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Local measurement of vortex statistics in quantum turbulence
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PACS 67.25.dk – Vortices and turbulence
PACS 47.37.+q – Hydrodynamic aspects of superfluidity: quantum fluids
PACS 67.25.dg – Transport, hydrodynamics, and superflow

Abstract – The density fluctuations of quantum vortex lines are measured in a turbulent flow
of superfluid He, at temperatures corresponding to superfluid fraction of 16%, 47% and 81%.
The probe is a micro-fabricated second sound resonator that allows for local and small-scale
measurements in the core of the flow, at a 10-mesh-size behind a grid. Remarkably, all the vortex
power spectra collapse on a single master curve, independently from the superfluid fraction and
the mean velocity. By contrast with previous measurements, we report an absence of power law
scaling of the power spectra. The vortex density probability distributions are found to be strongly
skewed, similarly to the vorticity distributions observed in classical turbulence. Implications of
those results are discussed.

Introduction. – At zero temperature, quantum flu-
ids exhibit two fascinating superfluid properties [1] : the
absence of viscous dissipation and the concentration of its
vorticity along vortex lines, of atomic diameter in the case
of 4He vortices. Besides, the vortices are quantized in the
sense that the circulation of velocity around one vortex has
a fixed value (κ ' 10−7m2s−1 in 4He). At finite temper-
ature, the superfluid behaves as if it experienced friction
with a background viscous fluid, called the “normal fluid”.
The relative mass density of the superfluid ρs/ρ (where ρ
is the total mass density) decreases from one at 0 K to zero
at the superfluid transition temperature (Tλ ' 2.18 K in
4He), suggesting a possible continuous cross-over between
the properties of quantum and classical hydrodynamics.

These peculiar dissipation and vortical properties offer
unique opportunities to revisit open questions in classi-
cal turbulence. Thus, the last two decades have seen the
emergence a new research area applying the methodol-
ogy and tools of classical turbulence to quantum flows [2],
and in particular the statistical study of local fluctuations
in highly turbulent canonical flows such as von Kármán,
wakes and grid flows [3].

Local velocity statistics have been successfully probed
with a variety of anemometers in highly turbulent flows,
and similarities have been systematically found between
quantum and classical turbulence (eg. [4–7]). This was at-
tributed to a locking of the superfluid and normal fluid at
large and intermediate flow scales, resulting in an appar-
ent single-fluid viscous dynamics [3]. Still, the smallest

scales of the flow -where quantum effects prevail- could
not yet be resolved with existing anemometers 1).

To circumvent this shortcoming of anemometers, two
alternative types of probe have explored the statistics of
small scale features of intense quantum turbulence.

First, using parietal pressure probes, the statistics of
vorticity filaments in classical turbulence have been com-
pared with their quantum counterparts: superfluid vortex
bundles. Here again, a strong similarity between both
types of turbulence was found [9].

Second, using “second sound tweezers”, the spectrum
of local density of superfluid vortex lines L has been mea-
sured [10] for ρs/ρ ' 0.84 . Unexpectedly, the spectrum
was consistent with a ∼ f−5/3 power law at intermediate
scales, at odds with the spectrum of the absolute value
of vorticity in classical turbulence. This spectral observa-
tion, studied numerically [11,12] and theoretically [13–15],
has been up to now the only 2 existing experimental con-
strain for the small scale closure of the models of quantum
hydrodynamics.

The present study reports the first statistical character-
isation of local vortex line density (VLD) statistics in well-
controlled highly turbulent flow, and over a wide range of

1for a recent attempt, see eg. [8]
2Literature also reports experimental [16] and numerical [17–21]

spectra of the vortex line density spatially integrated across the
whole flow. Still, spectra of such “integral” quantities differ in nature
from the spectra of local quantities, due to strong filtering effects of
spatial fluctuations.
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Fig. 1: Sketch of the flow and the experimental setup with
probes.

ρs/ρ spanning from 0.16 to 0.81.

Experimental setup. – The experimental setup has
been described in details in a previous publication [7], and
we only review in this section the major modifications.
The setup consists in a wind tunnel inside a cylindrical
cryostat (see Fig. 1) filled with He-II. The flow is contin-
uously powered by a centrifugal pump located at the top
of the tunnel. At the bottom, an optimized 3D-printed
conditioner ensures a smooth entry of the fluid, without
boundary layer detachment, inside a pipe of Φ = 76 mm
inner diameter. Spin motion is broken by radial screens
built in the conditioner. The fluid is then “cleaned” again
by a 5-cm-long and 3-mm-cell honeycomb. The mean flow
velocity U is measured with a Pitot tube located 130 mm
upstream the pipe outlet. We allow a maximal mean ve-
locity U = 1.3 m/s inside the pipe to avoid any cavitation
effect with the pump.

The main new element compared to the previous design
is a mono-planar grid located 177 mm upstream the probes
to generate turbulence. The grid has a M = 17 mm mesh
with square bars of thickness b = 4 mm, which gives a
porosity of β = (1− b/M)2 ≈ 0.58.

The choice to position the probes at a distance ∼ 10M
downstream the grid is the result of a compromise between
the desire to have a “large” turbulence intensity, and the
necessity to leave enough space for turbulence to develop
between the grid and the probes. In-situ measurements of
the mean vortex line density can be used to indirectly (via

Eq. 6) give an estimation of the the turbulence intensity
τ = urms/U ' 12 − 13% (where urms is the standard de-
viation of longitudinal velocity component). We present
the results later in Fig. 5). For comparison, Vita and co.
[22] report a turbulence intensity around τ = 9% percents
at 10M in a classical grid flow of similar porosity. The
difference between both values of τ could originate from a
prefactor uncertainty in Eq. (6) or from differences in flow
design (e.g. the absence of a contraction behind the hon-
eycomb). This difference has no important consequences
for the present study devoted to the measure of quantum
vortex statistics, and was not further examined.

The longitudinal integral length scale of the flow H '
5.0 mm is assessed by fitting velocity spectra (see bottom
panel of Fig.6) with the von Kármán formula (eg. see
[22]). For comparison, the integral scale reported for the
similar grid in [22], once rescaled by the grid size, gives a
nearby estimate of 7.4 mm.

The Reynolds number Re defined with urmsH and the
kinematic viscosity 1.8 × 10−8 m2s−1 of liquid He just
above Tλ, is Re = 2.5×104 for U = 1 m/s. Using standard
homogeneous isotropic turbulence formula [23], this Re
corresponds to a Taylor scale Reynolds number Rλ = 690
(for τ = 9% and H = 5 mm). This gives an indication of
turbulence intensity of the flow below Tλ.

Temperature of the helium bath is set via pressure regu-
lation gates. The exceptional thermal conductivity of He-
II ensures an homogeneous temperature inside the bath
for T < Tλ. Two Cernox thermometers, one located just
above the pump, the other one on the side of the pipe close
to the probes, allow for direct monitoring of T .

Probes. – We have four probes to measure quantum
turbulence characteristics. The first one is a miniature
Pitot tube that allows for in situ measurements of velocity
fluctuations for monitoring purposes. It is composed of a
capillary tube of 0.8 mm diameter and a micro-machined
differential piezo-resistive pressure transducer at its close
end (see Fig. 2).

The three other probes are micro-fabricated second
sound tweezers of the millimeter size according to the same
principle as in [10]. As displayed in the inset of Fig. 2,
the tweezers are composed of one heating plate and one
thermometer plate facing each other and thus creating
a resonant cavity for thermal waves. The heating plate
generates a stationary thermal wave of the order of 0.1
mK between the plates, the amplitude of which can be
recorded by the thermometer plate. Two major improve-
ments have been done compared to the tweezers in [10] :
first, the lengths of the arm supporting the plates has been
increased to 12.5 mm to avoid blockage effects. Second,
two notches are done in the arms to avoid interference due
to additional reflections of the thermal wave on the arms.
Further details will be given in a future publication.

In the presence of He flow, a variation of the amplitude
and phase of the thermal wave can be observed. This vari-
ation is due to two main physical effects. The presence of
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Fig. 2: Ring with probes. The inset is a zoom on the heating
and the thermometer plates of a second sound tweezers.

quantum vortex lines inside the cavity causes an attenu-
ation of the wave [24, 25] with a very minor phase shift
[26]. This attenuation can be very accurately modelized
by a bulk dissipation coefficient inside the cavity denoted
ξL. The second effect is a ballistic advection of the wave
out of the cavity. It is related to both an attenuation of
the temperature oscillation and an important phase shift.
Depending on the flow mean velocity U , the size of the
tweezers, and the frequency of the wave, one of these two
effects can overwhelm the other. We have thus designed
two models of tweezers: one model to take advantage of
the first effect to measure the vortex lines density (VLD),
and the other one to take advantage of the second effect
to measure the velocity.

The two largest tweezers displayed in Fig. 2 are de-
signed to measure the quantum vortex lines density. The
plates size is l = 1 mm and the gaps between the plates are
D = 1.32 mm and D = 0.83 mm respectively. The plates
face each other with positioning accuracy of a few microm-
eters. The tweezers are oriented parallel to the flow (see
Fig. 2) to minimize the effect of ballistic advection of the
wave.

The smallest tweezers displayed in Fig. 2 are designed to
measure the velocity fluctuations parallel to the mean flow.
The two plates have a size l = 250 µm, and are separated
by a gap of D = 0.431 mm. The tweezers are oriented
perpendicular to the mean flow (see Fig. 2) with an inten-
tional lateral shift of the heater and the thermometer of
about l/2. This configuration is expected to maximize the
sensitivity to ballistic advection, and thus to velocity fluc-
tuations. However, due to excessive heating of this probe,
we were not able to calibrate it reliably. Consequently we
do not use it to estimate the turbulence intensity. The
velocity spectrum (in arbitrary units) of this probe is dis-
played in the bottom panel of Fig 6. This anemometer
is mostly used in the present study to assess the integral
scale and qualitatively check the stability of the flow.
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Fig. 3: Top: second sound resonance of the tweezers around
7.6 kHz. The value of U increases from top curve to bottom
curve. The vertical axis gives the amplitude of the thermal
wave in K. Bottom: representation of the same resonance in
phase and quadrature.

Method. – Figure 3 displays a resonance of a large
tweezers at frequency f0 = 15.2 kHz, for increasing val-
ues of the mean velocity. The temperature oscillation T
measured by the thermometer is demodulated by a Lock-
in amplifier NF LI5640. T can be accurately fitted by a
classical Fabry-Perot formula

T =
A

sinh
(
i 2π(f−f0)D

c2
+ ξD

) (1)

where f0 is the resonant frequency for which the wave lo-
cally reaches its maximal amplitude, c2 is the second sound
velocity, A is a parameter to be fitted, and ξ is related to
the energy loss of the wave in the cavity. The top panel
of Fig. 3 displays the amplitude of the thermal wave (in
mK) as a function of the frequency, and the bottom panel
shows the same signal in phase and quadrature. When
the frequency is swept, the signal follows a curve close
to a circle crossing the point of coordinates (0, 0). Fig.
3 clearly shows that the resonant peak shrinks more and
more when U increases, which is interpreted as attenua-
tion of the wave inside the cavity. The red points display
the attenuation of the signal at constant value of f . It
can be seen on the bottom panel that the variation of the
signal is close to a pure attenuation, that is, without phase
shift. ξ can be decomposed as

ξ = ξ0 + ξL (2)
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where ξ0 is the attenuation factor when U = 0 m/s and
ξL is the additional attenuation created by the presence
of quantum vortex lines inside the cavity. ξL is the signal
of interest as it can be directly related to the vortex lines
density (VLD) using the relation

ξL =
BκL⊥

4c2
, (3)

L⊥ =
1

V

∫
sin2 θ(l)dl (4)

where B is the first Vinen coefficient, κ ≈ 9.98 × 10−8

m2/s is the quantum of circulation, V is the cavity volume,
l is the curvilinear absciss along the vortex line, θ(l) is
the angle between the vector tangent to the line and the
direction perpendicular to the plates. We note that the
summation is weighted by the distribution of the second
sound nodes and antinodes inside the cavity and does not
exactly corresponds to a uniform average but we neglect
this effect in the following. Our aim is to measure both
the average value and the fluctuations of L⊥, as a function
of U and the superfluid fraction.

The method goes as follows: first, we choose a reso-
nant frequency f0 where the amplitude of the signal has
a local maximum and we fix the frequency of the heat-
ing to this value f0. Then we vary the mean velocity
U and we record the response of the thermometer plate
in phase and quadrature. The measurements show that
the velocity-induced displacement in the complex plane
follows a straight line in a direction −→e approximately or-
thogonal to the resonant curve. Expressions (1-2) give ξL
from the measured amplitude T by [10]

ξL =
1

D
asinh

(
A

T

)
− ξ0. (5)

The colored dots of Fig. 4 illustrate the fluctuations of
the signal in phase and quadrature, for different values of
U . The average signal moves in the direction of the atten-
uation axis. The figure also shows a part of the resonant
curve for U = 0. The fluctuations have two components in
the plane, both associated with different physical phenom-
ena. Fluctuations in the direction tangent to the resonant
curve can be interpreted as a variation of the acoustic

path 2π(f−f0)D
c2

without attenuation of the wave. Those
fluctuations can occur for example because the two arms
of the tweezers vibrate with submicron amplitude, or be-
cause the temperature variations modify the second sound
velocity c2. To isolate only the fluctuations associated to
attenuation by the quantum vortices, we split the signal
into a component along the attenuation axis, and another
one along the acoustic path axis. We then convert the
displacement along the attenuation axis into vortex line
density (VLD) using expressions (3-5).

Results. – As a check of the validity of our ap-
proach, we measured the average response of the second
sound tweezers as a function of the mean velocity U . Ac-
cording to literature [27], we were expecting the scaling
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Fig. 4: Fluctuations of the thermal wave in phase and quadra-
ture. The colored clouds show the fluctuations of the signal,
for different values of U . The blue curve shows the resonance
for U = 0 m/s. The fluctuations tangent to the resonant curve
are created by a variation of the acoustic path. The quantum
vortices are associated to attenuation of the wave and create a
displacement along the attenuation axis.

〈L⊥〉2 ∝ U3, with a prefactor related to the flow main
characteristics. The function 〈L⊥〉 was thus measured for
a range 0.4 < U < 1.25 m/s with a time averaging over
300 ms, at the three different temperatures 1.65 K, 1.99
K and 2.14 K.

An effective superfluid viscosity νeff is customarily de-
fined in quantum turbulence by ε = νeff(κL)2 where ε is
the dissipation and L = 3 〈L⊥〉 /2 is the averaged VLD
(we assume isotropy of the tangle) [28]. For large Rλ ho-
mogeneous isotropic flows, we also have ε ' 0.79U3τ3/H
(eg see [23] p.245), which entails

τ3 ' 2.85
νeffHκ

2 〈L⊥〉2

U3
(6)

Using Eq. (6), we compute the turbulence intensity as
a function of U , for the three considered temperatures.
The result is displayed in Fig. 5. The figure shows that
the turbulence intensity reaches a plateau of about 12%
above 0.8 m/s, a value in accordance with the turbulence
intensity of 9% reported in [22] for a grid turbulence with
similar characteristics. The figure also confirms that the
expected scaling 〈L⊥〉2 ∝ U3 is reached in our experiment
for the range of velocities U > 0.8 m/s.

The temperature-dependent viscosity νeff in Eq. (6)
has been measured in a number of experiments (eg see
compilations in [15, 27, 29]). Still, the uncertainty on its
value exceeds a factor 2. For the temperatures 1.65 K and
1.99 K, we used the average values 0.2κ and 0.25κ. By
lack of reference experimental value of νeff above 2.1 K, we
determined it by collapsing the τ(U) datasets obtained at
2.14 K with the two others. We found the value νeff ≈ 0.5κ
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Fig. 5: Indirect measurement of the turbulence intensity τ =
urms/U as a function of U using Eq. (6). The three different
symbols correspond to three values of the mean temperature.

at 2.14 K.

Assuming isotropy of the vortex tangle, the value of L
gives a direct order of magnitude of the inter-vortex spac-
ing δ = 1/

√
L. We find δ ≈ 5 µm at 1.65 K and a mean

velocity of 1 m/s. This shows the large scale separation be-
tween the inter-vortex spacing and the flow integral scale
H, a confirmation of an intense turbulent regime.

Fig. 6 presents the main result of this letter. We display
on the top panel the VLD power spectral density PL(f)
of L⊥/ 〈L⊥〉. With this definition, the VLD turbulence
intensity Lrms

⊥ / 〈L⊥〉 is directly given by the integral of
PL(f). We have measured the VLD fluctuations at the
temperatures T = 1.65 K and superfluid fraction ρS/ρ =
81%, T = 1.99 K and ρS/ρ = 47%, T = 2.14 K and
ρS/ρ = 16%. At each temperature, the measurement was
done for at least two different mean velocities.

