Duals of quantum semigroups with involution
 Yulia Kuznetsova

To cite this version:

Yulia Kuznetsova. Duals of quantum semigroups with involution. Advances in Operator Theory, 2020, 5 (1), pp.167-203. 10.1007/s43036-019-00011-2 . hal-03142979

HAL Id: hal-03142979

https://hal.science/hal-03142979

Submitted on 16 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DUALS OF QUANTUM SEMIGROUPS WITH INVOLUTION

YULIA KUZNETSOVA

Abstract

We define a category $\mathcal{Q S I}$ of quantum semigroups with involution which carries a corep-resentation-based duality map $M \mapsto \widehat{M}$. Objects in $\mathcal{Q S I}$ are von Neumann algebras with comultiplication and coinvolution, we do not suppose the existence of a Haar weight or of a distinguished spatial realisation. In the case of a locally compact quantum group \mathbb{G}, the duality ${ }^{\wedge}$ in $\mathcal{Q S I}$ recovers the universal duality of Kustermans: $\widehat{L^{\infty}(\mathbb{G})}=C_{0}^{u}(\widehat{\mathbb{G}})^{* *}=C_{0}^{u(\mathbb{G})^{* *}}$, and $\widehat{L^{\infty}(\widehat{\mathbb{G}})}=C_{0}^{u}(\mathbb{G})^{* *}=\widehat{C_{0}^{u(\widehat{\mathbb{G}})^{* *}}}$. Other various examples are given.

1. Introduction

In the theory of locally compact groups, a crucial role is played by the Haar measure; in the theory of locally compact quantum groups, its place it taken by a pair of left and right Haar weights. It is known that in the classical case, the existence of a Haar measure is a theorem, whereas in the quantum case this is a part of axioms.

The dual of a locally compact quantum group in the setting of Kustermans and Vaes [8] is defined via an explicit construction involving the Haar weight; in the setting of Woronowicz [17], the spatial realisation of the multiplicative unitary gives readily the corresponding pair of quantum group algebras in duality.

This should be compared with the classical Pontryagin duality: we consider first the group \widehat{G} of continuous characters of G, which is meaningful for any topological group, and then prove that if G is locally compact abelian, then so is \widehat{G}, and $\widehat{\widehat{G}}$ is isomorphic to G.

It is known that in the quantum setting, one can define a dual in a measure-independent way, but arriving then to a different (bigger) object called the universal dual. This was done by Kirchberg [6] in the particular case of Kac algebras, extended to locally compact quantum groups (LCQG) by Kustermans [7, and later realized by Soltan and Woronowicz [14 in the setting of multiplicative unitaries.

The problem is however that this approach does not give any existence theorem except for the case of LCQG or multiplicative unitaries respectively. In general, there is no guarantee that the dual of the universal dual exists, and thus we cannot speak of a Pontryagin-like isomorphism between an algebra and its bidual.

The present paper introduces a category $\mathcal{Q S I}$ of quantum semigroups with involution which solves this problem. For every $M \in \mathcal{Q S I}$, we define its dual object $\widehat{M} \in \mathcal{Q S I}$, so that it extends the universal duality of Kustermans: if $L^{\infty}(\mathbb{G})$ is a von Neumann algebraic LCQG and ${ }^{\wedge}$ denotes the dual in $\mathcal{Q S I}$, then $\widehat{L^{\infty}(\mathbb{G})}=C_{0}^{u}(\widehat{\mathbb{G}})^{* *}=\widehat{C_{0}^{u(\mathbb{G})^{* *}}}$, and $\widehat{L^{\infty}(\widehat{\mathbb{G}})}=C_{0}^{u}(\mathbb{G})^{* *}=\widehat{C_{0}^{u}(\widehat{\mathbb{G}})^{* *}}$. Moreover, the construction produces first the C^{*}-algebras $C_{0}^{u}(\widehat{\mathbb{G}})$ and $C_{0}^{u}(\mathbb{G})$ and only then we pass to their universal enveloping von Neumann algebras (identified with the linear biduals).

An object in $\mathcal{Q S I}$ is a von Neumann algebra M with comultiplication $\Delta: M \rightarrow M \otimes M$ and a densely defined coinvolution $S: D(S) \subset M \rightarrow M$, which satisfy certain natural axioms (see Section(2). This class includes all LCQG, but a more general example would be the algebra $C(P)$ of continuous functions on a compact semitopological semigrouop with involution P (Example 2.3).

The structure on M induces on the predual M_{*} a structure of a Banach algebra, with an involution defined on a subalgebra $M_{* *}$. By passing to a quotient of M, we can guarantee that $M_{* *}$ is dense

[^0]in M_{*}. We consider representations of M_{*} which are involutive on $M_{* *}$, and, as usual, call such a representation unitary if it is generated by a unitary $U \in M \otimes B(H)$ (Section (4).

The central point is to consider the ideal $M_{* *}^{0} \subset M_{*}$ defined as the common kernel of all irreducible non-unitary representations. It appears that this ideal contains all necessary information on the dual algebra.

We set $\widehat{M}=C^{*}\left(M_{* *}^{0}\right)^{* *}$. By definition (except for degenerate cases when we set $\widehat{M}=\{0\}$), irreducible representations of this algebra corrrespond bijectively to the unitary irreducible representations of M_{*}; by disintegration, this bijection extends also to reducible repesentations, see Section 4 ,

Every dual algebra carries a structure of a quantum semigroup with involution. Moreover, it is a Hopf algebra in a certain sense (Subsection 5.2), what suggest to consider it as a quantum group rather than a semigroup.

If $M=\widehat{N}$ is a dual of some $N \in \mathcal{Q S I}$ and is either commutative or cocommutative, then it is isomorphic to $C_{0}(G)^{* *}$ or $C^{*}(G)^{* *}$ respectively for a classical locally compact group G. Moreover, in all examples known (Sections 7 and (8) the dual algebra \widehat{M} coincides with a dual of a LCQG, so in particular \widehat{M} is isomorphic to the third dual of M. This allows to conjecture that $\widehat{M} \simeq \widehat{\widehat{M}}$ in general.

This article is a development of [10, where the coinvolution of M (termed antipode there) was supposed to be bounded.

2. Definitions and notations

Our main objects are von Neumann bialgebras, which we allow to be just zero spaces. Below, \otimes denotes the von Neumann algebraic tensor product, and \mathbb{I} the identity operator.
Definition 2.1. A von Neumann bialgebra M is a von Neumann algebra endowed with a comultiplication $\Delta: M \rightarrow M \otimes M$ which is a normal coassociative ${ }^{*}$-homomorphism: $\Delta *=(* \otimes *) \Delta$ and $(\mathbb{I} \otimes \Delta) \Delta=(\Delta \otimes \mathbb{I}) \Delta$.

Note that we do not require Δ to be unital.
It is known that in the assumptions above the predual M_{*} of M is a completely contractive Banach algebra.

In addition to this structure, we postulate the existence of a coinvolution S on M. As it will be seen, the requirements on S are weaker than on an atipode, and this notion corresponds rather to an involution of a semigroup than to a group inverse. For this reason the author prefers to use the term coinvolution and not antipode as it was done in 10.
Definition 2.2. Let M be a von Neumann bialgebra. A linear map $S: D(S) \subset M \rightarrow M$ is called a proper coinvolution if it satisfies the following conditions:
(1) $D(S)$ is σ-weakly dense in M;
(2) $D(S)$ is closed under multiplication and $S: D(S) \rightarrow M$ is an anti-homomorphism;
(3) $(* S)(D(S)) \subset D(S)$ and $(* S)^{2}=\mathbb{I}_{D(S)}$;
(4) if $\mu, \nu \in M_{*}$ are such that $\mu \circ S$ and $\nu \circ S$ extend to normal functionals on M, then for all $x \in D(S)$ holds $\Delta(x)(\nu \circ S \otimes \mu \circ S)=\Delta S(x)(\mu \otimes \nu)$.
A von Neumann bialgebra equipped with a proper coinvolution is called a quantum semigroup with involution.

The last formula is a replacement of the identity $\theta(S \otimes S) \Delta=\Delta S$ which may have no sense a priori. The antipode of a locally compact quantum group satisfies these conditions, see [8, Lemma 5.25]. Note that we do not require S to be closeable.

Example 2.3. Let P be a compact semitopological semigroup with involution. Recall that an involution on a semigroup is a map $*: P \rightarrow P$ such that $\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in P$. Let $S C(P \times P)$ be the space of separately continuous functions on $P \times P$, then we get a natural map $\check{\Delta}: C(P) \rightarrow S C(P \times P), \check{\Delta}(f)(s, t)=f(s t)$. Set $M=C(P)^{* *}$, with the usual structure of a von Neumann algebra. Since $S C(P \times P)$ is canonically imbedded into $M \otimes M, \check{\Delta}$ can be viewed as a map from $C(P)$ to $M \otimes M$, and it is known [2] that it is a unital *-homomorphism and as such can be extended by normality to M, so that the extension Δ satisfies $(\Delta \otimes \mathrm{id}) \check{\Delta}=(\operatorname{id} \otimes \Delta) \check{\Delta}$. Altogether, this
implies that Δ is a comultiplication on M. Set $D(S)=C(P)$ and $(S f)(t)=f\left(t^{*}\right)$ for $f \in C(P), t \in P$. It is easily seen that S satisfied conditions (1)-(4), so that $M=C(P)^{* *}$ is a quantum semigroup with involution.

Definition 2.4. For every $\mu \in M_{*}$, define $\bar{\mu} \in M_{*}$ by $\bar{\mu}(a)=\overline{\mu\left(a^{*}\right)}, a \in M$. Let $M_{* *}$ be the subspace of all $\mu \in M_{*}$ such that $\bar{\mu} \circ S$ extends to a bounded normal functional on M. We will denote by μ^{*} this extension, so that $\mu^{*}(x)=\bar{\mu}(S x)$ for $x \in D(S)$.

Note that in M_{*} as a predual space, $M_{* *}$ is $\sigma\left(M_{*}, M\right)$-dense iff it is norm dense.
Proposition 2.5. If $M_{* *}$ is dense in M_{*} then S is closeable.
Proof. Suppose that $M_{* *}$ is dense in M_{*}, that is, separates the points of M. Towards a contradiction, suppose also that S is not closeable. Then there exist $a_{n} \rightarrow a, b_{n} \rightarrow a$ such that $\alpha=\lim S a_{n} \neq$ $\lim S b_{n}=\beta$. Then for every $\mu \in M_{* *}$ we have: $\bar{\mu}(\alpha)=\lim \bar{\mu}\left(S a_{n}\right)=\lim \mu^{*}\left(a_{n}\right)=\mu^{*}(a)=$ $\lim \mu^{*}\left(b_{n}\right)=\lim \bar{\mu}\left(S b_{n}\right)=\bar{\mu}(\beta)$. Thus $\mu\left(\alpha^{*}-\beta^{*}\right)=0$ for all $\mu \in M_{* *}$ while $\alpha-\beta \neq 0$, and we arrive at a contradiction.

Proposition 2.6. On $M_{*}, \mu \mapsto \bar{\mu}$ is a homomorphism. If $S^{2}=\mathbb{I}$, it is involutive.
Proof.

$$
(\bar{\mu} \cdot \bar{\nu})(x)=(\bar{\mu} \otimes \bar{\nu})(\Delta(x))=\overline{(\mu \otimes \nu)\left(\Delta(x)^{*}\right)}=\overline{(\mu \otimes \nu)\left(\Delta\left(x^{*}\right)\right)}=\overline{(\mu \cdot \nu)\left(x^{*}\right)}=(\overline{\mu \cdot \nu})(x)
$$

Proposition 2.7. $M_{* *}$ is a subalgebra in M_{*}, and $(\mu \nu)^{*}=\nu^{*} \mu^{*}$ for all $\mu, \nu \in M_{* *}$. With the norm $\|\mu\|_{*}=\max \left(\|\mu\|,\left\|\mu^{*}\right\|\right), M_{* *}$ is a Banach ${ }^{*}$-algebra.
Proof. For $\mu, \nu \in M_{* *}$ and $x \in D(S)$, we have with 2.2(4):

$$
\overline{\mu \nu} \circ S(x)=(\bar{\mu} \cdot \bar{\nu})(S x)=(\bar{\mu} \otimes \bar{\nu})(\Delta(S x))=(\bar{\nu} \circ S \otimes \bar{\mu} \circ S)(\Delta(x))=\left(\nu^{*} \mu^{*}\right)(x) .
$$

The first statement follows.
It is immediate that $\|\mu \nu\|_{*} \leqslant\left\|\mu_{*}\right\| \nu \|_{*}$. It remains to prove that ($M_{* *},\|\cdot\|_{*}$) is complete. If $\left(\mu_{n}\right) \subset M_{* *}$ is a Cauchy sequence with respect to $\|\cdot\|_{*}$, then in particular $\mu_{n} \rightarrow \mu, \underline{\mu_{n}^{*} \rightarrow \nu}$ with respect to $\|\cdot\|$ for some $\mu, \nu \in M_{*}$. For every $a \in D(S)$, we have $\bar{\mu}(S a)=\overline{\mu\left((S a)^{*}\right)}=\lim \overline{\mu_{n}\left((S a)^{*}\right)}=$ $\lim \mu_{n}^{*}(a)=\nu(a)$, thus $\mu \in M_{* *}$ and $\mu^{*}=\nu$, moreover $\mu_{n} \rightarrow \mu$ in $\left(M_{* *},\|\cdot\|_{*}\right)$.

Recall that on M_{*}, there is a two-sided action of M. For $\mu \in M_{*}, a \in M$ one sets $(\mu . a)(b)=\mu(a b)$ and $(a . \mu)(b)=\mu(b a), b \in M$. As in the case of a locally compact group [7, Lemma 2.1], $M_{* *}$ is stable under multiplication by $D(S)$:

Lemma 2.8. $M_{* *}$ is a two-sided module over $D(S)$.
Proof. Let μ be in $M_{* *}, a \in D(S)$. Then for $b \in D(S)$ we have

$$
\begin{aligned}
(\overline{a \cdot \mu})(S b) & =\overline{(a \cdot \mu)\left((S b)^{*}\right)}=\overline{\mu\left((S b)^{*} a\right)}=\overline{\mu\left((S b)^{*}\left(S(S a)^{*}\right)^{*}\right)} \\
& =\overline{\mu\left(\left(S\left(b(S a)^{*}\right)^{*}\right)\right.}=\mu^{*}\left(b(S a)^{*}\right)=\left((S a)^{*} \cdot \mu^{*}\right)(b) .
\end{aligned}
$$

This means that $\overline{(a . \mu)} \circ S$ extends to the bounded functional $(S a)^{*} \cdot \mu^{*}=(a . \mu)^{*}$ on M, so $a . \mu \in M_{* *}$. The proof for the right action is similar.

Definition 2.9. Let $M_{* *}$ be dense in M_{*}. Set

$$
D(\widetilde{S})=\left\{a \in M: \exists C>0 \text { such that }\left|\mu^{*}(a)\right| \leqslant C\|\mu\| \text { for all } \mu \in M_{* *}\right\}
$$

For every $a \in D(\widetilde{S})$, define $\widetilde{S}(a) \in M$ by $\mu(\widetilde{S}(a))=\overline{\mu^{*}(a)}$.
Proposition 2.10. Let $M_{* *}$ be dense in M_{*}. Then \widetilde{S} is a closed operator.
Proof. If $a_{n} \rightarrow a, \widetilde{S}\left(a_{n}\right) \rightarrow b$ in M, then for every $\mu \in M_{* *} \mu^{*}\left(a_{n}\right) \rightarrow \mu^{*}(a) ; \mu^{*}\left(a_{n}\right)=\overline{\mu\left(\widetilde{S}\left(a_{n}\right)\right)} \rightarrow$ $\overline{\mu(b)}$ as $n \rightarrow \infty$. It follows that $\mu^{*}(a)=\overline{\mu(b)}$ whence $a \in D(\widetilde{S})$ and $\widetilde{S}(a)=b$.

Remark 2.11. Let $M_{* *}$ be dense in M_{*}. Then $D(S) \subset D(\widetilde{S})$ and $\widetilde{S}(a)=* S(a)$ for $a \in D(S)$. In particular, $\widetilde{S} D(S) \subset D(S)$.

Proposition 2.12. Let $M_{* *}$ be dense in M_{*}. Then $\widetilde{S}: D(\widetilde{S}) \rightarrow M$ is $\sigma\left(M, M_{* *}\right)$ continuous.
Proof. Follows from the equality $|\mu(\widetilde{S}(a))|=\left|\mu^{*}(a)\right|$ for all $\mu \in M_{* *}, a \in M$.
Proposition 2.13. If $M_{* *}$ is dense in M_{*} then:
(i) $D(\widetilde{S})$ is closed under multiplication and $\widetilde{S}: D(\widetilde{S}) \rightarrow M_{*}$ is a homomorphism;
(ii) $M_{* *}$ is a two-sided module over $D(\widetilde{S})$;
(iii) $\widetilde{S}(D(\widetilde{S})) \subset D(\widetilde{S})$ and $\widetilde{S}^{2}=\mathbb{I}_{D(\widetilde{S})}$.

Proof. (i). First note that $\widetilde{S}=* S$ is a homomorphism on $D(S)$.
Next we prove that $a b \in D(\widetilde{S})$ and $\widetilde{S}(a b)=\widetilde{S}(a) \widetilde{S}(b)$ for $a \in D(\widetilde{S}), b \in D(S)$. By assumption 2.2.(1), there exist $a_{i} \in D(S)$ such that $a_{i} \rightarrow a \sigma$-weakly. Then $a_{i} b \rightarrow a b$, and by Proposition 2.12, $\widetilde{S}\left(a_{i}\right) \rightarrow \widetilde{S}(a)$, both σ-weakly. For every $\mu \in M_{* *}$

$$
\begin{aligned}
\overline{\mu^{*}(a b)} & =\lim \overline{\mu^{*}\left(a_{i} b\right)}=\lim \mu\left(\widetilde{S}\left(a_{i} b\right)\right) \mid=\lim \mu\left(\widetilde{S}\left(a_{i}\right) \widetilde{S}(b)\right) \\
& =\lim \widetilde{S}(b) \cdot \mu\left(\widetilde{S}\left(a_{i}\right)\right)=(\widetilde{S}(b) \cdot \mu)(\widetilde{S}(a))=\mu(\widetilde{S}(a) \widetilde{S}(b)),
\end{aligned}
$$

what proves that $a b \in D(\widetilde{S})$ and $\widetilde{S}(a b)=\widetilde{S}(a) \widetilde{S}(b)$.
In the same way we prove the equality for $a \in D(S), b \in D(\widetilde{S})$.
We can now prove (ii): for $a \in D(\widetilde{S}), \mu \in M_{* *}, x \in D(S)$,

$$
\begin{aligned}
(\mu \cdot \widetilde{S}(a))^{-}(S x) & =\overline{(\mu \cdot \widetilde{S}(a))\left((S x)^{*}\right)}=\overline{\mu\left(\widetilde{S}(a)(S x)^{*}\right)} \\
& =\overline{\mu(\widetilde{S}(a) \widetilde{S}(x))}=\overline{\mu(\widetilde{S}(a x))}=\mu^{*}(a x)=\left(\mu^{*} \cdot a\right)(x)
\end{aligned}
$$

This implies that $\mu \cdot \widetilde{S}(a) \in M_{* *}$ and $(\mu \cdot \widetilde{S}(a))^{*}=\mu^{*} . a$. Similarly one shows that $\widetilde{S}(a) \cdot \mu \in M_{* *}$.
If now $a, b \in D(\widetilde{S})$, then for $\mu \in M_{* *}$

$$
\mu^{*}(a b)=\left(\mu^{*} \cdot a\right)(b)=(\mu \cdot \widetilde{S}(a))^{*}(b)=\overline{(\mu \cdot \widetilde{S}(a))(\widetilde{S}(b))}=\overline{\mu(\widetilde{S}(a) \widetilde{S}(b))}
$$

this shows that $a b \in D(\widetilde{S})$ and $\widetilde{S}(a b)=\widetilde{S}(a) \widetilde{S}(b)$.
For (iii), suppose that $a \in D(\widetilde{S})$. For $\mu \in M_{* *}$,

$$
\mu^{*}(\widetilde{S}(a))=\overline{\mu^{* *}(a)}=\overline{\mu(a)},
$$

which implies that $\widetilde{S}(a) \in D(\widetilde{S})$ and $\widetilde{S}(\widetilde{S}(a))=a$.
Proposition 2.14. Let $M_{* *}$ be dense in M_{*}. Then $\bar{S}=* \widetilde{S}$, defined on $D(\widetilde{S})$, satisfies the axioms (1)-(4) of a proper coinvolution.

Proof. Clearly $\bar{S}=S$ on $D(S)$. The axiom (1) holds obviously; (2) and (3) follow immediately from 2.13. For (4), suppose that $\mu, \nu \in M_{*}$ are such that $\mu \circ \bar{S}$ and $\nu \circ \bar{S}$ extend to normal functionals on M. Then $\bar{\mu}, \bar{\nu} \in M_{* *}$, and $\mu \circ \bar{S}=(\bar{\mu})^{*}, \nu \circ \bar{S}=(\bar{\nu})^{*}$. For $x \in D(\bar{S})=D(\widetilde{S})$,

$$
\begin{aligned}
(\nu \circ \bar{S} \otimes \mu \circ \bar{S})(\Delta(x)) & =\left((\bar{\nu})^{*} \otimes(\bar{\mu})^{*}\right)(\Delta(x))=\left((\bar{\nu})^{*}(\bar{\mu})^{*}\right)(x)=\left((\bar{\mu} \bar{\nu})^{*}\right)(x) \\
& =\overline{(\overline{\mu \nu})(\widetilde{S}(x))}=(\mu \nu)\left(\widetilde{S}(x)^{*}\right)=(\mu \otimes \nu)(\Delta(\bar{S}(x))) .
\end{aligned}
$$

Remark 2.15. Let $M_{* *}$ be dense in M_{*}. The set $\left\{\mu \in M_{*}: \bar{\mu} \circ \bar{S}\right.$ extends to a normal functional on $\left.M\right\}$ is equal to $M_{* *}$, and the application of Definition 2.9 to \bar{S} leads to the same operator \widetilde{S}, now with domain $D(\widetilde{S})=D(\bar{S})$. Thus, $\overline{\bar{S}}=\bar{S}$.

Proposition 2.16. Let $M_{* *}$ be dense in M_{*}. Then S can be extended to a closed proper coinvolution, with the same space $M_{* *}$. From now on, we assume that S is closed and $D(S)=D(\widetilde{S})$.

Proposition 2.17. $M_{* *}^{\perp}$ is a (σ-weakly closed) ideal in M.

Proof. Denote $L=M_{* *}^{\perp}$. Obviously it is closed. By Lemma 2.8, if $a \in D(S), b \in L, \mu \in M_{* *}$, then $\mu(a b)=(a \cdot \mu)(b)=0$, so $D(S) L \subset L$, and we have, with [•] meaning σ-weak closure in M :

$$
M L=[D(S)] L \subset[D(S) L] \subset[L]=L
$$

and similarly for the other inclusion.
Notations 2.18. Proposition 2.17 implies that $M_{* *}^{\perp}=(1-\zeta) M$ for a central projection ζ, which will be denoted also by ζ_{M} to indicate the algebra M. By general relations in Banach spaces, $\left[M_{* *}\right]=$ $\left(M_{* *}^{\perp}\right)_{\perp}$, where [•] means the norm closure in M_{*} and $(\cdot)_{\perp}$ the annihilator in M_{*} of a subset of M. Denote $M_{r}=M / M_{* *}^{\perp}$ and let $Q: M \rightarrow M_{r}$ be the quotient map.
The isomorphism $Z: M_{r} \rightarrow \zeta M$ is a right inverse for Q, and its preadjoint map $Z_{*}: M_{*} \rightarrow\left(M_{r}\right)_{*}$ is left inverse to $Q_{*}:\left(M_{r}\right)_{*} \rightarrow M_{*}$.

Proposition 2.19. With the quotient structure, M_{r} is a von Neumann bialgebra, with the predual isomorphic to $\left[M_{* *}\right]$ (the norm closure of $M_{* *}$ in M_{*}).
Proof. In the notations of Remark 2.18 $Q(a)=Q(\zeta a)$ for all $a \in M$. We define the comultiplication on $M / M_{* *}^{\perp}$ by $\tilde{\Delta}(Q a)=(Q \otimes Q)(\Delta(a)), a \in M$. To show that it is well defined, suppose that $Q a=0$, that is $a \in M_{* *}^{\perp}$. Then for $\mu, \nu \in M_{*}$

$$
(\mu \otimes \nu)((\zeta \otimes \zeta) \Delta(a))=\left(Z_{*} \mu \otimes Z_{*} \nu\right)(\Delta(a))=\left(Z_{*} \mu \cdot Z_{*} \nu\right)(a)=0
$$

since $Z_{*} \mu \cdot Z_{*} \nu \in M_{* *}$. It follows that

$$
(Q \otimes Q)(\Delta(a))=(Q \otimes Q)(\zeta \otimes \zeta)(\Delta(a))=0
$$

It is immediate to verify that $\tilde{\Delta}$ is a comultiplication indeed. Note that by definiton, Q is a coalgebra morphism.

Proposition 2.20. On M_{r}, the formula $S_{r}(Q a)=Q(S a)$, $a \in D(S)$, defines a proper coinvolution with the domain $D\left(S_{r}\right)=Q(D(S))$.
Proof. Check first that S_{r} is well-defined. If $Q a=0$ for $a \in D(S)$, then $a \in M_{* *}^{\perp}$. Let us show first that $\widetilde{S}(a) \in M_{* *}^{\perp}$. For $\mu \in M_{* *}, \mu(\widetilde{S}(a))=\overline{\mu^{*}(a)}=0$ since $\mu^{*} \in M_{* *}$. But $S(a)=(S(a))^{*} \in M_{* *}^{\perp}$ since the latter is a self-adjoint ideal.

The property 2.2(1) follows from the fact that Q is surjective and σ-weak continuous; 2.2(2,3) from it being a $*$-homomorphism. For 2.2(4), take $x \in D(S)$ and $\mu, \nu \in\left[M_{* *}\right]$. If $\mu \circ S_{r}$ and $\nu \circ S_{r}$ extend to normal functionals on M_{r} then $\mu \circ S_{r} \circ Q=\mu \circ Q \circ S$ and $\nu \circ Q \circ S$ extend to normal functionals on M, and

$$
\begin{aligned}
\tilde{\Delta}(Q x)\left(\nu \circ S_{r} \otimes \mu \circ S_{r}\right) & =\left(S_{r} Q \otimes S_{r} Q\right) \Delta(x)(\nu \otimes \mu)=(Q S \otimes Q S) \Delta(x)(\nu \otimes \mu) \\
& =\Delta(x)(\nu \circ Q \circ S \otimes \mu \circ Q \circ S)=\Delta S(x)(\mu \circ Q \otimes \nu \circ Q) \\
& =\tilde{\Delta} Q S(x)(\mu \otimes \nu)=\tilde{\Delta} S_{r}(Q x)(\mu \otimes \nu) .
\end{aligned}
$$

Corollary 2.21. M_{r} with the quotient structure is a quantum semigroup with involution, with the coinvolution S_{r}; moreover, $\left(M_{r}\right)_{* *}$ is dense in $\left(M_{r}\right)_{*}$, and S_{r} is closeable.

Proposition 2.22. The restriction of $Z_{*}: M_{*} \rightarrow\left(M_{r}\right)_{*}$ to $M_{* *}$ is a ${ }^{*}$-homomorphism.
Proof. First note that $\mu(x)=\mu(\zeta x)$ for every $\mu \in M_{* *}, x \in M$. For $\mu, \nu \in M_{* *}, x \in M$ we have:

$$
\begin{aligned}
Z_{*}(\mu \nu)(Q x) & =(\mu \nu)(Z Q x)=(\mu \nu)(\zeta \cdot x)=(\mu \nu)(x)=(\mu \otimes \nu)(\Delta(x))=(\mu \otimes \nu)((\zeta \otimes \zeta) \Delta(x)) \\
& =(\mu \otimes \nu)((Z Q \otimes Z Q)(\Delta(x)))=\left(Z_{*} \mu \otimes Z_{*} \nu\right)(\bar{\Delta}(Q x))=\left(Z_{*} \mu Z_{*} \nu\right)(Q x),
\end{aligned}
$$

which implies $Z_{*}(\mu \nu)=Z_{*}(\mu) Z_{*}(\nu)$.
Again, for $\mu \in M_{* *}, x \in D(S)$

$$
\begin{aligned}
Z_{*}\left(\mu^{*}\right)(Q x) & =\mu^{*}(Z Q x)=\mu^{*}(\zeta \cdot x)=\mu^{*}(x)=\overline{\mu\left((S x)^{*}\right)} \\
& =\overline{\mu\left(\zeta \cdot(S x)^{*}\right)}=\overline{\mu(Z Q(* S x))}=\overline{Z_{*} \mu\left((Q S x)^{*}\right)}=\overline{Z_{*} \mu(* \tilde{S}(Q x))}=\left(Z_{*} \mu\right)^{*}(Q x),
\end{aligned}
$$

whence $Z_{*}\left(\mu^{*}\right)=\left(Z_{*}(\mu)\right)^{*}$.

On M_{*}, Z_{*} might not be a homomorphism.

3. Representations vs. their coefficients

Theorem 3.1 below is an analogue of [4, 1.4.2] and of [7, Proposition 2.5]. Though the proofs in this section are very close to the cited publications, our situation is somewhat more general and we prefer to include the proofs.

Theorem 3.1. Suppose $M_{* *}$ is dense in M_{*}. Let I be a set, and let $x_{\alpha \beta}: \alpha, \beta \in I$ be elements in $D(S) \subset M$ which satisfy the relations $S\left(x_{\alpha \beta}\right)=x_{\beta \alpha}^{*}$ and

$$
\begin{equation*}
\Delta\left(x_{\alpha \beta}\right)=\sum_{\gamma} x_{\alpha \gamma} \otimes x_{\gamma \beta} \tag{1}
\end{equation*}
$$

the series converging absolutely σ-weakly, for all $\alpha, \beta \in I$. Then there exists a ${ }^{*}$-representation π of $M_{* *}$ on $\ell^{2}(I)$ such that

$$
\begin{equation*}
\mu\left(x_{\alpha \beta}\right)=\left\langle\pi(\mu) e_{\beta}, e_{\alpha}\right\rangle \text { for all } \mu \in M_{* *} \text { and all } \alpha, \beta \in I \tag{2}
\end{equation*}
$$

Recall [12, 11.3] that a positive functional φ on a Banach *-algebra \mathcal{A} is called representable if there exists a ${ }^{*}$-representation $T: \mathcal{A} \rightarrow B(H)$ and a (topologically) cyclic vector $\xi \in H$ such that $\varphi(a)=\langle T(a) \xi, \xi\rangle$ for all $a \in \mathcal{A}$. A positive functional is representable if and only if there is a constant C such that $\varphi(a)^{2} \leqslant C \varphi\left(a^{*} a\right), a \in \mathcal{A}$. In this case $\|\varphi\|=\|\xi\|^{2} \leqslant C$. (See [12, 11.3.4].) Below we consider the algebra $M_{* *}$ with its norm $\|\cdot\|_{*}$ which makes is a Banach $*$-algebra.
Lemma 3.2. In the assumptions of Theorem 3.1, let $\xi \in \ell^{2}(I)$ be finitely supported, and let $\omega_{\xi}=$ $\sum_{\alpha, \beta \in I} \xi_{\alpha} \bar{\xi}_{\beta} x_{\alpha \beta}$. Then ω_{ξ} is a positive representable functional on $M_{* *}$ and $\left\|\omega_{\xi}\right\|_{M_{* * *}^{*}} \leqslant\|\xi\|_{\ell^{2}(I)}^{2}$.
Proof. For $\mu \in M_{* *}$,

$$
\omega_{\xi}\left(\mu^{*} \mu\right)=\Delta\left(\omega_{\xi}\right)\left(\mu^{*} \otimes \mu\right)=\sum_{\alpha, \beta} \xi_{\alpha} \bar{\xi}_{\beta}\left(\sum_{\gamma} x_{\alpha \gamma} \otimes x_{\gamma \beta}\right)\left(\mu^{*} \otimes \mu\right)=\sum_{\gamma}\left(\sum_{\alpha, \beta} \xi_{\alpha} \bar{\xi}_{\beta} x_{\alpha \gamma}\left(\mu^{*}\right) x_{\gamma \beta}(\mu)\right)
$$

where we change the summation order by absolute convergence. Since $x_{\alpha \gamma}\left(\mu^{*}\right)=\left(S x_{\alpha \gamma}\right)(\bar{\mu})=$ $\left(x_{\gamma \alpha}^{*}\right)(\bar{\mu})=\overline{x_{\gamma \alpha}(\mu)}$,

$$
\omega_{\xi}\left(\mu^{*} \mu\right)=\sum_{\gamma}\left(\sum_{\alpha, \beta} \xi_{\alpha} \bar{\xi}_{\beta} \overline{x_{\gamma \alpha}(\mu)} x_{\gamma \beta}(\mu)\right)=\sum_{\gamma}\left|\sum_{\alpha} \bar{\xi}_{\alpha} x_{\gamma \alpha}(\mu)\right|^{2} \geqslant 0
$$

and we see that ω is positive. Next,

$$
\left|\omega_{\xi}(\mu)\right|^{2}=\left|\sum_{\alpha} \xi_{\alpha} \sum_{\beta} \bar{\xi}_{\beta} x_{\alpha \beta}(\mu)\right|^{2} \leqslant\|\xi\|_{\ell^{2}(I)}^{2} \sum_{\alpha}\left|\sum_{\beta} \bar{\xi}_{\beta} x_{\alpha \beta}(\mu)\right|^{2}=\|\xi\|_{\ell^{2}(I)}^{2} \omega_{\xi}\left(\mu^{*} \mu\right)
$$

This shows that ω_{ξ} is representable $\left\|\omega_{\xi}\right\|_{M_{* *}^{*}} \leqslant\|\xi\|_{\ell^{2}(I)}^{2}$.
Proof of the Theorem. Let $\left(e_{\alpha}\right)_{\alpha \in I}$ be the canonical base in $\ell^{2}(I)$. For $\mu \in M_{* *}$ and finitely supported $\xi=\sum_{a} \xi_{a} e_{\alpha} \in \ell^{2}(I)$, set $\pi(\mu) \xi=\sum_{\alpha, \beta} \xi_{a} x_{\beta \alpha}(\mu) e_{\beta}$. By the calculation in the Lemma above,

$$
\left\|\sum_{\alpha, \beta} \xi_{a} x_{\beta \alpha}(\mu) e_{\beta}\right\|^{2}=\sum_{\beta}\left|\sum_{\alpha} \xi_{a} x_{\beta \alpha}(\mu)\right|^{2}=\omega_{\bar{\xi}}\left(\mu^{*} \mu\right) \leqslant\left\|\omega_{\bar{\xi}}\right\|\left\|\mu^{*}\right\|_{*}\|\mu\|_{*}=\|\xi\|^{2}\|\mu\|_{*}^{2} .
$$

This shows that $\pi(\mu)$ extends to a bounded operator on $\ell^{2}(I)$ of norm at most $\|\mu\|_{*}$. By definition, $x_{\alpha \beta}(\mu)=\left\langle\pi(\mu) e_{\beta}, e_{a}\right\rangle$.

For $\mu, \nu \in M_{* *}$,

$$
\begin{aligned}
\left\langle\pi(\mu \nu) e_{\alpha}, e_{\beta}\right\rangle & =x_{\beta \alpha}(\mu \nu)=\Delta\left(x_{\beta \alpha}\right)(\mu \nu)=\sum_{\gamma} x_{\beta \gamma}(\mu) x_{\gamma \alpha}(\nu)=\sum_{\gamma}\left\langle\pi(\mu) e_{\gamma}, e_{\beta}\right\rangle\left\langle\pi(\nu) e_{a}, e_{\gamma}\right\rangle \\
& =\left\langle\pi(\nu) e_{a}, \pi(\mu)^{*} e_{\beta}\right\rangle=\left\langle\pi(\mu) \pi(\nu) e_{a}, e_{\beta}\right\rangle
\end{aligned}
$$

This proves that π is multiplicative. Next,

$$
\left\langle\pi\left(\mu^{*}\right) e_{\alpha}, e_{\beta}\right\rangle=x_{\beta \alpha}\left(\mu^{*}\right)=\bar{\mu}\left(S x_{\beta \alpha}\right)=\bar{\mu}\left(x_{\alpha \beta}^{*}\right)=\overline{\mu\left(x_{\alpha \beta}\right)}=\overline{\left\langle\pi(\mu) e_{\beta}, e_{\alpha}\right\rangle}=\left\langle e_{\alpha}, \pi(\mu) e_{\beta}\right\rangle,
$$

so that π is involutive on $M_{* *}$.

Corollary 3.3. Suppose $M_{* *}$ is dense in M_{*}. Let I be a set, and let $x_{\alpha \beta}: \alpha, \beta \in I$ be elements in $D(S) \subset M$ which satisfy the relations $S\left(x_{\alpha \beta}\right)=x_{\beta \alpha}^{*}$ and

$$
\begin{equation*}
\Delta\left(x_{\alpha \beta}\right)=\sum_{\gamma} x_{\gamma \beta} \otimes x_{\alpha \gamma} \tag{3}
\end{equation*}
$$

then there exists a^{*}-antirepresentation π of $M_{* *}$ on $\ell^{2}(I)$ with the condition (21).
Proof. Set $z_{\alpha \beta}=x_{\beta \alpha}$, then $\left(z_{\alpha \beta}\right)_{\alpha, \beta \in I}$ satisfy the assumptions of Theorem3.1] For the *-representation ρ of $M_{* *}$ on $\ell^{2}(I)$ given by the Theorem,

$$
\mu\left(x_{\alpha \beta}\right)=\mu\left(z_{\beta \alpha}\right)=\left\langle\rho(\mu) e_{\alpha}, e_{\beta}\right\rangle
$$

for all $\mu \in M_{* *}$ and all $\alpha, \beta \in I$. Consider now the $\overline{\ell^{2}(I)}$ with the conjugate-linear structure and the product $\langle x, y\rangle_{-}=\langle y, x\rangle$. For every $\mu, \rho(\mu)^{*}$ is a linear operator on $\overline{\ell^{2}(I)}$, which we can denote $\pi(\mu)$. Moreover,

$$
\left\langle\pi(\mu) e_{\beta}, e_{\alpha}\right\rangle_{-}=\left\langle\rho(\mu) e_{\alpha}, e_{\beta}\right\rangle=\mu\left(x_{\alpha \beta}\right)
$$

so that π satisfies (2). Finally, π is obviously anti-multiplicative and involutive.
Proposition 3.4. Let π be a ${ }^{*}$-representation of M_{*}, and let $\left(x_{\alpha \beta}\right)_{\alpha, \beta \in I}$ be its coefficients in a basis $\left(e_{\alpha}\right)_{\alpha \in I}$. Then the series (11) converges absolutely σ-weakly for all $\alpha, \beta \in I$.
Proof. This is a direct verification: for $\mu, \nu \in M_{*}$,

$$
\begin{aligned}
\left(\sum_{\gamma} x_{\alpha \gamma} \otimes x_{\gamma \beta}\right)(\mu \otimes \nu) & =\sum_{\gamma} x_{\alpha \gamma}(\mu) x_{\gamma \beta}(\nu)=\sum_{\gamma}\left\langle\pi(\mu) e_{\gamma}, e_{\alpha}\right\rangle\left\langle\pi(\nu) e_{\beta}, e_{\gamma}\right\rangle \\
& =\left\langle\pi(\nu) e_{\beta}, \pi(\mu)^{*} e_{\alpha}\right\rangle=\left\langle\pi(\mu) \pi(\nu) e_{\beta}, e_{\alpha}\right\rangle=\left\langle\pi(\mu \nu) e_{\beta}, e_{\alpha}\right\rangle=\Delta\left(x_{\alpha \beta}\right)(\mu \otimes \nu)
\end{aligned}
$$

The series converges absolutely, since this is a decomposition of a scalar product.

4. Absolutely continuous ideal

Every *-representation of $M_{* *}$ is bounded in the norm $\|\cdot\|_{*}$, but not necessarily in the norm of M_{*}. In [7, J. Kustermans proves that if M is a locally compact quantum group then one implies the other. But in general we have no reason to expect this. Thus, we restrict the class of representations to those which have a "generator" (defined below) in $B(H) \bar{\otimes} M$, what implies in particular that they are completely bounded as representations of M_{*} (but maybe not involutive, and maybe the image of M_{*} is not self-adjoint).

There are some complications arising from the fact that $M_{* *}$ might not be dense in M_{*}. Recall that this never occurs if M is a locally compact quantum group [7, Section 3].

By Corollary 2.21, we can always pass to M_{r} and have $\left(M_{r}\right)_{* *}$ dense in $\left(M_{r}\right)_{* *}$. In the sequel, we define the dual von Neumann algebra \widehat{M} first in the case when $M_{* *}$ is dense, and set then $\widehat{M}:=\widehat{M_{r}}$. Next, we show that \widehat{M} has a structure of a quantum semigroup with involution.
4.1. The case of $M_{* *}$ dense in M_{*}. Let M be as above a quantum semigroup with involution, and suppose that $M_{* *} \subset M_{*}$ is dense. Let π be an involutive representation of $M_{* *}$ on a Hilbert space. It is automatically continuous with respect to $\|\cdot\|_{*}$, but not necessarily with respect to $\|\cdot\|$. But in the case it is, π extends by continuity to M_{*}, and this extension is a homomorphism (with a possibly non-selfadjoint range). Representations of M_{*} which are involutive on $M_{* *}$ will be called below just *-representations of M_{*}.
M_{*} can be considered as an operator space with the structure induced by duality to M. Recall the following fact.

Proposition 4.1. Let π be a representation of M_{*} on a Hilbert space K. Then π is completely bounded if and only if there exists $U \in B(K) \bar{\otimes} M \simeq\left(B(K)_{*} \widehat{\otimes}_{\mathrm{op}} M_{*}\right)^{*}$ such that $U(\omega, \mu)=\omega(\pi(\mu))$ for every $\mu \in M_{*}, \omega \in N(K)$. In this case $\|U\|=\|\pi\|_{c b}$.
Notations 4.2. Let π be a representation of M_{*} on a Hilbert space K with a basis $\left(f_{\alpha}\right)$. Denote by $\pi_{\alpha \beta} \in M$ the linear functional on M_{*} defined by $\pi_{\alpha \beta}(\mu)=\left\langle\pi(\mu) f_{\beta}, f_{\alpha}\right\rangle, \mu \in M_{*}$.

In the next definition, the equivalence of conditions (1) and (2) has been proved in 10, Theorem 3.5]. The proof makes no use of involution on M_{*} or of the coinvolution (coinvolution) on M, so it remains valid in the present case. In fact, it is not even necessary to suppose that π is a representation.

Definition 4.3. Let $\pi: M_{*} \rightarrow B(K)$ be a completely bounded $*$-representation of M_{*} on a Hilbert space K. Then π is called unitary if one of the following equivalent conditions holds:
(1) Exists a unitary $U \in B(K) \bar{\otimes} M$ called a generator of π such that

$$
\begin{equation*}
U(\omega, \mu)=\omega(\pi(\mu)) \tag{4}
\end{equation*}
$$

for every $\mu \in M_{*}, \omega \in B(K)_{*}$;
(2) π is non-degenerate and in some basis of K,

$$
\sum_{\gamma} \pi_{\gamma \alpha}^{*} \cdot \pi_{\gamma \beta}=\sum_{\gamma} \pi_{\alpha \gamma} \cdot \pi_{\beta \gamma}^{*}= \begin{cases}1, & \alpha=\beta \tag{5}\\ 0, & \alpha \neq \beta\end{cases}
$$

for every α, β, the series converging absolutely in the M_{*}-weak topology of M.
From the Theorem 3.5 of [10] it follows that this definition does not depend, in fact, on the choice of a basis.

Moreover, one can verify that the following is true:
Proposition 4.4. Let the elements $\pi_{\alpha \beta} \in M, \alpha, \beta \in A$, be such that (5) holds. Then there is a Hilbert space K with a basis $\left(e_{\alpha}\right)_{\alpha \in A}$, a unitary operator $U \in B(K) \otimes M$ and a linear completely contractive map $\pi: M_{*} \rightarrow B(K)$ such that $\pi_{\alpha \beta}(\mu)=\left\langle\pi(\mu) e_{\beta}, e_{\alpha}\right\rangle=U\left(\omega_{\alpha \beta}, \mu\right)$ for all $\mu \in M_{*}$ and $\alpha, \beta \in A$.

For the proof, one realizes M on a Hilbert space H and defines U as an operator on $K \otimes H$ by

$$
\left\langle U\left(e_{\alpha} \otimes x\right),\left(e_{\beta} \otimes y\right)\right\rangle=\pi_{\beta \alpha}\left(\mu_{x, y}\right)
$$

for $x, y \in H, \alpha, \beta \in A$. It follows then from (5) that U is unitary, what implies the existence of π with required properties.

Similarly to [10], we give the following definitions:
Definition 4.5. We call non-unitary the *-representations of $M_{* *}$, completely bounded or not, which are not unitary. Let $M_{* *}^{\times} \subset M_{* *}$ be the (intersection of $M_{* *}$ with the) common kernel of all irreducible non-unitary representations. If there are none, let $M_{* *}^{\times}=M_{* *}$. This is a two-sided ${ }^{*}$-ideal in $M_{* *}$, which is called the absolutely continuous ideal of M_{*}. With the structure inherited from $M_{* *}, M_{* *}^{\times}$is a Banach *-algebra.

By definition, $M_{* *}^{\times}$is contained in $M_{* *}$ and might not be an ideal in M_{*}. However, if $M_{* *}$ is dense in M_{*}, one sees that the norm closure $\left[M_{* *}^{\times}\right]$is an ideal in M_{*}.

Note that the direct sum of a unitary and non-unitary representation is non-unitary; this is the reason to consider only irreducible representations in the definition above.

The main property of $M_{* *}^{\times}$is that every representation of M_{*} which is irreducible on $M_{* *}^{\times}$must be unitary. For the duality construction we need more: that unitary representations do not vanish on it. To guarantee this, we exclude all degenerate cases by the following definition:

Definition 4.6. Let I^{0} be the weakly closed ideal in M generated by $\left(M_{* *}^{\times}\right)^{\perp}$, that is by the annihilator of $M_{* *}^{\times}$. Set $M_{* *}^{0}=M_{* *}^{\times}$if $I^{0} \neq M$ and $M_{* *}^{0}=\{0\}$ otherwise.

Remark 4.7. The following can be said also of any $*$-ideal of $M_{* *}$. Every non-degenerate representation of $M_{* *}^{0}$ extends uniquely to $M_{* *}$ [12, 11.1.12]. It is easy to show that $M_{* *}$ is mapped into the weak closure of the image of $M_{* *}^{0}$, i.e. to the von Neumann algebra generated by $M_{* *}^{0}$. Conversely, if $\varphi_{1}, \varphi_{2}: M_{* *} \rightarrow N$ are two *-homomorphisms to a von Neumann algebra N which agree on $M_{* *}^{0}$ and are such that $\varphi_{i}\left(M_{* *}\right)$ is contained in the weak closure of $\varphi_{i}\left(M_{* *}^{0}\right)$ for $i=1,2$, then $\varphi_{1}=\varphi_{2}$.
Proposition 4.8. If $M_{* *}^{0} \neq\{0\}$ then every unitary representation of M_{*} is non-degenerate on $M_{* *}^{0}$.
Proof. Let $\pi: M \rightarrow B(H)$ be a unitary representation of M_{*}. First, it is nonzero on $M_{* *}^{0}$: otherwise we would have $\pi_{\alpha \beta} \in I^{0}$ for all its coefficients, and by (5) this would imply $1 \in I^{0}$, what is not true by assumption.

Next suppose that π is degenerate on $M_{* *}^{0}$. Let $L \subset H$ be the null subspace of $\pi\left(M_{* *}^{0}\right)$. Then $\left.\pi\right|^{L}$ is also unitary (with generator $\left(P_{L} \otimes 1\right) U$ where P_{L} is the projection onto L and U is the generator of π) and vanishes on $M_{* *}^{0}$, what is impossible.

Proposition 4.9. Every $*$-representation of $M_{* *}^{0}$ extends to a completely contractive representation of M_{*}.

Proof. Every irreducible representation of $M_{* *}^{0}$ is by definition unitary and thus extends to a completely contractive representation of M_{*}. In general, the norm of a *-representation $\pi: M_{* *}^{0} \rightarrow B(H)$ is majorated by the supremum over all irreducible representations; thus $\|\pi(x)\| \leqslant\|x\|_{M_{*}}$ for every $x \in M_{* *}^{0}$, and it follows that π extends to a contractive representation of M_{*} by continuity.

To show that π is completely bounded, we need the disintegration theory in its a priori nonseparable form [5]. Let A be the unital C^{*}-algebra generated by $\pi\left(M_{* *}^{0}\right)$ and \mathbb{I}_{H}. There exists a measure ν on the state space Ω of A such that the identity representation of A on H is isomorphic to the direct integral $\int_{\Omega} \rho_{\varphi} d \nu(\varphi)$ of irreducible representations ρ_{φ} of A on respective spaces H_{φ}; note that the direct integral is understood in the sense of W . Wils [16], a definition suitable for non-separable disintegration.

Every $\rho_{\varphi} \circ \pi$ is either irreducible on $M_{* *}^{0}$ or vanishes on it. This allows to verify explicitly that the matrix norm of $\pi_{n}: M_{n}\left(M_{* *}^{0}\right) \rightarrow M_{n}\left(B\left(\int_{\Omega} H_{\varphi}\right)\right)$ is majorated by 1 , what proves that π extends to a completely contractive representation of M_{*}.

The following is a generalization of Theorem 5.5 of [10]. The proof is changed in significant details to treat possible inequality of M_{*} and $M_{* *}$.

Theorem 4.10. Every bounded $*$-representation π of M_{*} which is nondegenerate on $M_{* *}^{0}$ is unitary.
Proof. By Proposition 4.9 (extension is the same as π by non-degeneracy), π is in fact completely contractive. By Proposition 4.1, there exists $U \in B(H) \bar{\otimes} M$ such that $U(\omega, \mu)=\omega(\pi(\mu))$, and all we need is to prove that U is unitary.

Let M be realized on a Hilbert space K. We will need several times the following representation. Fix $x \in K, \xi \in H$ and bases $\left(e_{\alpha}\right) \subset K,\left(f_{\beta}\right) \subset H$. Then

$$
\left\langle U(\xi \otimes x), f_{\beta} \otimes e_{\alpha}\right\rangle=\left\langle\pi\left(\mu_{x e_{\alpha}}\right) \xi, f_{\beta}\right\rangle,
$$

so that

$$
\begin{align*}
U(\xi \otimes x) & =\sum_{\alpha, \beta}\left\langle U(\xi \otimes x), f_{\beta} \otimes e_{\alpha}\right\rangle f_{\beta} \otimes e_{\alpha}=\sum_{\alpha, \beta}\left\langle\pi\left(\mu_{x e_{\alpha}}\right) \xi, f_{\beta}\right\rangle f_{\beta} \otimes e_{\alpha} \\
& =\sum_{\alpha}\left(\sum_{\beta}\left\langle\pi\left(\mu_{x e_{\alpha}}\right) \xi, f_{\beta}\right\rangle f_{\beta}\right) \otimes e_{\alpha}=\sum_{\alpha} \pi\left(\mu_{x e_{\alpha}}\right) \xi \otimes e_{\alpha} \tag{6}
\end{align*}
$$

(convergence is everywhere in the Hilbert space norm). Similarly,

$$
\begin{align*}
U^{*}(\xi \otimes x) & =\sum_{\alpha, \beta}\left\langle\xi \otimes x, U\left(f_{\beta} \otimes e_{\alpha}\right)\right\rangle f_{\beta} \otimes e_{\alpha}=\sum_{\alpha, \beta}\left\langle\pi\left(\mu_{e_{\alpha} x}\right) f_{\beta}, \xi\right\rangle^{-} f_{\beta} \otimes e_{\alpha} \\
& =\sum_{\alpha}\left(\sum_{\beta}\left\langle\pi\left(\mu_{e_{\alpha} x}\right)^{*} \xi, f_{\beta}\right\rangle f_{\beta}\right) \otimes e_{\alpha}=\sum_{\alpha} \pi\left(\mu_{e_{\alpha} x}\right)^{*} \xi \otimes e_{\alpha} \tag{7}
\end{align*}
$$

We can suppose that M is realized in its standard form. Then every $\mu \in M_{*}$ is equal to $\mu_{x y}$ for some $x, y \in K$, so that we can identify M_{*} with $K \otimes \bar{K}$.

For subspaces $E, F \subset K$, let $M_{E, F} \subset M_{*}$ denote the closed subalgebra generated by $\mu_{x y}$ with $x \in E, y \in F$. Denote also $M_{E, F}^{0}=M_{E, F} \cap M_{* *}^{0}$. These subalgebras are not supposed to be selfadjoint. By $M_{E, F}^{\times}, M_{E, F}^{0 \times}$ we denote the $\|\cdot\|_{*}$-closed $*$-subalgebras generated by $M_{E, F} \cap M_{* *}$ and $M_{E, F}^{0}$ respectively. Note that by definition $M_{E, F}^{0} \subset M_{E, F}^{0 \times}$ but it might be $M_{E, F} \not \subset M_{E, F}^{\times}$.
Lemma 4.11. A closed subspace $L \otimes E \subset H \otimes K$ is U-invariant if and only if $\pi\left(M_{E, K}\right) L \subset L$ and $\pi\left(M_{E, E \perp}\right) L=\{0\}$. It is U^{*}-invariant if and only if $\pi\left(M_{K, E}\right)^{*} L \subset L$ and $\pi\left(M_{E \perp, E}\right)^{*} L=\{0\}$.

