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ABSTRACT

Optimal transport maps define a one-to-one correspondence between probability distribu-
tions, and as such have grown popular for machine learning applications. However, these
maps are generally defined on empirical observations and cannot be generalized to new
samples while preserving asymptotic properties. We extend a novel method to learn a con-
sistent estimator of a continuous optimal transport map from two empirical distributions.
The consequences of this work are two-fold: first, it enables to extend the transport plan to
new observations without computing again the discrete optimal transport map; second, it
provides statistical guarantees to machine learning applications of optimal transport. We il-
lustrate the strength of this approach by deriving a consistent framework for transport-based
counterfactual explanations in fairness.

Keywords: Optimal Transport, Counterfactuals, Explanability, Fairness.

1 Introduction

Over the last past years, Optimal Transport (OT) methods have grown popular for machine learning ap-
plications. Signal analysis [Kolouri et al., 2017], domain adaptation [Courty et al., 2017], transfer learning
[Gayraud et al., 2017] or fairness in machine learning [Jiang et al., 2020, Gordaliza et al., 2019] for instance
have proposed new methods that make use of optimal transport maps. Given two distributions µ and ν satis-
fying some assumptions, such a map T has the property of pushing forward a measure to another in the sense
that if a random variable X follows the distribution µ, then its image T (X) follows the distribution ν. This
map comes as a tool to transform the distribution of observations.

However, since only empirical distributions are observed, the continuous optimal transport is transformed into
an empirical problem. Optimal transport for empirical distributions has been widely studied from both a the-
oretical and a computational point of view. We refer for instance to Peyré et al. [2019] and references therein.
The obtained empirical maps between observations suffer some important drawbacks when implementing
machine learning methods relying on OT. As they are one-to-one correspondences between the points used
to compute the optimal transport, they are only defined on these observations, preventing their use for new
inputs.

To cope with this issue, either the map must be recomputed for each new data set or one must use a continuous
approximation extending the empirical map to observations out of the support of the empirical distribution.
Previous research on the latter topic includes GAN approximations of the OT map [Black et al., 2020] and
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Monte-Carlo approximations of the dual parameters [Chiappa and Pacchiano, 2021]. However, these methods
don’t provide consistent estimators, in the sense that the obtained transport plans are not asymptotically close
to the continuous OT map as the sample size increases.

In this paper, we propose to fill the gap between continuous and empirical transport by considering a statisti-
cally consistent interpolation of the OT map for discrete measures. On the basis of the interpolation provided
in del Barrio et al. [2020a], we generalize their results and prove that it is possible to learn from empirical
observations a suitable OT map for machine learning methods. We then utilize this interpolation to derive the
first consistent framework for empirically-based counterfactual explanations to audit the fairness of binary
classifiers, extending the work in Black et al. [2020].

2 Learning an OT map for new observations

Let µ0 and µ1 be two unknown probability measures on R
d whose respective supports are denoted by X0 and

X1. In this section, we address the problem of learning the optimal transport map between µ0 and µ1 from
data points.

2.1 Background in Optimal Transport

Let ‖·‖ denote the euclidean norm associated with the scalar product 〈·, ·〉. The optimal transport map
between µ0 and µ1 with respect to the squared euclidean cost is defined as the solution to the following
Monge problem:

min
T : T♯µ0=µ1

∫

Rd

‖x− T (x)‖2dµ0(x), (1)

where T♯µ0 = µ1 denotes that T pushes forward µ0 to µ1, namely µ1(B) := µ0(T
−1(B)) for any measur-

able set B ⊂ R
d. Suppose that µ0 is absolutely continuous with respect to the Lebesgue measure ℓd in R

d,
and that both µ0 and µ1 have finite second order moments. Theorem 2.12 in Villani [2003] states that there
exists an unique solution to (1) T : X0 → R

d called the Brenier map. This map coincides µ0-almost surely
with the gradient of a convex function, and in consequence has a cyclically monotone graph. Recall that set
S ⊂ R

d × R
d is cyclically monotone if any finite set {(xk, yk)}Nk=1 ⊂ S satisfies

N−1
∑

k=1

〈yk, xk+1 − xk〉+ 〈yN , x1 − xN 〉 ≤ 0.

Such a set is contained in the graph of the subdifferential of a convex function, see [Rockafellar, 1970]. The
subdifferential at a point x ∈ R

d of a convex function ψ is defined as the set

∂ψ(x) := {y ∈ R
d|∀z ∈ R

d, ψ(z)− ψ(x) ≥ 〈y, z − x〉}.

We say that a multivalued map F : Rd → 2R
d

is cyclically monotone if its graph is.

In a practical setting, we only have access to samples from µ0 and µ1, and consequently we can’t solve (1).
However, we can compute a discrete optimal transport map between the empirical measures. Consider two
n-samples {x01, . . . , x

0
n} and {x11, . . . , x

1
n} respectively drawn from µ0 and µ1. They define the empirical

measures

µn0 :=
1

n

n
∑

k=1

δx0

k
and µn1 :=

1

n

n
∑

k=1

δx1

k
.

The discrete Monge problem between µn0 and µn1 is

min
Tn∈Tn

1

n

n
∑

k=1

||x0k − Tn(x
0
k)||

2, (2)

where Tn denotes the set of bijections from {x0i }
n
i=1 to {x1i }

n
i=1. Problem (2) defines an unique solution

Tn referred as the discrete optimal transport map between the two samples. This solution is such that
{

(x0k, Tn(x
0
k))

}n

k=1
is cyclically monotone.

In this paper, we focus on the problem of estimating the optimal transport map T solving (1). As mentioned
in the introduction, the solution Tn to (2) is not a suitable estimator because it has finite input and output
spaces, whereas T maps the whole domains. As a consequence, the empirical map cannot generalize to new
observations. This limitation triggered the need for regularized approaches: a topic we explore next.
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2.2 Smooth Interpolation

The heuristic approximation of a continuous OT map proposed in Black et al. [2020] handles new observa-
tions and has a satisfying empirical behaviour, but is not guaranteed to converge to the true OT map as the
sample size increases. The problem of constructing an approximation able to generalize to new observations
while being statistically consistent crucially raises the question of which properties of continuous optimal
transport must be preserved by the empirical estimator.

Recall that in one dimension the continuous optimal transport map between two probability measures is
a non-decreasing function T such that T♯µ0 = µ1. Then, natural extensions and regularization are made
by preserving that property. In several dimensions, the cyclically monotone property substitutes the non-
decreasing one. For the purpose of generalizing the notion of distribution function to higher dimensions,
del Barrio et al. [2020a] designed such an extension of Tn that converges to T as the sample size increases.
We briefly present the construction hereafter, and refer to del Barrio et al. [2020a] for further details.

The idea is to extend the discrete map Tn : {x0i }
n
i=1 → {x1i }

n
i=1 to a continuous one Tn : Rd → R

d by
regularizing a piece-wise constant approximation of Tn. The first step consists in solving (2) and permuting
the observations so that for every i ∈ {1, . . . , n}, Tn(x

0
i ) = x1i . Once the samples are aligned, we look for

the parameters ε0 and ψ ∈ R
n defined as the solutions to the linear program

max
ψ∈Rn,ε0∈R

ε0

s.t. 〈x0i , x
1
i − x1j 〉 ≥ ψi − ψj + 2ε0, i 6= j.

(3)

Recall that
{

(x0i , x
1
i )
}n

i=1
is cyclically monotone, and consequently is contained in the graph of the subdif-

ferential of some convex function. Since this is a finite set, there exist several convex functions satisfying this
property. For any of them denoted by ϕn, its convex conjugate ϕ∗

n := supz∈Rd{〈z, ·〉 − ϕn(z)} is such that

ϕ∗
n(x

1
i )− ϕ∗

n(x
1
j ) ≤ 〈x0i , x

1
i − x1j 〉.

The idea behind (3) is to find the most regular candidate convex function ϕn by maximizing the strict convex-
ity of ϕ∗

n. Proposition 3.1 in del Barrio et al. [2020a] implies that (3) is feasible. In practice, we solve (3) by
applying Karp’s algorithm [Karp, 1978] on its dual formulation:

min
zi,j :i6=j

∑

i,j:i6=j

zi,j〈x
0
i , x

1
i 〉

s.t.
∑

j:j 6=i

(zi,j − zj,i) = 0,

∑

i,j:i6=j

zi,j = 1, zi,j ≥ 0, i, j = 1, . . . , n.

(4)

Next, define the following convex function

ϕ̃n(x) := max
1≤i≤n

{

〈x, x0i 〉 − ψi
}

. (5)

Note that ∇ϕ̃n, wherever it is well-defined, is a piece-wise constant interpolation of Tn. To obtain a regular
interpolation defined everywhere and preserving the cyclical monotonicity we consider the Moreau-Yosida
regularization of ϕ̃n given by

ϕn(x) := inf
z∈Rd

{

ϕ̃n(z) +
1

2ε0
||z − x||2

}

.

Such a regularization is differentiable everywhere. Then, the mapping from R
d to R

d defined as Tn := ∇ϕn
satisfies the following properties:

1. Tn is continuous,

3
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2. Tn is cyclically monotone,

3. for all i ∈ {1, . . . , n}, Tn(x0i ) = x1i = Tn(x
0
i ),

4. for all x ∈ R
d, Tn(x) belongs to the convex hull of {x11, . . . , x

1
n}.

A more explicit expression of Tn can be derived using the gradient formula of Moreau-Yosida regularizations.
For g : Rd → R ∪ {+∞} a proper convex lower-semicontinuous function, the proximal operator of g is

defined on R
d by

proxg(x) := argmin
z∈Rd

{

g(z) +
1

2
||z − x||2

}

. (6)

Note that it is well-defined since the minimized function is strictly convex. Then, according to Theorem 2.26
in Rockafellar and Wets [2009] we have

Tn(x) =
1

ε0

(

x− proxε0ϕ̃n
(x)

)

. (7)

The interpolation of each new input x is numerically computed by solving the optimization problem

proxε0ϕ̃n
(x). As a consequence, generalizing with Tn is not computationally free as we must compute

proximal operators. Let’s benchmark this approach against classical discrete OT.

Suppose for instance that after constructing Tn on {x0i }
n
i=1 and {x1i }

n
i=1 we must generalize the OT map on

a new sample {x̄0i }
m
i=1 ∼ µ0 such that m ≤ n. Without additional observations from µ1, we are limited

to: computing for each x̄0i its closest counterpart in {x1j}
n
j=1—which would deviate from optimal transport;

computing the OT map between {x̄0i }
m
i=1 and an m-subsample of {x1j}

n
j=1—which would be greedy. With

an additional sample {x̄1i }
m
i=1 from µ1, we could upgrade Tn to a Tn+m by recomputing the empirical OT

map between the (n +m)-samples. However, this would cost O
(

(n +m)3
)

in computer time, require new

observations, and not be a natural extension of Tn. On the other hand, building the interpolation Tn with
Karp’s algorithm has a running-time complexity of O(n3): the same order as for Tn. Then, to generalize

the transport to {x̄0i }
m
i=1 with Tn, we must solve m optimization problems, one for each proxε0ϕ̃n

(x̄0i ). As

this amount to minimizing a function which is Lipschitz with constant max1≤i≤n
∥

∥x1i
∥

∥ + ε−1
0 and strongly

convex with constant ε−1
0 , an ǫ-optimal solution can be obtained in O(ǫ−1) steps with a subgradient descent

[Bubeck, 2017]. Since evaluating ∂ϕ̃n at each step of the descent costs n operations, computing the transport
interpolation with precision ǫ of anm-sample has a computational complexity of order O(mnǫ−1). Note also
that this methods is hyper-parameter free, and as such is more convenient than prior regularized approaches.
In addition, the obtained map is a statistically relevant estimator: we show hereafter that the theoretical
interpolation (7) converges to the continuous OT map under mild assumptions.

2.3 Consistency of the estimator

We provide an extension of Proposition 3.3 in del Barrio et al. [2020a]. While the original result ensures

the convergence of the interpolation Tn to T in the case where µ1 is the spherical uniform law over the
d-dimensional unit open ball, we prove that the consistency holds in more general settings.

Theorem 1. Let X̊0 and X̊1 be the respective interiors of X0 and X1, and T the optimal transport map
between µ0 and µ1. The following hold:

1. Assume that X0 is convex such that µ0 has positive density on its interior. Then, for µ0-almost every
x,

Tn(x)
a.s.

−−−−→
n→∞

T (x).

2. Additionally assume that T is continuous on X̊0, and that X1 is compact. Then, for any compact set
C of Rd,

4
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sup
x∈C

||T n(x)− T (x)||
a.s.

−−−−→
n→∞

0.

In particular, provided that X0 is compact, the convergence is uniform on the support.

3. Further assume that X1 is a strictly convex set, then

sup
x∈Rd

||Tn(x) − T (x)||
a.s.

−−−−→
n→∞

0.

The proof falls naturally into three parts, each one dedicated to the different points of Theorem 1. The first
point is a consequence of Theorem 2.8 in Del Barrio et al. [2019] and Theorem 25.7 in Rockafellar [1970],
which entail that the convergence of {ϕn}n∈N to ϕ extends to their gradients. The proofs of the second and
third points follow the guidelines of the one in del Barrio et al. [2020a]. The idea is to replace the unit ball
by a compact set, and then a stricly convex set. We refer to the appendix for a complete description of this
proof, as well as for all the other theoretical claims introduced in this paper.

Remark 1. We briefly discuss the assumptions of Theorem 1. Thanks to a recent work [González-Sanz et al.,
2021], the convexity of X0 can be relaxed to having a connected support with negligible boundary.

Note that the second and third points of this theorem require a continuous optimal transport map T to ensure
the uniform convergence of the estimator. Caffarelli’s theory [Caffarelli, 1990, 1991, 1992, Figalli, 2017]
provides sufficient conditions for this to hold. Suppose that X0 and X1 are compact convex, and that µ0 and
µ1 respectively admit f0 and f1 as density functions. If there exist Λ ≥ λ > 0 such that for all x ∈ X0,
y ∈ X1

λ ≤ f0(x), f
−1
0 (x), f1(y), f

−1
1 (y) ≤ Λ,

then T is continuous. For the non compact cases some results can be found in Figalli and Kim [2010],
del Barrio et al. [2020b], Cordero-Erausquin and Figalli [2019].

3 Applications

In this section, we focus on the problem of repairing and auditing the bias of a trained binary classifier. Let
(Ω,A,P) be a probability space. The random vector X : Ω → R

d represents the observed features, while
the random variable S : Ω → {0, 1} encodes the observed sensitive or protected attribute which divides the
population into a supposedly disadvantaged class S = 0 and a default class S = 1. The random variable S is
supposed to be non-degenerated. The two measures µ0 and µ1 are respectively defined as L(X |S = 0) and

L(X |S = 1). The predictor is defined as Ŷ := h(X,S), where h : Rd × {0, 1} → {0, 1} is deterministic.

We consider a setting in which Ŷ = 1 and Ŷ = 0 respectively represent a favorable and a disadvantageous
outcome.

3.1 Data processing for Fair learning using Optimal Transport

The standard way to deal with Fairness in Machine Learning is to measure it by introducing fairness mea-
sures. Among them, the disparate impact (DI) has received particular attention to determine whether a binary
decision does not discriminate a minority corresponding to S = 0, see for instance in Zafar et al. [2017]. This
corresponds to the notion of statistical parity introduced in Dwork et al. [2012]. For a classifier h with values
in {0, 1}, set DI(h,X, S) as

min(P(h(X,S) = 1 | S = 0),P(h(X,S) = 1 | S = 1))

max(P(h(X,S) = 1 | S = 1),P(h(X,S) = 1 | S = 0))
.

This criterion is close to 1 when statistical parity is ensured while the smaller the disparate, the more discrim-
ination for the minority group. Obtaining fair predictors can be achieved by several means, one consisting
in pre-processing the data by modifying the distribution of the inputs. Originally inspired by Feldman et al.
[2015], this method proved in Gordaliza et al. [2019] consists in removing from the data the dependency with
respect to the sensitive variable. This can be achieved by constructing two optimal transport maps, T0 and T1,
satisfying T0♯µ0 = µB and T1♯µ1 = µB , where µB is the Wasserstein barycenter of µ0 and µ1. The algo-
rithm is then trained on the dataset of the modified observations following the distribution of the barycenter,
which guarantees that h

(

TS(X), S
)

satisfies the statistical parity fairness criterion.
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Using the estimator we propose in this work enables to compute for any new observation (x, s) a prediction
h(Tn,s(x), s) with theoretical guarantees. Note that the same framework applies when considering post-
processing of outcome of estimators (or scores of classifiers) which are then pushed towards a fair representer.
We refer for instance to Le Gouic et al. [2020] for the regression case or to Chiappa et al. [2020] for the
classification case.

3.2 Consistency of Counterfactual Explanations

A sharper approach to fairness is to explain the discriminatory behaviour of the predictor. Black et al. [2020]
started laying out the foundations of auditing binary decision-rules with transport-based mappings. Their
Flip Test is an auditing technique for uncovering discrimination against protected groups in black-box clas-
sifiers. It is based on two types of objects: the Flip Sets, which list instances whose output changes had
they belonged to the other group, and the Transparency Reports, which rank the features that are associated
with a disparate treatment across groups. Crucially, building these objects requires assessing counterfactu-
als, statements on potential outcomes had a certain event occurred [Lewis, 1973]. The machine learning
community mostly focused on two divergent frameworks for computing counterfactuals: the nearest coun-
terfactual instances principle, which models transformations as minimal translations [Wachter et al., 2017],
and Pearl’s causal reasoning, which designs alternative states of things through surgeries on a causal model
[Pearl et al., 2016]. While the former implicitly assumes that the covariates are independent, hence fails to
provide faithful explanations, the latter requires a fully specified causal model, which is a very strong assump-
tion in practice. To address these shortcomings, Black et al. [2020] proposed substituting causal reasoning
by matching the two groups with a one-to-one mapping T : Rd → R

d, for instance an optimal transport
map. However, because the GAN approximation they use for the OT map does not come with convergence
guarantees, their framework for explanability fails to be statistically consistent. We fix this issue next. More
precisely, after presenting this framework, we show that natural estimators of an optimal transport map, such
as the interpolation introduced in Section 2.2, lead to consistent explanations as the sample size increases.

3.2.1 Definitions

In contrast to Black et al. [2020], we present the framework from a non-empirical viewpoint. The following
definitions depend on the choice of the binary classifier h and the mapping T .

Definition 1. For a given binary classifier h, and a measurable function T : Rd → R
d, we define

• the FlipSet as the set of individuals whose T -counterparts are treated unequally

F (h, T ) = {x ∈ R
d | h(x, 0) 6= h(T (x), 1)},

• the positive FlipSet as the set of individuals whose T -counterparts are disadvantaged

F+(h, T ) = {x ∈ R
d | h(x, 0) > h(T (x), 1)},

• the negative FlipSet as the set of individuals whose T -counterparts are advantaged

F−(h, T ) = {x ∈ R
d | h(x, 0) < h(T (x), 1)}.

When there is no ambiguity, we may omit the dependence on T and h in the notation.

The Flip Set characterizes a set of counterfactual explanations w.r.t. an intervention T . Such explanations
are meant to reveal a possible bias towards S. The partition into a positive and a negative Flip Set sharpens
the analysis by controlling whether S is an advantageous attribute or not in the decision making process.
As S = 0 represents the minority, one can think of the negative partition as the occurrences of negative
discrimination, and the positive partition as the occurrences of positive discrimination. Black et al. [2020]
noted that the relative sizes of the empirical positive and negative Flip Sets quantified the lack of statistical
parity. Following their proof, we give a generalization of their result to the continuous case:

Proposition 1. Let h be a binary classifier. If T : X0 → X1 satisfies T♯µ0 = µ1, then

P(h(X,S) = 1|S = 0)− P(h(X,S) = 1|S = 1)

=

P(X ∈ F+|S = 0)− P(X ∈ F−|S = 0).

6
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However, the interest of such sets lies in their explanatory power rather than being proxies for determining
fairness scores. By analyzing the mean behaviour of I − T for points in a Flip Set, one can shed light on
the features that mattered the most in the decision making process. A Transparency Report indicates which
coordinates change the most, in intensity and in frequency, when applying T to a Flip Set. In what follows, for
any x = (x1, . . . , xd)

T ∈ R
d we define sign(x) := (sign(x1), . . . , sign(xd))

T the sign function on vectors.

Definition 2. Let ⋆ be in {−,+}, h be a binary classifier and T : X0 → R
d be measurable map. Assume

that µ0 and T♯µ0 have finite first-order moments. The Transparency Report is defined by the mean difference
vector

∆⋆
diff(h, T ) = Eµ0

[X − T (X)|X ∈ F ⋆(h, T )]

=
1

µ0(F ⋆(h, T ))

∫

F⋆(h,T )

(

x− T (x)
)

dµ0(x),

and the mean sign vector

∆⋆
sign(h, T ) = Eµ0

[

sign(X − T (X))
∣

∣X ∈ F ⋆(h, T )]

=
1

µ0(F ⋆(h, T ))

∫

F⋆(h,T )

sign(x− T (x))dµ0(x).

The first vector indicates how much the points moved; the second shows whether the direction of the trans-
portation was consistent. We upgrade the notion of Transparency Report by introducing new objects extend-
ing the Flip Test framework.

Definition 3. Let ⋆ be in {−,+}, and T : X0 → R
d be measurable. Assume that µ0 and T♯µ0 have finite

first order moments. The difference Reference Vector is defined as

∆ref
diff(T ) := Eµ0

[X − T (X)] =

∫

(

x− T (x)
)

dµ0(x).

and the sign Reference Vector as

∆ref
sign(T ) := Eµ0

[sign
(

X − T (X)
)

]

=

∫

sign
(

x− T (x)
)

dµ0(x).

The auditing procedure can be summarized as follows: (1) compute the Flip Sets and evaluate the lack
of statistical parity by comparing their respective sizes; (2) if the Flip Sets are unbalanced, compute the
Transparency Report and the Reference Vectors; (3) identify possible sources of bias by looking at the largest
components of ∆⋆

diff(h, T )−∆ref
diff(T ) and ∆⋆

sign(h, T )−∆ref
sign(T ). While the original approach would have

directly analyzed the largest components of the Transparency Report, the aforementioned procedure scales
the uncovered variations with a reference. This benchmark is essential. It contrasts the disparity between
paired instances with different outcomes to the disparity between the protected groups; thereby, pointing out
the actual treatment effect of the decision rule. We give an example to illustrate how the Reference Vectors
act as a sanity check for settings where the Transparency Report fails to give explanations.

Example 1. Let g be the standard gaussian measure on R
2, and define µ0 := (−2,−1)T + g and µ1 :=

(2, 1)T + g, so that δ := E(µ0 −µ1) = −(4, 2)T . Set T as the Brenier map between µ0 and µ1, and suppose
that the decision rule is h(x1, x2, s) := 1{x2>0}. In this scenario, T is the uniform translation I − δ, and we
have

F−(h, T ) = {(x1, x2)
T ∈ R

2 | − 2 < x2 < 0},

F+(h, T ) = ∅.

Clearly, the predictor h is unfair towards µ0, since the negative FlipSet outsizes the positive one. In this case,
the vector ∆−

diff(h, T ) is simply equal to

∆−
diff(h, T ) =

1

µ0(F−(h, T ))

∫

F−(h,T )

δdµ0(x)

= δ = (−4,−2)T .

7
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A misleading analysis would state that, because | − 4| > | − 2|, the Transparency Report has uncovered
a potential bias towards the first coordinate. This would be inaccurate, since the classifier only takes into
account the second variable. This issue comes from the fact that in this homogeneous case, the Transparency
Report only reflects how the two conditional distributions differ, and does not give any insight on the decision
rule. Our benchmark approach detects such shortcomings by systematically comparing the Transparency

Report to the Reference Vectors. In this setting we have ∆ref

diff(T ) = δ, thus ∆−
diff(h, T )−∆ref

diff(T ) = 0, which

means that the FlipTest does not give insight on the decision making process.

To sum-up, we argue that it is the deviation of ∆−
diff(h, T ) from ∆ref

diff(T ), and not ∆−
diff(h, T ) alone, that

brings to light the possible bias of the decision rule. Note that T♯µ0 = µ1 entails ∆ref
diff(T ) = E[X |S =

0] − E[X |S = 1], which does not depend on T . Still, we define the Reference Vector with an arbitrary T
because in practice we operate with an estimator that only approximates the push-forward condition.

3.2.2 Convergence

The first step for implementing the Flip Test technique is computing an estimator Tn0,n1
of the chosen match-

ing function T . In theory, the matching is not limited to an optimal transport map, but must define an
intuitively justifiable notion of counterpart.

Definition 4. Let T : Rd → R
d satisfy T♯µ0 = µ1, and Tn0,n1

be an estimator of T built on a n0-sample
from µ0 and a n1-sample from µ1. Tn0,n1

is said to be T -admissible if

1. Tn0,n1
: X → X is continuous on X0,

2. Tn0,n1
(x)

a.s.
−−−−−−−→
n0,n1→+∞

T (x) for µ0-almost every x.

According to Theorem 1, the smooth interpolation Tn is an admissible estimator of the optimal transport map
T under mild assumptions.

The second step consists in building empirical versions of the Flip Sets and Transparency Reports for h and
Tn0,n1

using m data points from µ0. The consistency problem at hand becomes two-fold: w.r.t. to m the size
of the sample, and w.r.t. to the convergence of the estimator Tn0,n1

. Proving this consistency is crucial, as
Tn0,n1

satisfies the push-forward condition at the limit only.

Consider a m-sample {x0i }
m
i=1 drawn from µ0. We define the empirical counterparts of respectively the

negative Flip Set, the positive Flip Set, the mean difference vector, the mean sign vector, and the Reference
Vectors for arbitrary h and T . For any ⋆ ∈ {−,+}, they are given by

F ⋆m(h, T ) := {x0i }
m
i=1 ∩ F

⋆(h, T ),

∆⋆
diff,m(h, T ) :=

∑m
i=1 1F⋆(h,T )(x

0
i )
(

x0i − T (x0i )
)

|F ⋆m(h, T )|
,

∆⋆
sign,m(h, T ) :=

∑m
i=1 1F⋆(h,T )(x

0
i )sign

(

x0i − T (x0i )
)

|F ⋆m(h, T )|
,

∆ref
diff,m(T ) :=

1

m

m
∑

i=1

(

x0i − T (x0i )
)

,

∆ref
sign,m(T ) :=

1

m

m
∑

i=1

sign
(

x0i − T (x0i )
)

.

Note that the first four equalities correspond to the original definitions from Black et al. [2020]. The strong
law of large numbers implies the convergence almost surely of each of these estimators, as precised in the
following proposition.

Proposition 2. Let ⋆ ∈ {−,+}, h be a binary classifier, and T a measurable function. The following
convergences hold

8



A CONSISTENT EXTENSION OF DISCRETE OPTIMAL TRANSPORT MAPS

|F ⋆m(h, T )|

m

µ0−a.s.
−−−−−→
m→+∞

µ0(F
⋆(h, T )),

∆⋆
diff,m(h, T )

µ0−a.s.
−−−−−→
m→+∞

∆⋆
diff(h, T ),

∆⋆
sign,m(h, T )

µ0−a.s.
−−−−−→
m→+∞

∆⋆
sign(h, T ),

∆ref

diff,m(T )
µ0−a.s.
−−−−−→
m→+∞

∆ref

diff(T ),

∆ref
sign,m(T )

µ0−a.s.
−−−−−→
m→+∞

∆ref
sign(T ).

In particular, theses convergences hold for an admissible estimator Tn0,n1
. To address the further convergence

w.r.t. n0 and n1, we first introduce a new definition.

Definition 5. A binary classifier h̃ : Rd → {0, 1} is separating with respect to a measure ν on R
d if

1. H0 := h̃−1({0}) and H1 := h̃−1({1}) are closed or open,

2. ν
(

H0 ∩H1

)

= 0.

We argue that except in pathological cases that are not relevant in practice, machine learning always deals
with such classifiers. For example, thresholded versions of continuous functions, which account for most
of the machine learning classifiers (e.g. SVM, neural networks. . . ), are separating with respect to Lebesgue
continuous measures. As for a very theoretical example of non-separating classifier, one could propose the
indicator of the rational numbers, which is not separating with respect to the Lebesgue measure. Working
with classifiers h such that h(·, 1) is separating w.r.t. to µ1 fixes the regularity issues one might encounter
when taking the limit in h(Tn0,n1

(·), 1). More precisely, it ensures that the set of discontinuity points of h
is µ1-negligible. As T♯µ0 = µ1 and since Tn0,n1

→ T µ0-almost everywhere, the following continuous
mapping result holds:

Proposition 3. Let h̃ : Rd → {0, 1} be a separating classifier w.r.t. µ1, and Tn0,n1
a T -admissible estimator.

Then, for µ0-almost every x

h̃(Tn0,n1
(x))

a.s.
−−−−−−−→
n0,n1→+∞

h̃(T (x)).

Next, we make a technical assumption for the convergence of the Transparency Report. Let {e1, . . . , ed} be

the canonical basis of Rd, and define for every k ∈ {1, . . . , d} the set Λk(T ) := {x ∈ R
d | 〈x− T (x), ek〉 =

0}.

Assumption 1. For every k ∈ {1, . . . , d}, µ0

(

Λk(T )
)

= 0.

Any Lebesgue continuous measure satisfies Assumption 1. This is crucial for the convergence of the mean
sign vector, as it ensures that the points of discontinuity of x 7→ sign

(

x− T (x)
)

are negligible. We now turn
to our main consistency result.

Theorem 2. Let ⋆ ∈ {−,+}, h be a binary classifier such that h(·, 1) is separating w.r.t. µ1, and Tn0,n1
a

T -admissible estimator. The following convergences hold

µ0(F
⋆(h, Tn0,n1

))
a.s.

−−−−−−−→
n0,n1→+∞

µ0(F
⋆(h, T )),

∆⋆
diff(h, Tn0,n1

)
a.s.

−−−−−−−→
n0,n1→+∞

∆⋆
diff(h, T ),

∆ref
diff(Tn0,n1

)
a.s.

−−−−−−−→
n0,n1→+∞

∆ref
diff(T ).

If Assumption 1 holds, then additionally

∆⋆
sign(h, Tn0,n1

)
a.s.

−−−−−−−→
n0,n1→+∞

∆⋆
sign(h, T ),

∆ref
sign(Tn0,n1

)
a.s.

−−−−−−−→
n0,n1→+∞

∆ref
sign(T ).
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As h is binary, the probability of the negative Flip Set can be written as µ0(F
−(h, Tn0,n1

)) =
∫

[1 − h(x, 0)]h(Tn0,n1
(x), 1)dµ0(x). Note that the integrated function [1 − h(·, 0)]h(Tn0,n1

(·), 1) is
dominated by the constant 1. Then, it follows from Proposition 3 that this sequence of functions converges
µ0-almost everywhere to [1 − h(·, 0)]h(T (·), 1) when n0, n1 → +∞. By the dominated convergence
theorem, we conclude that µ0(F

−(h, Tn0,n1
)) −−−−−−−→

n0,n1→+∞
µ0(F

−(h, T )). The same argument holds for the

positive Flip Sets. The proofs of the other convergences follow the same reasoning, using Proposition 3 and
Assumption 1 to apply the dominated convergence theorem.

As aforementioned, the assumptions of Theorem 2 are not significantly restrictive in practice. Thus, the Flip
Test framework is tailored for implementations.

4 Conclusion

We addressed the problem of constructing a statistically approximation of the continuous optimal transport
map. We argued that this has strong consequences for machine learning applications based on OT, as it renders
possible to generalize discrete optimal transport on new observations while preserving its key properties. We
illustrated that using the proposed extension ensures the statistical consistency of OT-based frameworks, and
as such derived the first consistency analysis for observation-based counterfactual explanations.
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A Proofs of Section 2

A.1 Intermediary result

We first introduce a proposition adapted from del Barrio et al. [2020a] to suit our setting. In what follows, we
denote by NC(x) := {y ∈ R

d| ∀x′ ∈ C, 〈y, x′ − x〉 ≤ 0} the normal cone at x of the convex set C.

Proposition 4. Suppose that X1 is a compact convex set. Let xn = λnun ∈ R
d where 0 < λn → +∞

and un ∈ ∂X1 → u as n → +∞. Note that by compactness of the boundary, necessarily u ∈ ∂X1. If
(T (xn))n∈N has a limit v (taking a subsequence if necessary), then v ∈ ∂X1, and u ∈ NX1

(v) 6= {0}.

Proof. Taking subsequences if necessary, we can assume that T (xn) → v for some v ∈ X1. The mono-

tonicity of T implies that for any x ∈ R
d, 〈xn − x, T (xn) − T (x)〉 ≥ 0. In particular, for any w ∈ T (Rd),

〈xn − T−1(w), T (xn) − w〉 ≥ 0. This can be written as 〈un − 1
λn
T−1(w), T (xn) − w〉 ≥ 0. Taking the

limit leads to 〈u, v − w〉 ≥ 0. Define H := {w ∈ R
d | 〈u,w − v〉 ≤ 0} which is a closed half-space. As T

pushes µ0 towards µ1, T (Rd) contains a dense subset of X1. Since H is closed, this implies that X1 ⊂ H
and v ∈ X1 ∩H . Consequently, H is a supporting hyperplane of X1 and v ∈ ∂X1. Now, write the inclusion
X1 ⊂ H as ∀w ∈ X1, 〈u,w−v〉 ≤ 0. Denote byNX1

(x) the normal cone of X1 at an arbitrary point x ∈ R
d.

Conclude by noting that the above inequality reads u ∈ NX1
(v). The cone does not narrow down to {0} as v

does not belong to X̊1.

A.2 Proof of Theorem 1

We now turn to the proof of the main theorem.

Proof. Recall that µ0 and µ1 are probability measures on R
d with respective supports X0 and X1. We

denote their interiors by X̊0 and X̊1, and their boundaries by ∂X0 and ∂X1. We assume the measures to be
absolutely continuous with respect to the Lebesgue measure. Recall that there exists an unique map T such
that T♯µ0 = µ1 and T = ∇ϕ µ0-almost everywhere for some convex function ϕ called a potential. We
denote by dom(∇ϕ) the set of differentiable points of ϕ which satisfies µ0(dom(∇ϕ)) = 1, according to
Theorem 25.5 in Rockafellar [1970].

Conversely, there also exists a convex function ψ such S, the Brenier’s map from µ1 to µ0, can be written
as S := ∇ψ µ1-almost everywhere. In addition, S can be related to T through the potential functions.
Concretely, ψ coincides with the convex conjugate ϕ∗(y) = supx∈Rd

{

〈x, y〉 − ϕ(x)
}

of ϕ. We can then

fix this function for u ∈ R
d \ X̊1 using the lower semi-continuous extension on the support. This defines a

specific ϕ (hence a specific solution T ) as

ϕ(x) := sup
u∈Rd

{

〈x, u〉 − ϕ∗(u)
}

= sup
u∈X1

{

〈x, u〉 − ϕ∗(u)
}

. (8)

Let {x0i }
n
i=1 and {x1i }

n
i=1 be n-samples drawn from respectively µ0 and µ1, defining empirical measures µn0

and µn1 . Without loss of generality, assume that the samples are ordered such that Tn : x0i 7→ x1i is the unique

solution to the corresponding discrete Monge problem. Consider the interpolation Tn. We pay attention to
the properties it satisfies:

1. Tn = ∇ϕn where ϕn is continuously differentiable,

2. Tn is cyclically monotone,

3. for all i ∈ {1, . . . , n}, Tn(x0i ) = x1i = Tn(x
0
i ),

4. for all x ∈ R
d, T n(x) ∈ conv

(

{x11, . . . , x
1
n}

)

.

Following the decomposition of Theorem 1 the proof will be divided into three steps.
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Step 1: Point-wise convergence. Assume that the support X0 is a convex set. Recall that Tn = ∇ϕn
everywhere and T = ∇ϕ µ0-almost everywhere. We prove the point-wise convergence of {Tn}n∈N to
T in two steps: first, we show the point-wise convergence of {ϕn}n∈N to ϕ; second, we do the same for
{∇ϕn}n∈N to ∇ϕ.

Theorem 5.19 in Villani [2008] implies that

γn = (I × Tn)♯µ
n
0

w
−−−−−→
n→+∞

γ = (I × T )♯µ0,

where w denotes the weak convergence of probability measures. It follows from Theorem 2.8 in

Del Barrio et al. [2019] that for all x ∈ X̊0 the limit limn→+∞ ϕn(x) = ϕ(x) holds after centering.

Theorem 25.5 in Rockafellar [1970] states that for all x ∈ dom(∇ϕ) there exist an open convex subset C

such that x ∈ C ⊂ dom(∇ϕ). Take an arbitrary x ∈ X̊0∩dom(∇ϕ) and consider such a subset C containing
x. Since ϕ is finite and differentiable in C, we can apply Theorem 25.7 in Rockafellar [1970] to conclude

that ∇ϕ(x) = limn→+∞ ∇ϕn(x). To sum-up, the desired equality holds in X̊0 ∩ dom(∇ϕ), in consequence
µ0-almost surely (recall that the border of a convex set is Lebesgue negligible).

Step 2: Uniform convergence on the compact sets. Further assume that ∇ϕ is continuous on X̊0, and that
the support X1 is a compact set. Set K1 = supx∈X1

||x||. This implies that for any x ∈ R
d, ||Tn(x)|| ≤

max1≤i≤n ||x1i || ≤ K1. Then ||∇ϕn(x)|| ≤ K1 for all n ∈ N and x ∈ R
d. In consequence the sequence

{ϕn}n∈N is equicountinous with the topology of convergence on the compact sets. Arzela-Ascoli’s theorem

applied on the compact sets of Rd implies that the sequence is s relatively compact in the topology induced by
the uniform norm on the compact sets. Let ρ be any cumulative point of {ϕn}n∈N. Then, there exists a sub-
sequence of {ϕn}n∈N converging to ρ. Abusing notation, we keep denoting the sub-sequence by {ϕn}n∈N.
The previous step implies that ϕ = ρ and ∇ϕ = ∇ρ on X0. Next, we show that this equality holds on
R
d \ X0.

The continuity of the transport map implies that X̊0 ⊂ dom(∇ϕ). Hence, by convexity, for every z ∈ R
d and

u = ∇ϕ(x) = ∇ρ(x) ∈ ∇ϕ(X̊0),

ρ(z) ≥ ρ(x) + 〈u, z − x〉 = 〈u, x〉 − ϕ∗(u), (9)

where the equality comes from the equality case of the Fenchel-Young theorem. As µ0(X̊0) = 1, the push-

forward condition ∇ϕ♯µ0 = µ1 implies that µ1(∇ϕ(X̊0)) = 1 and consequently ∇ϕ(X̊0) is dense in X1. It
follows that

ρ(z) ≥ sup
u∈∇ϕ(X̊0)

{

〈u, z〉 − ϕ∗(u)
}

= sup
u∈X1

{

〈x, u〉 − ϕ∗(u)
}

= ϕ(z) for every z ∈ R
d. (10)

To get the upper bound, set z ∈ R
d and un = ∇ϕn(z) = