brightness profiles and velocity dispersion profiles, under
the assumption that the stellar populations are characterized by a
constant mass-to-light ratio within a given system. If the compar-
ison with the observations is reasonably good, the simple models
can be used to fit the data and to infer, for a given system, many
structural properties that observations are unable to determine
directly. The models are then made more complex if required by
some astrophysical issues.

For elliptical galaxies, families of models developed accord-
ing to the above description are based on the assumption that

those stellar systems are the result of incomplete violent relax-
ation (Lynden-Bell 1967; van Albada 1982). The properties of
the stellar populations of elliptical galaxies, and the mechanism
of violent relaxation, naturally encourage the use of the assump-
tion of a constant mass-to-light ratio for the visible matter; even-
tually, the models were extended to include the presence of a
dark halo (e.g., see Bertin & Stiavelli 1993).

For globular clusters, the most widely used models, the King
models (King 1966) were developed under the guiding picture
that for many clusters, given their long age, two-body relaxation
processes have had sufficient time to act and play an important
role in determining the dynamical properties of the systems that
we observe today. King models are thought to describe round,
non-rotating stellar systems made of a single stellar population,
for which internal two-body relaxation has had time to bring
the system close to a Maxwellian, isotropic distribution func-
tion. A truncation is considered to take into account the presence
of tidal effects. The success of one-component King models was
largely due to their simplicity (the family of models is charac-
terized by only one dimensionless parameter, the concentration
parameter c) and to their ability to fit, under the assumption of
a constant mass-to-light ratio, the photometric profiles of most
clusters in our Galaxy over large radial/magnitude ranges (e.g.,
see Djorgovski & Meylan 1994; Harris 1996). In the absence
of accurate and radially-extended kinematical data, King mod-
els have been used to infer several structural properties of glob-
ular clusters beyond the reach of observations. Unfortunately,
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the processes of relaxation that set the foundation of the King
models include qualitative elements that were immediately rec-
ognized to be discordant, at least in principle, with a simple
description in terms of one-component models.

One of the effects of two-body interactions is to lead sys-
tems made of stars with different masses toward a state of energy
equipartition. That is to say, we would expect collisions to enforce
a condition in which the velocity dispersion σ of stars of mass
m should scale as σ ∼ m−1/2. In self-gravitating systems, the
establishment of this process is very complicated, because of
their inhomogeneous nature and their self-consistent dynamics.
In turn, as a consequence of two-body relaxation processes, more
massive stars are expected to be characterized by a more con-
centrated density distribution, a phenomenon usually referred to
as mass segregation. This was soon realized to pose a contra-
diction to the simple use of one-component models in the inter-
pretation of the observations, and efforts were made to extend
the King models to a more realistic multi-component version
(Da Costa & Freeman 1976; see also Merritt 1981). On the
dynamical side, especially because gravity is a natural source of
inhomogeneities, it was also found that interesting dynami-
cal mechanisms might be induced by the natural trend toward
equipartition and mass segregation. In particular, arguments were
provided in favor of the existence of an instability related to mass
segregation (Spitzer 1969), distinct from the gravothermal catas-
trophe (Lynden-Bell & Wood 1968). With the help of a very sim-
ple two-component model, made of light and heavy stars, Spitzer
suggested that a condition of global energy equipartition cannot
be fulfilled if the total mass of the heavy stars exceeds a cer-
tain fraction of the total mass of the cluster. The Spitzer criterion
(often interpreted as a criterion for instability) was later extended
by Vishniac (1978) to cover the case of a continuous spectrum of
masses. In general, as shown by the discussion that followed the
study by Spitzer (e.g., see Merritt 1981), energy equipartition and,
in particular, the distinction between local and global equiparti-
tion, are subtle concepts that require clarification.

The advent of improved numerical simulations and of
increasingly better observations have confirmed that the general
stellar dynamical modeling procedure for globular clusters
requires a substantial upgrade. Numerical experiments con-
firmed that globular clusters can attain a condition of only partial
energy equipartition even in their central, most relaxed, regions
(Trenti & van der Marel 2013; Bianchini et al. 2016, see also
Merritt 1981; Miocchi 2006). A curious and rather unexpected
(but see Hénon 1971) phenomenon demonstrated by numerical
simulations is the fact that, as a result of the slow action of
two-body relaxation, radially-biased pressure anisotropy slowly
builds up in realistic models of globular clusters also from ini-
tially isotropic conditions (Tiongco et al. 2016; Zocchi et al.
2016; Bianchini et al. 2017a), leading to anisotropy profiles that,
to some extent, mimic those resulting from incomplete violent
relaxation, known to be relevant to elliptical galaxies.

On the observational side, with the measurement of proper
motions by the Hubble Space Telescope (see the HSTPROMO
data sets for 22 globular clusters, Bellini et al. 2014; Watkins et al.
2015; interesting related results are expected to come from the
Gaia mission, Gaia Collaboration 2018), it has been confirmed
that a state of only partial energy equipartition is indeed estab-
lished in globular clusters (e.g., see Trenti & van der Marel 2013;
Libralato et al. 2018, 2019). In addition, evidence for a certain
degree of mass segregation has been collected for several globu-
lar clusters (e.g., see van der Marel & Anderson 2010; Di Cecco
et al. 2013; Goldsbury et al. 2013; Bellini et al. 2014; Webb
& Vesperini 2017). In relation to the velocity space, one major

surprise has been the finding of significant (differential) rotation
in some globular clusters (Anderson & King 2003; Bellazzini
et al. 2012; Bianchini et al. 2013, 2018; Kacharov et al. 2014;
Lardo et al. 2015; Bellini et al. 2017; Cordero et al. 2017; Kamann
et al. 2018; Sollima et al. 2019), which brings us well beyond
the goals of the present paper. Besides the issue of rotation, the
new kinematical data confirm the presence of pressure anisotropy
(Bellini et al. 2017; Watkins et al. 2015; Jindal et al. 2019).

In this general context, we wish to look for an improved
multi-component upgrade of the stellar-dynamical modeling of
globular clusters by taking into account the combined prob-
lems of energy equipartition, mass segregation, and pressure
anisotropy. Beyond the traditional King models, a variety of
models have been constructed and applied to the study of glob-
ular clusters. Among the interesting models characterized by
pressure anisotropy, we can mention the Michie-King models
(Michie 1963) and the LIMEPY models (Gieles & Zocchi 2015).
Multi-component versions of these models have been tested with
some success both as a description of data and of the results of
N-body simulations (Gunn & Griffin 1979; Sollima et al. 2015;
Peuten et al. 2017). The general goal of these studies appears
to be to propose realistic models by using the freedom offered
by the presence of some additional parameters (see the pioneer-
ing work by Da Costa & Freeman 1976). If we give priority
to simplicity, which would be a welcome factor both in view
of applications to the study of dynamical mechanisms (such as
the so-called Spitzer instability), and of the development of a
diagnostic tool for comparison with the observations, we can try
to start from a two-component description (based on light and
heavy stars). Given the experience with the modeling of ellipti-
cal galaxies, a first attempt in this direction was recently made
by de Vita et al. (2016). The family of models introduced in
that paper allows us to take into account the presence of par-
tial energy equipartition and mass segregation with simple ana-
lytic tools. As shown in that article, the proposed models possess
some appealing and promising features. Yet, we are aware that
lumping together into two single components of light and heavy
stars, each of which corresponds to populations made of individ-
ual objects characterized by a large spread of masses and mass-
to-light ratios (see Sect. 3.2), might be a bold step, and subject
to unacceptable limitations. Therefore, before declaring that the
proposed conceptually simple models may offer a reliable tool to
study some dynamical mechanisms or to interpret the observa-
tions (with the required discussion of the size and role of mass-
to-light gradients; see Bianchini et al. 2017b, Sect. 4.1 of de Vita
et al. 2016; Hénault-Brunet et al. 2019 for a three-component
description), we need to test whether the simple two-component
models do indeed have the power to describe the structural prop-
erties of the extremely complex globular clusters, as is nowadays
well-described by state-of-the-art simulations.

The main objective of this paper is to test the quality of
the family of truncated two-component f (ν) models introduced
by de Vita et al. (2016) checking their properties against those
measured in a set of eight snapshots taken from realistic sim-
ulations of globular clusters. The simulations under considera-
tion were performed using Monte Carlo methods (Downing et al.
2010) and have been extensively used to characterize the inter-
nal properties of simulated globular clusters with different levels
of internal relaxation (Bianchini et al. 2016, 2017b). In order
to be comprehensive, we carried out a parallel test based on
one-component King models and on two-component King and
Michie-King models to test to what extent the adopted family
of models does indeed represent an improvement with respect
to other natural options. If our models turn out to perform in
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a satisfactory way, they will be applicable as a tool to clarify
the complex onset of mass segregation and energy equiparti-
tion in globular clusters, and possibly to infer the dynamical
properties of the subcomponents that cannot be observed. A
second important objective of this paper is to compare the
anisotropy profiles generated by collisions to those produced by
violent relaxation, in order to find possible analogies between
the degrees of anisotropies generated by these two different
mechanisms.

This paper is organized as follows. In Sect. 2, we briefly
recall the properties of the models used in our investigation.
In Sect. 3, we summarize the main characteristics of the set of
Monte Carlo cluster simulations and define the set of simulated
states (that we referred to earlier as snapshots) considered in this
paper. In Sect. 4, we test the quality of our two-component mod-
els on these states. A discussion and our conclusions are featured
in Sect. 5.

2. Two-component models

In the spirit of a number of previous papers, such as the one by
Spitzer (1969), we tried to model an extremely complex stel-
lar system with a full spectrum of masses by means of simple,
idealized two-component models. At variance with the study
of large collisionless stellar systems, at least two components
were required here, because we are interested in investigating
collisional effects that depend on the masses of the interact-
ing stars. With the help of a number of realistic simulations,
to be described in the next section, we wish to test in detail
how well such a simple, idealized (but physically justified)
description is able to capture the structural properties of a real-
istic model of globular cluster. In the context of the dynami-
cal modeling of globular clusters, a direct comparison between
models and simulated states was recently made by Sollima
et al. (2015), who mostly focused on the issue of the bias in
mass estimates obtained from application of four-component
Michie-King (Michie 1963) models, and by Hénault-Brunet
et al. (2019), who aimed to compare the performance of a vast
variety of mass-modeling techniques on the specific case of
an N-body simulation of the globular cluster M 4. In addition,
Zocchi et al. (2016) compared the radial profiles obtained from
the so-called LIMEPY models to those of simulated snapshots,
and studied the evolution of the relevant model parameters in
time. Peuten et al. (2017) compared models and simulated states,
by considering a multi-mass generalization of the LIMEPY fam-
ily of models.

The study presented in this paper makes use of the two-
component models introduced by de Vita et al. (2016) and is
based on the following distribution function:

f (ν)
T,i (E, J) =

Ai exp
[
−ai(E − Et) − di

J
|E−Et |

3/4

]
for E < Et

0 for E ≥ Et
, (1)

where Ai, ai, and di are positive constants referring to the ith
component. Here, E = (1/2)v2 + Φ(r) is the specific energy of
a single star subject to a spherically-symmetric mean potential
Φ(r), and J = |r × u| represents the magnitude of the specific
angular momentum. The quantity Et = Φ(rt) is the truncation
potential; the truncation radius rt is assumed to be the same for
the two components.

The index i labels the two species, which we imagine to be
light stars of mass m1 and heavy stars of mass m2 > m1. The total
masses of the two components are M1 and M2, respectively. As
described in detail by de Vita et al. (2016), the self-consistent

models are constructed by integrating the Poisson equation,
reduced to a suitable dimensionless form, for the dimensionless
potential ψ = −a1(Φ− Et), to be solved under the boundary con-
ditions ψ(0) = Ψ = −a1[Φ(0) − Et] and vanishing gravitational
acceleration at r = 0.

From the seven constants A1, A2, a1, a2, d1, d2, Et, we can
identify two physical scales, which can be used to match the
mass and length scales of a globular cluster, or the correspond-
ing units of a simulated stellar system, and five dimensionless
parameters. To reduce the number of free parameters, (1) we set
a global mass ratio M2/M1 to match the mass ratio for the two
components, consistent with the way we split the particles of the
simulated states into light and heavy particles. Then, (2) we set a
central level of partial equipartition by imposing for the central
velocity dispersion ratio:

σ1(0)
σ2(0)

=

(
m1

m2

)−η
, (2)

where m1 and m2 are the average masses of the particles that
are assigned, for a given simulated state, to the light compo-
nent and to the heavy component, respectively, and η is a quan-
tity that follows the notation of Trenti & van der Marel (2013).
Full energy equipartition would correspond to η = 1/2, whereas
systems characterized by partial energy equipartition present
η < 1/2. In all the cases considered in this paper, a condition
of only partial energy equipartition is found in the simulated
states, with η ≤ 0.27. Finally, following de Vita et al. (2016),
(3) we argue that a1/4

1 d1 = a1/4
2 d2. In conclusion, because of our

assumptions (1)−(3), the family is reduced to a two-parameter
family of models. The two relevant dimensionless parameters
are the concentration of the light component, as represented by
Ψ, and a second dimensionless parameter γ = a1d2

1/(4πGA1); for
a given value of Ψ, γ has a maximum value, which corresponds
to an infinite truncation radius.

In these models, the degree of radial anisotropy increases
monotonically from the center to the truncation radius. In par-
ticular, the center is isotropic, whereas the outer regions are
completely radially anisotropic. Their anisotropy profiles do not
present any decrease in the outer parts, as opposed to the case of
Michie-King models, for which this feature is taken to represent
the effects of the tidal interaction with the host galaxy.

In order to test the quality of our family of models further,
we compared its performance to that of a two-component family
of models generated in a similar way (in relation to the choice
of m1,m2,M1,M2, and to the condition of central partial energy
equipartition, with the help of the additional parameter η), but
based on the traditional choice of a King distribution function
(King 1966):

f K
i (E) =

{
Ai

[
exp (−aiE) − exp (−aiEt)

]
for E < Et

0 for E ≥ Et,
(3)

where Ai and ai are positive constants. As for the f (ν)
T , the

quantity Et = Φ(rt) is the truncation potential; the truncation
radius, rt, is assumed to be the same for the two components.
The family of two-component models is constructed by solving
the Poisson equation for the dimensionless gravitational poten-
tial ψ = −a1(Φ − Et), under the boundary conditions ψ(0) =
Ψ = −a1[Φ(0) − Et] and vanishing gravitational acceleration
at r = 0. In this case, because the King distribution functions
are isotropic, the family of resulting two-component models is
characterized by a single dimensionless parameter, the central
dimensionless potential Ψ referred to the light component.
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Table 1. Initial conditions of simulations.

fbinary (%) rt/rM N Mtot [M�] rt [pc] trh [Gyr]

Sim 1 (10 low 75) 10 75 5 × 105 3.62 × 105 150 0.53
Sim 2 (50 low 75) 50 75 5 × 105 5.07 × 105 150 0.44
Sim 3 (10 low 37) 10 37 5 × 105 3.62 × 105 150 1.51
Sim 4 (50 low 37) 50 37 5 × 105 5.07 × 105 150 1.28
Sim 5 (10 low 180) 10 180 5 × 105 3.62 × 105 150 0.14
Sim 6 (50 low 180) 50 180 5 × 105 5.07 × 105 150 0.12
Sim 7 (10 low 75−2M) 10 75 20 × 105 7.26 × 105 150

Notes. In the first column, the original label of the simulations from Downing et al. (2010) is given in parentheses. The other columns list the
binary fraction fbinary, the ratio of the truncation to the half-mass radius rt/rM, the total number of particles N (defined as the number of single stars
plus the number of binary systems), the total mass Mtot, the truncation radius rt, and the half-mass relaxation time defined as in Downing et al.
(2010).

Table 2. Properties of the simulated states taken from selected snapshots.

fbinary (%) rt/rM N Mtot [M�] rt [pc] trh [Gyr] nrel

Sim 3, 11 Gyr 5.60 6.90 4.52 × 105 1.73 × 105 89.11 6.61 2.5
Sim 1, 4 Gyr 3.28 14.34 4.83 × 105 1.89 × 105 91.83 2.41 2.8
Sim 1, 7 Gyr 3.08 12.14 4.75 × 105 1.79 × 105 89.68 3.07 4.4
Sim 1, 11 Gyr 2.95 11.27 4.69 × 105 1.73 × 105 88.90 3.49 8.3
Sim 6, 4 Gyr 12.24 11.95 5.36 × 105 2.35 × 105 88.29 1.77 10.1
Sim 5, 4 Gyr 3.66 13.95 4.46 × 105 1.75 × 105 89.29 1.48 14.6
Sim 6, 7 Gyr 11.83 15.33 5.20 × 105 2.20 × 105 86.45 2.22 23.6
Sim 5, 7 Gyr 3.54 18.21 4.32 × 105 1.65 × 105 87.67 1.83 64.9

Notes. For each simulated state, the table lists the same properties as in Table 1, with the addition of the relaxation parameter nrel (following the
notation of Bianchini et al. 2016). The simulated states are in order of increasing relative relaxation.

3. Simulations

We considered the set of Monte Carlo cluster simulations devel-
oped and performed by Downing et al. (2010) with the Monte
Carlo code of Giersz (1998; see also Giersz et al. 2013 for the
description of the method). The simulations include, in addition
to a detailed description of the dynamics of the stellar system, the
main characteristics of stellar evolution, which produces stellar
remnants as a natural outcome. By means of a relatively large
number of particles (N = 5 × 105−2 × 106), these simulations
provide a realistic description of the long-term evolution of glob-
ular clusters, starting with a single stellar population. Selected
snapshots taken from these simulations have already been stud-
ied as simulated states by Bianchini et al. (2016, 2017b) to char-
acterize energy equipartition and mass segregation in realistic
systems. These authors focused on projected quantities to make
useful comparisons with observations. In this paper, we consider
intrinsic quantities for a more direct comparison with dynamical
models.

The initial conditions of the simulations under considera-
tion are described in Downing et al. (2010) and Bianchini et al.
(2016). All the simulations include a Kroupa (2001) initial mass
function with stellar masses ranging from 0.1 M� to 150 M�.
Different amounts of primordial binaries are considered, either
ten percent or fifty percent. The simulations have their initial
density and velocity distributions drawn from a Plummer (1911)
isotropic model. An initial cutoff is introduced at 150 pc to
mimic the presence of the tidal field of the host galaxy. This
cutoff is not held constant during evolution; it is recalculated
at each time step according to the current mass of the clus-
ter, which declines in time because of stellar evolution and

dynamical evaporation. Details of the initial conditions of the
simulations are summarized in Table 1. The quantities reported
here are all intrinsic three-dimensional quantities; in particular,
rM represents the radius of the sphere that includes half of the
total mass of the system. The quantity fbinary denotes the fraction
of the number of particles in binary systems.

All the systems were evolved for 11 Gyr, and their properties
studied at different epochs, tage = 4, 7, 11 Gyr. In Bianchini et al.
(2016), for each snapshot, the relaxation state of the system is
quantified by nrel = tage/trc, where trc is the core relaxation time
(Eq. (1) in Bianchini et al. 2016), following the approach of the
Harris (1996) catalog (Harris 2010 edition), defined according to
Djorgovski (1993). Therefore, higher values of nrel correspond to
more relaxed stellar systems. The values of nrel for the selected
snapshots are taken from Table 3 of Bianchini et al. (2017b).
The snapshots correspond to pre-core collapse conditions (with
respect to the gravothermal catastrophe).

For the present study of energy equipartition and mass seg-
regation, we considered eight simulated states. We focused on
the states at 4 Gyr and 7 Gyr of Sim 5 and Sim 6 (for these two
simulations, we discarded the snapshots at 11 Gyr, because the
associated output files present anomalous features that could not
be corrected). We then considered all the available snapshots of
Sim 1 as simulated states to study the variation of the relevant
properties of the system at different stages of the relaxation pro-
cess. Finally, we considered the snapshot at 11 Gyr of Sim 3. In
this way, we have a sample of simulated states in which nrel
varies from 2.5 to 64.9, covering the range between partially
relaxed and well dynamically relaxed systems. Table 2 records
the same properties as in Table 1 for the simulated states consid-
ered, with the addition of the relaxation parameter nrel = tage/trc.
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Fig. 1. Variation of rM,N, that is the half-mass radius normalized to
global half-mass-radius of each simulation, with stellar mass. The simu-
lations considered, Sim 3 at 11 Gyr (black circles), Sim 6 at 7 Gyr (green
triangles), and Sim 5 at 7 Gyr (orange squares), show a decreasing trend
with mass. The fact that also the least relaxed simulated state (with
nrel = 2.5) shows mass segregation suggests that this process sets in
efficiently after very few relaxation times.

The snapshots related to Sim 6 present a higher number of parti-
cles with respect to the initial conditions as a consequence of the
disruption of binaries.

3.1. Mass segregation in the simulated states

The presence of mass segregation can be observed by consider-
ing the variation of the half-mass radius for stars with different
masses as a function of mass (see also Fig. 9 in de Vita et al.
2016 and related discussion). For a mass-segregated system, we
expect a decreasing trend with stellar mass. In Fig. 1, this trend is
also present for the least relaxed system of our sample, Sim 3 at
11 Gyr. More relaxed simulated states (Sim 6 at 7 Gyr and Sim 5
at 7 Gyr) exhibit a steeper slope, thus showing a higher degree
of mass segregation. We also note that the gradient is small in all
the half-mass radius profiles at about 0.6 M�: this is the typical
mass at which white dwarfs form (given the initial mass func-
tion, the initial-final mass relation and the age of the selected
snapshots), in many cases after undergoing a severe mass loss.
If, after loosing a great quantity of mass, white dwarfs do not
have time to relax dynamically, they will be characterized by the
same phase-space properties as objects with their original mass
and, as a consequence, they will exhibit a lower half-mass radius.
A similar feature was noted for the level of energy equipartition
in Bianchini et al. (2016; see their Fig. 2).

3.2. Definition of the two components

To compare the relevant properties of the systems under consid-
eration to the models introduced in Sect. 2, we need to define
the two components for each simulated state. As anticipated, the
definition of the components is based on the mass of the stars.

First, we divided the stars of the simulated states into four
classes: single main sequence stars, single giant stars, single
remnants (white dwarfs, neutron stars, and black holes), and
binaries. In Table 3, we give the mean mass of the four classes
of stars. The mean masses of giants, remnants, and binaries are
always more than twice the mean mass of main sequence stars.
We thus identified the main sequence stars with the light com-
ponent (with mass mlight = m̄MS) and combined the other classes

Table 3. Definition of the two components for the simulated states.

Light stars Heavy stars
m̄MS [M�] m̄giants [M�] m̄remn [M�] m̄bin [M�] mheavy [M�]

Sim 3, 11 Gyr 0.30 0.83 0.75 0.81 0.77
Sim 1, 4 Gyr 0.33 1.12 0.86 0.83 0.86
Sim 1, 7 Gyr 0.31 0.95 0.77 0.80 0.78
Sim 1, 11 Gyr 0.30 0.85 0.74 0.76 0.74
Sim 6, 4 Gyr 0.34 1.12 0.82 0.78 0.80
Sim 5, 4 Gyr 0.33 1.12 0.81 0.77 0.81
Sim 6, 7 Gyr 0.32 0.94 0.77 0.73 0.75
Sim 5, 7 Gyr 0.32 0.94 0.76 0.73 0.75

Notes. The various columns list the mean masses of single main
sequence stars (m̄MS), single giants (m̄giants), single remnants (m̄remn),
and binaries (m̄bin). The last column lists the resulting mass of the heavy
component.
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Fig. 2. Mass spectrum of Sim 5 at 7 Gyr constructed by considering all
the stars of the simulated state (upper panel) and by separating the light
and the heavy stars (lower panel). The presence of a secondary peak in
the total mass spectrum is due to the formation of white dwarfs, with a
typical mass of 0.6 M�.

into the heavy component (with mheavy equal to the mean mass of
stars belonging to these three classes). Our choice for identifying
the two components was preferred with respect to other options,
such as a simple mass cut, because it is physically motivated and
may turn out to be useful when the models will be considered
for diagnostics of observed clusters.

In Fig. 2, we illustrate the mass spectrum for Sim 5 at 7 Gyr.
The spectrum obtained considering all the stars shows a general
decreasing trend, with a secondary peak at about 0.6 M�, which
is the typical mass at which white dwarfs form. For this reason,
by separating the spectra of the two components, we observe
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Sim 6, 7 Gyr - Density profiles
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Fig. 3. Density (upper panel) and velocity dispersion (lower panel) pro-
files for light (black) and heavy (orange) component of Sim 6 at 7 Gyr.
Uncertainties on the profile values are obtained by means of a bootstrap
resampling. The differences between the two density profiles indicate
the presence of mass segregation, whereas the differences between the
two velocity dispersion profiles may be interpreted as due to the effects
of partial energy equipartition. The vertical lines indicate the half-mass
radius of the component under consideration.

that the spectrum of the heavy component has a maximum at
this value of mass, whereas the mass spectrum of the light com-
ponent is monotonically decreasing.

3.3. Intrinsic profiles

From the output of the simulations, we constructed density and
velocity dispersion profiles for the entire system and, separately,
for each of the two components. The profiles were constructed
by dividing the system into radial shells with a constant number
of stars. The radial errors were evaluated as the width of each
shell. In turn, the density and velocity dispersion uncertainties
were determined by means of a bootstrap resampling (Efron &
Tibshirani 1986). The uncertainties obtained in this way are very
small, typically of the order of 1%. Figure 3 illustrates the den-
sity and the velocity dispersion profiles for the two components
of Sim 6 at 7 Gyr. The quantity σ denotes the total, local velocity

dispersion σ =
√
σ2

rr + σ2
θθ + σ2

φφ.
A local measure of the pressure anisotropy is given by the

function α(r), defined as:

α(r) = 2 −
σ2

t (r)
σ2

r (r)
, (4)
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α

Sim 6, 7 Gyr - Anisotropy profiles

Fig. 4. Anisotropy profiles for light (black) and heavy (orange) compo-
nent of Sim 6 at 7 Gyr. Uncertainties on the profile values are obtained
by propagating the errors on the different velocity dispersions. The ver-
tical lines indicate the half-mass radius of the component under consid-
eration.

where σ2
t = σ2

θθ + σ2
φφ and σ2

r = σ2
rr are the tangential and

radial velocity dispersions (squared), respectively. Isotropy cor-
responds to α = 0, whereas α = 2 represents a condition of
complete radial anisotropy.

In Fig. 4, we show the anisotropy profiles for the two compo-
nents of Sim 6 at 7 Gyr. The simulated state is characterized by
a monotonically increasing anisotropy profile. Even though the
system under consideration has been initialized with an isotropic
distribution of velocities, the slow cumulative effects of relax-
ation processes have led the system toward a velocity distribution
that resembles that generated by collisionless violent relaxation
(which is the physical basis under which the f (ν) models were
originally constructed), with an isotropic core and a radially-
biased anisotropic envelope.

3.4. Basic parameters for a comparison with two-component
models

In Table 4, we list the parameters used to reduce the number of
free constants in the two-component models defined in Sect. 2:
the ratio (m2/m1) of the single masses of the two components,
the ratio M2/M1 of the total masses of the two components, and
the parameter η, which quantifies the degree of central energy
equipartition. The ratio mheavy/mlight is very similar in all the sim-
ulated states. Instead, the ratio Mlight/Mheavy decreases with the
age of the cluster as more and more remnants are produced (and,
possibly, because of evaporation of low mass stars). In addition,
Mlight/Mheavy is lower for the two snapshots of Sim 6, because
of the high number of binaries that the system was initialized
with. In passing, we note that the components as defined above
would violate the Spitzer criterion (Spitzer 1969). In fact, the
value of S = (Mheavy/Mlight)(mheavy/mlight)3/2, which (according
to Spitzer 1969) should be less than S max = 0.16 for a system
in thermal and virial equilibrium, is greater by about an order
of magnitude in the simulated states under consideration. The
violation of the Spitzer criterion is consistent with the fact that
a condition of total energy equipartition is not fulfilled by the
systems under consideration.

The equipartition parameter η was determined by evaluat-
ing the ratio of the velocity dispersions of the two compo-
nents at the center of the simulated states and by equating
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Table 4. Basic parameters of the simulated states for a comparison with
two-component models: the heavy to light mean mass ratio, the light to
heavy total mass ratio, and the equipartition parameter.

mheavy/mlight Mlight/Mheavy η ηeq S (S max = 0.16)

Sim 3, 11 Gyr 2.57 1.78 0.191 0.180 2.31
Sim 1, 4 Gyr 2.61 2.94 0.204 0.161 1.43
Sim 1, 7 Gyr 2.50 2.54 0.212 0.172 1.56
Sim 1, 11 Gyr 2.46 2.29 0.232 0.208 1.68
Sim 6, 4 Gyr 2.37 1.57 0.230 0.231 2.33
Sim 5, 4 Gyr 2.42 2.94 0.259 0.260 1.28
Sim 6, 7 Gyr 2.34 1.40 0.269 0.233 2.55
Sim 5, 7 Gyr 2.38 2.43 0.270 0.269 1.52

Notes. The last two columns list the value of ηeq, that is the values of
η obtained by means of Eq. (4) of Bianchini et al. (2016), and of the
Spitzer parameter S = (Mheavy/Mlight)(mheavy/mlight)3/2.

σlight(0)/σheavy(0) = (mlight/mheavy)−η, where σ(0) indicates the
velocity dispersion of the central bin. As indicated in Table 3, the
most relaxed systems present the highest values of η, confirming
that relaxation processes are driving them toward a condition of
central energy equipartition; however, values close to η = 0.5
are never attained. Column 10 of Table 3 lists the values of ηeq,
which is the value of η calculated directly from the equipartition
parameter meq by means of Eq. (4) of Bianchini et al. (2016); the
values of mass considered are the mean masses of the stars in
the first radial bin. The values obtained for ηeq are fairly close to
those used in this paper.

In Fig. 5, we show the relation between the degree of mass
segregation and the equipartition parameter η. The degree of
mass segregation is quantified by s, that is the slope of the half-
mass radius profile as a function of stellar mass (see Fig. 1).
This is calculated by including all the components defined in
Sect. 3.2 (white dwarfs that underwent a severe mass loss are
also included). A linear relation is found between the values of s
and η in different simulated states (orange dots), with the excep-
tion of the most relaxed simulated state, Sim 5 at 7 Gyr. This
linear relation is well reproduced by best-fit two-component f (ν)

T
models (black dots, see Sect. 4.1).

4. A description of the simulated states by
two-component models

We performed a combined chi-squared analysis on the density
and velocity dispersion profiles, following a procedure very sim-
ilar to that outlined in Zocchi et al. (2012). In the present anal-
ysis, we decided to minimize a combined chi-squared function,
defined as the sum of the two-component density and velocity
dispersion chi-squared. The two components to be modeled as
light and heavy stars are those defined in Sect. 3.2. In order to
deal with a small number of free parameters, differently from
the fits reported in Zocchi et al. (2012), the physical scales of
the models were set by equating the length and the mass scales
of the models to those of the simulated states, that are known a
priori.

We wish to emphasize that this is intended as a formal anal-
ysis with the objective of determining whether an idealized two-
component model is able to give a reasonable description of the
simulated states under consideration. As such, this is only a pre-
requisite for a follow-up analysis in which we intend to apply
and test the models in order to judge their accuracy as diagnostic
tools.

Sim

fT ,2C
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f2C
K
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s

Fig. 5. Relation between slope of the half-mass radius profiles and
equipartition parameter η for simulated states (orange): a linear rela-
tion (red line) is found between the two parameters. The linear relation
shows that clusters characterized by a higher level of energy equiparti-
tion display a higher level of mass segregation. To be comprehensive,
we also show the corresponding points for which the half-mass radii
are derived from the best-fit two-component f (ν)

T models as black dots,
and those obtained from the best-fit two-component King models (to be
described in the next section) as green dots. There is a better correspon-
dence between simulated states and the f (ν)

T models with respect to the
King models.

4.1. Fit by two-component models

The best-fit values of the dimensionless parameters (with their
formal errors) and the reduced chi-squared for two-component
models are listed in Table 5. The total reduced chi-squared
was calculated by dividing the sum of the chi-squared of the
individual components by the total number of degrees of free-
dom, which is the number of data points minus the number of
free parameters. Once the best-fit model was found, we esti-
mated the single reduced chi-squared separately (by dividing
the density and velocity chi-squared by the respective number
of degrees of freedom) to evaluate the quality of the single
comparisons. We recall that the f (ν)

T models are characterized
by two dimensionless parameters, Ψ and γ, whereas the King
models are characterized by only one parameter, Ψ; in both
cases, the parameters are referred to the light component. The
set of simulated states is listed in order of increasing relax-
ation. Figure 6 shows the total discrepancies (quantified by χ̃2

tot)
plotted against nrel for the two models considered. The King
models perform systematically worse with respect to the f (ν)

T
models. There seems to be no systematic trend between the rel-
evant dimensionless parameters and the relaxation state. From
inspection of Table 5 and of Fig. 6, we can draw some conclu-
sions, which are then confirmed by considering the plots of the
relevant profiles.

For the King models, the values of χ̃2
tot are very high.

Indeed, there is little agreement (in the outer regions discrep-
ancies are always of (≈100%) between the model and the
simulated system. In some cases, the density of the heavy com-
ponent exhibits smaller values of the reduced chi-squared; the
best result appears to be obtained for the least relaxed state,
Sim 3 at 11 Gyr (but we should recall that the systems were all
initialized with isotropic initial conditions). In general, the den-
sity profiles of the two-component King models present a trunca-
tion that is too sharp. This feature was already noted in observed
data (e.g., McLaughlin & van der Marel 2005) and N-body
simulations (e.g., Zocchi et al. 2016). In addition, the central
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Table 5. Best-fit parameters for two-component models.

King models f (ν)
T models

Ψ χ̃2
ρ1

χ̃2
σ1

χ̃2
ρ2

χ̃2
σ2

χ̃2
tot Ψ γ χ̃2

ρ1
χ̃2
σ1

χ̃2
ρ2

χ̃2
σ2

χ̃2
tot

Sim 3, 11 Gyr 4.700 ± 0.002 68.44 99.95 31.12 36.24 67.09 3.85 ± 0.01 28.4 ± 0.1 18.90 21.90 5.25 15.58 16.82
Sim 1, 4 Gyr 4.717 ± 0.005 102.35 31.62 577.52 196.80 286.93 4.03 ± 0.01 56.5 ± 0.2 7.05 4.59 44.38 16.49 21.16
Sim 1, 7 Gyr 4.751 ± 0.004 103.03 26.89 465.23 171.13 233.75 4.14 ± 0.01 54.0 ± 0.2 6.94 18.54 29.68 22.76 21.32
Sim 1, 11 Gyr 5.165 ± 0.003 104.06 357.93 53.56 162.53 195.59 4.467 ± 0.002 47.8 ± 0.2 13.58 18.05 7.73 15.89 14.46
Sim 6, 4 Gyr 4.651 ± 0.003 156.59 689.87 45.19 219.91 312.14 4.103 ± 0.009 67.4 ± 0.2 9.65 20.82 8.15 8.81 12.52
Sim 5, 4 Gyr 5.651 ± 0.004 160.24 712.63 86.34 157.21 358.92 4.708 ± 0.001 67.0 ± 0.2 7.02 30.92 8.11 13.22 16.70
Sim 6, 7 Gyr 4.855 ± 0.004 164.17 671.29 67.80 217.85 312.82 4.115 ± 0.003 56.6 ± 0.2 3.68 21.35 7.05 6.59 10.23
Sim 5, 7 Gyr 5.680 ± 0.003 201.66 735.86 49.67 150.21 364.36 5.46 ± 0.02 49.0 ± 0.2 7.13 20.76 16.34 13.05 13.89
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Fig. 6. Values of χ̃2
tot (plotted against nrel) associated with two-

component King models (triangles) and f (ν)
T models (circles). The plot

shows that the latter models perform far better than the former models.

densities predicted by these models are too high with respect to
those of the simulated states. The high values of χ̃2

tot are largely
related to the sharp truncation of the models, which causes great
discrepancies (up to 100%) in the outer regions. The kinematic
comparison gives the worst results, especially for the light com-
ponent. The velocity dispersion profiles, as noted also for one-
component models (see Appendix A), are too flat in the central
regions, and decrease too rapidly in the outermost parts of the
system. The large kinematic discrepancies are probably due to
the fact that King models are isotropic, whereas the simulated
states are radially-biased anisotropic systems.

The two-component f (ν)
T models appear to offer a better rep-

resentation of the simulated states, judging from the associated
values of the χ̃2

tot. In fact, they are found to give a good descrip-
tion of the density profiles for the two components of the sim-
ulated states (generally the maximum residual does not exceed
20%), both in the outermost regions, thanks to a milder trunca-
tion, and in the central parts. In addition, they are able to repro-
duce (with discrepancies of less than 10%) the central peak in the
velocity dispersion profiles, especially for more relaxed systems.

As an illustration of the above conclusions for simulated
states under conditions of intermediate and advanced relaxation,
we show, in detail, the best-fit profiles for two cases. In Figs. 7
and 8, we show the best-fit density and velocity dispersion pro-
files for the two components of Sim 1 at 11 Gyr, and in Figs. 9
and 10, we show the best-fit profiles for Sim 6 at 7 Gyr. The ver-
tical lines represent the half-mass radii (referred to each com-
ponent) for the simulated state (red line), for the best-fit f (ν)

T

model (black solid line), and for the best-fit King model (black
dashed line). For the light component, the half-mass radii coin-
cide because the scale length of the models is set by equating
its light component half-mass radius to that of the simulated
state.

For each of the two cases illustrated here in detail, we also
compare the anisotropy profile of each component to that of
the simulated state, as shown in Fig. 11. For the more relaxed
system (Sim 6 at 7 Gyr), the best-fit f (ν)

T model gives a good
description of the local degree of anisotropy for both compo-
nents, whereas for Sim 1 at 11 Gyr, the model anisotropy profile
matches only that of the heavy component. These results sug-
gest that the cumulative effects of collisions drive the systems
toward a velocity distribution similar to that generated by violent
relaxation.

In Appendix A, we summarize the results of the fits for one-
component models: the f (ν)

T models perform systematically bet-
ter than the King models (as described in Table A.1) but, in
contrast to the two-component case, they do not reproduce the
kinematic peak well at the center of the simulated states. As
expected, the chi-squared values are higher than those of the
two-component fit. Finally, in Appendix B, we test the perfor-
mance of two-component Michie-King models. We found that
these models perform quite well, especially for the kinemati-
cal profiles, but still worse than the f (ν)

T models (as described
in Table B.1). Given the structure of their distribution func-
tion, the Michie-King models give a reasonable description of
the anisotropy profiles, although they exhibit a declining trend
for α in the outer parts, which is not present in the simulated
states.

4.2. Parameter space for two-component f (ν)
T models

In Fig. 12, we show the distribution of the best-fit two-
component f (ν)

T models in the relevant parameter space. The
figure suggests that dynamical evolution drives the systems
toward more truncated (lower values of γ) and more concen-
trated (higher values of Ψ) models. For Sim 1 and Sim 5, the
evolution toward more concentrated models is more evident,
whereas the simulated states relative to Sim 6 have about the
same values of Ψ. This evolution in the parameter space might be
related to a general trend in the direction of core collapse, which
is usually attributed to the onset of the gravothermal catastrophe
(Lynden-Bell & Wood 1968). A similar evolution trend in the
parameter space (towards more truncated and more concentrated
systems) was found for the LIMEPY models (see Zocchi et al.
2016 for one-component models and Peuten et al. 2017 for the
multi-component case).
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Sim 1, 11 Gyr - Density profile, light stars
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Fig. 7. Best-fit profiles and residuals for Sim 1 at 11 Gyr for two-component King models (green) and for two-component f (ν)
T models (black).

Upper panels: density profile for light component (left) and for heavy component (right). Lower panels: density residuals for light component
(left) and for heavy component (right). Vertical lines represent the half-mass radius of the component under consideration in the simulated state
and in the models.
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Fig. 8. Best-fit profiles and residuals for Sim 1 at 11 Gyr for two-component King models (green) and for two-component f (ν)
T models (black).

Upper panels: velocity dispersion profile for light component (left) and for heavy component (right). Lower panels: velocity dispersion residuals
for light component (left) and for heavy component (right). The vertical lines represent the half-mass radius of the component under consideration
in the simulated state and in the models.
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Fig. 9. Best-fit profiles and residuals for Sim 6 at 7 Gyr for two-component King models (green) and for two-component f (ν)
T models (black). Upper

panels: density profile for light component (left) and for heavy component (right). Lower panels: density residuals for light component (left) and
for heavy component (right). The vertical lines represent the half-mass radius of the component under consideration in the simulated state and in
the models.
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Fig. 10. Best-fit profiles and residuals for Sim 6 at 7 Gyr for two-component King models (green) and for two-component f (ν)
T models (black).

Upper panels: velocity dispersion profile for light component (left) and for heavy component (right). Lower panels: velocity dispersion residuals
for light component (left) and for heavy component (right). The vertical lines represent the half-mass radius of the component under consideration
in the simulated state and in the models.
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two-component f (ν)

T models (black) and the isotropic King models (green). Left panels: anisotropy profiles of light components. Right panels:
anisotropy profiles of heavy components. The vertical lines represent the half-mass radius of the component under consideration in the simulated
states and in the models.
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5. Discussion and conclusions

In this paper, we consider a set of simulated states, meaning,
selected snapshots taken from realistic Monte Carlo simulations
(Downing et al. 2010) that incorporate both dynamical and stel-
lar evolution. The simulated states were investigated by means
of two-component f (ν)

T de Vita et al. (2016) and King (1966)
models, in which the two components represent light (main
sequence) stars and heavy stars (giants, remnants, and bina-
ries), respectively. The definition of the two-component models
takes into account the presence of partial energy equipartition

and mass segregation, which are expected to take place in many
globular clusters as a result of collisions. The selected simulated
states are characterized by different degrees of relaxation, with
the relaxation parameter nrel = tage/trc ranging from 2.5 to 64.9.
A condition of only partial local equipartition is met at the center
of the cluster, where it can be quantified by means of the parame-
ter η introduced by Trenti & van der Marel (2013). All the simu-
lated states exhibit η ≤ 0.27, smaller than expected in the case of
full central-energy equipartition (η = 0.5). In turn, mass segrega-
tion is present also in the least relaxed systems, which indicates
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that this process sets in very efficiently. The complex interplay
between energy equipartition and mass segregation has also been
analyzed by Webb & Vesperini (2017); these authors quantify
the mass segregation present in some simulations by measuring
the gradient of the cluster’s stellar-mass function, and refer to
the parameter η as a measure of energy equipartition. Here, in
our simple two-component modeling, such complex interplay is
summarized in Fig. 5, which shows a linear relation between the
slope of the half-mass radius profile, s, and η.

By applying a combined density and kinematic chi-squared
test to the two components, we find that two-component f (ν)

T
models provide a reasonable description of the density profiles of
the simulated states. In particular, the two-component f (ν)

T mod-
els are able to reproduce the central peak in the velocity disper-
sion profiles (residuals are typically <10%) and the increase in
anisotropy profiles in more relaxed systems. This latter aspect
suggests that the slow cumulative effects of relaxation processes
lead the systems toward a velocity distribution that resembles
that generated by collisionless violent relaxation. By inspect-
ing the evolution of simulated states in the parameter space, we
may observe that dynamical evolution leads the systems toward
more truncated and more concentrated models. In contrast, mod-
els based on the King distribution function do not offer a good
representation of the simulated states. The density profiles of
these models present a sharp truncation and high central densi-
ties, and the velocity dispersion profiles are not compatible with
those measured in the simulations.

We wish to emphasize that one limitation of the simulations
considered in this paper is the lack of an exploration of the full
effects of the tidal field. In this sense, the systems that are stud-
ied are quite isolated, which favors the onset of radial anisotropy
in their outer regions. In the presence of a realistic tidal field,
stars in radial orbits would be preferentially stripped and, as a
result, the cluster would be more isotropic, at least in the outer
parts, where, in the case of very strong tidal field, even tangen-
tial anisotropy could arise (e.g., see Zocchi et al. 2016; Tiongco
et al. 2016; Bianchini et al. 2017a). Thus, we argue that the mod-
els developed here most likely represent an optimal tool for the
clusters that underfill the volume associated with the boundary
surface determined by the tidal interaction with the host galaxy.

In conclusion, the two-component f (ν)
T models appear to offer

a realistic representation of a class globular clusters and a reason-
ably starting point to investigate dynamical mechanisms related
to mass segregation and energy equipartition inside these stellar
systems. The results thus set the basis for the application of the
adopted family of models to diagnose the structural properties
of nonrotating globular clusters, which will require a proper dis-
cussion of the relevant mass-to-light gradients and are given in a
separate paper.

One future goal that is encouraged by the results of the
present paper is to make an attempt to use the two-component
f (ν)
T models to interpret the real data of the new globular clusters

diagnostics made possible by Gaia. For the study of real sys-
tems, it is of primary importance to understand how mass segre-
gation influences the local value of the mass-to-light ratio (e.g.,
see Bianchini et al. 2017b), and thus the determination of the rel-
evant parameters of the models considered. From the theoretical
point of view, a natural and interesting development of this work
could be the construction of models able to take into account
different degrees of anisotropy in the outer regions, following in
detail the indications provided by the simulations. For this, a bet-
ter understanding of the mechanisms leading to the anisotropy
profiles resulting from collisionality would be desired.
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Appendix A: Fit by one-component models

The simplest and most common way to apply stellar dynamics to
the study of stellar systems is to fit the available data by means of
one-component self-consistent models. When such a procedure
is adopted, it is assumed that the stellar populations may include
stars of different masses, but that they are homogeneous. In the
introduction, we noted that this picture may be viable for colli-
sionless systems in the absence of dark matter, but is inherently
inappropriate when collisionality induces effects of mass segre-
gation and equipartition. Below, we illustrate the performance of
one-component dynamical models on data taken from the simu-
lated states that were studied in the main text by means of two-
component models. In particular, we compare the fits obtained
from King models to those from f (ν)

T models.
In Figs. A.1 and A.2, we show the best-fit density and veloc-

ity dispersion profiles for Sim 1 at 11 Gyr and for Sim 6 at 7 Gyr,
respectively. The best-fit values of the dimensionless parame-
ters (and their formal errors) and the reduced chi-squared for
one-component models are listed in Table A.1. The set of sim-
ulated states is listed in order of increasing relaxation. A trend
of increasing Ψ for more relaxed systems is apparent for both
dynamical models. For any given simulated state, the values of Ψ
and γ associated with the one-component models are systemati-
cally larger than those reported in Table 5 for the corresponding
fits by two-component models.

For each best-fit model illustrated here, we also compare the
anisotropy profile to that of the simulated state, as shown in
Fig. A.3. Interestingly, the f (ν)

T models give a good description
of the pressure anisotropy for relaxed systems, such as Sim 6
at 7 Gyr, whereas Sim 1 at 11 Gyr presents a lower degree of
radial anisotropy in the outer regions. (This confirms the view
that collisions drive the system toward a velocity distribution that

resembles that generated by the completely different mechanism
of violent relaxation).

Apparently, one-component King models do not perform
well, although they are found to perform slightly better for less
relaxed cases. They are able to fit the density profile reasonably
well, but the models exhibit an exceedingly sharp density trun-
cation. The one-component King models cannot reproduce the
central peak or the general qualitative behavior of the veloc-
ity dispersion profile. This is probably related to the fact that
King models have isotropic velocity distributions, whereas the
simulated states are characterized by significant (radially-biased)
pressure anisotropy.

The one-component f (ν)
T models show a significant improve-

ment with respect to the King models. Indeed, the f (ν)
T density

profiles provide a better representation of the simulated states,
except for the central shell, with a welcome mild density trunca-
tion in the outer parts. As for the velocity dispersion profiles, the
models do not reproduce the central peak that characterizes the
simulations, but their overall shape matches the properties of the
simulated states better than the best-fit King models.

The values of χ̃2
tot are very high, in particular for the kine-

matic fit of the King models. This is partly due to the low values
of the formal uncertainties on the data points, but it certainly
marks a failure of the one-component models in representing the
structure of the simulated states. We conclude that the results of
the fits by one-component models confirms that the f (ν)

T models
provide a step in the right direction, in relation to the structural
properties of realistic simulations of globular clusters. However,
the significant discrepancies that are noted simply underline
the need to incorporate effects of mass segregation and energy
equipartition that only multi-component models may be able to
handle.
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Fig. A.1. Best-fit profiles and residuals for Sim 1 at 11 Gyr for one-component King models (green) and for one-component f (ν)
T models (black).

Upper panels: density (left) and velocity dispersion (right) profiles. Lower panels: density (left) and velocity dispersion (right) residuals.
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Table A.1. Best-fit parameters for one-component models.

King models f (ν)
T models

Ψ χ̃2
ρtot

χ̃2
σtot

χ̃2
tot Ψ γ χ̃2

ρtot
χ̃2
σtot

χ̃2
tot

Sim 3, 11 Gyr 5.850 ± 0.005 32.04 114.71 73.12 5.03 ± 0.01 26.0 ± 0.2 5.44 41.44 23.36
Sim 1, 4 Gyr 6.638 ± 0.004 89.90 367.42 227.94 4.95 ± 0.02 67.3 ± 0.24 9.93 52.59 31.16
Sim 1, 7 Gyr 6.682 ± 0.004 139.75 350.46 244.33 5.12 ± 0.01 61.8 ± 0.3 5.73 42.25 23.92
Sim 1, 11 Gyr 6.761 ± 0.005 81.80 242.02 161.38 5.46 ± 0.01 55.6 ± 0.3 2.88 41.68 22.20
Sim 6, 4 Gyr 7.151 ± 0.004 143.53 469.08 305.43 5.26 ± 0.02 76.8 ± 0.2 3.00 49.93 26.39
Sim 5, 4 Gyr 7.399 ± 0.005 143.38 496.77 318.96 5.92 ± 0.01 80.0 ± 0.3 5.15 56.26 30.60
Sim 6, 7 Gyr 7.507 ± 0.003 159.22 374.67 266.15 6.20 ± 0.01 58.0 ± 0.2 6.93 49.93 28.35
Sim 5, 7 Gyr 7.717 ± 0.006 127.29 502.05 313.54 7.06 ± 0.01 52.4 ± 0.2 10.83 55.91 33.25
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Fig. A.2. Best-fit profiles and residuals for Sim 6 at 7 Gyr for one-component King models (green) and for one-component f (ν)
T models (black).

Upper panels: density (left) and velocity dispersion (right) profiles. Lower panels: density (left) and velocity dispersion (right) residuals.
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Fig. A.3. Anisotropy profiles of Sim 1 at 11 Gyr (left panel) and Sim 6 at 7 Gyr (right panel) compared to those associated with best-fit one-
component f (ν)

T models (black) and the isotropic King models (green).
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Appendix B: A comparison with two-component
Michie-King Models

For the two simulated states of our sample (so chosen in order
to be representative of different relaxation conditions), Sim 1 at
11 Gyr (nrel = 8.3), and Sim 6 at 7 Gyr (nrel = 23.6), we also
compared the performance of the two-component f (ν)

T models to
that of the Michie-King (Michie 1963) two-component models,
defined by the following distribution function:

f MK
i (E, J) =

Ai exp
(
−ai

J2

2r2
a

){
exp [−ai(E − Et)] − 1

}
for E < Et

0 for E ≥ Et

,

(B.1)

where Ai, ai, are positive constants referring to the ith compo-
nent and ra is the anisotropy radius, which is the radius at which
the anisotropy function α, defined in Eq. (4), equals unity. Fol-
lowing a procedure analogous to that outlined in Sect. 2 for
the two-component f (ν)

T models, we reduced the set of param-
eters identifying this family of models to two dimensionless
free parameters, which is the concentration of the light compo-
nent, Ψ = −a1(Φ(0) − Et), and γM = a1/2/(4πGA1r2

a ). In this
case, assumption (3) of Sect. 2 is replaced by the choice that
the two components are characterized by the same anisotropy
radius.

We performed a combined chi-squared analysis of the den-
sity and velocity dispersion profiles, following the same proce-
dure as in Sect. 4.1. In contrast to the other models considered

in this paper, in this case, the length scale is set by equating the
anisotropy radius of the light component, which appears explic-
itly in the models, to that of the simulated states.

In Table B.1, we report the best-fit values of the dimension-
less parameters and the reduced chi-squared for the compari-
son between the two-component models and the simulated states
considered, together with those obtained for the two-component
f (ν)
T models. The Michie-King models show values of χ̃2 signifi-

cantly higher than those of the f (ν)
T models.

For Sim 6 at 7 Gyr, we also represent the best-fit associated
profiles in Figs. B.1 and B.2, compared to those of the best-fit
f (ν)
T models. The two-component Michie-King models appear to

perform better than the two-component King models (discussed
in the main text), because their phase space structure has the
qualitatively appealing feature of an anisotropy profile of the
right kind; this special feature is further optimized by setting,
in the fitting procedure, the model anisotropy radius of the light
component to be equal to that of the simulated data. Indeed,
this positive aspect is illustrated by the excellent performance
in the kinematical fit of Fig. B.2. However, the performance in
fitting the density profiles (Fig. B.1) is not as satisfactory, which
explains the high values of chi-squared that are found.

We also tested the performance of the Michie-King models
in describing the anisotropy profile of each component, as shown
in Fig. B.3. Despite the absence of the outer decrease of the
anisotropy profile in the simulated state, the best-fit Michie-King
model performs reasonably well in describing the local degree of
anisotropy, especially for the light component.

Table B.1. Best-fit parameters for two-component Michie-King and f (ν)
T models.

Michie-King models f (ν)
T models

Ψ γM χ̃2
ρ1

χ̃2
σ1

χ̃2
ρ2

χ̃2
σ2

χ̃2
tot Ψ γ χ̃2

ρ1
χ̃2
σ1

χ̃2
ρ2

χ̃2
σ2

χ̃2
tot

Sim 1, 11 Gyr 3.400 ± 0.006 27.9 ± 0.8 55.16 33.12 15.59 63.01 42.09 4.467 ± 0.002 47.8 ± 0.2 13.58 18.05 7.73 15.89 14.46
Sim 6, 7 Gyr 3.732 ± 0.005 40.9 ± 0.2 53.79 16.35 87.74 18.10 41.17 4.115 ± 0.003 56.6 ± 0.2 3.68 21.35 7.05 6.59 10.23
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Fig. B.1. Best-fit profiles and residuals for Sim 6 at 7 Gyr for two-component Michie-King models (green) and for two-component f (ν)
T models

(black). Upper panels: density profile for light component (left) and for heavy component (right). Lower panels: density residuals for light
component (left) and for heavy component (right). The vertical lines represent the half-mass radius of the component under consideration in the
simulated state and in the models.
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Fig. B.2. Best-fit profiles and residuals for Sim 6 at 7 Gyr for two-component Michie-King models (green) and for two-component f (ν)
T models

(black). Upper panels: velocity dispersion profile for light component (left) and for heavy component (right). Lower panels: velocity dispersion
residuals for light component (left) and for heavy component (right). The vertical lines represent the half-mass radius of the component under
consideration in the simulated state and in the models.
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Fig. B.3. Anisotropy profiles Sim 6 at 7 Gyr compared to those associated with best-fit two-component f (ν)
T models (black) and Michie-King models

(green). Left panel: anisotropy profile of light component. Right panel: anisotropy profiles of heavy component. The vertical lines represent the
half-mass radius of the component under consideration in the simulated states and in the models.

A67, page 17 of 17

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935878&pdf_id=18

	Introduction
	Two-component models
	Simulations
	Mass segregation in the simulated states
	Definition of the two components
	Intrinsic profiles
	Basic parameters for a comparison with two-component models

	A description of the simulated states by two-component models
	Fit by two-component models
	Parameter space for two-component f()T models

	Discussion and conclusions
	References
	Fit by one-component models
	A comparison with two-component Michie-King Models

