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ABSTRACT
The presence or absence of intermediate-mass black holes (IMBHs) at the centre of Milky Way globular clusters (GCs) is still an
open question. This is due to either observational restrictions or limitations in the dynamical modelling method; in this work, we
explore the latter. Using a sample of high-end Monte Carlo simulations of GCs, with and without a central IMBH, we study the
limitations of spherically symmetric Jeans models assuming constant velocity anisotropy and mass-to-light ratio. This dynamical
method is one of the most widely used modelling approaches to identify a central IMBH in observations.

With these models, we are able to robustly identify and recover the mass of the central IMBH in our simulation with a
high-mass IMBH (MIMBH/MGC ∼ 4 per cent). Simultaneously, we show that it is challenging to confirm the existence of a
low-mass IMBH (MIMBH/MGC ∼ 0.3 per cent), as both solutions with and without an IMBH are possible within our adopted
error bars. For simulations without an IMBH, we do not find any certain false detection of an IMBH. However, we obtain upper
limits that still allow for the presence of a central IMBH. We conclude that while our modelling approach is reliable for the
high-mass IMBH and does not seem to lead towards a false detection of a central IMBH, it lacks the sensitivity to robustly
identify a low-mass IMBH and to definitely rule out the presence of an IMBH when it is not there.

Key words: stars: kinematics and dynamics – globular clusters: general – stars: black holes.

1 IN T RO D U C T I O N

With masses between 102 M� and 105 M�, intermediate-mass black
holes (IMBHs) are still an elusive population. Ultra-luminous X-ray
sources are thought to be accretion signatures of IMBHs, ESO 243-49
HLX-1 being one of the most promising candidates with a minimum
mass of 500 M� (Farrell et al. 2009). Recently, the gravitational
wave observatories LIGO and Virgo detected an ∼ 140 M� black
hole (BH) (Abbott et al. 2020a, b). In the local neighbourhood,
a few candidates have been suggested through dynamical analysis
of nearby globular clusters (GCs) (see e.g. Noyola, Gebhardt &
Bergmann 2008; van der Marel & Anderson 2010; Lützgendorf et al.
2013, 2015). Despite their scarce evidence, IMBHs are thought to
be the missing link between stellar mass BHs (with masses of ∼
10 M�) and supermassive BHs (with masses larger than ∼ 105 M�).
Furthermore, it has been suggested that IMBHs could be the seeds
for supermassive BHs observed at high redshifts in the early universe
(see e.g. Haiman 2013, for a review). Possible paths for the formation
of IMBHs are the direct collapse of a massive star (Madau & Rees
2001; Spera & Mapelli 2017) and the runaway merger of stars in
dense stellar systems (Portegies Zwart et al. 2004), which happens
early in the evolution of the stellar system (see also Giersz et al.
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2015). A third path may occur later in the evolution of dense stellar
systems, where an IMBH can grow from dynamical interactions
(Giersz et al. 2015). The latter two scenarios suggest that a dense
stellar system, such as GCs, could host a central IMBH.

GCs are bound stellar systems of ∼105–106 stars, with total masses
around 5 × 105M�. As their name suggests, most of them have a
characteristic spherical shape. GCs are compact stellar systems with
half-light radii1 of the order of a few parsecs. Their compactness and
high stellar density make them bright enough to be observed, not only
in our galaxy or the Local Group but also beyond (Harris & van den
Bergh 1981; Brodie & Strader 2006). Given their relatively high ages,
bigger than ∼ 10 Gyr, GCs are considered the relics of the formation
epoch of galaxies (Vandenberg, Bolte & Stetson 1996; Carretta et al.
2000). The Galactic GCs half-mass relaxation times range from
∼ 100 Myr to ∼ 10 Gyr (Harris 1996, 2010 edition), making them
unique systems for dynamical studies. The short relaxation times
allow for mass segregation, i.e. the sorting of higher mass stars
towards the cluster centre (Spitzer 1987), while evolving towards a
state of partial energy equipartition (see Spitzer 1969; Trenti & van
der Marel 2013; Bianchini et al. 2016a).

1Unless mentioned otherwise, we refer to half-light radius as the projected
radius containing half of the light in the GC (Rh), while the half-mass radius
is the 3D radius containing half of the mass in the GC (r50 per cent).
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IMBHs at the centre of GCs 4647

Different methods have been utilized to find IMBHs in GCs, each
relying on two types of signature: accretion of gas by the IMBH
or dynamical effects due the presence of the IMBH. On one hand,
the accretion signatures in Galactic GCs are dim or non-existent,
pointing towards possible IMBHs masses lower than 1000 M� or no
IMBHs at all (Tremou et al. 2018). On the other hand (most of),
the IMBH candidates in Galactic GCs have been suggested using
dynamical signatures. Stars under the direct influence of the central
IMBH will follow a Keplerian potential producing a central cusp
in the velocity dispersion profile of the GC (Gebhardt, Rich & Ho
2002; Noyola et al. 2008, 2010; van der Marel & Anderson 2010;
Lützgendorf et al. 2011, 2012, 2013, 2015; Kamann et al. 2014, 2016,
to name a few).

Even with the vast literature analysing the dynamical signatures
at the centres of GCs, there is still no consensus regarding the
presence or absence of IMBHs in Galactic GCs. The central cusp in
velocity dispersion is limited to stars within the radius of influence2

of the IMBH (rinf), which is typically just a fraction of the core
radius. Due to the small size of the radius of influence, errors in
the determination of the kinematic centre or contamination by bright
stars due to crowding in the centre of the GC might hamper the
dynamical analysis. Using integral field unit (IFU) spectroscopic
data of the central region of NGC 5139 (ω Cen), Noyola et al. (2008)
find evidence of an ∼ 40 000 M� IMBH. For the same cluster, using
a sample of proper motion from HST, van der Marel & Anderson
(2010) find only an upper limit of 18000 M� for the possible IMBH.
Both studies have a difference in the position of the kinematic
centre, separated by 12

′′
(or ∼ 0.3 pc at the distance of NGC 5139),

which corresponds to 1–2 times the rinf, depending on the inferred
IMBH mass as given above. However, using another sample of radial
velocities, Noyola et al. (2010) show that the detection of the IMBH
holds for the different kinematic centres. The discrepancy between
both estimates could arise from either the different kind of kinematic
data or modelling technique applied. Similarly in the case of NGC
6388, Lützgendorf et al. (2011, 2015) find evidence for an IMBH
using velocity maps from integrated spectra, while Lanzoni et al.
(2013) do not observe the central velocity dispersion cusp when using
the radial velocities of individual stars. More recent observations
from IFU with MUSE by Kamann et al. (2018) further support the
presence of a central cusp in velocity dispersion. No matter which
observational technique is used, the highly crowded centres of GCs
add a complex observational challenge.

In addition to the observational limitations due to a small rinf,
the detection of an IMBH is also made difficult by the limitations
in the dynamical models, used to actually identify an IMBH in the
observational data. While usually a constant (global) mass-to-light
ratio and velocity anisotropy (see Section 2.3) are assumed for the
dynamical models, these quantities can vary significantly in a GC.
For NGC 5139, van der Marel & Anderson (2010) show how an
extended dark mass due stellar remnants is also consistent with
the observed velocity dispersion profile. This possibility was also
recently explored by Zocchi, Gieles & Hénault-Brunet (2019), who
uses a multimass dynamical model, based on distribution functions
(DFs), to include a central cluster of stellar-mass BHs, proving that
this dark extended population could also produce the central rise
in velocity dispersion in NGC 5139. Using a library of N-body
simulations, Baumgardt et al. (2019) also showed that a cluster of

2The radius of influence rinf is the distance from the centre of the GC where
the cumulative mass of stars (and stellar remnants) is equivalent to the mass
of the central IMBH and hence depends crucially on the mass of the IMBH.

stellar-mass BHs at the centre of NGC 5139 was favoured over a
central IMBH, in particular, due to their distinctive effect on the
high-velocity stars at the centre of the GC. A similar case was shown
by Mann et al. (2019) for 47 Tuc, where a multimass dynamical model
with a central cluster of BHs was consistent with the kinematic data,
ruling out the necessity for a central IMBH suggested by Kızıltan,
Baumgardt & Loeb (2017). This has been confirmed by Hénault-
Brunet et al. (2020) with a different type of multimass models.

Simulations of GCs with a central IMBH provide us with a
benchmark to study the observational and dynamical modelling
limitations that hinder a robust detection of an IMBH via its
dynamical signatures. Work in this direction has been done by de Vita
et al. (2017). In their work, the authors explore the recovery of IMBH
masses in GCs combining Monte Carlo simulations of GCs with a
central IMBH (Askar et al. 2017) and mock IFU observations from
SISCO (Bianchini et al. 2015), addressing the effects of crowding,
contamination due bright stars, and the cluster centre. They find that,
even when the actual mass profile is fully known, it is challenging
to detect low-mass IMBH or rule out the IMBH solution in cases
without a central IMBH. In addition, they show that when the IMBH
is detected, the inferred mass is systematically underestimated. They
suggest that the reason could be unquantified effects due to energy
equipartition and binaries.

In this work, we explore the limitations of dynamical modelling
based on Jeans equations to detect a central IMBH and the feasibility
of rejecting an IMBH solution when it is truly absent. For this,
we will assume rather perfectly sampled observational data from
realistic simulations of GCs and analyse them with simple, but
commonly used, dynamical models. We introduce a set of Monte
Carlo simulations in Sections 2.1 and 2.2 and analyse them with
Jeans models3 described in Section 2.3. We focus on the limitations
in the dynamical modelling itself, which assumes constant mass-to-
light ratio and velocity anisotropy (see Section 2.3), we apply the
same modelling pipeline to the simulated GCs in Section 3.1, and
then analyse the result of the fittings in Section 3.2. In Section 4,
we discuss the reliability of our dynamical models and we conclude
with our summary in Section 5.

2 M E T H O D S A N D M O D E L SE T U P

We investigate the kinematic signatures of the presence of an IMBH
using Monte Carlo N-body models, evolved to 12 Gyr, to analyse and
understand the dynamical signatures of the presence of an IMBH, as
described in the following sections.

2.1 MOCCA and the Monte Carlo method

The MOCCA-Survey Database I (Askar et al. 2017) is a collection
of about 2000 simulated star clusters with different initial conditions
that were evolved using the MOCCA code (MOnte Carlo Cluster
simulAtor, Hypki & Giersz 2013; Giersz et al. 2013). The MOCCA
code is a ‘kitchen sink’ package that combines treatment of dynamics
with prescriptions for stellar/binary evolution and other physical
processes that are important in determining the evolution of a realistic
star cluster.

Dense star clusters are collisional systems and their evolution
is governed by two-body relaxation. In MOCCA, the treatment
for relaxation is based on the orbit-averaged Monte Carlo method
(Hénon 1971a, b) for following the long-term evolution of spherically

3Hereafter, we refer as ‘models’ exclusively to the dynamical models.
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4648 F. I. Aros et al.

Table 1. Initial properties of simulated GCs that were used for our analysis. The first column indicates the simulation name, given by
the central object at 12 Gyr, while the second column indicates the symbol used for referring each simulation in all figures. N indicates
the initial number of stellar systems, fbin provides the initial binary fraction of the cluster. All these simulations were initially King
(1966) models, their central concentration is given by the parameter W0. r50% is the initial half-mass radius of the cluster. rt gives
the initial tidal radius. RGC is the Galactocentric radius of the cluster. The final column indicates the prescription for BH natal kick,
for ‘Fallback’ cases, and BH masses and natal kicks are computed using the mass fallback prescriptions of Belczynski, Kalogera &
Bulik (2002). For ‘No Fallback’ cases, BHs are given natal kicks that follow a Maxwellian distribution with σ = 265 km s−1 (Hobbs
et al. 2005). The metallicity of all simulations was Z = 0.001.

Simulation Symbol N fbin W0 r50% rt RGC Central density BH natal kicks
(%) (pc) (pc) (kpc) (M� pc−3)

No IMBH/BHS 1.2 × 106 10 6 2.40 60 3.17 9.8 × 104 No fallback

No IMBH + BHS 1.2 × 106 10 3 1.20 60 3.17 3.1 × 105 Fallback

High-mass IMBH 1.2 × 106 5 9 1.20 60 3.21 3.5 × 107 No fallback

Low-mass IMBH 7.0 × 105 5 9 2.40 60 4.20 2.1 × 106 No fallback

Post core-collapse 1.2 × 106 5 9 7.04 60 3.21 2.3 × 105 No fallback

symmetrical star clusters. This method was subsequently improved
by Stodolkiewicz (1982), Stodolkiewicz (1986), Giersz (1998), and
Giersz (2001). In this approach, relaxation is treated as a diffusive
process and velocity perturbations are computed by considering
an encounter between two neighbouring stars. Energy and angular
momentum of stars are perturbed at each time-step to mimic the
effects of two-body relaxation. The Monte Carlo method combines
the particle-based approach of N-body methods with a statistical
treatment of relaxation. This allows for inclusion of additional
physical processes that are important when simulating the evolution
of a realistic star cluster. In MOCCA, stellar and binary evolutions are
implemented using the prescriptions provided by the single (SSE) and
binary (BSE) codes (Hurley, Pols & Tout 2000; Hurley, Tout & Pols
2002). For computing the outcome of strong dynamical interactions
involving binary–single stars and binary–binary stars, MOCCA uses
the FEWBODY code (Fregeau et al. 2004), which was developed to
carry out small-N scattering experiments, in which case, the time-step
for FEWBODY is set to resolve the interaction. Within one MOCCA
time-step, many of such interactions can occur and it is also the
case for binary systems interacting with an IMBH. MOCCA also
includes a realistic treatment for the escape process in tidally limited
star clusters as described by Fukushige & Heggie (2000). In this
treatment, the escape of an object from the cluster is not instantaneous
but delayed, and some potential escapers can get scattered to
lower energies and become bound to the cluster again (Baumgardt
2001).

The main advantage of using the Monte Carlo method to simulate
the dynamical evolution of a realistic star cluster is speed. MOCCA
can compute the evolution of a million-body star cluster within
a week. This advantage makes Monte Carlo codes suitable for
probing the influence of the initial parameter space on the dynamical
evolution of GCs. Given its underlying assumptions, the Monte Carlo
method is limited to simulating spherically symmetric clusters with a
time-step that is a fraction of the relaxation time. Therefore, it is well
suited for following the long-term evolution of a GC but is not ideal
for following the evolution on dynamical time-scales. Results from
MOCCA have been extensively compared with the results for direct
N-body simulations (Giersz, Heggie & Hurley 2008; Giersz et al.
2013; Wang et al. 2016; Madrid et al. 2017). The evolution of global
GC parameters and the number of specific objects in MOCCA and
direct N-body simulations are in good agreement (Wang et al. 2016;
Madrid et al. 2017). These comparisons also serve to calibrate free
parameters in the MOCCA code connected with the escape processes
and interaction probabilities (Giersz et al. 2013).

2.2 The Monte Carlo simulations

We analyse five simulated GCs with and without IMBHs, taken from
the MOCCA-Survey Database I (Askar et al. 2017). Their initial
conditions are given in Table 1 and each is named to indicate the
type of central object they contain at 12 Gyr (see also Table 2). The
no IMBH/BHS simulation does not contain an IMBH or a significant
number of BHs at 12 Gyr. The no IMBH + BHS contains 148 stellar
remnant BHs (of the order of ∼ 10 M� each) at 12 Gyr. The high-
mass IMBH cluster hosts a central IMBH of ∼ 13000 M� at 12 Gyr,
while the low-mass IMBH contains an IMBH of ∼ 500 M� at 12 Gyr.
The simulated cluster labelled post core-collapse has reached core-
collapse at 12 Gyr and does not contain an IMBH or a significant
number of stellar mass BHs.

All these GCs initially followed a King (1966) profile and had
1.2 × 106 stellar systems,4 except for the low-mass IMBH, which
initially had 7 × 105 stellar systems. In all cases, a metallicity of
Z = 0.001 (corresponding to [Fe/H] ∼ −1.3) was used for the stars.
The initial binary fraction for these simulated GCs is indicated in the
third column in Table 1, and their initial binary properties assume a
thermal eccentricity distribution, a uniform mass ratio distribution,
and a semimajor axis distribution, which is uniform in logarithmic
scale [between 2(R1 + R2) and 100 AU, where R1 and R2 are the
zero-age main-sequence stellar radii of the binary components]. The
simulated GCs had an initial tidal radius of 60 pc and are assumed
to have a circular orbit with a velocity of 220 km/s around a point
mass-like potential for the galaxy, of which total mass is equal to the
enclosed mass inside the Galactocentric radius of each simulated GC
(see Table 1).

In all simulated GCs, except the no IMBH + BHS, BHs were
given the same natal kicks as neutron stars at the moment of
formation. The natal kick velocity follows a Maxwellian distribution
with σ = 265 km/s (Hobbs et al. 2005). For the no IMBH + BHS
cluster, BH masses and natal kicks were modified according to the
mass fallback prescription provided by Belczynski et al. (2002). This
mass fallback prescription introduces a ‘fallback’ factor, which gives
the fraction of the stellar envelope that falls back on the remnant
following its formation. This factor can significantly reduce natal
kicks for BHs that have progenitors with zero-age main-sequence
masses between 20 and 50 M�. The reduced natal kicks for BHs

4In this context, single and binary systems are understood as ‘stellar systems’.
The simulated clusters start with 1.2 × 106 single + binary systems, rather
than 1.2 × 106 stars.
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IMBHs at the centre of GCs 4649

Table 2. Summary of the properties of the simulated GCs at 12 Gyr. These values were measured directly from the simulations. The first column
indicates the simulation name, given by the central object at 12 Gyr, while the second column indicates the symbol used for referring each simulation
in all figures. The number of stellar systems (N) includes single and binaries stars. Mtot is the total mass of the cluster and r50% is the half-mass
radius, while Ltot is the total cluster luminosity and Rh is the projected half-light radius. The binary fraction (fbin) represents the global fraction
including all stellar systems in the simulation. The half-mass mass-to-light ratio (ϒ50%) and the half-mass velocity anisotropy (β50%) were measured
including all stellar systems within the half-mass radius (r50%), while the outer velocity anisotropy (βout) includes all stars with radii larger than
r50%. M• is the mass of the central IMBH, while Mbh is the total mass of stellar BHs within r50%.

Simulation Symbol N Mtot r50% Ltot Rh fbin ϒ50% β50% βout M• Mbh(×105 M�
)

(pc)
(×105 L�

)
(pc) (%) (M�/L�) (M�) (M�)

No IMBH/BHS 1048918 3.56 5.29 1.99 2.50 6.8 1.38 0.03 0.12 0.0 39.98
No IMBH + BHS 971004 3.29 4.99 1.81 2.84 5.7 1.39 0.11 0.37 0.0 1437.61
High-mass IMBH 942585 3.07 5.50 1.81 2.63 2.0 1.26 0.10 0.30 12883.4 0.0
Low-mass IMBH 496159 1.70 6.13 0.95 2.02 3.0 1.40 0.04 0.08 519.3 0.0
Post core-collapse 388631 1.42 5.14 0.83 1.91 3.7 1.24 0.00 − 0.03 0.0 15.60

allow the no IMBH + BHS cluster to retain about 1300 BHs after
50 Myr of evolution. It had long been thought that BHs that are
retained in GCs would efficiently eject themselves through strong
dynamical interactions leaving behind at best one or two BHs up
to a Hubble time (Kulkarni, Hut & McMillan 1993; Sigurdsson &
Hernquist 1993). However, recent theoretical and numerical works
have shown that BH depletion might not be so efficient and GCs with
moderately long relaxation times that are dynamically young could
contain a sizeable number of BHs up to a Hubble time (Breen &
Heggie 2013a, b; Morscher et al. 2013; Sippel & Hurley 2013;
Heggie & Giersz 2014; Morscher et al. 2015; Wang et al. 2016;
Arca Sedda, Askar & Giersz 2018; Askar, Arca Sedda & Giersz
2018b; Weatherford et al. 2018, 2019; Kremer et al. 2019). In the
same way, the presence of BHs in GCs has been suggested by
the combination of radio and X-ray observations (Maccarone et al.
2007; Strader et al. 2012; Chomiuk et al. 2013; Miller-Jones et al.
2015; Bahramian et al. 2017; Dage et al. 2018; Shishkovsky et al.
2018) and kinematics (Giesers et al. 2018, 2019). These observations
suggest the possibility of multiple BHs in GCs. At 12 Gyr, the no
IMBH + BHS model has lost a significant fraction (∼ 90 per cent)
of its retained BHs as the cluster evolves but still retains about 148 of
them.

The two simulated clusters that include a central IMBH are
called high-mass IMBH and low-mass IMBH. Both follow the
formation scenarios and growth of IMBHs in GCs as seen in
MOCCA simulations, which are described in Giersz et al. (2015) and
summarized in the following (see also Arca Sedda, Askar & Giersz
2019, for an analysis on all MOCCA simulations that include an
IMBH). The high-mass IMBH cluster had initially a central density of
3.5 × 107 M� pc−3. Typically, for simulations with such high central
densities, runaway mergers of main-sequence stars in the first 50 Myr
lead to the formation of massive main-sequence stars that can then
form an IMBH seed either through a merger or a collision with a
stellar mass BH or through direct collapse (see e.g. Portegies Zwart
et al. 2004; Spera & Mapelli 2017). This formation scenario occurs
early in the evolution of the GC and is described as the ‘FAST’
scenario in Giersz et al. (2015). On the other hand, in the model
low-mass IMBH model, the IMBH forms after more than 9 Gyr of
cluster evolution via the ‘SLOW’ scenario described in Giersz et al.
(2015). In this scenario, the IMBH forms from the growth of a stellar
mass BH by mergers and collisions during the core collapse stage
of cluster evolution. The IMBHs formed via the ‘SLOW’ scenario
have masses in the range of 102–103 M� at 12 Gyr. Both simulations
with a central IMBH do not have any stellar BHs within r50 per cent,
because the IMBH efficiently ejects or merges with stellar mass BHs
in the cluster (Leigh et al. 2014; Giersz et al. 2015).

The channel of formation also has an impact on the interaction
between the IMBH and the surrounding stars. IMBHs formed early
on through the ‘FAST’ scenario produce a more clear central rise
in velocity dispersion, while an IMBH formed via the ‘SLOW’
scenario could lack such clear features at 12 Gyr, as it forms later
on during the evolution of the GC (Giersz et al. 2015). In principle,
in MOCCA simulations, a low-mass IMBH can wander around the
centre of the cluster, which in turn can hamper the formation of the
velocity dispersion cusp. As the IMBH mass grows, its movement
around the centre decreases, and it should stay fixed for IMBHs
with M• > 1000 M�. In MOCCA simulations, IMBHs with M• >

1000 ∼ 2000 M� should produce a clear central rise in the velocity
dispersion and surface brightness profiles (Giersz et al. 2015).

At 12 Gyr, the IMBH in the low-mass IMBH simulation is almost
the innermost object; however, its displacement with respect to the
cluster centre is small (2 × 10−4 pc or ∼ 10 mas at 5 kpc) and it
should not have an effect in the dynamical models. However, as
pointed out by de Vita, Trenti & MacLeod (2018), through direct
N-body simulations, large displacements of an IMBH with respect
the cluster centre will require tailored data-modelling comparisons,
and dynamical models under the assumption of spherical symmetry
(as the one used in this work and described below in Section 2.3)
might introduce a bias on the estimated masses of the IMBH.

The post core-collapse simulation starts out as tidally filling, with
a half-mass radius of ∼ 7 pc. The cluster undergoes stronger mass
loss due to tidal stripping, which decreases the number of stars and
shortens its relaxation time. Therefore, the cluster is dynamically
older and has evolved to a post core-collapse phase at 12 Gyr.

For all the five simulated GCs, we extracted the 12-Gyr MOCCA
snapshot, which contains the radial position, radial velocity, tangen-
tial velocity, and stellar parameters of each star. The details of how
the snapshot was used for our dynamical modelling are provided in
subsequent sections. In Table 2, we provide the 12 Gyr properties of
each of the five simulated clusters. We have included in this table the
total mass of the cluster (Mtot), its half-mass (r50 per cent), half-light
radii (Rh), total luminosity (Ltot), binary fraction (fbin), mass-to-light
ratio within the half-mass radius (ϒ50 per cent), the inner (β50 per cent)
and outer velocity anisotropy (βout, see equation 3), the mass of the
central IMBH (M•), and the total mass in stellar BHs (Mbh) within
the half-mass radius.

2.3 Dynamical modelling

We build dynamical models to characterize the 3D mass profile of the
simulated GCs. Our models are built by solving the Jeans equations
(Jeans 1922), which allows us to characterize the internal dynamical
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state of a stellar system via the velocity moments of its DF f (x, v).
The following description of the Jeans equations is based on chapter
4 of Binney & Tremaine (2008) and section 2 of van der Marel &
Anderson (2010).

The dynamical state of a collisionless system is fully determined
by the Collisionless Boltzmann Equation:

∂f

∂t
+

3∑
i=1

(
vi

∂f

∂xi

− ∂�

∂xi

∂f

∂vi

)
= 0 , (1)

which represents the conservation of the probability of finding a
star within the phase-space of position x and velocity v, given
the DF f (x, v) and the potential �. However, solving and relating
equation (1) to observable quantities is not trivial. A simpler approach
is to integrate equation (1) over the velocity space assuming that the
system is in equilibrium (∂f/∂t = 0). This provides a set of equations,
known as Jeans equations, depending only on the velocity moments,
rather than on the more complex DF. The zeroth velocity moment
will correspond to the probability of finding a star at a certain position
ν(x). This is not directly observable and it has to be evaluated using
either the number density n(x) = Ntotν(x) or the luminosity density
j (x) = Ltotν(x) as proxies (where Ntot and Ltot are the total number
of stars and total luminosity). Here, we use the latter as proxy of the
zeroth velocity moment and express all the equations below in terms
of j (x) rather than ν(x). The first velocity moment is the mean veloc-
ity 〈v〉, while the second velocity moment 〈v2〉 = σ 2 + 〈v〉2 includes
the effects of the velocity dispersion σ and the mean velocity 〈v〉.

We build spherically symmetric dynamical models by assuming
a DF that depends only on the Hamiltonian H (x, v) and the total
angular momentum L. For these models, the first velocity moments
are 〈vr〉 = 0, 〈vϕ〉 = 0, and 〈vθ 〉 = 0, while for the second velocity mo-
ments 〈v2

ϕ〉 = 〈v2
θ 〉 holds. This allows to define a tangential compo-

nent as 〈v2
t 〉 = 〈v2

θ 〉 + 〈v2
φ〉 and have an expression for the Jeans equa-

tion, which depends only on two unknown variables 〈v2
r 〉 and 〈v2

t 〉:
d
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The dependency of the second velocity moments 〈v2
r 〉 and 〈v2

t 〉 is
usually described by the velocity anisotropy β as:

β = 1 − 〈v2
t 〉

2〈v2
r 〉

(3)

(see Binney & Tremaine 2008), which could take any functional form
and allows us to rewrite equation (2) as follows:

d
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r 〉
) + (

j (r)〈v2
r 〉
)(2β

r

)
= −d�

dr
. (4)

In our case, we assume a constant velocity anisotropy through the
stellar system; under this condition, the second velocity moment
〈v2

r 〉 is:

〈v2
r 〉(r) = 1

j (r)r2β

∫ ∞

r

dr ′j (r ′)r ′(−2β) ∂�

∂r ′ (r ′) . (5)

The expression for 〈v2
r 〉 is embedded into the coordinate system

centred in the stellar system, but as external observers, we usually do
not have the full six-dimensional information (i.e. the three position
and three velocities). At most, we have available the individual
position of each star projected in the sky (x

′
, y

′
), the line-of-sight

velocity (vLOS), the radial (vPMR) proper motion, and the tangential
(vPMT) proper motion. These are shown in Fig. 1.

To relate 〈v2
r 〉 with the observations, we integrate it along the line

of sight to get a weighted average for the second velocity moments:

Figure 1. Sky coordinates for the projected velocity components. The star
is located at a projected distance R from the cluster centre in the plane of
the sky (x

′
y

′
plane). The line-of-sight velocity (vLOS) is perpendicular to the

plane of the sky, while the radial proper motion (vPMR) follows the direction
of the radial vector defined by R, and the tangential proper motion (vPMT)
follows the direction of the ξ angle between R and x

′
.

〈v2
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〈v2
PMT〉(R) = 1

I (R)

∫ ∞

R

j (r)dr√
r2 − R2

(1 − β) 〈v2
r 〉 , (8)

where R =
√

x ′2 + y ′2 is the radial distance projected in the sky from
the centre of the GC to the star and I(R) is the surface brightness of
the GC. We model the surface brightness in a similar way (van der
Marel & Anderson 2010), using the following function:

I (R) = I0 × (R/a0)−s0 × (1 + (R/a0)α1 )−s1/α1

× (1 + (R/a1)α2 )−s2/α2 , (9)

where I0 is a scaling factor, a0 and a1 are the inner and outer scale
radii, and s0 gives the slope of a possible central cusp, while s1, s2

and α1, α2 control the mid and outer slopes. This parametric form
allows us to explore a broad range of surface luminosity profiles and
easily perform a deprojection to get the luminosity density:

j (r) = −1

π

∫ ∞

r

dR√
R2 − r2

dI

dR
. (10)

To determine the internal mass density profile, we assume a
constant mass-to-light ratio ϒ0 and define the stellar mass density
profile as ρ�(r) = ϒ0j(r). This simplification is commonly adopted.
The total mass of the GC contained within the radius r is then M(r) =
M• + M�(r), where M• is the mass of the possible central BH and
M�(r) is the stellar mass given by:

M�(r) = 4π

∫ r

0
ρ�(r ′)r ′2dr ′ . (11)

We express the derivative of the potential � as:

d�

dr
= GM•

r2
+ GM�(r)

r2
, (12)
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IMBHs at the centre of GCs 4651

Figure 2. Pipeline for the dynamical analysis of the simulated GCs as
described in Section 3.1. We start by extracting the required data from
simulated GCs, projected in the sky, from which we generate surface
brightness and kinematic radial profiles. The surface brightness profile is
used as an input for the dynamical models, which in turn are fitted to the
kinematic profiles.

where the potential will have a Keplerian component given by the
central BH mass (M•) and an extended component given by the mass
distribution of stars (M�).

3 A NA LY SIS AND RESULTS

3.1 Pipeline

For all the different data sets mentioned in Section 2.1 and Table 2,
we have applied the following blind approach, also summarized in
Fig. 2:

(1) For each GC, we select a subsample of stars as our kinematic
tracers. The selection, which is the same for each of the GCs, imposes
a luminosity cut and the exclusion of all binary systems.
We selected all stars brighter than one magnitude below the main-
sequence turn-off as kinematic tracers, which is equivalent to select
stars brighter than mV = 18.5 mag at a distance of D = 5 kpc
(without extinction). As shown in Fig. 3 for the no IMBH/BHS
simulation, this selection excludes most of the stellar main sequence
along with the white dwarf sequence and fainter remnants (neutron
stars and stellar BHs). Our magnitude cut resembles the fainter
limit adopted by Watkins et al. (2015) for HST proper motions
of galactic GCs; however, astrometric catalogues can achieve even
fainter magnitudes at the central (see Anderson & van der Marel
2010; Libralato et al. 2018, for HST proper motions) and outer
regions of GCs (Heyl et al. 2017; Bianchini, Ibata & Famaey 2019,
for HST and Gaia proper motions, respectively). On the other hand,

Figure 3. Colour-magnitude diagram for the no IMBH/BHS simulation.
Single stars are represented by filled symbols, while binary systems are
represented by open symbols. We impose a luminosity cut by selecting all
stars brighter than one magnitude below the main-sequence turn-off (or an
apparent magnitude of mV ∼ 18.5 mag at a distance of D = 5 kpc, without
extinction). This limit is consistent with current observations of line-of-sight
velocities and it excludes the most main-sequence stars, the white dwarf
sequence, neutron stars, and stellar black holes in the cluster.

while state-of-the-art line-of-sight observations are pushing towards
fainter magnitudes, below the main-sequence turn-off (e.g. MUSE
Giesers et al. 2019), their observational errors are still large compared
to the typical velocity dispersion of GCs. The magnitude cut is
agreement with such limitations and allows us to compare line-of-
sight velocities and proper motions of our selected kinematic tracers.
We have included in Fig. A1, in the appendix, the colour-magnitude
diagrams for all five simulated GCs.
Within the selected sample of stellar systems in each simulation, a
fraction of them will correspond to binary systems (as shown by the
open squares in Fig. 3). Binary stars will have different effects in the
measured velocity dispersion depending on the type of kinematic
sample. For line-of-sight velocities, the observed radial velocity
will be dominated by the orbital velocity of the brightest component
rather than their centre of mass velocity; this additional velocity will
increase the measured velocity dispersion. Panel (a) of Fig. 4 shows
the effect of the binary systems (open squares) in the line-of-sight
velocity dispersion compared to a sample that excludes all binaries
(filled squares). The individual velocities of each binary component
were projected using the COCOA5 code (Askar et al. 2018a) and
then we used the luminosity weighted velocity for each binary
system. The bias produced by the orbital velocities of each binary

5https://github.com/abs2k12/COCOA
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4652 F. I. Aros et al.

Figure 4. Line-of-sight velocity dispersion for the no IMBH/BHS simulation.
The simulated GCs have a non-negligible fraction of binary systems, which
can increase the observed line-of-sight velocity dispersion, as their measured
radial velocity will be dominated by their orbital velocity rather than their
centre of mass velocity. The binary systems become harder as their sink
towards the centre of the GC. Their intrinsic orbital velocity gets larger
and its effect in the observed velocity dispersion becomes more significant.
Panel (a) shows the measured velocity dispersion for the selected stellar
systems (as in Fig. 3). The sample with binary systems (open squares) has
a systematically larger velocity dispersion than the sample, which considers
only single stellar systems (solid squares); this difference increases towards
the centre where it becomes ∼ 2 km/s. The grey shaded areas show the effect
on the velocity dispersion caused by an error in the kinematic centre up
to R = 0.15 pc (or ∼ 6 arcsec at a distance of 5 kpc); this is equivalent to
20 per cent of the core radius of the GC. Not all binary systems have the
same influence in the measured velocity dispersion; this is shown in panel
(b). Short-period binaries (with P < 30 d, left-sided triangles) dominate the
increase in velocity dispersion, while binaries with longer periods (P ≥ 1 yr,
right-sided triangles) do not add a significant bias into the velocity dispersion,
being similar to the case without binaries. The binary fraction in the selected
sample is fbin = 7.8 per cent while the fraction of binary stellar system that
falls into the short-period binaries is only fbin = 2 per cent. The shaded areas
in panel (b) represent the error bars for the samples without binaries and with
all binaries.

system increases towards the centre of the cluster where binaries
become harder.
Panel (b) in Fig. 4 shows the effects in the line-of-sight velocity
dispersion for different populations of binary systems, the short-
period binaries (P < 30 d) dominates the rise in velocity dispersion
observed in panel (a), while the long-period binaries (P ≥ 1 yr),
which do not have a large amplitude in their orbital velocity, have a
shallower effect. On the other hand, proper motion velocities will not

Figure 5. Radial profiles projected in the sky for the no IMBH/BHS
simulation. In panel (a), we observe no major difference on the luminosity
surface density [L(R)] between all the stars and the selected sample; this is
expected as the luminosity surface density is dominated by the bright stars.
This is not the case for the mass surface density [�(R)] in panel (b) where
the selection is approximately ∼13 times lower than the full sample. Panels
(c) and (d) show the line-of-sight mean velocity and velocity dispersion; only
in the latter, we observe an ∼ 10 per cent difference within 1 Rh due energy
equipartition effects.

be significantly affected by the orbital motion of the binary system,
as the observations will follow the velocity of the centre of mass.
However, as binary systems are more massive than single stars, they
will have a systematically lower velocity dispersion than single stars
because of partial energy equipartition effects (see Bianchini et al.
2016b, for a discussion). As we expect a larger fraction of binaries
towards the centre due to mass segregation, the binary systems will
bias the measured velocity dispersion to a lower value (see Fig. A2).
This will equally affect line-of-sight velocities and proper motions.
Identifying all binaries and excluding them is not usually possible
and a few contaminants might remain in real observational samples,
even more given our luminosity cut. However, efforts in the direction
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IMBHs at the centre of GCs 4653

Figure 6. Surface brightness profile and best-fitting model. For each GC,
we fit a functional form for the luminosity surface density as given by equa-
tion (9). The best fit in each case (black line) will serve as the main ingredient
to our dynamical models, as we assume a constant mass-to-light ratio.

to identify binary systems in GCs have been done (see for example
Milone et al. 2012; Giesers et al. 2019; Belokurov et al. 2020). The
different effects of binaries on the measured velocity dispersion are
highly non-trivial and might play against a robust determination of
the presence of an IMBH. In this work, we explicitly focus on the
limitation introduced by the dynamical modelling in the IMBH mass
assessment, and we leave for a follow-up contribution the detailed
study of the complex interplay between presence of binaries and
observational biases. Furthermore, the sample without binaries is,
within errors, still consistent with the sample that includes only long-
period binaries, which are more likely to be misidentified with line-
of-sight multiepoch observations. For this reason, we have excluded
all binary systems from our kinematic sample in the current analysis.

(2) Crowding and the determination of the kinematic centre
are two observational effects that have played against the robust
determination of IMBHs in GCs (Noyola et al. 2008; van der Marel &
Anderson 2010; Lanzoni et al. 2013; Lützgendorf et al. 2013; de Vita
et al. 2017). In the case of the former, we assume that we can resolve
all stars in the selected sample, while for the centre, we use the

same centre for the luminosity and kinematics. The grey shaded area
in panel (a) of Fig. 4 shows the effects in the measured velocity
dispersion due an error in the kinematic centre determination up to
0.15 pc, approximately 20 per cent of the GC core radius (see de Vita
et al. 2017). In comparison, the determination of the centre in NGC
5139 is ∼ 10 per cent of its core radius (Noyola et al. 2010).

(3) With the selected sample, we generate radial profiles using
the projected data in the (x, y) plane. The profiles follow fixed
logarithmic radial bins, which allow us to have information in the
central region without requiring an excessive number of bins. Using
a fixed binning, and therefore having a varying number of tracers
per bin, could potentially lead to low statistics, especially in the
central bins. We manage the effect of low statistics by observing the
GC from different line of sights. As the simulations have spherical
symmetry, this approach allows us to have a distribution of values
for each bin without altering the intrinsic radial profiles. We sampled
1000 different line of sights uniformly distributed in a spherical shell
and then for each bin, we adopt the median to build the radial profiles
and the 16th, and 84th percentiles as an error bar (as the distribution
is not necessarily symmetric). Our approach is a simplified version
of the projection method described by Mashchenko & Sills (2005),
where the probability of each particle to be found in a given bin is
calculated as if it were observed from all line of sights.
Fig. 5 shows the luminosity surface density L(R), mass surface
density �(R), the mean line-of-sight velocity v(R), and line-of-sight
velocity dispersion σ (R) profiles for the no IMBH/BHS simulation
(pink squares). As a comparison, we also include the profiles when all
single stars are considered (black diamonds). No major differences
are observed regarding the luminosity surface density, as both
samples are dominated by the same bright stars [panel (a) in Fig. 5].
The mass surface density of the selected sample is significantly lower
than the full sample of single stars, as our selected sample adds
up only to the 4.2 per cent of the total mass of the simulated no
IMBH/BHS cluster. The velocity dispersion is lower in our selected
sample within Rh, which is an expected effect of energy equipartition
(see e.g. Trenti & van der Marel 2013; Bianchini et al. 2016a). It is
important to be aware of these differences, as our tracers do not
provide the full information about the mass profile of the cluster.

(4) We fit the luminosity surface density profile given by the
functional form defined in equation (9). This allows us to cover
different types of luminosity surface density profiles and deproject
them for the dynamical models. We fit the luminosity surface
density with EMCEE (Foreman-Mackey et al. 2013), a Monte Carlo
Markov Chain (MCMC) sampler, which allows us to explore the
multiparameter space. From the fitting, we save the best-fitting
parameters as input for our dynamical models. Fig. 6 shows the
luminosity surface brightness profiles and the fit from our MCMC
approach for all the different simulations.

(5) We build a grid of dynamic models via the Jeans equations as
described in Section 2.3, based on the best-fitting parameters to the
surface brightness profile. Each model is defined by three parameters:
the mass-to-light ratio (ϒ0), the velocity anisotropy (β), and the mass
of the central IMBH (M•). The grid is given by the parameter space:
0.5 ≤ ϒ0 ≤ 3.5, −1.0 ≤ log (M•/M�) ≤ 5.0, and −1.0 ≤ β ≤ 1.0.
For each model, we calculate the chi square (χ2

k ) as:

χ2
k =

∑
(
〈vk〉1/2

data − 〈vk〉1/2
model

)2

(
δ〈vk〉1/2

data

)2 , (13)

where k represent each of the observed velocities (LOS, PMR, and
PMT). We explore the best-fitting parameters first with only line-of-
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4654 F. I. Aros et al.

Figure 7. Fitted dynamical models and parameters space when only line-of-sight velocities (LOS) are used for the fit. The left-hand panels show the measured
second velocity moment projected in the sky (coloured symbols), while the shaded represent the �χ2 = 3.5, �χ2 = 7.8, and �χ2 = 11.3 regions (from
darker to lighter grey). The right-hand panels show the parameter space, whereas the circles mark the best-fitting values (as in Table 3) and the ‘×’ marks the
expected value measured directly from the simulations (as in Table 2); the contours represent the �χ2 = 3.5, �χ2 = 7.8, and �χ2 = 11.3 regions. For the no
IMBH + BHS cluster, we indicate with arrows the total mass in stellar black holes (BHS) within the central 1 pc of the cluster. Overall, the mass-to-light ratio
ϒ0 is well constraint by using only LOS velocities. This is not the case for the velocity anisotropy, as the lack of constraints allows the models to have higher
masses for the central IMBH at the cost of more tangential orbits. In the case of the high-mass IMBH, the cusp in 〈v2〉1/2 is significant enough to detect the
IMBH at its centre.

sight velocities, then with only proper motions, and finally with all
of them.

3.2 Results

We applied the pipeline described in Section 3.1 to all simulated
GCs introduced in Section 2.2 and Tables 1 and 2. Fig. 7 shows our
fitted dynamical models when only line-of-sight velocities (LOS) are
used, while Fig. 8 shows the case when radial (PMR) and tangential
(PMT) proper motions are used together to constrain the best-fitting
parameters. Fig. 9, on the other hand, shows the results when LOS
velocities and proper motions are used together to constrain the
parameters. In each figure, we show the respective second velocity

moment profiles (〈v2〉1/2) used in the χ2 minimization on the left-
sided panels and the parameter space on the right-sided panels. We
adopt three relative �χ2 regions6 given by �χ2 = 3.5, �χ2 = 7.8,
and �χ2 = 11.3 as a guide to our dynamical model and parameter
distribution from the χ2 minimization. We included the best-fitting
parameters as an open circle on the right-sided panels, while the

6The non-linearity and complexity of our model do not allow us to have a
clear value for the degrees of freedom in our χ2 minimization. The three
values adopted here represent the 1σ , 2σ , and 3σ for a χ2 distribution with 3
degrees of freedom. This is the case for the �χ2 of a linear model with three
free parameters.
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IMBHs at the centre of GCs 4655

Figure 8. As in Fig. 7, but when only the proper motions (PMR and PMT) are used for the fit. The additional data allow to have a better constraint in the
velocity anisotropy, excluding all the models with significant tangential orbits, although the constraints for the mass of the possible central IMBH are similar to
when only LOS are used in the fit.

expected values from the simulation are included as an ‘×’ (see
Table 2). For the no IMBH + BHS simulation, we indicate with
an arrow the total mass in stellar BHs within the central parsec of
the cluster. Table 3 summarizes the best-fitting parameters for all
models and kinematic data; the errors in each parameter are given by
the �χ2 = 7.8 region in the figures (approximately 2σ ).

3.2.1 Constraints from line-of-sight velocities (LOS) only

Our models can identify the presence of a central IMBH inside
the two GCs, which do indeed contain one (see the right-hand side
panels of Fig. 7). In the case of the high-mass IMBH GC, our best-
fitting value is M• ∼ 2 ± 2 × 104 M�.7 While we obtain a detection

7The quoted error bars represent the χ2 ≤ 7.8 confidence region.

within the �χ2 = 3.5 region (∼1σ ), which also contains the real
value (M• = 12883.4 M�), we cannot fully exclude a lower mass
IMBH, nor the no IMBH solution with larger confidence levels.
This is likely due the lacks of constrains in the velocity anisotropy,
as the parameter region with lower mass IMBHs is dominated by
highly radial velocity anisotropy (β � 0.5). For the low-mass IMBH,
we find a detection at �χ2 = 7.8 level (∼2σ ), where the IMBH
best-fitting value is M• ∼ 1.5 ± 1.4 × 103 M�, around three times
the mass of the actual IMBH (M• = 519 M�). This overestimation
goes in hand with the high tangential anisotropy of β = −0.8,
inferred from the best-fitting model (see Discussion in Section 4.1
below).

For the no IMBH/BHS and no IMBH + BHS GCs, we obtain
upper limits of M• � 11000 M� and M• � 17000 M�, respectively.
While the whole mass range from the correct solution (M• = 0 M�)
to the just mentioned upper limits is allowed by the model within
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4656 F. I. Aros et al.

Figure 9. As in Fig. 7, but when all velocities (LOS + PMs) are used for the fit. Compared to the constraints from only the PMs case, the fits do not improve
significantly when using the full 3D kinematic data. Now we have a detection for the low-mass IMBH within the �χ2 ≤ 3.5 level (∼1σ ). However, models
without an IMBH are still allowed within the uncertainties (�χ2 ≤ 7.8 level, ∼2σ ). The upper limits on the inferred mass of the possible IMBH in the cases
without one are still in the M• ≤ 1000 M� range.

the χ2 ≤ 7.8 confidence region, the best-fitting model indicates a
central IMBH of M• ∼ 2+11

−2 × 103 M� for the no IMBH/BHS and
M• = 1+17

−1 × 103 M� for the no IMBH + BHS. Finally, although the
post core-collapse GC does not have a central IMBH, the best-fitting
model suggests a central IMBH of M• = 1+1.5

−1 × 103 M�, which is
detected within 1σ . In a similar fashion than for the low-mass IMBH,
the inferred mass of the IMBH is bound to a tangential anisotropy
(β = −1.0, at the edge of our parameter space).

As expected, we cannot constrain the velocity anisotropy with only
LOS velocities. Fig. 7 shows the existence of a correlation between
the mass of the possible IMBH and the velocity anisotropy for each
of the five analysed GCs. Dynamical models with a significant tan-
gential anisotropy allow for a larger central IMBH mass (commonly
referred to as mass-anisotropy degeneracy, see Section 4.1). Note that

for all GCs, the correlation becomes stronger for dynamical models
with central IMBH masses higher than 1000 M�. In all simulated
GCs, we observe that our models are consistent with the observed
kinematics. For the case of the no IMBH + BHS simulation, we
notice that our models overestimate the second velocity moment at
R � 2Rh (or R � 6 pc).

3.2.2 Constraints from proper motions (PMs) only

The second velocity moments for the proper motions have a different
parametric dependency with the velocity anisotropy (see equations 7
and 8), adding an additional constraint. This improves the constraints
for our models when compared with the case with only line-of-sight
velocities, as the degeneracy between the velocity anisotropy and the
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IMBHs at the centre of GCs 4657

Table 3. Best-fitting parameters for all the simulated GCs and velocity data
used for the fits. The error bars represent the region defined by �χ2 ≤ 7.8
(approximately 2σ , see footnote 6). The first row for each GC indicates the
expected values as indicated in Table 2.

Model Data ϒ0 log (M•/M�) β

No IMBH/BHS 1.38 – 0.03

LOS 1.4+0.45
−0.55 3.3+0.75

−4.35 −0.4+0.55
−0.65

PMs 1.4+0.25
−0.25 −1.0+4.45

−0.05 −0.3+0.35
−0.75

ALL 1.4+0.25
−0.25 −1.0+4.45

−0.05 −0.3+0.35
−0.45

No IMBH + BHS 1.39 – 0.11

LOS 1.5+0.85
−0.75 3.0+1.25

−4.05 −0.0+0.35
−1.05

PMs 1.6+0.55
−0.55 2.7+1.25

−3.75 −0.1+0.45
−0.95

ALL 1.5+0.55
−0.35 2.8+1.05

−3.85 −0.0+0.25
−0.75

High-mass IMBH 1.26 4.11 0.10

LOS 1.1+0.95
−0.65 4.3+0.25

−5.35 −0.5+1.25
−0.55

PMs 1.3+0.65
−0.55 4.1+0.25

−0.25 −0.0+0.45
−1.05

ALL 1.2+0.55
−0.45 4.2+0.15

−0.35 −0.2+0.65
−0.85

Low-mass IMBH 1.40 2.72 0.04

LOS 1.4+0.25
−0.35 3.2+0.25

−0.95 −0.8+0.85
−0.25

PMs 1.4+0.25
−0.25 2.5+0.65

−3.55 −0.2+0.45
−0.85

ALL 1.4+0.15
−0.25 2.8+0.35

−3.85 −0.3+0.45
−0.65

Post core-collapse 1.24 – 0.0

LOS 1.1+0.25
−0.25 3.0+0.35

−4.05 −1.0+0.95
−0.05

PMs 1.1+0.15
−0.15 −1.0+3.75

−0.05 −0.2+0.25
−0.55

ALL 1.1+0.15
−0.15 1.0+1.75

−2.05 −0.3+0.25
−0.45

mass of the central IMBH is reduced. Our models, however, show
some limitations as when using proper motions, they become less
consistent with the observed kinematics. For the no IMBH/BHS, low-
mass IMBH and post core-collapse GCs, the models fail to mutually
fit the radial (PMR) and tangential (PMT) proper motions.

With the additional constraints provided by proper motions, we
find a clear 3-σ detection for the high-mass IMBH GC and a best-
fitting value of M• ∼ 1.2+1.2

−0.6 × 104 M�, which is consistent with the
real mass of the central IMBH.

The best fit for the low-mass IMBH reduces to M• ∼ 0.3+1.2
−0.3 ×

103 M�, which slightly underestimates the mass of the central IMBH.
While we recover a best-fitting value that is more consistent with the
real IMBH mass, we do not find a clear detection at 1σ , nor at 2σ ;
the 2-σ errors allow for a range of masses of (0 M�, 1584 M�) for
the central IMBH.

The constrains for the no IMBH/BHS and no IMBH + BHS
GCs also improve. The upper limits reduce to M• � 3100 M�
and M• � 9900 M�, respectively. The best-fitting value for the no
IMBH/BHS is M• ∼ 0+3.1 × 103 M�, which is consistent with no
central IMBH. For the no IMBH + BHS GC simulation, the best fit
is now M• ∼ 0.5+9.4

−0.5 × 103 M�, more consistent with the no IMBH
solution. However, within 2σ , it is not possible to fully rule out a
higher mass IMBH.

The post core-collapse GC also shows an improvement with
a best-fitting IMBH mass, which is consistent with zero (M• ∼
0.0+0.6 × 103 M�). The upper limit reduces to M• � 630 M�, given
the additional constraints on the velocity anisotropy with a recovered
value of β = −0.2+0.25

−0.55, which is closer to the actual value obtained
from the simulation (β50 per cent = 0.0).

3.2.3 Constraints from the full kinematic sample (LOS + PMs)

When the full kinematic sample is used to constrain the parameter
space, as shown in Fig. 9, we observe similar constraints on the
different �χ2 confidence regions as in the only proper motions case.
The IMBH in the high-mass IMBH GC is again clearly identified
with an inferred mass of M• ∼ 1.5 ± 0.9 × 104 M�, while for the
central IMBH in the low-mass IMBH simulation, we find M• ∼
0.6+0.9

−0.6 × 103 M� and its presence is recovered within 1-σ level.
However, for larger confidence regions, we have models that still are
consistent with a lower mass or no IMBH solution.

As in the case with only proper motions, the best-fitting value
for the no IMBH/BHS GC is consistent with not having an IMBH
(M• ∼ 0+3.2 × 103 M�), while still allowing a large upper limit
(M• � 2800 M�). Similarly, for the no IMBH + BHS GC, we
obtain an upper limit of M• � 7900 M�, which has improved
from the only proper motion case. The best-fitting value is now
M• ∼ 0.6+7.3

−0.6 × 103 M�, the range of masses covered by the 2-σ
level goes from 0 M� to 7900 M�. Also for the post core-collapse
GC, we find a similar result as when only proper motions are used
with an upper limit of M• ∼ 630 M�, while the best-fitting value of
M• = 10+620

−10 M� is consistent with not having an IMBH.
For all clusters, the global mass-to-light ratio (ϒ0) is well

constrained, while the velocity anisotropy (β) shows a significant
improvement for all clusters with the exception of the high-mass
IMBH, once the proper motions are considered (see Fig. A3). In the
case of the high-mass IMBH, the velocity anisotropy does not show
the same level of improvement after including the proper motions, as
the Keplerian rise in velocity dispersion dominates over the velocity
anisotropy in the inner kinematics. However, their inclusion allows
the exclusion of highly radial anisotropic models.

As in the case when only proper motions are considered, we notice
that our models are not fully consistent with the kinematic data; this is
particularly true for the post core-collapse GC. These discrepancies
are originating in the assumptions of our models and show the
limitations they bring into the fitting. In the following section, we
discuss further how the assumptions of constant velocity anisotropy
and mass-to-light ratio affect the modelling and the detection of a
possible IMBH.

3.2.4 Additional kinematic samples

To explore the effects of our selection criteria (as described in
Section 3.1), we applied the dynamical models to three additional
kinematic samples. Fig. A5, in the appendix, shows the constraints
in the parameter space for the mass-to-light ratio and mass of the
possible central IMBH for two fainter magnitude cuts: 4.6 mag below
the main-sequence turn-off, following current lower limits for precise
proper motions at the cluster centre (Anderson & van der Marel
2010; Libralato et al. 2018), and 7.5 mag below the main-sequence
turn-off (Heyl et al. 2017), which is still possible only for proper
motions outside the cluster’s Rh, but works as an extreme hypothetical
case. We do not observe any significant difference with our results
for the brightest selection. We notice, though, that for the fainter
magnitude cuts, the best-fit value for ϒ0 increases; this is expected
due to the larger fraction of low-mass stars that have a systematically
larger velocity dispersion (as in Fig. 5). The third case we explored
includes long-period binaries (P > 1 yr) as in panel (b) of Fig. 4. The
comparison with our main results is illustrated in Fig. A6 and we,
once again, do not observe any significant difference between our
main results and the sample including long-period binaries, which is
also expected as both kinematic samples are similar (see Fig. A2).
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4658 F. I. Aros et al.

Figure 10. Velocity anisotropy (a) and mass-to-light ratio (b) profiles for
each simulation. All simulated clusters, with the exception of the post core-
collapse, have central velocity anisotropies consistent with being isotropic
(β = 0) and become more radially anisotropic at large radii. The post core-
collapse cluster is fairly isotropic at all radii. The stellar mass-to-light ratio
(ϒ) in the simulations varies with radius, increasing towards the centre and
the outer regions of the cluster. The central slope of ϒ varies with each
cluster, where the no IMBH + BHS shows the most significant increase due
the stellar black holes subsystem at its centre. On the other hand, all simulated
GCs show the same behaviour at large radii.

4 MA S S C O N S T R A I N T S FRO M TH E J E A N S
M O D E L S

The two main assumptions in our dynamical models, which could
impact in the determination of the presence of an IMBH and its
mass, are firstly the constant mass-to-light ratio and secondly the
constant velocity anisotropy (see Section 2.3). As shown in Fig. 10,
the internal velocity anisotropy and mass-to-light ratio vary for all
five GC simulations. The velocity anisotropy increases at large radii
for all GCs, other than the post core-collapse. The mass-to-light
ratio increases towards the centre and at large radii. While the central
mass-to-light ratio depends on the type of central object in the cluster,
the rise at large radii is similar for all simulations. In this section,
we explore in detail the effects of these factors on our dynamical
models.

4.1 Velocity anisotropy

The amount of velocity anisotropy in the central region of the GC
can affect the measured mass of the possible central IMBH. A radial
velocity anisotropy (β > 0) at the centre can reproduce an increase
of the velocity dispersion without requiring additional mass (i.e. an
IMBH). On the other hand, if the central anisotropy becomes more
tangential (β < 0), the model will require an additional mass in the
centre of the GCs. This mass-anisotropy degeneracy is well known in

Figure 11. Upper limits of the χ2 ≤ 7.8 region for the central IMBH
mass given different velocity anisotropies for the full kinematic data case
(LOS + PMs). The tangentially anisotropic case (β = −0.1, up-red arrow)
gives systematically higher upper limits than the isotropic case (β = 0.0,
black crosses) for the inferred mass of the IMBH. On the other hand, the
radial anisotropic case (β = +0.1, down-blue arrow) has systematically lower
upper limits, as radial anisotropy can mimic an increase of velocity dispersion
in the centre (mass-anisotropy degeneracy).

dynamical models based on Jeans equations (see Binney & Mamon
1982, for example).

The velocity anisotropy can be constrained by including 3D
kinematic data namely proper motions, as discussed in Section 3.2.
However, how strongly the anisotropy can be constrained will depend
on the quality of the available proper motions. In the case of NGC
5139, van der Marel & Anderson (2010) show that anisotropic models
are necessary to describe its observed kinematics and provide good
fits to the observed proper motions without the need for a central
IMBH, when using models based on Jeans equations. More recently,
Zocchi, Gieles & Hénault-Brunet (2017) also show that models based
on anisotropic DFs are consistent with the available kinematics of
NGC 5139 and while their models do not rule out a central IMBH,
they put a cautionary note on the estimated mass of the central
IMBH. Both works find a velocity anisotropy profile which is (or
close-to) isotropic in the centre. However, while van der Marel &
Anderson (2010) find a tangential anisotropy at large radii, Zocchi
et al. (2017) find a radially biased anisotropy profile at large radii
(before becoming once again isotropic at the tidal radius). The latter
is consistent with Watkins et al. (2015), who show that most galactic
GCs in the HSTPROMO sample are isotropic towards the centre
and become radially anisotropic at large radii. The upper limit on
the possible IMBH mass in NGC 5139 suggests a mass fraction of
M•/MGC < 0.43 per cent (van der Marel & Anderson 2010) similar
to our low-mass IMBH case (M•/MGC = 0.30 per cent). In this
regime, the kinematic signature of the IMBH on the observed velocity
dispersion profile is not strong enough for a clear detection and it can
be reproduced as well by mildly radial anisotropic models (β ∼ 0.1).

Panel (a) of Fig. 10 shows the velocity anisotropy for all five
GCs measured directly from the simulations. The low number of
stars in the central bins is accounted for with the error bars (through
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IMBHs at the centre of GCs 4659

bootstrapping in each bin). All GCs except for the post core-collapse
are consistent with being isotropic at their centre and become more
radially anisotropic at larger radii, while the post core-collapse is
consistent with being isotropic at almost all radii. Once we include the
proper motions in our dynamical models, the fits become consistent
with an isotropic velocity anisotropy (β = 0, see Figs 8 and 9), while
still allowing for models with a more tangential anisotropy (within
our error bars). The bias towards tangential anisotropy seems to be a
common limitation of standard Jeans modelling approaches (e.g. see
Read & Steger 2017).

Fig. 11 shows the effects of anisotropy in the upper limits of the
inferred mass of the central IMBH. Models with a fixed tangential
anisotropy (β = −0.1) increase the inferred IMBH mass, while
models with radial anisotropy (β = 0.1) reduce the upper limit.
However, given the constraints from the proper motions, the variation
on the upper limit of the inferred IMBH mass due anisotropy is not
able to exclude the IMBH solution for the cases without one. The
upper limits are still above M• ∼ 1000 M� (M• ≤ 630 M� for the
post core-collapse GC).

4.2 Mass-to-light ratio

As shown in panel (b) of Fig. 10, the mass-to-light ratio of all
simulations is generally not constant. The variation with radius is a
direct consequence of the two-body relaxation process of collisional
systems such as GCs and it has been systematically observed in
simulations (Bianchini et al. 2017; Baumgardt 2017), which in turn
has an impact on the mass profiles of our simulated clusters and the
constrains from our models.

Fig. 12 shows the cumulative mass profiles [M(< r), left-hand
panels] and mass-to-light ratios (ϒ , right-hand panels) for all five
simulated GCs. The shaded area represents the models with �χ2 ≤
7.8, while the black line represent the best-fitting model (for the full
kinematic sample, i.e. LOS + PMs as in Section 3.2.3); the symbols
correspond to the measured values from each simulation. For the
no IMBH/BHS and no IMBH + BHS simulations, the central mass
of the GC is poorly constrained. The value of ϒ0 underestimates
the central mass-to-light ratio of the cluster as shown in the right-
hand panel of Fig. 12. The dynamical model then requires additional
mass to generate the observed velocity dispersion towards the centre,
allowing for the presence of an IMBH. This effect is evident in the
no IMBH + BHS case, as the cluster of stellar mass BHs increases
drastically the mass-to-light ratio toward its centre. For this case, the
inferred mass of the central IMBH is M• = 631+7312

−631 M� when using
the full kinematic sample. While no false central IMBH is detected,
we cannot exclude it either, as the upper limit for such an inferred
central IMBH is M• < 7943 M�. On the other hand, the presence of
a central IMBH will quench mass segregation (see Gill et al. 2008)
and in turn change the shape of the mass-to-light ratio profile. This is
the case of the high-mass IMBH simulation, where the central mass-
to-light ratio is well represented by the assumption of a constant
mass-to-light ratio (see Fig. 12).

The assumption of constant mass-to-light ratio is not only relevant
for the central region of the simulated GCs. As massive particles sink
towards the centre, the lighter ones populate the outer regions of the
GC. This process also increases the mass-to-light ratio at larger radii,
as faint low-mass stars dominate the exterior regions of the cluster.
In panel (b) of Fig. 10, we can see that all five simulated GCs have
a similar increase in their deprojected mass-to-light ratio profiles at
larger radii. In the same way as for the centre of the cluster, our models
underestimate the mass-to-light ratios and therefore the mass profiles
(see Fig. 12), which in turn could bias the estimates on the cluster

Figure 12. Mass profiles for all the simulated GCs. In the right column,
we include the cumulative mass profiles for each simulated GCs as coloured
symbols. The black line represents the best-fitting model, when all the velocity
data are included in the fit, while the grey shaded area represents the �χ2

≤ 7.8 region. The models tend to be less constrained towards the centre,
in particular, for the no IMBH/BHS, no IMBH + BHS, and low-mass IMBH
cases. The right-hand panels show the mass-to-light ratio for each simulation.
These profiles differ significantly from the assumption of a constant mass-to-
light ratio. The case of the no IMBH + BHS simulation is quite extreme as the
cluster of stellar-mass IMBH significantly increases the central values of the
mass-to-light ratio profile. This is also shown in the cumulative mass profile,
where it rises towards the centre instead of declining as in the no IMBH/BHS
or post core-collapse simulations.

mass. Panel (a) of Fig. 13 shows the recovered enclosed mass within
the deprojected half-light radius rh from our dynamical models. For
all five simulations, our estimated mass within rh is consistent with
the mass measured directly from the simulation; our fitted values
for ϒ0 are in agreement with the expected mass-to-light ratio within
r50 per cent (ϒ50 per cent, see Tables 2 and 3, respectively). However,
this is not the case at larger radii; panel (b) in Fig. 13 shows that
for all simulated GCs, their total masses are within 20 per cent and
40 per cent lower than the expected one. This is in agreement with
other works: the effect of mass segregation on the recovering of global
properties of GCs was discussed previously by Sollima et al. (2015),
where they applied different modelling techniques from multimass
DFs to N-body simulations of GCs. They show that single mass
models systematically underestimate the total mass of the cluster and
found that the global parameters are well constrained within the radial
range rh/2 < r < rh. In agreement with this, our models have a lower
discrepancy on the recovered mass for radii close to rh (see Fig. A4).

From the discussion above, one can infer that the assumption of
a constant mass-to-light ratio has a larger impact on the constrains
for the mass profiles, and in turn on the IMBH masses, than the
assumption of constant velocity anisotropy. To characterize the
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4660 F. I. Aros et al.

Figure 13. Recovered enclosed mass for the five simulated GCs. Panel (a):
the mass within deprojected half-light radius rh is recovered for all GCs (less
than 20 per cent error). On the other hand, in panel (b), the total mass of the
simulated GCs is systematically underestimated.

real effect of these assumptions, it is necessary to design a model
that includes the variations on the mass-to-light ratio and velocity
anisotropy profiles, which is beyond the scope of this paper.

5 SU M M A RY

The presence of IMBHs at the centre of galactic GCs is still an
ongoing debate. Even with the diverse literature available on the topic
(Noyola et al. 2008; van der Marel & Anderson 2010; Lützgendorf
et al. 2011; Kamann et al. 2014, 2016; Kızıltan et al. 2017, to
name a few), a robust evidence is still missing. Limitations on the
observations (such as kinematic centre and crowding, see Noyola
et al. 2010; Lanzoni et al. 2013; de Vita et al. 2017) or in the
modelling (due to anisotropy or a dark component, see van der
Marel & Anderson 2010; Zocchi et al. 2017, 2019; Baumgardt et al.
2019; Mann et al. 2019) make the detection of IMBHs challenging.
Here, we explored the limitations of the dynamical model commonly
used, namely models based on the Jeans equations. Using five
Monte Carlo simulations of GCs with and without central IMBH
from the MOCCA survey (see Section 2.2), we have analysed the
reliability and limitations of spherically symmetric Jeans models

Figure 14. Recovered IMBHs masses from the full 3D kinematic sample
(LOS + PMs). Our dynamical models robustly identify the IMBH in the high-
mass IMBH simulation (M•/MGC = 4.1 per cent). However, lower masses or
the absence of the central IMBH cannot be excluded for the low-mass IMBH
case (M•/MGC = 0.3 per cent). The three simulations without a central
IMBH show large upper limits (with an offset from M•, sim = 0.0 M� for
visibility).

(see Section 2.3) under the assumption of constant mass-to-light
ratio and velocity anisotropy. We extracted a kinematic sample from
the simulated GCs, excluding all binary systems and selecting stars
brighter than 1 magnitude below the main-sequence turn-off (see
Section 3.1). We fit the Jeans models to the second velocity moment
profiles, varying the mass-to-light ratio (ϒ0), the mass of the central
IMBH (M•), and velocity anisotropy (β); we do so for only line-of-
sight velocities (LOS, Section 3.2.1), only proper motion velocities
(PMs, radial and tangential on the sky, see Section 3.2.2), and the
full kinematic sample (i.e. LOS + PMs, in Section 3.2.3).

Our dynamical models can recover the mass of the high-mass
IMBH (M•/MGC = 4.1 per cent) quite well (see Section 3.2). The
kinematic signature of such an IMBH is strong and the rise in
velocity dispersion cannot be explained otherwise. On the other
hand for the low-mass IMBH (M•/MGC = 0.3 per cent), we can
identify the central IMBH only within 1σ (i.e. �χ2 ≤ 3.5) level,
and while the best-fitting model is consistent with the actual mass
of the central IMBH (M• = 519.3 M�), models with no IMBH are
possible within the errors (note that we consider only kinematic errors
due to stochasticity of low numbers of stars per bin; observational
errors could increase the uncertainty of the central IMBH mass).
For all three simulations without a central IMBH, we get only
upper limits and while no IMBH solution is within the range of
masses, such upper limits allow for a possible IMBH in their
centres. Figure 14 summarizes the recovered IMBH masses for the
five simulated GCs.

The dynamical models are limited by two main assumptions:
constant velocity anisotropy and constant mass-to-light ratio. Both
have different consequences on the upper limits and detection of the
central IMBH (see Section 4). Depending on the inferred amount of
velocity anisotropy at the centre of the cluster, the dynamical model
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can slightly change the required IMBH mass to match the observed
kinematics. This is relevant for identifying low-mass IMBHs. The
upper limits for the inferred mass of the possible IMBH in NGC
5139 (van der Marel & Anderson 2010) suggest a mass fraction
of M•/MGC ≤ 0.43 per cent, which is close to our low-mass case
(M•/MGC = 0.3 per cent). While both van der Marel & Anderson
(2010) and Zocchi et al. (2017) find that anisotropic models are better
when compared to the observed velocity dispersion of NGC 5139,
the models by van der Marel & Anderson (2010) do not require
a central IMBH to explain its observed kinematics. On the other
hand, Zocchi et al. (2017) suggest strict upper limits but do not rule
out a central IMBH. Better understanding of the velocity anisotropy
profiles and the effects of velocity errors on the analysis are necessary
to fully disentangle the effects of anisotropy on the inferred mass of
low-mass IMBHs. For the cases without an IMBH, we observe that
anisotropy alone cannot reduce the upper limits as including the full
kinematics sample (LOS + PMs) limits the range of anisotropy that
the data allow (see Fig. 11 and Section 4.1).

The assumption of constant mass-to-light ratio has a more sig-
nificant impact on our analysis, as the mass-to-light ratio increases
towards the centre and at larger radii [see panel (b) of Fig. 10]. For the
cases without IMBH, we underestimate the central mass due to mass
segregation effects (i.e. rise in mass-to-light ratio), which allows the
dynamical model to include a central IMBH to recover the observed
velocity dispersion. This is even more relevant when the stellar BH
retention is higher, such as the case of the model with a stellar BH
subsystem (no IMBH + BHS). By applying a multimass model that
allows for a population of stellar mass BHs at the centre of NGC 5139,
Zocchi et al. (2019) show that the population of BHs can reproduce
the observed kinematic data, although it cannot discard completely
a less massive IMBH. Using a different approach, Baumgardt et al.
(2019) also show that the presence of a cluster of stellar mass BHs
can explain the observed kinematics of NGC 5139. In their case, they
compare the observed kinematics to a library of N-body simulations,
which intrinsically include a variable mass-to-light ratio.

The assumption of constant mass-to-light ratio limits not only our
knowledge of the central mass of the GCs but also its total mass.
As two-body relaxation pushes outwards the faint low-mass stars,
the mass-to-light ratio increases at large radii. We systematically
underestimate the mass-to-light ratio in the cluster outskirts and
therefore its total mass, as shown in Fig. 13, is systematically
underestimated with a difference of ∼ 40 per cent with respect
to the expected mass for all simulated clusters. We are able to
recover the mass enclosed within the half-light radius, which is
consistent with the radial range proposed by Sollima et al. (2015)
for estimating global properties of GCs with multimass DFs. Further
improvements to our Jeans code are necessary to investigate if we
can solve these issues by relaxing the constant mass-to-light ratio
assumption.

GCs are collisional systems and their dynamical evolution is tied
to the two-body relaxation process. Therefore, it is necessary to
include the effects of collisionality in the dynamical models to be able
to explain the observed kinematics, even more to robustly identify
IMBHs at the centre of GCs. The results of applying our models to
the high-mass IMBH (M•/MGC = 4.1 per cent) suggest that there is a
mass-fraction limit where the effects of collisionality can be excluded
from the analysis; finding this limit requires further investigation be-
yond the scope of this paper. Ultimately, this will help to understand
where we must improve the dynamical models. Most GC candidates
for having an IMBH are in the low-mass range with M•/MGC �
1.0 per cent (van der Marel & Anderson 2010), where the kinematic
signature can also be explained by the effects of collisionality such

as mass segregation, energy equipartition, and a variable mass-to-
light ratio. To be able to disentangle the different sources of a
velocity dispersion rise in the centre of GC, models that can describe
properly the mass profile of GCs are a must. Recently, Hénault-
Brunet et al. (2019) provide a compilation of different dynamical
methods and their reliability for recovering GC properties. Methods
with multiple mass populations and variable mass-to-light ratio sig-
nificantly improve the recovery of the mass profiles of GCs, although
they are still limited by observational constraints and large error
bars.

While observational limitations will further complicate the de-
tection of IMBHs in GCs, we have taken the first step in better
understanding the ability to recover an IMBH from data with models
based on the Jeans equation. The limitations presented here are
identical for any such model under the same assumptions, not just
ours. While the dynamical models studied here do not lead towards
a biased solution, they lack the sensitivity to robustly infer the
presence or absence of a low-mass IMBH. Improving a model’s
ability to recover the mass profiles of GCs, and further understanding
how the constant mass-to-light and velocity anisotropy assumptions
along with the observed kinematics influence a model, is crucial
towards robustly identifying or ruling out the presence of IMBHs in
galactic GCs. We will further address observational challenges such
as binaries in a subsequent paper.
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Figure A1. CMD for all five GC simulations, each of them centred at their respective MSTO magnitude. Our selection on magnitude is represented by the
dot–dashed line and it is equivalent to select all stars brighter than mV ∼ 18.5 at a distance of 5 kpc (as described in Section 3.1) and follows the magnitude limit
in Watkins et al. (2015) for HST proper motions. For comparison, we include limits from HST data for the central (Libralato et al. 2018, for NGC 362) and outer
(Heyl et al. 2017, for NGC 104) regions of a GC.

Figure A2. Difference in velocity dispersion for different binary populations relative to the sample without binaries for the no IMBH/BHS simulation (as in
Fig. 4). Binary systems have different effects in the velocity dispersion for each type of kinematic data. The observed line-of-sight (LOS) velocity of binary
systems is mostly dominated by their internal orbital velocity, which translate in an increase in the measured velocity dispersion and it is mostly dominated by
short-period binaries (P < 30 d). On the other hand, proper motions [radial (PMR) and tangential (PMT) components] are not affected by the internal orbital
motion of each component, rather the measured velocity dispersion will be affected by the level of energy equipartition of the binary systems.
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Figure A3. Parameter space for the mass-to-light ratio and velocity anisotropy for all simulations and kinematic data used for the fit. The contours represent
the confidence regions we defined to trace the errors, while the open circle represents the best-fitting value in each case, and the x represents the value measured
directly from the simulations within the half-mass radius. For most of the simulations, the constraints improve while including more kinematic data. This is not
the case for the high-mass IMBH model, where the constraints in the velocity anisotropy do not improve when including proper motions. The central shape of
second velocity moment is significantly dominated by the IMBH and the changes due different velocity anisotropy values are watered down by the presence of
the high-mass IMBH.

Figure A4. Mass and mass-to-light error per radius for all simulated GCs. For all plots, the x-axis is in mass fraction of the cluster from the centre (Lagrangian
radii). The half-mass radius is marked as a vertical dashed line, the deprojected half-light radius is marked as a dotted line. The grey area represents the range
of models with �χ2 ≤ 7.8 and the coloured line represents the best-fitting model. On top, we illustrate the values in parsec for three Lagrangian radii as
reference. In the top panels, we see that for all five simulated GCs, we systematically underestimate the total mass, while overestimating the inner regions (as
we represented the profiles in mass fraction, we are unable to observe the innermost region where the IMBH is relevant). The mass profile errors behaviour by
radius is tightly correlated to the difference between our assumed constant mass-to-light ratio and the one from the simulation (bottom panels). In all simulated
GCs, the models and the simulations are in agreement (low relative error) around the half-light radius.
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Figure A5. Constraints on the mass-to-light ratio and mass of the possible central IMBH for all simulated GCs (each column), considering the full kinematic
sample (as in Fig. 9). Each row indicates a different selection sample in magnitude following the limits in Fig. A1. The constraints are consistent for all cases.
Although the second and third rows are beyond the current limits for line-of-sight velocities, while the third is only possible outside Rh, this comparison shows
that the limitations in the modelling described in this work are intrinsic to the model and do not depend on the selected sample. For the high-mass IMBH and
low-mass IMBH, the best-fitting values are consistent with the expected values. On the other hand, for the three GCs without a central IMBH, the best-fitting
values of the possible central IMBH do not converge. Once deeper observations are available allowing for a fainter limit in the luminosity cut, the Jeans modelling
will automatically produce better results as our stochastic errors decrease with more stars in each bin.

Figure A6. As in Fig. A5, but considering different binary samples. The first row corresponds to the case without binaries as in our main analysis, while the
bottom row shows the case when long-period binaries (P > 1 yr) remain in the kinematic sample. The constraints from both cases are similar. As shown in
panel (b) of Fig. 4, the sample with contamination from long-period binaries is consistent with the case without binaries (within errors), which is reflected on
the parameter space.
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