The proof is identical to the proof of Lemma 5.6 of [10].

Lemma 4.12. For every separable subspace $V=G \otimes F \subset H \otimes K$ there exist closed separable subspaces $E \subset K, L \subset H$ such that $V \cup U V \cup U^{*} V \subset L \otimes E$ and $M_{F, F} \subset \overline{M_{* *} \cap M_{E, E}}$.
Proof. It follows from the assumptions that F and G are separable. Let $X \subset M_{* *}$ be countable and such that $M_{F, F} \subset \bar{X}$. By the isomorphism $M_{*} \simeq K \otimes \bar{K}$, we can write $X=\left\{\mu_{x_{n} y_{n}}: n \in \mathbb{N}\right\}$. Set $F_{1}=\operatorname{lin}\left\{x_{n}, y_{n}: n \in \mathbb{N}\right\}$, then $X \subset M_{F_{1}, F_{1}}$.

Since V is separable, so is $V_{2}=\overline{G \otimes F_{1}+V+U V+U^{*} V}$. Pick a sequence (v_{n}) dense in V and orthonormal bases $\left(e_{\alpha}\right) \subset K,\left(f_{\beta}\right) \subset H$. Every v_{n} is contained in $\overline{\operatorname{lin}}\left\{f_{\beta} \otimes e_{\alpha}: \alpha \in A_{n}, \beta \in B_{n}\right\}$ with countable A_{n}, B_{n}. Then for $E=\overline{\operatorname{lin}}\left\{e_{\alpha}: \alpha \in \cup A_{n}\right\}$ and $L=\overline{\operatorname{lin}}\left\{f_{\beta}: \beta \in \cup B_{n}\right\}$ we have $V \cup U V \cup U^{*} V \subset L \otimes E$, and $X \subset M_{E, E}$ so that E, L are as required.

Lemma 4.13. Every $v \in K \otimes H$ can be embedded into a U, U^{*}-invariant separable subspace $L \otimes E$ such that L is essential for $\left.\pi\left(M_{E, K}^{0}\right)\right|_{L}$ and $M_{E, E} \subset \overline{M_{* *} \cap M_{E, E}}$.
Proof. Construct separable subspaces E_{k}, L_{k} by induction as follows. Let $L_{1} \otimes E_{1}$ be any separable subspace containing v. Suppose now that E_{k-1}, L_{k-1} are constructed for some $k \geqslant 2$. Since H is essential for $M_{* *}^{0}$, there are sequences $\mu_{n}^{(k)} \in M_{* *}^{0}, \xi_{n}^{(k)} \in H$ such that $\operatorname{lin}\left\{\pi\left(\mu_{n}^{(k)}\right) \xi_{n}^{(k)}\right\}$ is dense in L_{k-1}.
 Set $E_{k}^{\prime}=\overline{E_{k-1}+\operatorname{lin}\left\{x_{n}^{(k)}: n \in \mathbb{N}\right\}}, L_{k}^{\prime}=\overline{L_{k-1}+\operatorname{lin}\left\{\xi_{n}^{(k)}: n \in \mathbb{N}\right\}}$. Then $\mu_{n}^{(k)} \in M_{E_{k}^{\prime}, K}^{0}$ and $\xi_{n}^{(k)} \in L_{k}^{\prime}$ for all n. By Lemma 4.12 there are separable subspaces E_{k}, L_{k} such that

$$
L_{k}^{\prime} \otimes E_{k}^{\prime} \cup U\left(L_{k}^{\prime} \otimes E_{k}^{\prime}\right) \cup U^{*}\left(L_{k}^{\prime} \otimes E_{k}^{\prime}\right) \subset L_{k} \otimes E_{k}
$$

and $M_{E_{k}^{\prime}, E_{k}^{\prime}} \subset \overline{M_{* *} \cap M_{E_{k}, E_{k}}}$.
Set $E=\overline{\cup E_{k}}$ and $L=\overline{\cup L_{k}}$, then $L \otimes E=\overline{\cup\left(L_{k} \otimes E_{k}\right)}$ since E_{k}, L_{k} are increasing. We have $U\left(L_{k} \otimes E_{k}\right) \subset L_{k+1} \otimes E_{k+1}$ and $U^{*}\left(L_{k} \otimes E_{k}\right) \subset L_{k+1} \otimes E_{k+1}$ for all k, what implies the U, U^{*}-invariance of $L \otimes E$. Moreover, by construction the set $\left\{\pi(\mu) \xi: \mu \in M_{E, K}^{0}, \xi \in L\right\}$ is dense in L. Finally, $M_{E_{k}, E_{k}} \subset \overline{M_{* *} \cap M_{E_{k+1}, E_{k+1}}} \subset \overline{M_{* *} \cap M_{E, E}}$ for every k, so $M_{E, E}=\overline{\cup M_{E_{k}, E_{k}}} \subset \overline{M_{* *} \cap M_{E, E}}$.

Proof of the theorem. Take any $v \in H \otimes K$. Let $L \otimes E \subset H \otimes K$ be U, U^{*}-invariant and separable, such that $v \in L \otimes E, M_{E, E} \subset \overline{M_{* *} \cap M_{E, E}}$ and L is essential for $M_{E, K}^{0}$. It follows that $\pi\left(M_{E, K}\right) L \subset L$; $\pi\left(M_{E, E^{\perp}}\right) L=\{0\} ; \pi\left(M_{K, E}\right)^{*} L \subset L$ and as a consequence $\pi\left(M_{E, E}^{\times}\right) L \subset L$.

Fix an orthonormal base $\left(e_{\alpha}\right)_{\alpha \in A}$ in K such that the (countable) subset $\left(e_{\alpha}\right)_{\alpha \in A_{1}}$ is a base for E. Note that $(L \otimes E)^{\perp}$ is also U, U^{*}-invariant. For $x \in E^{\perp}, \xi \in L$ one has $U^{*}(\xi \otimes x) \in(L \otimes E)^{\perp}$; from (77) it follows that $\pi\left(\mu_{e_{\alpha} x}\right)^{*} \xi \in L^{\perp}$ if $e_{\alpha} \in E$. It follows that $\pi\left(M_{E, E^{\perp}}\right)^{*} L \subset L^{\perp}$. For $x \in K, \xi \in L^{\perp}$ we have again $U^{*}(\xi \otimes x) \in(L \otimes E)^{\perp}$; and from (7) it follows that $\pi\left(\mu_{e_{\alpha} x}\right)^{*} \xi \in L^{\perp}$ if $e_{\alpha} \in E$. It follows that $\pi\left(M_{E, K}\right)^{*} L^{\perp} \subset L^{\perp}$.

Let $C^{*}(X)$ denote the closed $*$-algebra generated by X in its relevant space of operators, and let $r_{L}: B(H) \rightarrow B(L)$ be the reduction onto L. The reasoning above shows that $r_{L}: C^{*}\left(\pi\left(M_{E, K}\right)\right) \rightarrow$ $B(L)$ is a $*$-representation which vanishes on $\pi\left(M_{E, E^{\perp}}\right)$. Denote $\rho=r_{L} \circ \pi$; we have $\rho\left(M_{E, E^{\perp}}\right)=0$.

Recall that $M_{E, E}^{\times}$is closed in the $\|\cdot\|_{*}$-norm; the assumption $M_{E, E} \subset \overline{M_{* *} \cap M_{E, E}}$ implies moreover that in the norm of M_{*} we have $M_{E, E} \subset \overline{M_{E, E}^{\times}}$, so that $\rho\left(M_{E, K}\right)=\rho\left(M_{E, E}\right) \subset \overline{\rho\left(M_{E, E}^{\times}\right)}=$ $C^{*}\left(\rho\left(M_{E, E}^{\times}\right)\right)$. From the other side, obviously $C^{*}\left(\rho\left(M_{E, E}^{\times}\right)\right) \subset C^{*}\left(\rho\left(M_{E, E}\right)\right)$, so in fact $C^{*}\left(\rho\left(M_{E, E}^{\times}\right)\right)=$ $C^{*}\left(\rho\left(M_{E, K}\right)\right)$.

Set $\mathcal{A}=C^{*}\left(\rho\left(M_{E, K}^{0}\right)\right)$. Since $M_{E, E}$ is separable, so are $\rho\left(M_{E, E}\right)=\rho\left(M_{E, K}\right) \supset \rho\left(M_{E, K}^{0}\right)$ and \mathcal{A}. The identity representation of \mathcal{A} in $B(L)$ is decomposed into a direct integral of irreducible representations [3, 8.5.2]: there exist a set P equipped with a probability measure β; an integrable field of Hilbert spaces $\Gamma \subset\left\{\left(H_{p}\right)_{p \in P}\right\}$; a field of representations $\sigma_{p}: \mathcal{A} \rightarrow B\left(H_{p}\right), p \in P$, where every σ_{p} is irreducible; and an isometric isomorphism $V: L \rightarrow \Gamma=\int_{P}^{\oplus} H_{p} d \beta(p)$ such that: if $\xi \in L$ and $V(\xi)=\int_{P} \xi_{p} d \beta(p)$, then for every $a \in \mathcal{A}$ we have $V(a \xi)=\int_{P} \sigma_{p}(a) \xi_{p} d \beta(p)$.

For every $\mu \in M_{E, K}^{0 \times}$ and $\xi \in L$, denoting $V \xi=\int \xi_{p}$, we have

$$
\begin{equation*}
V(\rho(\mu) \xi)=\int_{P} \rho_{p}(\mu) \xi_{p} d \beta(p) \tag{8}
\end{equation*}
$$

with irreducible representations $\rho_{p}=\sigma_{p} \circ \rho$ of $M_{E, K}^{0 \times}$.
$M_{E, K}^{0 \times}$ is an ideal in $M_{E, K}^{\times}$as well as $\rho\left(M_{E, K}^{0 \times}\right)$ in $\rho\left(M_{E, K}^{\times}\right)$, so we can extend σ_{p} uniquely and irreducibly to $\rho\left(M_{E, K}^{\times}\right)$, still denoting this extension by σ_{p}. By continuity, σ_{p} extends to $C^{*}\left(\rho\left(M_{E, K}^{\times}\right)\right)=$ $C^{*}\left(\rho\left(M_{E, K}\right)\right)$, and this allows to extend ρ_{p} to $M_{E, K}$. These considerations show also that (8) is valid in fact for all $\mu \in M_{E, K}$.

For every $p, \sigma_{p} \circ r_{L}$ is lifted [3, 2.10] from $C^{*}\left(\rho\left(M_{E, K}\right)\right)$ to an irreducible representation $\tilde{\sigma}_{p}$ of $C^{*}\left(\pi\left(M_{*}\right)\right)$, probably on a bigger space $\tilde{H}_{p} \supset H_{p}$. Set $\tilde{\rho}_{p}=\tilde{\sigma}_{p} \circ \pi$.

Since π is completely bounded, every $\tilde{\rho}_{p}$ is completely bounded too. For $\mu \in M_{E, K},\left.\tilde{\rho}_{p}(\mu)\right|_{H_{p}}=$ $\sigma_{p} \circ \rho(\mu)=\rho_{p}(\mu)$. In particular, H_{p} is invariant under $\tilde{\rho}_{p}\left(M_{E, K}\right)$, and $\left.\tilde{\rho}_{p}\left(M_{E, E^{\perp}}\right)\right|_{H_{p}}=0$ (since $\rho\left(M_{E, E^{\perp}}\right)=0$). Being irreducible and nonzero on $M_{* *}^{0}$, $\tilde{\rho}_{p}$ is unitary, with a unitary generator $U_{p} \in B\left(\tilde{H}_{p}\right) \otimes M$. By the reasoning above, we can apply Lemma 4.11 and conclude that $H_{p} \otimes E$ is U_{p}-invariant.

The rest of the proof is identical to that of [10, Theorem 5.5]. $\int\left(H_{p} \otimes E\right)_{p \in P}$ is also a field of Hilbert spaces, isomorphic to $L \otimes E$ under the isomorphism $\tilde{V}=V \otimes \mathrm{id}$. We have then for $x \in E$, $\xi \in L$ that $\mu_{x e_{\alpha}} \in M_{E, K}$ and so $\pi\left(\mu_{x e_{\alpha}}\right) \xi=\rho\left(\mu_{x e_{\alpha}}\right) \xi$. Denote $V \xi=\int \xi_{p}$; we have

$$
\begin{align*}
\tilde{V}(U(\xi \otimes x)) & =\tilde{V}\left(\sum_{\alpha \in A_{1}} \pi\left(\mu_{x e_{\alpha}}\right) \xi \otimes e_{\alpha}\right) \\
& =\sum_{\alpha \in A_{1}} V\left(\rho\left(\mu_{x e_{\alpha}}\right) \xi\right) \otimes e_{\alpha}=\sum_{\alpha \in A_{1}} \int\left(\rho_{p}\left(\mu_{x e_{\alpha}}\right) \xi_{p}\right) \otimes e_{\alpha} \\
& =\sum_{\alpha \in A_{1}} \int\left(\rho_{p}\left(\mu_{x e_{\alpha}}\right) \xi_{p}\right) \otimes e_{\alpha} \tag{9}
\end{align*}
$$

The last series converges in the Hilbert norm of $\int\left(H_{p} \otimes E\right)$.
From the other hand, for every p we have a formula similar to (6): if $x \in E, \xi_{p} \in H_{p}$, then

$$
U_{p}\left(\xi_{p} \otimes x\right)=\sum_{\alpha \in A_{1}} \rho_{p}\left(\mu_{x e_{\alpha}}\right) \xi_{p} \otimes e_{\alpha}
$$

so the series in (9) converges pointwise to $\int U_{p}\left(\xi_{p} \otimes x\right)$. Both imply convergence in measure in the following sense: denote $\varphi_{\alpha p}=\rho_{p}\left(\mu_{x e_{\alpha}}\right) \xi_{p} \otimes e_{\alpha}$, then for every $\varepsilon>0$

$$
\begin{aligned}
& \beta\left\{p:\left\|(\tilde{V}(U(\xi \otimes x)))_{p}-\sum_{\alpha \in B} \int \varphi_{\alpha p}\right\| \geqslant \varepsilon\right\} \rightarrow 0 \\
& \beta\left\{p:\left\|U_{p}\left(\xi_{p} \otimes x\right)-\sum_{\alpha \in B} \int \varphi_{\alpha p}\right\| \geqslant \varepsilon\right\} \rightarrow 0
\end{aligned}
$$

as finite set of indices $B \subset A_{1}$ increases (the reasoning for real-valued functions applies verbatim). It follows that $(\tilde{V}(U(\xi \otimes x)))_{p}=U_{p}\left(\xi_{p} \otimes x\right)$ almost everywhere, that is

$$
\tilde{V}(U(\xi \otimes x))=\int U_{p}\left(\xi_{p} \otimes x\right)=\left(\int U_{p}\right)(\tilde{V}(\xi \otimes x))
$$

It follows that $\left(U_{p}\right)$, or strictly speaking $\left(\left.U_{p}\right|_{H_{p} \otimes E}\right)$, is a measurable field of operators on $\int H_{p} \otimes E$, and $\tilde{V} U=\int U_{p} \tilde{V}$. Since $\int U_{p}$ is unitary, so is U on $L \otimes E$.

As the initial vector v was arbitrary, we get that U is unitary on $H \otimes K$, what proves the theorem.
Definition 4.14. Denote by $C^{*}\left(M_{* *}^{0}\right)$ the C^{*}-enveloping algebra of $M_{* *}^{0}$, that is the completion of $M_{* *}^{0}$ with respect to the maximal C^{*}-seminorm on it. Denote by \widehat{M} the enveloping von Neumann algebra of $C^{*}\left(M_{* *}^{0}\right)$ and by $\Phi: M_{* *}^{0} \rightarrow \widehat{M}$ the canonical map into it. As every non-degenerate representation, Φ extends uniquely to $M_{* *}$ (see remark 4.7), and by continuity to M_{*}. In the sequel, we always consider Φ as a map from M_{*} to \widehat{M}. Note that a priori Φ might not be injective.
By Proposition 4.9, Φ is completely contractive, and by Theorem 4.10 it is unitary, unless $\widehat{M}=\{0\}$. Denote also by $\widehat{\Phi}$ the preadjoint map $\Phi_{*}: \widehat{M}_{*} \rightarrow M$.
Remark 4.15. This definition coincides with the one given in [10] in the case of a bounded coinvolution S. In this case, in particular, $M_{* *}$ is always dense in M_{*}.
4.2. The case of $M_{* *}$ not dense in M_{*}.

Definition 4.16. In general, set $\widehat{M}=\widehat{M_{r}}, \Phi_{M}=\Phi_{M_{r}} \circ Z_{*}$, where $Z_{*}: M_{*} \rightarrow M_{r *}$ is the map defined in Remark 2.18, By Proposition 2.22, Φ_{M} is a *-homomorphism on $M_{* *}$. However, if $M_{* *}$ is not dense in M_{*}, then Φ_{M} might not be multiplicative on M_{*}. Still, Φ_{M} has a generator $V_{M}=(\mathbb{I} \otimes Z)\left(V_{M_{r}}\right) \in$ $\widehat{M} \otimes M$, but it is not unitary, since V_{M} is contained in the ideal $\widehat{M} \otimes(\zeta M)$ (see notations in Definition (2.18).

Proposition 4.17. Let N be a von Neumann algebra and $\pi: M_{*} \rightarrow N{ }^{*}$-homomorphism. Then there is a unique ${ }^{*}$-homomorphism $\tilde{\pi}: \widehat{M} \rightarrow N$ such that $\tilde{\pi} \circ \Phi=\pi$ on $\left[M_{* *}\right]$ and $\pi\left(M_{*}\right)$ is contained in the weak closure of $\pi\left(M_{* *}^{0}\right)$ in N. Is $M_{* *}$ is dense in M_{*}, then the equality holds on M_{*}.
Proof. From $M_{* *}^{0}, \pi$ is lifted by the universality property to $\tilde{\pi}: \widehat{M} \rightarrow N$, so that $\tilde{\pi} \circ \Phi=\pi$ (on $M_{* *}^{0}$). Now π and $\tilde{\pi} \circ \Phi$ are two extensions of π to $M_{* *}$ with the property that the image of $M_{* *}$ is contained in the weak closure of $\pi\left(M_{* *}^{0}\right)$. As for any ${ }^{*}$-ideal in $M_{* *}$, this implies that $\pi=\tilde{\pi} \circ \Phi$ on $M_{* *}$. Finally, by density this equality holds also on $\left[M_{* *}\right]$, and on the whole of M_{*} is $M_{* *}$ is dense in it.

5. The dual Hopf-von Neumann algebra

In this section we still suppose that $M_{* *}$ is dense in M_{*}. General case will follow for granted since it is reduced to the case of $M_{* *}$ dense.

In order to define a comultiplication on \widehat{M}, we define first the Kronecker product $\Phi \times \Phi$ of Φ by itself, via its coordinates. Recall the procedure of how it is done. If $\widehat{M} \subset B(K)$ and $\left(e_{\alpha}\right)_{\alpha \in A}$ is a base of K, let $\Phi_{\alpha \beta}$ be the coefficients of Φ. Then $\Phi_{\alpha, \beta} \cdot \Phi_{\alpha^{\prime}, \beta^{\prime}}$ with $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in A$ satisfy the equalities (5)), so they generate a unitary $V \in \widehat{M} \otimes \widehat{M} \otimes M$ such that $V\left(\omega_{\alpha \beta}, \omega_{\alpha^{\prime}, \beta^{\prime}}, \mu\right)=\left(\Phi_{\alpha, \beta} \cdot \Phi_{\alpha^{\prime}, \beta^{\prime}}\right)(\mu)$ for all $\mu \in M_{*}$. The corresponding map $\Phi \times \Phi: M_{*} \rightarrow B(K \otimes K)$ has clearly its range in $\widehat{M} \otimes \widehat{M}$ and is multiplicative on M_{*}, since $\Delta\left(\Phi_{\alpha, \beta} \cdot \Phi_{\alpha^{\prime}, \beta^{\prime}}\right)=\sum_{\gamma, \gamma^{\prime}} \Phi_{\alpha, \gamma} \Phi_{\alpha^{\prime} \gamma^{\prime}} \otimes \Phi_{\gamma \beta} \Phi_{\gamma^{\prime}, \beta^{\prime}}$ (and this follows from the multiplicativity of Φ).

Proposition 5.1. Let π be a representation of M_{*} in a Hilbert space H. Assume that S is extended according to Corollary 2.16. Then π is involutive if and only if for every $\omega \in B(H)_{*}, \pi_{*}(\omega) \in D(S)$ and $S\left(\pi_{*}(\omega)\right)=\pi_{*}(\bar{\omega})^{*}$.
Proof. Let π be involutive. For $\mu \in M_{* *}$,

$$
\pi_{\alpha \beta}\left(\mu^{*}\right)=\left\langle\pi\left(\mu^{*}\right) e_{\beta}, e_{\alpha}\right\rangle=\overline{\left\langle\pi(\mu) e_{\alpha}, e_{\beta}\right\rangle}=\overline{\pi_{\beta \alpha}(\mu)}
$$

By definition 2.9, this implies $\pi_{\alpha \beta} \in D(R)$ and $R\left(\pi_{\alpha \beta}\right)=\pi_{\beta \alpha}$, so that $S\left(\pi_{*}\left(\omega_{\alpha \beta}\right)\right)=\pi_{*}\left(\bar{\omega}_{\alpha \beta}\right)^{*}$. By the weak continuity of R, the statement follows for every ω.

Conversely, $R\left(\pi_{\alpha \beta}\right)=\pi_{\beta \alpha}$ for all α, β implies by the same calculation that $\pi\left(\mu^{*}\right)=\pi(\mu)^{*}$ for every $\mu \in M_{* *}$.

Proposition 5.2. $\Phi \times \Phi$ is involutive on $M_{* *}$.
Proof. Suppose first that $M_{* *}$ is dense in M_{*}. For $\mu \in M_{* *}$ and $\omega, v \in \widehat{M}_{*},(\Phi \times \Phi)_{*}(\omega \otimes v)=$ $\widehat{\Phi}(\omega) \widehat{\Phi}(v) \in D(S)$ since $\widehat{\Phi}\left(\widehat{M}_{*}\right) \subset D(S)$, and

$$
S\left((\Phi \times \Phi)_{*}(\omega \otimes v)\right)=S \widehat{\Phi}(v) S \widehat{\Phi}(\omega)=\widehat{\Phi}(\bar{v})^{*} \widehat{\Phi}(\bar{\omega})^{*}=\left((\Phi \times \Phi)_{*}(\bar{\omega} \otimes \bar{v})\right)^{*}
$$

By Proposition 5.1, $\Phi \times \Phi$ is involutive.
We have $(\Phi \times \Phi)_{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}}=\Phi_{\alpha, \beta} \cdot \Phi_{\alpha^{\prime}, \beta^{\prime}} \in D(R)$ for all $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$, moreover $R\left((\Phi \times \Phi)_{\alpha, \alpha^{\prime}, \beta, \beta^{\prime}}\right)=$ $R\left(\Phi_{\alpha, \beta}\right) R\left(\Phi_{\alpha^{\prime}, \beta^{\prime}}\right)=\Phi_{\alpha^{\prime}, \beta^{\prime}} \cdot \Phi_{\alpha, \beta}=(\Phi \times \Phi)_{\alpha^{\prime}, \alpha, \beta^{\prime}, \beta}$. This proves the statement.

Proposition 5.3. $\widehat{M}_{* *} \supset \widehat{\Phi}^{-1}\left(\widehat{\Phi}\left(\widehat{M}_{*}\right) \cap \widehat{\Phi}\left(\widehat{M}_{*}\right)^{*}\right)$.
By universality, $\Phi \times \Phi$ lifts to a ${ }^{*}$-homomorphism $\widehat{\Delta}: \widehat{M} \rightarrow \widehat{M} \otimes \widehat{M}$, so that $\widehat{\Delta} \Phi=\Phi \times \Phi$ on $M_{* *}^{0}$. Since both are non-degenerate, their extension to $M_{* *}$ is unique, thus the equality holds on $M_{* *}$; by continuity, it holds on M_{*} as well.
Proposition 5.4. $\widehat{\Delta}$ is a comultiplication on \widehat{M}.

Proof. $\widehat{\Delta}$ is involutive by construction. The fact that it is coassociative and unital is proved exactly as in Proposition 6.6 10.

Comultiplication on \widehat{M} turns \widehat{M}_{*}, as usual, into a Banach *-algebra.
Proposition 5.5. $\widehat{\Phi}$ is multiplicative.
Proof. For $v, \omega \in \widehat{M}_{*}, \mu \in M_{*}$ by definition

$$
(v \cdot \omega)(\Phi(\mu))=(v \otimes \omega)(\widehat{\Delta} \Phi(\mu))=(v \otimes \omega)((\Phi \times \Phi)(\mu))
$$

At the same time, $(v \cdot \omega)(\Phi(\mu))=\widehat{\Phi}(v \cdot \omega)(\mu)$ and $(v \otimes \omega)((\Phi \times \Phi)(\mu))=(\widehat{\Phi}(v) \widehat{\Phi}(\omega))(\mu)$. This implies that $\widehat{\Phi}(v \cdot \omega)=\widehat{\Phi}(v) \widehat{\Phi}(\omega)$.
Definition 5.6. Let $V \in \widehat{M} \otimes M$ be the unitary generator of Φ. On $D(\widehat{S})=\Phi\left(M_{*}\right)$, define a map \widehat{S} by $(\widehat{S} \Phi \mu, \omega)=V^{*}(\omega, \mu), \mu \in M_{*}, \omega \in \widehat{M}_{*}$.
Proposition 5.7. If $\mu \in M_{*}$ is such that $\mu \circ S$ extends to a normal functional on M, then $\widehat{S} \Phi(\mu)(\omega)=$ $(\mu \circ S)(\widehat{\Phi}(\omega))$ for all $\omega \in \widehat{M}_{*}$.
Proof. For any $\mu \in M_{*}$ and $\omega \in \widehat{M}_{*}$, we have:

$$
\widehat{S} \Phi(\mu)(\omega)=V^{*}(\omega, \mu)=\overline{V(\bar{\omega}, \bar{\mu})}=\bar{\omega}(\Phi(\bar{\mu}))=\omega\left(\Phi(\bar{\mu})^{*}\right)
$$

so that

$$
\begin{equation*}
\widehat{S} \Phi(\mu)=\Phi(\bar{\mu})^{*} \tag{10}
\end{equation*}
$$

The condition on μ is equivalent to the fact that $\bar{\mu} \in M_{* *}$; if it holds, we can continue the calculation above as

$$
\widehat{S} \Phi(\mu)(\omega)=\bar{\mu}^{*}(\widehat{\Phi}(\omega))=(\mu \circ S)(\widehat{\Phi}(\omega))
$$

which proves the statement.
Proposition 5.8. If $M_{* *}$ is dense in M_{*}, then $\widehat{\Phi}\left(\widehat{M}_{*}\right) \subset D(S)$ and $S \widehat{\Phi}(\omega)=\widehat{\Phi}(\bar{\omega})^{*}$.
Proof. Follows immediately from Proposition 5.1
Suppose that $M \subset B(K)$ and denote by θ the flip map on $K \otimes K$. Let H be another Hilbert space. Recall the leg numbering notation: for $V \in B(H) \otimes M$, we denote $V_{12}=V \otimes \mathbb{I}$ and $V_{13}=$ $(\mathbb{I} \otimes \theta)(V \otimes \mathbb{I})(\mathbb{I} \otimes \theta)$. Exactly as in [4, 1.5.1], one can prove:
Proposition 5.9. Let $\pi: M_{*} \rightarrow B(H)$ be a completely bounded linear map, and let $V \in B(H) \otimes M$ be such that $V(\omega, \mu)=\omega(\pi(\mu))$ for all $\omega \in B(H)_{*}, \mu \in M_{*}$. Then
(1) π is multiplicative if and only if

$$
\begin{equation*}
(\mathbb{I} \otimes \Delta)(V)=V_{12} V_{13} \tag{11}
\end{equation*}
$$

(2) π is anti-multiplicative if and only if

$$
\begin{equation*}
(\mathbb{I} \otimes \Delta)(V)=V_{13} V_{12} \tag{12}
\end{equation*}
$$

Proposition 5.10. \widehat{S} is a proper coinvolution on \widehat{M}.
Proof. (1) $D(\widehat{S})=\Phi\left(M_{*}\right)$ is by definition dense in \widehat{M}.
(2) $D(\widehat{S})$ is closed under multiplication since Φ is a homomorphism. Let V be the generator of Φ. Since Φ is a homomorphism, by Proposition 5.9

$$
(\mathbb{I} \otimes \Delta)(V)=V_{12} V_{13}
$$

For V^{*} we have, since Δ is involutive and $\theta^{*}=\theta$:

$$
(\mathbb{I} \otimes \Delta)\left(V^{*}\right)=\left(V^{*}\right)_{13}\left(V^{*}\right)_{12}
$$

By definition, V^{*} is the generator of $\widehat{S} \Phi$, thus by the same Proposition $\widehat{S} \Phi$ is anti-multiplicative. It follows that \widehat{S} is anti-multiplicative on its domain.
(3) A direct calculation shows that

$$
V^{*}(\bar{\omega}, \mu)=\overline{V(\omega, \bar{\mu})}
$$

for all $\mu \in M_{*}, \omega \in \widehat{M}_{*}$.
Next,

$$
\begin{equation*}
\omega\left(\Phi(\bar{\mu})^{*}\right)=\overline{\bar{\omega}(\Phi(\bar{\mu}))}=\overline{V(\bar{\omega}, \bar{\mu})}=V^{*}(\omega, \mu)=\omega(\widehat{S} \Phi(\mu)) \tag{13}
\end{equation*}
$$

It follows that $* \widehat{S} \Phi \mu=\Phi(\bar{\mu})$ for every $\mu \in M_{*}$. Now we get immediately $* \widehat{S}(* \widehat{S} \Phi \mu)=* \widehat{S}(\Phi \bar{\mu})=$ $\Phi(\overline{\bar{\mu}})=\Phi(\mu)$ and as a consequence $(* \widehat{S})^{2}=\mathbb{I}$ as required.
(4) Let $u, v \in \widehat{M}_{*}$ be such that $u \circ \widehat{S}$ and $v \circ \widehat{S}$ extend to normal functionals on \widehat{M}. We need to show that for every $\mu \in M_{*}$,

$$
\begin{equation*}
\widehat{\Delta}(\Phi(\mu))(v \circ \widehat{S} \otimes u \circ \widehat{S})=\widehat{\Delta} \widehat{S} \Phi(\mu)(u \otimes v) \tag{14}
\end{equation*}
$$

The left hand side equals to

$$
\begin{equation*}
\widehat{\Delta}(\Phi \mu)(v \circ \widehat{S} \otimes u \circ \widehat{S})=(\Phi \times \Phi)(\mu)(v \circ \widehat{S} \otimes u \circ \widehat{S})=\mu(\widehat{\Phi}(v \circ \widehat{S}) \cdot \widehat{\Phi}(u \circ \widehat{S})) \tag{15}
\end{equation*}
$$

One checks that for any $\nu \in M_{*}$

$$
\nu(\widehat{\Phi}(u \circ \widehat{S}))=\widehat{S} \Phi(\nu)(u)=V^{*}(u, \nu)=\overline{V(\bar{u}, \bar{\nu})}=\overline{\bar{\nu}(\widehat{\Phi}(\bar{u}))}=\nu\left(\widehat{\Phi}(\bar{u})^{*}\right)
$$

It follows that $\widehat{\Phi}(u \circ \widehat{S})=\widehat{\Phi}(\bar{u})^{*}$, and similarly $\widehat{\Phi}(u \circ \widehat{S})=\widehat{\Phi}(\bar{u})^{*}$. So we have in (15) (using $\overline{u \otimes v}=\bar{u} \otimes \bar{v}):$

$$
\begin{aligned}
\widehat{\Delta}(\Phi \mu)(v \circ \widehat{S} \otimes u \circ \widehat{S}) & =\mu\left(\widehat{\Phi}(\bar{v})^{*} \cdot \widehat{\Phi}(\bar{u})^{*}\right)=\mu\left((\widehat{\Phi}(\bar{u}) \cdot \widehat{\Phi}(\bar{v}))^{*}\right)=\overline{\bar{\mu}(\widehat{\Phi}(\bar{u}) \cdot \widehat{\Phi}(\bar{v}))} \\
& =\overline{(\Phi \times \Phi)(\bar{\mu})(\bar{u} \otimes \bar{v})}=\overline{\widehat{\Delta}(\Phi \bar{\mu})(\bar{u} \otimes \bar{v})}=\widehat{\Delta}(\Phi \bar{\mu})^{*}(u \otimes v) \\
& =\widehat{\Delta}\left(\Phi(\bar{\mu})^{*}\right)(u \otimes v)=\widehat{\Delta} \widehat{S}(\Phi \mu)(u \otimes v) .
\end{aligned}
$$

We have obtained, in particular, that $S \widehat{\Phi}(\omega)=\widehat{\Phi}(\bar{\omega})^{*}$ for all $\omega \in \widehat{M}_{*}$.
We have proved that \widehat{M} is a quantum semigroup with involution. With respect to the involution on \widehat{M}_{*} defined as in Definition 2.4 that is $\omega^{*}(\Phi(\mu))=\bar{\omega} \circ \widehat{S}\left(\Phi(\mu)\right.$ for $\omega \in \widehat{M}_{*}, \mu \in M_{*}$, the map $\widehat{\Phi}$ is involutive, as (13) shows.
Proposition 5.11. For $\omega \in \widehat{M}_{*}$, we have $\omega \in \widehat{M}_{* *}$ if and only if $\widehat{\Phi}(\omega)^{*} \in \widehat{\Phi}(\widehat{M})$. In this case, $\omega^{*}=\widehat{\Phi}^{-1}\left(\widehat{\Phi}(\omega)^{*}\right)$.
Proof. Take $\omega \in \widehat{M}_{* *}, \mu \in M_{* *}$. Then:

$$
\bar{\omega}(\widehat{S} \Phi \mu)=\overline{\omega\left((\widehat{S} \Phi \mu)^{*}\right)}=\overline{\omega(\Phi(\bar{\mu}))}=\overline{V(\omega, \bar{\mu})}=\overline{\widehat{V}(\bar{\mu}, \omega)}=\overline{\widehat{\Phi}(\omega)(\bar{\mu})}=\widehat{\Phi}(\omega)^{*}(\mu)
$$

If ω^{*} is well defined, then the value above is also equal to $\omega^{*}(\Phi \mu)=\widehat{\Phi}\left(\omega^{*}\right)(\mu)$, what proves the proposition.

The reasoning above is summarized in
Proposition 5.12. Let M be a quantum semigroup with involution, such that $M_{* *}$ is dense in M_{*}. Then \widehat{M} is a quantum semigroup with involution.
5.1. The case of $M_{* *}$ not dense in M_{*}. For general M, set $\widehat{M}=\widehat{M}_{r}$. Proposition 5.12 implies imediately
Theorem 5.13. Let M be a quantum semigroup with involution. Then \widehat{M} is a quantum semigroup with involution.

Note however that Φ_{M} might not be a homomorphism if $M_{* *}$ is not dense in M_{*}.
Proposition 5.14. If $\widehat{M} \neq\{0\}$ then $\widehat{\Phi}: \widehat{M}_{*} \rightarrow Z M$ is unitary.
Proof. Since $Z: M_{r} \rightarrow M$ is a ${ }^{*}$-homomorphism, $\widehat{\Phi}_{M}=Z_{M} \widehat{\Phi}_{M_{r}}$ is a *-homomorphism even if $M \neq M_{r}$. If $V_{r} \in \widehat{M} \otimes M_{r}$ is the generator of $\Phi_{M_{r}}$ (which is unitary), then $\widehat{V}=\left(Z_{M} \otimes 1\right)\left(\theta\left(V_{r}\right)\right) \in$ $\left(Z_{M} M\right) \otimes \widehat{M}$, with the flip θ, is the generator of $\widehat{\Phi}_{M}$.

Proposition 5.15. $\widehat{\Phi}$ is injective.

Proof. If $\widehat{\Phi}\left(\omega_{1}\right)=\widehat{\Phi}\left(\omega_{2}\right)$ for some $\omega_{1}, \omega_{2} \in \widehat{M}_{*}$, then $\omega_{1}(\Phi(\mu))=\omega_{2}(\Phi(\mu))$ for every $\mu \in M_{*}$, so that $\omega_{1}=\omega_{2}$ on $\Phi\left(M_{*}\right)$. By weak density of $\Phi\left(M_{*}\right)$ in \widehat{M}, it follows that $\omega_{1}=\omega_{2}$.
5.2. The axiom of the antipode. In the theory of Hopf algebras, the antipode S of a Hopf algebra \mathcal{M} satisfies the axiom

$$
\begin{equation*}
\mathfrak{m}(\mathbb{I} \otimes S) \Delta=\mathfrak{m}(S \otimes \mathbb{I}) \Delta=\varepsilon 1 \tag{16}
\end{equation*}
$$

where $\mathfrak{m}: \mathcal{M} \otimes \mathcal{M} \rightarrow \mathcal{M}$ is the multiplication and $\varepsilon: \mathcal{M} \rightarrow \mathbb{C}$ the counit.
Suppose that $\{0\} \neq M=\widehat{N}$ and set $\mathcal{M}=\Phi_{N}\left(N_{*}\right)$. On \mathcal{M}, a counit is well defined (and satisfies the usual axioms of a counit): $\varepsilon(\Phi(\nu))=\nu\left(1_{N}\right), \nu \in N_{*}$. Suppose that $N \subset B(H)$ is in its standard form, then every $\nu \in N_{*}$ has form $\nu=\nu_{x y}: a \mapsto\langle a x, y\rangle, a \in N, x, y \in H$. In this case, $\varepsilon\left(\nu_{x y}\right)=\langle x, y\rangle$. For every $\nu \in N_{*}, \Phi(\nu)$ is a coefficient of the unitary representation $\widehat{\Phi}_{N}: M_{*} \rightarrow N$. If we fix a basis $\left(e_{\alpha}\right)$ in H, then in particular $\Phi\left(\nu_{e_{\alpha}, e_{\beta}}\right)=\widehat{\Phi}_{\beta \alpha}$ in the notations 4.2 for every α, β.

Since Φ_{N} is a unitary representation of N_{*}, the formula (5) implies (by decomposing x and y in the basis) that

$$
\begin{equation*}
\sum_{\gamma} \Phi\left(\nu_{y, e_{\gamma}}\right)^{*} \Phi\left(\nu_{x, e_{\gamma}}\right)=\langle x, y\rangle 1_{M}=\varepsilon\left(\nu_{x y}\right) 1_{M} \tag{17}
\end{equation*}
$$

At the same time,

$$
\Delta\left(\Phi\left(\nu_{x y}\right)\right)=\sum_{\gamma} \Phi\left(\nu_{e_{\gamma}, y}\right) \otimes \Phi\left(\nu_{x, e_{\gamma}}\right) .
$$

by Proposition 3.4. Together with $S_{M} \Phi\left(\nu_{e_{\gamma}, y}\right)=\Phi\left(\nu_{y, e_{\gamma}}\right)^{*}$ which is valid by (10), the equality (17) takes form

$$
\mathfrak{m}(S \otimes \mathbb{I}) \Delta(a)=\varepsilon(a) 1_{M}
$$

for $a=\nu_{x y}$. Similarly, on arrives at the other equality in (16). We see that the axiom of the antipode is satisfied for all $a \in \mathcal{M}$, in the sense described above. This suggests that every dual $M=\widehat{N}$ is a quantum group and not just a semigroup.

6. Morphisms and second duals

In this section we do not suppose that $M_{* *}$ is dense in M_{*}.
Definition 6.1. Let $\mathcal{Q S I}$ be the category of quantum semigroup with involution. A morphism in $\mathcal{Q S I}$ is a normal *-homomorphism $\varphi: M \rightarrow N$ such that: $\Delta_{N} \circ \varphi=(\varphi \otimes \varphi) \Delta_{M}, \varphi\left(D\left(S_{M}\right)\right) \subset D\left(S_{N}\right)$ and $S_{N} \circ \varphi=\varphi \circ S_{M}$. Note that we do not require that $\varphi(1)=1$.

Proposition 6.2. If $\varphi: M \rightarrow N$ is a morphism in $\mathcal{Q S I}$, then $\varphi_{*}: N_{*} \rightarrow M_{*}$ is a ${ }^{*}$-homomorphism. In particular, $\varphi_{*}\left(N_{* *}\right) \subset M_{* *}$.

Proof. By definition, φ is ultraweakly continuous, so it has a pre-adjoint $\varphi_{*}: N_{*} \rightarrow M_{*}$. Since φ is a coalgebra morphism, it is standard to show that φ_{*} is a homomorphism. It remains to prove that φ_{*} is involutive.

For any $\nu \in N_{*}, \overline{\varphi_{*}(\nu)}=\varphi_{*}(\bar{\nu})$, since for any $x \in M$

$$
\overline{\varphi_{*}(\nu)}(x)=\overline{\varphi_{*}(\nu)\left(x^{*}\right)}=\overline{\nu\left(\varphi\left(x^{*}\right)\right)}=\overline{\nu\left(\varphi(x)^{*}\right)}=\bar{\nu}(\varphi(x))=\varphi_{*}(\bar{\nu})(x)
$$

If moreover $\nu \in N_{* *}$, then for any $x \in D\left(S_{M}\right)$

$$
\overline{\varphi_{*}(\nu)} \circ S_{M}(x)=\varphi_{*}(\bar{\nu})\left(S_{M}(x)\right)=\bar{\nu}\left(\varphi\left(S_{M}(x)\right)\right)=\bar{\nu}\left(S_{N} \varphi(x)\right)=\nu^{*}(\varphi(x))=\varphi_{*}\left(\nu^{*}\right)(x) .
$$

This calculation shows that $\varphi_{*}(\nu)^{*}$ is well defined and equals $\varphi_{*}\left(\nu^{*}\right)$.
Below we use the notations of Proposition 2.19,
Proposition 6.3. If $\varphi: M \rightarrow N$ is a morphism in $\mathcal{Q S I}$, then there exists a morphism $\varphi_{r}: M_{r} \rightarrow N_{r}$ such that $\varphi_{r} Q_{M}=Q_{N} \varphi$.

Proof. Recall that $\operatorname{ker} Q_{M}=\left(M_{* *}\right)^{\perp}, \operatorname{ker} Q_{N}=\left(N_{* *}\right)^{\perp}$. By Proposition 6.2 $\varphi_{*}\left(N_{* *}\right) \subset M_{* *}$. It follows immediately that $\varphi\left(\operatorname{ker} Q_{M}\right) \subset \operatorname{ker} Q_{N}$, so that φ_{r} which satisfies the equality $\varphi_{r} Q_{M}=Q_{N} \varphi$ is well defined. It is immediate to check that it is normal.

The fact that φ_{r} is a coalgebra morphism follows from the calculation below:

$$
\begin{aligned}
\Delta_{N_{r}} \varphi_{r} Q_{M} & =\Delta_{N_{r}} Q_{N} \varphi=\left(Q_{N} \otimes Q_{N}\right) \Delta_{N} \varphi=\left(Q_{N} \otimes Q_{N}\right)(\varphi \otimes \varphi) \Delta_{M} \\
& =\left(\varphi_{r} Q_{M} \otimes \varphi_{r} Q_{M}\right) \Delta_{M}=\left(\varphi_{r} \otimes \varphi_{r}\right) \Delta_{M_{r}} Q_{M}
\end{aligned}
$$

For the coinvolution domains we have:

$$
\varphi_{r}\left(D\left(S_{M_{r}}\right)\right)=\varphi_{r}\left(Q_{M}\left(D\left(S_{M}\right)\right)\right)=Q_{N} \varphi\left(D\left(S_{M}\right)\right) \subset Q_{N} D\left(S_{N}\right)=D\left(S_{N_{r}}\right)
$$

and moreover

$$
\varphi_{r} S_{M_{r}} Q_{M}=\varphi_{r} Q_{M} S_{M}=Q_{N} \varphi S_{M}=Q_{N} S_{N} \varphi=S_{N_{r}} Q_{N} \varphi=S_{N_{r}} \varphi_{r} Q_{M}
$$

Proposition 6.4. Let $\varphi: M \rightarrow N$ be a morphism in $\mathcal{Q S I}$. Then there is a dual morphism $\widehat{\varphi}: \widehat{N} \rightarrow \widehat{M}$ such that $\widehat{\varphi} \circ \Phi_{N}=\Phi_{M} \circ \varphi_{*}$ on $N_{* *}^{0}$. If $\widehat{N} \neq\{0\}$, then the equality holds on $N_{* *}$. Moreover, $\widehat{\varphi}_{r}=\widehat{\varphi}$.
Proof. The statement is trivial if $\widehat{N}=\{0\}$ or $\widehat{M}=\{0\}$ so we can assume that $N_{* *}^{0} \neq\{0\}$ and $\widehat{M} \neq\{0\}$.
Consider $\Phi_{M} \circ \varphi_{*}: N_{* *}^{0} \rightarrow \widehat{M}$. Since Φ_{M}, φ_{*} are ${ }^{*}$-homomorphisms on $M_{* *}$ and $N_{* *}$ respectively and $\varphi_{*}\left(N_{* *}^{0}\right) \subset M_{* *}$, their composition is a ${ }^{*}$-homomorphism on $N_{* *}^{0}$, so it is lifted to a normal ${ }^{*}$ homomorphism $\widehat{\varphi}: \widehat{N} \rightarrow \widehat{M}$ such that $\widehat{\varphi} \Phi_{N}=\Phi_{M} \varphi_{*}\left(\right.$ on $\left.N_{* *}^{0}\right)$. Both maps are in fact defined on N_{*}; by Proposition 4.17 the equality holds on $N_{* *}$, and if $N_{* *}$ is dense in N_{*}, on N_{*}.

Now we can prove that $\widehat{\varphi}=\widehat{\varphi}_{r}$. By density, it is sufficient to prove that $\widehat{\varphi} \Phi_{N_{r}}=\widehat{\varphi}_{r} \Phi_{N_{r}}$ on $\left(N_{r}\right)_{* *}$, what is done as follows (recall Notations 2.18 and Definition 4.16):

$$
\begin{aligned}
\widehat{\varphi} \Phi_{N_{r}} & =\widehat{\varphi} \Phi_{N_{r}} Z_{N *} Q_{N *}=\widehat{\varphi} \Phi_{N} Q_{N *}=\Phi_{M} \varphi_{*} Q_{N *} \\
& =\Phi_{M} Q_{M *} \varphi_{r *}=\Phi_{M_{r}} Z_{M *} Q_{M *} \varphi_{r *}=\Phi_{M_{r}} \varphi_{r *}=\widehat{\varphi}_{r} \Phi_{N_{r}}
\end{aligned}
$$

From now on we can suppose that $\varphi=\varphi_{r}$, that is, $M_{* *}$ is dense in M_{*} and $N_{* *}$ is dense in N_{*}.
Next we prove that $\widehat{\varphi}$ is a coalgebra morphism: $\Delta_{\widehat{M}} \widehat{\varphi}=(\widehat{\varphi} \otimes \widehat{\varphi}) \Delta_{\widehat{N}}$. Since $\Delta_{\widehat{M}}$ is ultraweakly continuous, this equality is enough to check on $\Phi_{N}\left(N_{* *}^{0}\right)$. Moreover, to check an equality in $\widehat{M} \widehat{\otimes} \widehat{M}$ where $\widehat{\Delta}_{M}$ takes its values, it is enough to consider evaluations on $x \otimes y$, with $x, y \in \widehat{M}_{*}$. We have, with any $\nu \in N_{* *}^{0}$:

$$
\begin{align*}
\Delta_{\widehat{M}} \widehat{\varphi}\left(\Phi_{N}(\nu)\right)(x \otimes y) & =\widehat{\varphi}\left(\Phi_{N}(\nu)\right)(x y)=\Phi_{M}\left(\varphi_{*}(\nu)\right)(x y)=\varphi_{*}(\nu)\left(\widehat{\Phi}_{M}(x) \widehat{\Phi}_{M}(y)\right) \\
& =\nu\left(\varphi\left(\widehat{\Phi}_{M}(x)\right) \varphi\left(\widehat{\Phi}_{M}(y)\right)\right) \tag{18}
\end{align*}
$$

By definition, $\Delta_{\widehat{N}} \Phi_{N}=\Phi_{N} \times \Phi_{N}$, so from the other side:

$$
(\widehat{\varphi} \otimes \widehat{\varphi}) \Delta_{\widehat{N}}\left(\Phi_{N}(\nu)\right)(x \otimes y)=\left(\Phi_{N} \times \Phi_{N}\right)(\nu)\left(\widehat{\varphi}_{*} x \otimes \widehat{\varphi}_{*} y\right)=\nu\left(\widehat{\Phi}_{N}\left(\widehat{\varphi}_{*} x\right) \cdot \widehat{\Phi}_{N}\left(\widehat{\varphi}_{*} y\right)\right)
$$

Recalling that $\varphi \widehat{\Phi}_{M}=\widehat{\Phi}_{N} \widehat{\varphi}_{*}$, we arrive at the required equality.
It remains to check the equality $S_{\widehat{M}} \widehat{\varphi}=\widehat{\varphi} S_{\widehat{N}}$. By definition $D\left(S_{\widehat{N}}\right)=\Phi_{N}\left(N_{*}\right)$; for $\xi=\Phi_{N}(\nu)$, $\nu \in N_{*}$, we have $\widehat{\varphi}(\xi)=\widehat{\varphi}\left(\Phi_{N}(\nu)\right)=\Phi_{M}\left(\varphi_{*}(\nu)\right) \in \Phi_{M}\left(M_{*}\right)=D\left(S_{\widehat{M}}\right)$. Then

$$
S_{\widehat{M}} \widehat{\varphi}(\xi)=S_{\widehat{M}} \Phi_{M}\left(\varphi_{*}(\nu)\right)
$$

and by Definition 5.6, for any $\omega \in \widehat{M}$:

$$
\begin{aligned}
\omega\left(S_{\widehat{M}} \Phi_{M}\left(\varphi_{*}(\nu)\right)\right) & =\overline{V_{M}^{*}\left(\omega, \varphi_{*}(\nu)\right)=\overline{V_{M}\left(\bar{\omega}, \overline{\varphi_{*}(\nu)}\right)}=\overline{V_{M}\left(\bar{\omega}, \varphi_{*}(\bar{\nu})\right)}} \\
& =\overline{\bar{\omega}\left(\Phi_{M}\left(\varphi_{*}(\bar{\nu})\right)\right)}=\overline{\bar{\omega}\left(\widehat{\varphi}\left(\Phi_{N}(\bar{\nu})\right)\right)}=\overline{\widehat{\varphi}_{*}(\bar{\omega})\left(\Phi_{N}(\bar{\nu})\right)} \\
& =\overline{V_{N}\left(\widehat{\varphi}_{*}(\bar{\omega}), \bar{\nu}\right)}=\overline{V_{N}\left(\overline{\widehat{\varphi}_{*}(\omega)}, \bar{\nu}\right)}=V_{N}^{*}\left(\widehat{\varphi}_{*}(\omega), \nu\right) \\
& =\widehat{\varphi}_{*}(\omega)\left(S_{\widehat{N}} \Phi_{N}(\nu)\right)=\omega\left(\widehat{\varphi} S_{\widehat{N}}\left(\Phi_{N}(\nu)\right)\right)=\omega\left(\widehat{\varphi} S_{\widehat{N}}(\xi)\right)
\end{aligned}
$$

It follows that $S_{\widehat{M}} \widehat{\varphi}(\xi)=\widehat{\varphi} S_{\widehat{N}}(\xi)$ as required.

Remark 6.5. If we have two $\mathcal{Q S I}$-morphisms $\varphi: M \rightarrow N$ and $\psi: N \rightarrow L$, then on $L_{* *}^{0}$ we have:

$$
\begin{gathered}
\widehat{\psi \circ \varphi} \circ \Phi_{L}=\Phi_{M} \circ(\psi \circ \varphi)_{*}=\Phi_{M} \circ \varphi_{*} \circ \psi_{*}, \\
\widehat{\varphi} \circ \widehat{\psi} \circ \Phi_{L}=\widehat{\varphi} \circ \Phi_{N} \circ \psi_{*} .
\end{gathered}
$$

It might happen that $\psi_{*}\left(L_{* *}^{0}\right)$ is not a subset of $N_{* *}^{0}$ so we cannot continue the last line as $\Phi_{M} \circ \varphi_{*} \circ \psi_{*}$, in general. If $\widehat{N} \neq\{0\}$, then we can use the fact that $\widehat{\varphi} \circ \Phi_{N}=\Phi_{M} \circ \varphi_{*}$ on $N_{* *}$ and conclude that both displayed lines are equal, what implies $\widehat{\psi \circ \varphi}=\widehat{\varphi} \circ \widehat{\psi}$. If $\widehat{N}=\{0\}$, then necessarily $\widehat{\varphi} \circ \widehat{\psi}=0$ but it might happen that $\widehat{\psi \circ \varphi} \neq 0$.
Proposition 6.6. Let \mathbb{I}_{M} be the identity morphism of M, then $\widehat{\mathbb{I}}_{M}=\mathbb{I}_{\widehat{M}}$.
Proof. One checks trivially that $\left(\mathbb{I}_{M}\right)_{*}=\mathbb{I}_{M *}$. Next, by definition $\widehat{\mathbb{I}}_{M} \Phi_{M}=\Phi_{M}\left(\mathbb{I}_{M}\right)_{*}$, and then $\widehat{\mathbb{I}}_{M} \Phi_{M}=\Phi_{M}$ on $M_{* *}^{0}$. Since $\Phi_{M}\left(M_{* *}^{0}\right)$ is dense in \widehat{M}, it follows that $\widehat{\mathbb{I}}_{M}=\mathbb{I}_{\widehat{M}}$.
Proposition 6.7. For every M, there is a normal *-homomorphism $D_{M}: \widehat{\widehat{M}} \rightarrow M$ such that $D_{M} \circ$ $\Phi_{\widehat{M}}(x)=\widehat{\Phi}_{M}(x)$ for all $x \in \widehat{M}_{* *}^{0}$. If $\widehat{\widehat{M}} \neq\{0\}$, then this equality holds actually on $\widehat{M}_{* *}$. If $M_{* *}$ is dense in M_{*}, then D_{M} is a coalgebra morphism and thus a morphism in $\mathcal{Q S I}$.

Proof. If $\widehat{M}=\{0\}$, the statement holds for $D_{M}=0$ which is a morphism; below we suppose that $\widehat{M} \neq\{0\}$.

Denote $N=\widehat{M}$. The canonical map $\widehat{\Phi}_{M}: N_{*} \rightarrow M$ is a *-homomorphism. In particular, $\left.\widehat{\Phi}_{M}\right|_{N_{* *}}$ is a ${ }^{*}$-homomorphism, so it is extended uniquely to a normal homomorphism of its von Neumann envelope: $D_{M}: \widehat{N} \rightarrow M$. By definition, D_{M} satisfies the equality in the statement for $x \in N_{* *}^{0}=\widehat{M}_{* *}^{0}$. If $\widehat{\widehat{M}} \neq\{0\}$, then by Propositions 5.14 , 4.8 and 4.17 this equality holds also on $\widehat{M}_{* *}$.

Similarly, there exists a unique $D_{M_{r}}: \widehat{\widehat{M}} \rightarrow M_{r}$ such that $D_{M_{r}} \circ \Phi_{\widehat{M}}=\widehat{\Phi}_{M_{r}}$ on $\widehat{M}_{* *}$. Recalling that $\widehat{\Phi}_{M}=Z_{M} \widehat{\Phi}_{M_{r}}$, we infer that $D_{M}=Z_{M} D_{M_{r}}$.

To prove the last statement, we can suppose that $M_{* *}$ is dense in M_{*} and $Z_{M}=1$. In this case $D_{M} \circ \Phi_{\widehat{M}}=\widehat{\Phi}_{M}$ on \widehat{M}_{*}, and the preadjoint map $\left(\widehat{\Phi}_{M}\right)_{*}: M_{*} \rightarrow \widehat{M}$, which is by definition Φ_{M}, equals also to $\left(\Phi_{\widehat{M}}\right)_{*} \circ\left(D_{M}\right)_{*}=\widehat{\Phi}_{\widehat{M}} \circ\left(D_{M}\right)_{*}$. Also, Φ_{M} is a homomorphism.

To prove that D_{M} is a morphism of coinvolutive Hopf-von Neumann algebras, one should check the equality

$$
\Delta_{M} D_{M}(x)(\mu \otimes \nu)=\left(D_{M} \otimes D_{M}\right) \Delta_{\widehat{N}}(x)(\mu \otimes \nu)
$$

for every $x \in \widehat{N}$ and $\mu, \nu \in M_{*}$. By density, it is sufficient to consider $x=\Phi_{N}(y)$ with $y \in N_{* *}^{0}$. Then we have:

$$
\begin{aligned}
\Delta_{M} D_{M} \Phi_{N}(y)(\mu \otimes \nu) & =\Delta_{M} \widehat{\Phi}_{M}(y)(\mu \otimes \nu)=\widehat{\Phi}_{M}(y)(\mu \nu)=y\left(\Phi_{M}(\mu \nu)\right) \\
& =y\left(\Phi_{M}(\mu) \Phi_{M}(\nu)\right)=y\left(\widehat{\Phi}_{N}\left(\left(D_{M}\right)_{*}(\mu)\right) \cdot \widehat{\Phi}_{N}\left(\left(D_{M}\right)_{*}(\nu)\right)\right) \\
& =\Phi_{N}(y)\left(\left(D_{M}\right)_{*}(\mu) \cdot\left(D_{M}\right)_{*}(\nu)\right)=\Delta_{\widehat{N}}(x)\left(\left(D_{M}\right)_{*}(\mu) \otimes\left(D_{M}\right)_{*}(\nu)\right) \\
& =\left(D_{M} \otimes D_{M}\right)\left(\Delta_{\widehat{N}}(x)\right)(\mu \otimes \nu)
\end{aligned}
$$

To verify that D_{M} agrees with the coinvolutions, let $y \in \widehat{M}_{*}$. Then $D_{M} \Phi_{\widehat{M}}(y)=\widehat{\Phi}_{M}(y) \in D\left(S_{M}\right)$ by Proposition 5.8, and $S_{M}\left(\widehat{\Phi}_{M}(y)\right)=\widehat{\Phi}_{M}(\bar{y})^{*}$ by formula (10). From the other side,

$$
D_{M} S_{\widehat{M}} \Phi_{\widehat{M}}(y)=D_{M}\left(\Phi_{\widehat{M}}(\bar{y})^{*}\right)=\left(D_{M} \Phi_{\widehat{M}}(\bar{y})\right)^{*}=\left(\widehat{\Phi}_{M}(\bar{y})\right)^{*}=S_{M}\left(\widehat{\Phi}_{M}(y)\right)=S_{M} D_{M} \Phi_{\widehat{M}}(y) .
$$

This proves that $S_{M} D_{M}=D_{M} S_{\widehat{M}}$ on $\Phi_{\widehat{M}}\left(\widehat{M}_{*}\right)$. If $S_{\widehat{M}}$ is extended by Proposition 2.16, then by continuity (Proposition 2.12) we still have equality on the whole of $D\left(S_{\widehat{\bar{M}}}\right)$.

As it was shown already in the case of a bounded S in 10 , the map D_{M} need not be neither injective nor surjective. For the algebra M from the example 5.10 of [10], $\widehat{\widehat{M}}=0$, so $D_{M}=0$. For a second example, take $M=L_{\infty}(G)$. Then $\widehat{\widehat{M}}=C_{0}(G)^{* *}$, and D_{M} is a quotient map but is not injective.

If M is a dual of another algebra, then D_{M} is right invertible:
Proposition 6.8. If $M=\widehat{N}$ for some N and $\widehat{\widehat{M}} \neq\{0\}$, then there is a $\mathcal{Q S I}$-morphism $E_{M}: M \rightarrow \widehat{\widehat{M}}$, such that $D_{M} \circ E_{M}=\mathrm{id}_{M}$.
Proof. Since $M=\widehat{N}=\widehat{N_{r}}$, we can assume that $N=N_{r}$. By Proposition 6.7 applied to N, since $\widehat{M} \neq\{0\}$, there is a $\mathcal{Q S I}$-morphism $D_{N}: \widehat{\hat{N}} \rightarrow N$ such that $D_{N} \circ \Phi_{\widehat{N}}(x)=\widehat{\Phi}_{N}(x)$ for all $x \in \widehat{N}_{* *}=$ $M_{* *}$. By Proposition 6.4, there exists a dual morphism $E_{M}=\widehat{D}_{N}: \widehat{N}=M \rightarrow(\widehat{\hat{N}})^{\wedge}=\widehat{\widehat{M}}$.

By assumption $\widehat{M}=\widehat{\widehat{N}} \neq 0$, and in this case it was proved in Proposition6.7that $\Phi_{N}=\widehat{\Phi}_{M} \circ\left(D_{N}\right)_{*}$ on N_{*}. Moreover, since $\widehat{\widehat{M}} \neq\{0\}$, we have $D_{M} \circ \Phi_{\widehat{M}}=\widehat{\Phi}_{M}$ on $\widehat{M}_{* *}$.

By Proposition 6.4 since $M \neq\{0\}$, we have $E_{M} \circ \Phi_{N}=\Phi_{\widehat{M}} \circ\left(D_{N}\right)_{*}$ on $N_{* *}$. Then on $N_{* *}$,

$$
D_{M} \circ\left(E_{M} \circ \Phi_{N}\right)=\left(D_{M} \circ \Phi_{\widehat{M}}\right) \circ\left(D_{N}\right)_{*}=\widehat{\Phi}_{M} \circ\left(D_{N}\right)_{*}=\Phi_{N} ;
$$

note that $\left(D_{N}\right)_{*}\left(N_{* *}\right) \subset \widehat{M}_{* *}$ by Proposition 6.2. Thus, $D_{M} \circ E_{M}=\operatorname{id}_{M}$ on $\Phi_{N}\left(N_{* *}\right)$. Since this latter is weakly dense in M, this equality holds everywhere.
Corollary 6.9. If $M=\widehat{N}$ for some N and $\widehat{\widehat{M}} \neq\{0\}$, then $M_{* *}$ is dense in M_{*}.
Proof. In Proposition 6.7 it was proved that $D_{M}=Z_{M} D_{M_{r}}$. By Proposition 6.8, D_{M} is surjective. This implies that $\zeta_{M}=1_{M}$ and $M_{* *}$ is dense in M_{*}.
Proposition 6.10. If $M=\widehat{N}$ for some N and $\widehat{M}^{(4)} \neq\{0\}$ then E_{M} is unital.
Proof. It is clear that $E_{M}(1)=p=p^{2}=p^{*}$. Suppose that $p \neq 1$. Then $E_{M}(M)$ is contained in the proper weakly closed ${ }^{*}$-subalgebra $I:=p \widehat{\widehat{M}} p$. Consider $\pi=\Phi_{M} \circ E_{M *}: \widehat{\widehat{M}}_{*} \rightarrow \widehat{M}$. Since $M_{* *}$ is dense in M_{*}, Φ_{M} is a ${ }^{*}$-homomorphism; by Proposition 6.2, π is a ${ }^{*}$-representation. For $\omega \in \widehat{M}_{*}$, $\omega(\pi(\mu))=\Phi_{M} \circ E_{M *}(\mu)(\omega)=\mu\left(E_{M} \circ \widehat{\Phi}_{M}(\omega)\right)$, so $\pi_{*}(\omega)=E_{M} \circ \widehat{\Phi}_{M}(\omega)$ and the space of coefficients of π is contained in the subalgebra I. Then the equality (5) cannot hold, so π is not unitary. By Corollary 6.9, $\widehat{\widehat{M}}_{* *}$ is dense in $\widehat{\widehat{M}}_{*}$, so we can apply Proposition 4.10, it follows that π is degenerate on $\widehat{\widehat{M}}_{*}^{0}$, or equivalently $\pi\left(\widehat{\widehat{M}}_{*}\right)$ is not contained in the weak closure of $\pi\left(\widehat{\widehat{M}}_{* *}^{0}\right)$. In particular, $\pi\left(\widehat{\widehat{M}}_{* *}^{0}\right)$ is not weakly dense in \widehat{M}.

Consider now $\widehat{E}_{M}: \widehat{\widehat{\widehat{M}}} \rightarrow \widehat{M}$. Since $\widehat{\widehat{\widehat{M}}} \neq\{0\}$, by Proposition 6.4 $\widehat{E}_{M} \Phi_{\widehat{M}}=\Phi_{M} E_{M *}=\pi$ on $\widehat{\widehat{M}}_{* *}$. and since \widehat{E}_{M} is weakly continuous, $\widehat{E}_{M}(\widehat{\widehat{\widehat{M}}})$ is contained in the closure of $\widehat{E}_{M}\left(\Phi_{\widehat{M}}\left(\widehat{\widehat{M}}_{* *}^{0}\right)\right)=\pi\left(\widehat{\widehat{M}}_{* *}^{0}\right)$, so \widehat{E}_{M} is not surjective. From the other side, since $\widehat{\widehat{\widehat{M}}} \neq\{0\}$, we have by Remark 6.5 equality $\widehat{E}_{M} \widehat{D}_{M}=\left(D_{M} E_{M}\right)^{\wedge}=\widehat{\mathbb{I}}_{M}=\mathbb{I}_{\widehat{M}}$ so \widehat{E}_{M} must be surjective. This contradiction proves that E_{M} is in fact unital.
Proposition 6.11. $\left(D_{M}\right)_{*}\left(M_{*}\right)$ is a two-sided module over $\widehat{\widehat{M}}$.
Proof. We write further D, E for D_{M}, E_{M} respectively. First, $D_{*}\left(M_{*}\right)=(\operatorname{ker} D)_{\perp}$ in $\widehat{\widehat{M}}_{*}$: For $\omega \in \widehat{\widehat{M}}_{*}$ if $\omega=D_{*}(\mu) \in D_{*}\left(M_{*}\right)$ then $\omega(x)=\mu(D x)=0$ for $x \in \operatorname{ker} D$; if $\omega \in(\operatorname{ker} D)_{\perp}$ then set $\mu=E_{*}(\omega)$; for $x \in \widehat{\widehat{M}}$, as $x-E D x \in \operatorname{ker} D$, we have $\omega(x)=\omega(E D x)=\mu(D x)$, so that $\omega=D_{*}(\mu) \in D_{*}\left(M_{*}\right)$.

Now $(x \cdot \omega)(y)=\omega(y x)=0$ and $(\omega \cdot x)(y)=\omega(x y)=0$ for all $\omega \in D_{*}\left(M_{*}\right), x \in \widehat{\widehat{M}}, y \in \operatorname{ker} D$, what proves the proposition.

7. Locally compact quantum groups

Every von Neumann algebraic quantum group is a quantum semigroup with involution in our definition (see for example [9]). Let us compare our construction with the universal dual of Kustermans [7].

The Kustermans' universal quantum group A_{u} is defined for a C^{*}-algebraic locally compact quantum group A. If M is a von Neumann algebraic locally compact quantum group, then 9 it contains
a canonically defined C^{*}-subalgebra A which is a C^{*}-algebraic locally compact quantum group with inherited structure.

The space $L^{1}(A)$ used as a starting point in [7] is isomorphic to M_{*} [8, p.913]. The subspace $L_{*}^{1}(A)$ which carries the involution is exactly our $M_{* *}$, and is dense in M_{*} [7, p.303]. By [7, Corollary 4.3], for every non-degenerate ${ }^{*}$-representation $\pi: L_{*}^{1}(A) \rightarrow B(H)$ there exists a unitary $U \in B(H) \otimes M(A)$ such that $\pi(\mu)=(\mathbb{I} \otimes \mu)(U)$ for all $\mu \in L_{*}^{1}(A)$. Since $M(A) \subset A^{\prime \prime}=M$, it follows that $U \in B(H) \otimes M$ and π extends to a unitary representation of M_{*}.

This implies that $M_{* *}=M_{*}^{\times}=M_{* *}^{0}=L_{*}^{1}(A)$, and $\widehat{A}_{u}=C^{*}\left(L_{*}^{1}(A)\right)=C^{*}\left(M_{* *}^{0}\right)$. Our dual algebra $\widehat{M}=\widehat{A}_{u}^{* *}$ is the enveloping von Neumann algebra of the universal dual \widehat{A}_{u}.
Theorem 7.1. Let A be a C^{*}-algebraic locally compact quantum group and $M=A^{\prime \prime}$ its associated von Neumann algebraic locally compact quantum group. Then:
(1) $\widehat{M}=\widehat{A}_{u}^{* *}$;
(2) $\widehat{\widehat{M}}=A_{u}^{* *}$.

In particular, $\widehat{\widehat{\widehat{M}}}=\widehat{M}$.
Proof. (1) follows from the discussion above.
(2) Since $\widehat{\widehat{M}}=C^{*}\left(\widehat{M}_{* *}^{0}\right)^{* *}$ and $A_{u}=C^{*}\left(L_{1}^{*}(\widehat{A})\right)$, the question is to show that $C^{*}\left(\widehat{M}_{* *}^{0}\right)=$ $C^{*}\left(L_{1}^{*}(\widehat{A})\right)$. The epimorphism $\widehat{\pi}: \widehat{A}_{u} \rightarrow \widehat{A}$ [7, 2.15] generates an epimorphism $\widehat{\pi}^{* *}: \widehat{A}_{u}^{* *} \rightarrow \widehat{A}^{* *}$ and an imbedding $\widehat{\pi}^{*}: \widehat{A}^{*} \rightarrow \widehat{A}_{u}^{*}=\widehat{M}_{*}$.

The equality $\left(\imath \otimes \widehat{\Delta}_{u}\right)(\widehat{\mathcal{V}})=\widehat{\mathcal{V}}_{13} \widehat{\mathcal{V}}_{12}$ [7, 3.5] implies that λ_{u}^{*} is anti-multiplicative. Let us prove now that $\widehat{\pi}^{*}\left(\widehat{A}^{*}\right)$ is an ideal in \widehat{A}_{u}^{*}. It is sufficient to show that for any $\alpha \in \widehat{A}^{*}$ and any representation $\rho: \widehat{A}_{u} \rightarrow B(H)$ and every $\omega \in B(H)_{*} \widehat{\pi}^{*}(\alpha) \rho^{*}(\omega) \in \widehat{\pi}^{*}\left(\widehat{A}^{*}\right)$. For $\mu \in L_{1}^{*}(A)$:
$\left(\widehat{\pi}^{*}(\alpha) \rho^{*}(\omega)\right)\left(\lambda_{u}(a)\right)=\lambda_{u}^{*}\left(\widehat{\pi}^{*}(\alpha) \rho^{*}(\omega)\right)(a)=\left(\lambda_{u}^{*} \rho^{*}(\omega) \lambda_{u}^{*} \widehat{\pi}^{*}(\alpha)\right)(a)=\left(\lambda_{u}^{*} \rho^{*}(\omega) \lambda^{*}(\alpha)\right)(a)=\lambda^{*}(\xi)(a)$, since $\lambda^{*}\left(\widehat{A}^{*}\right)$ is an ideal in A.

Every non-degenerate *-representation of $L_{1}^{*}(\widehat{A})$ on a Hilbert space H is extended to a unitary representation of $L_{1}(\widehat{A})$ with a generator $U \in B(H) \otimes M(\widehat{A})$ [7, Corollary 4.3]. By [7, Proposition 3.13], there is unique $V_{u} \in B(H) \otimes M\left(\widehat{A}_{u}\right)$ such that $\left(\widehat{\pi}^{* *} \otimes \mathbb{I}\right)\left(V_{u}\right)=U$ and the corresponding map of $L_{1}\left(\widehat{A}_{u}\right)$ is a *-representation. Inclusion $M\left(\widehat{A}_{u}\right) \subset \widehat{A}_{u}^{* *}=\widehat{M}$ implies that $V \in B(H) \otimes \widehat{M}$, and $\left(\mathbb{I} \otimes \widehat{\pi}^{* *}\right)\left(V_{u}\right)=U$. Thus, every non-degenerate $*$-representation of $\widehat{\pi}^{*}\left(L_{1}^{*}(\widehat{A})\right)$ is extended to a unitary representation of \widehat{M}_{*}, and since such the extension is unique, it follows that every non-unitary representation vanishes on $L_{1}^{*}(\widehat{A})$ and $L_{1}^{*}(\widehat{A}) \subset \widehat{M}_{* *}^{\times}$.

From the other side, if $\rho: \widehat{M}_{*} \rightarrow B(H)$ vanishes on $L_{1}^{*}(\widehat{A})$ then its coefficients are contained in $L_{1}^{*}(\widehat{A})^{\perp}=L_{1}(\widehat{A})^{\perp} \subset \widehat{M}$. Let us show that $L_{1}(\widehat{A})^{\perp}\left(\right.$ recall that we identify $L_{1}(\widehat{A})$ with $\widehat{\pi}^{*}\left(L_{1}(\widehat{A})\right)$) is a proper weakly closed ideal, then it will follow that ρ is non-unitary.

The epimorphism $\widehat{\pi}: \widehat{A}_{u} \rightarrow \widehat{A}$ is extended, by the universality property, to a $*$-homomorphism $\tilde{\pi}: \widehat{M}=\widehat{A}_{u}^{* *} \rightarrow \widehat{A}^{\prime \prime}$. Then, since $L_{1}(\widehat{A})=\left(\widehat{A}^{\prime \prime}\right)_{*}$, one has $\left(\tilde{\pi}^{*}\left(L_{1}(\widehat{A})\right)\right)^{\perp}=\operatorname{ker} \tilde{\pi}$. Since $\mu(\tilde{\pi}(x))=$ $\mu(\widehat{\pi}(x))$ for $x \in \widehat{A}_{u}$ and $\mu \in L^{1}(\widehat{A})$, by weak density of \widehat{A}_{u} in \widehat{M} it follows that $\tilde{\pi}^{*}(\mu)=\widehat{\pi}^{*}(\mu)$, so that $\widehat{\pi}^{*}\left(L_{1}(\widehat{A})\right)^{\perp}=\operatorname{ker} \tilde{\pi}$. This proves (2).

Theorems 7.4 and 7.6 of [10] are valid for our case also. The proofs are identical, with replacement of M_{*}^{0} by $M_{* *}^{0}$, and adding the remark of Proposition 5.1. We will not repeat the proofs and just state the results:
Theorem 7.2. Let $M \neq\{0\}$ be commutative and $M \simeq \widehat{N}$ for some N. Then there is a locally compact group G such that $M \simeq C_{0}(G)^{* *}$.
Corollary 7.3. If $\{0\} \neq M \simeq \widehat{\widehat{M}}$ and M is commutative, then $M \simeq C_{0}(G)^{* *}$ for a locally compact group G.
Theorem 7.4. Let M be cocommutative (i.e. M_{*} is commutative) and $M \simeq \widehat{N}$ for some N. Then, if $\widehat{M} \neq\{0\}$, there is a locally compact group G such that $M \simeq W^{*}(G)$.

8. EXAMPLES

Outside the class of locally compact quantum groups, some examples of algebras and their duals are given in [10, Examples 5.10-5.12, 8.8]. The present construction extends the one of [10, so the same examples are valid for it. They give several algebras M, commutative or not, such that \widehat{M} is $\{0\}$ or \mathbb{C}. In [10, Example 5.11], the structure of $L^{\infty}\left(\mathbb{R}^{2}\right)$ is changed in such a way that its dual becomes isomorphic to $L^{\infty}(\mathbb{R})$. This demonstrates the idea that our duality cuts out the "non-unitary" part of a given algebra, and leaves the "unitary" one.

Below are presented some more examples. In every one constructed up to now, the dual \widehat{M} coincides with the dual of some locally compact quantum group.
Example 8.1. Let B be the quantum semigroup $C\left(\widetilde{S}_{N}^{+}\right)$defined by Banica and Skalski [1. Recall that it is defined starting with a "submagic" $N \times N$ matrix $u=\left(u_{i j}\right)$ with entries in a unital C^{*}-algebra A. Being 'submagic" means that $u_{i j}=u_{i j}^{*}=u_{i j}^{2}$ for every i, j, and $u_{i j} u_{i k}=u_{j i} u_{k i}=0$ for every i if $j \neq k$. By definition, B is the universal unital C^{*}-algebra with the relations above. The authors show that B admits a comultiplication (a unital coassociative *-homomorphism) defined by the formula $\Delta\left(u_{i j}\right)=\sum_{k} u_{i k} \otimes u_{k j}$, and a "sub-coinvolution" (everywhere defined ${ }^{*}$-antihomomorphism) defined by $S\left(u_{i j}\right)=u_{j i}$.

Let M be the enveloping von Neumann algebra of B, then Δ and S extend obviously to normal maps on M. It is immediate to verify that S is a proper coinvolution on M. Since S is bounded, $M_{* *}=M_{*}$. The elements $\left(u_{i j}\right)$ are coefficients of a ${ }^{*}$-representation of M_{*} (by Theorem 3.1 for example). One shows easily that it is irreducible.

However, u is clearly non-unitary, thus every $u_{i j}$ belongs to the annihilator of $M_{* *}^{\times}$(see Definition 4.51) Since $\left(u_{i j}\right)$ generate B, by Definition 4.6 $M_{* *}^{0}=\{0\}$ and $\widehat{M}=\{0\}$.

Example 8.2. X. Li 11] defines a reduced C^{*}-algebra $C_{r}^{*}(P)$ of a discrete left cancellative semigroup P, using its regular representation on $\ell^{2}(P)$. The algebra $C_{r}^{*}(P)$ is generated by the translation operators $T_{p}, p \in P$, and their adjoints $T_{p}^{*} \in B\left(\ell^{2}(P)\right)$. As a linear space, $C_{r}^{*}(P)$ is generated by $E_{X} L_{g}$, where X is an ideal in P, E_{X} is the operator of multiplication by the characteristic function of X, and $g=p_{1}^{ \pm 1} \ldots p_{n}^{ \pm 1}$ with $p_{j} \in P$.

Set $M=C_{r}^{*}(P)^{* *}$. Li does not define a coinvolution on his algebra. In order that it fits into our assumptions, set $S\left(T_{p}\right)=T_{p}^{*}$, and accordingly $S\left(T_{p}^{*}\right)=T_{p}, p \in P$, and extend it as a linear anti-homomorphism onto the algebra generated by these elements. For every $f \in \ell^{2}(P)$ and every $g_{j} \in G, X_{j} \subset P, j=1, \ldots, n$ the function $\sum \bar{\lambda}_{j} E_{X_{j}} L_{g_{j}} f$ is the complex conjugate of $\sum \lambda_{j} E_{X_{j}} L_{g_{j}} \bar{f}$, and as $\|f\|=\|\bar{f}\|$, this implies that S is isometric (and bounded) on $C_{r}^{*}(P)$.

By definition $\Delta\left(T_{p}\right)=T_{p} \otimes T_{p}$, so that every T_{p} is a character of M_{*}. With the coinvolution above, it is involutive. It is unitary as an element of M if and only if p is invertible in P.

By construction, $\Delta\left(E_{X}\right)=E_{X} \otimes E_{X}$ for an ideal X in P, so that it is also a character, which is clearly unitary only if $X=\emptyset$ or $X=P$. It follows that $M_{* *}^{\times}$is the linear dual space of $\operatorname{lin}\left\{L_{g}: g \in\right.$ $\left.P \cap P^{-1}\right\}$. As $H=P \cap P^{-1}$ is a group, $M_{* *}^{\times}$is isomorphic to $\ell^{1}(H)^{*}$. It is readily seen that in fact, $M_{* *}^{0}=M_{* *}^{\times}$. We conclude that $\widehat{M}=C^{*}(H)^{* *}$.
8.1. Weakly almost periodic compactifications. Let G be a locally compact group, and let P be its weakly periodic compactification. It is known (see Example 2.3) that P is a compact semitopological semigroup, and $M=C(P)^{* *}$ is a quantum semigroup with involution.

In P, there exists the minimal ideal J (so that $P J=J P=J$ and J does not contain any other ideals), which has the form $J=e P$ for a central idempotent e and is isomorphic (and homeomorphic) to the Bohr compactification $b G$ of G [13, Theorem III.1.9].

Let H be a locally compact group and let $\varphi_{H}: H \rightarrow P$ be a homomorphism which is also a homeomorphism of H onto $\varphi_{H}(H)$. We are interested in two cases: $H=G$, with the canonical imbedding into P, and $H=b G$. In this setting, let $p_{H}: C(P) \rightarrow C_{b}(H), f \mapsto f \circ \varphi_{H}$, be the "restriction" map, and let $\tau_{H}: M(H) \rightarrow M(P)$ be the "extension" map: $\tau_{H}(\mu)(f)=\int p_{H}(f) d \mu$ for $\mu \in M(H), f \in C(P)$. Its dual $\tau_{H}^{*}: C(P)^{* *} \rightarrow C_{0}(H)^{* *}$ is ultraweakly continuous and extends p, so it is a ${ }^{*}$-homomorphism.
Proposition 8.3. If $\pi: M(P) \rightarrow B(L)$ is a unitary representation, then $\pi \circ \tau_{H}$ is a unitary representation of $M(H)$.

Proof. Fix a basis $\left(e_{\alpha}\right)$ in L. For every α, β we have $\pi_{\alpha \beta} \circ \tau \in C_{0}(H)^{* *}$, and, by continuity,

$$
\sum_{\gamma}\left(\pi_{\gamma \alpha} \circ \tau\right)^{*} \cdot \pi_{\gamma \beta} \circ \tau=\tau_{H}^{*}\left(\sum_{\gamma} \pi_{\gamma \alpha}^{*} \cdot \pi_{\gamma \beta}\right)= \begin{cases}1, & \alpha=\beta \\ 0, & \alpha \neq \beta\end{cases}
$$

as well as $\sum_{\gamma} \pi_{\alpha \gamma} \circ \tau \cdot\left(\pi_{\beta \gamma} \circ \tau\right)^{*}$. This proves that $\pi \circ \tau_{H}$ is unitary.
Proposition 8.4. Every irreducible unitary representation π of $M(P)$ is finite-dimensional.
Proof. As usual, let $\delta_{t}, t \in P$, be the probability measure concentrated at t, and set $\bar{\pi}(t)=\pi\left(\delta_{t}\right)$. The equations (5) imply that $\bar{\pi}(t)$ is a unitary operator for every $t \in P$. It follows that $\bar{\pi}: P \rightarrow B(L)$ is a representation, which is unitary when restricted to $\varphi_{H}(H)$, and the Proposition above implies [10, Theorem 4.4] that $\bar{\pi} \circ \varphi_{H}$ is (strongly) continuous, and $\pi \circ \tau_{H}(\mu)=\int_{H} \bar{\pi} \circ \varphi_{H}(t) d \mu(t)$ for every $\mu \in M(H)$. It follows also that $\bar{\pi} \circ \varphi_{H}$ and $\pi \circ \tau_{H}$ have the same invariant subspaces.

For the idempotent $e, \bar{\pi}(e)$ is unitary and idempotent, so it is the identity operator. For every $\mu \in M(P), \delta_{e} * \mu$ is in the image of the map $\tau_{b G}$ defined above. Indeed, $\delta_{e} * \mu=\tau_{b G}(\nu)$, where $\nu \in M(b G)$ is defined as $\nu(f)=\int_{P} f\left(\varphi_{b G}^{-1}\left(e \varphi_{b G}(t)\right) d \mu(t), f \in C(b G)\right.$. As $\pi(\mu)=\pi\left(\delta_{e} * \mu\right)$, we see that any $\tau_{b G}$-invariant subspace is also π-invariant.

Suppose now that π is irreducible. Then, by discussion above, so is $\bar{\pi} \circ \varphi_{b G}$, and being continuous, it is finite-dimensional.

Conversely, if σ is an irreducible continuous representation of $b G$, then $\pi(\mu)=\int_{P} \sigma\left(\varphi_{b G}^{-1}(e t)\right) d \mu(t)$ defines a representation of $M(P)$, and one easily verifies that the conditions (5) hold, so that π is unitary.

As shows the reasoning above, $I=\tau_{b G}(M(b G))$ is an ideal in $M(P)$. It follows that every irreducible representation π either vanishes on I or is irreducible on it. If π is non-unitary and $\left.\pi\right|_{I}$ is irreducibe, then $\pi \circ \tau_{b G}$ is non-unitary (otherwise π would be unitary, as the unique extension from I), so that $\pi \circ \tau_{b G}$ vanishes on $L^{1}(b G)$. We see that in any case π vanishes on $\tau_{b G}\left(L^{1}(b G)\right)$, thus the latter is contained in $M_{* *}^{\times}$. The annihilator of $\tau_{b G}\left(L^{1}(b G)\right)$ in $C(P)^{* *}$ is an ultraweakly closed (proper) ideal, what can be proved in a virtually the same way as in [10, Proposition 4.3]. This implies that $\left(M_{* *}^{\times}\right)^{\perp} \neq C(P)^{* *}$ and as a consequence $M_{* *}^{0}=M_{* *}^{\times}$, according to Definition 4.6.

For a representation σ of $M(b G)$, set $\pi_{\sigma}(\mu)=\sigma\left(\tau_{b G}^{-1}\left(\mu * \delta_{e}\right)\right), \mu \in M(P)$ (it is clear that $\tau_{b G}$ is injective). Proposition 8.4 above implies that for $\mu \in M_{* *}^{0}$,

$$
\begin{aligned}
& \sup \left\{\|\pi(\mu)\|: \pi \text { is a }{ }^{*} \text {-representation of } M_{* *}^{0}\right\} \\
& \quad=\sup \left\{\left\|\pi_{\sigma}(\mu)\right\|: \sigma \text { is a unitary } * \text {-representation of } M(b G)\right\}
\end{aligned}
$$

so that $C^{*}\left(M_{* *}^{0}\right)$ is isomorphic to $C^{*}\left(M(b G)^{0}\right)$. As we know, this equals to $C^{*}(b G)$, so finally $\widehat{M}=$ $C^{*}(b G)^{* *}$.

References

[1] T. Banica, A. Skalski. The quantum algebra of partial Hadamard matrices, Lin. Alg. Appl. 469 (2015), 364-380.
[2] B. Das, C. Mrozinski. On a quantum version of Ellis joint continuity theorem. Illinois J. Math., to appear. arXiv: 1502.02469 [math.OA].
[3] J. Dixmier. C*-algebras. North Holland, 1977.
[4] M. Enock, J.-M. Schwartz. Kac algebras and duality of locally compact groups. Springer, 1992.
[5] R. Henrichs. Decomposition of invariant states and nonseparable C^{*}-algebras. Publ. Res. Inst. Math. Sci. 18, 159-181 (1982).
[6] E. Kirchberg. Darstellungen coinvolutiver Hopf- W^{*}-Algebren und ihre Anwendung in der nicht-abelschen Dualitätstheorie lokalkompakter Gruppen. Thesis, Berlin, 1977.
[7] J. Kustermans, Locally compact quantum groups in the universal setting. Int. J. Math., 12, 289 (2001).
[8] J. Kustermans, S. Vaes. Locally compact quantum groups. Annales ENS 4ème série, 33 no. 6 (2000), 837-934.
[9] J. Kustermans, S. Vaes. Locally compact quantum groups in the von Neumann algebraic setting. Math. Skand., 92 (2003), 68-92.
[10] Yu. Kuznetsova. A duality of locally compact groups that does not involve the Haar measure. Math. Scand., 116 (2015), 250-286.
[11] X. Li, Semigroup C^{*}-algebras and amenability of semigroups, J. Funct. Anal. 262 (2012), no. 10, 4302-4340.
[12] Palmer Th. W. Banach algebras and the general theory of *-algebras. Vol. II. Cambridge University Press, 2001.
[13] W. Ruppert, Compact semitopological semigroups: an intrinsic theory. Lecture Notes Math. 1079, Springer, 1984.
[14] P.M. Sołtan, S.L. Woronowicz. From multiplicative unitaries to quantum groups II, J. Funct. Anal. 252 no. 1 (2007), 42-67.
[15] Th. Timmermann. An invitation to quantum groups and duality. EMS, 2008.
[16] W. Wils. Direct integrals of Hilbert spaces I, II. Math. Scand. 26 (1970), 73-88 and 89-102.
[17] S. L. Woronowicz. From multiplicative unitaries to quantum groups. Internat. J. Math. 7 (1996), no. 1, 127-149.
University of Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France
E-mail address: yulia.kuznetsova@univ-fcomte.fr

[^0]: 2010 Mathematics Subject Classification. 22D35; 22D20; 22D25; 43A10; 16T10.
 This work was partially supported by the Simons Foundation grant 346300 and the Polish Government MNiSW 2015-2019 matching fund. The author was also supported by the travel grant PHC Star 2016 36618SE of the French Ministry of Foreign Affairs.