The first striking result is the collapse of all the spectra
independently of the temperature, when properly rescaled
using f/U as coordinate (and PL(f)×U as power spectral
density to keep the integral constant). The VLD spectrum
does not depend on the superfluid fraction even for van-
ishing superfluid fractions, when T comes very close to Tλ.
Only one measurement with one of the large tweezers at
T = 1.650 K has given a slight deviation from the master
curve of the VLD spectra: it is displayed as the thin grey
curve in Fig. 6. We have no explanation for this devia-
tion but did not observe this particular spectrum with the
second tweezers, and neither at any other temperature.

Second, the VLD spectrum has no characteristic power-
law decay. We only observe that the spectrum follows an
exponential decay approximately above f/U > 100 m−1.
This strongly contrasts with the velocity spectrum ob-
tained with the small second sound tweezers anemometer
(see bottom panel), which displays all the major features
expected for a velocity spectrum in classical turbulence:
it has a sharp transition from a plateau at large scale to
a power law scaling close to −5/3 in the inertial scales of

the turbulent cascade. A fit of the transition using the
von Kármán expression (see [22]) gives the value H = 5
mm for the longitudinal integral scale. As a side remark,
the apparent cut-off above 103 m−1 is an instrumental fre-
quency cut-off of the tweezers.

We find a value of the VLD turbulent intensity close to
20%, which is significantly higher than the velocity turbu-
lence intensity. We also checked that we obtain the same
VLD spectrum using different resonant frequencies f0.

Our measurements are limited by two characteristic fre-
quencies. First, the tweezers average the VLD over a cube
of side l, which means that our resolution cannot exceed
f/U > 1/l. For the large tweezers, this sets a cut-off scale
of 103 m−1, much larger than the range of inertial scales
presented in top panel of Fig. 6. Second, the frequency
bandwidth of the resonator decreases when the quality fac-
tor of the second sound resonance increases. This again
sets a cut-off scale given by f/U = ξ0c2/(2U). The worst
configuration corresponds to the data obtained at 2.14 K
and U = 1.2 m/s where the cut-off scale is about 600 m−1.
For this reason, the VLD spectra of Fig. 6 are conserva-
tively restricted to f/U < 300 m−1 which allows to resolve
about one and a half decade of inertial scales.

Figure 7 displays some typical PDF of the rescaled VLD
fluctuations L⊥/ 〈L⊥〉 in semilogarithmic scale, for the
three considered temperatures. The PDF have been verti-
cally shifted by one decade from each other for readability.
The figure shows a strong asymmetry at all temperatures,
with a nearly Gaussian left wing, and an exponential right
wing. Contrarily to the VLD spectra, the PDF do not ac-
curately collapse at different velocities and temperatures:
only the global asymmetric shape seems to be a robust
feature. We do not see a clear trend when increasing the
temperature and/or the mean velocity. By contrast, the
dotted curve in Fig. 7 displays one PDF of the small
tweezers anemometer at 1.65 K, for which the mean has
been shifted and the variance rescaled. It can be seen that
the general shape of this latter PDF is much more sym-
metric and closer to a Gaussian as expected for a PDF of
velocity fluctuations.

Discussion and conclusion. – In the present pa-
per, we have investigated the temperature dependence of
the statistics of the local density of vortex lines (VLD)
in quantum turbulence. About one and a half decade
of inertial scales of the turbulent cascade was resolved.
We measure the VLD mean value and deduce from Eq.
(6) the turbulence intensity (Fig. 5), we report the VLD
power spectrum (Fig. 6), and the VLD probability distri-
bution (Fig. 7). Whereas the VLD mean value at differ-
ent temperatures confirms previous numerical [11,27] and
experimental studies [27], the spectral and PDF studies
are completely new. Only one measurement of the VLD
fluctuations had been done previously [10] but in an ill-
defined flow around 1.6K.In the present work, we have
used a grid turbulence, which is recognized as a reference
flow for isotropic turbulence.
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Fig. 6: Top: Power spectral density of the projected vortex
line density (VLD) L⊥, obtained with the large second sound
tweezers, for different values of U and temperatures. All mea-
sured spectra collapse using the scaling f/U and PL(f) × U .
The fluctuations have been rescaled by the mean value of the
VLD such that the integral of the above curves directly give
the VLD turbulence intensity. Bottom: Power spectral den-
sity of the uncalibrated velocity signal obtained from the sec-
ond sound tweezers anemometer, for two values of U at 1.65 K.
The spectra collapse using the scaling f/U for the frequency
and PU (f)/U for the spectral density. The straight line dis-
plays the −5/3 slope which is expected for a classical velocity
spectrum in the inertial range of the turbulent cascade. The
dotted line is a fit using the von Kármán expression (see [22])
to find the integral scale H.
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shifted by one decade from each other for readability. By com-
parison, the dotted black curve displays a rescaled PDF ob-
tained with the small tweezers measuring velocity.

To conclude, we discuss below three main findings:

1. A master curve of the VLD spectra, independent of
temperature and mean velocity.

2. An absence of power law scaling of the VLD spectra.

3. A global invariant shape of the strongly skewed PDF.

The mean VLD gives the inter-vortex spacing, and thus
tells how much quantum vortices are created in the flow,
whereas the PDF and spectra tell how those vortices are
organized in the flow. From 2.14K to 1.65K, our re-
sults confirm that the inter-vortex spacing only weakly
decreases, by less than 23% for a 5-times increase of the
superfluid fraction. In other words, the superfluid fraction
has a limited effect on the creation of quantum vortices.
The current understanding of the homogeneous isotropic
turbulence in He-II is that the superfluid and normal fluid
are locked together at large and intermediate scales where
they undergo a classical Kolmogorov cascade [3]. The ex-
perimental evidences are based on the observation of clas-
sical velocity statistics using anemometers measuring the
barycentric velocity of the normal and superfluid compo-
nents. Here, the temperature-independence of (normal-
ized) VLD spectra supports this general picture, by remi-
niscence of a similar property of He-II velocity spectra.

However, in contrast with velocity, this also reveals
some temperature-independence of scales smaller than the
probe spatial resolution. For instance, positive and neg-
ative velocity fluctuations (e.g like those around a vor-
tex core) smaller than the probe resolution are strongly
damped by averaging , while our VLD probe returns the
sum of a positive quantity and keeps track of the small
scales fluctuations. Besides, the intermediate scales of 1D
vorticity spectra in classical turbulence are related to the
velocity spectrum at small scales (eg. see [30]) and the
same property is expected to hold in quantum turbulence,
in a form yet to be detailed.

The observed temperature-independence of spectra is
thus constraining for the delicate modeling of the small
scales of quantum turbulence, in particular to develop
mathematical closures for the continuous description of
He-II (eg. see [31]).

Second, the absence of power law scaling apparently
contrasts with the spectra reported as “compatible with”
a f−5/3 scaling in [10]. We have no definite explanation for
this difference. Still, we note that the averaged spectral
decrease reported in the present study over one and a half
decade of inertial scales is close to the decrease reported
in [10] over a similar range. Speculatively, the absence of
complete development of turbulence at 10M from the grid
could result in residual imbalance between flow scales, or
from some memory effect associated with flow forcing at
the grid.

As a discussion of the third statement, we compare our
results with those of numerical simulations done in classi-
cal turbulence. The absolute value of vorticity can be seen
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as a classical counterpart to the VLD. The work of Iyer
and co. [32] for example, displays some enstrophy PDF
from high resolution DNS, that can be compared to the
PDF of Fig. 7. It can be seen in [32] that such PDF are
not universal and depend on the Re number and the aver-
aging scale: this probably justifies why the distributions
of Fig. 7 do not collapse. At small scale, the enstrophy
PDF are strongly asymmetric and will ultimately converge
to a Gaussian distribution when averaged over larger and
larger scales. Although our tweezers average the VLD over
a size much larger than the inter-vortex spacing, they are
small enough to sense short-life intense vortical events,
typical of small scale phenomenology in classical turbu-
lence. Thus, the strong asymmetry of the PDF supports
the analogy between VLD and enstrophy (or its square
root) and shows the relevance of VLD statistics to explore
the small scales of quantum turbulence.

A side result of the present work is to obtain the rela-
tive values of the empirical coefficient νeff = ε(κL)−2 at
the three considered temperatures. Models and simula-
tions predict that νeff should steeply increase close to Tλ
(see [15,27,29] and ref. within), in apparent contradiction
with the only systematic experimental exploration [33].
We found in Fig. 5 that the effective viscosity νeff is twice
larger at 2.14K than at 1.99K. To the best of our knowl-
edge, our estimate νeff(2.14K) ' 2 (±0.25) × νeff(1.99K)
is the first experimental hint of such an effective viscosity
increase.

∗ ∗ ∗
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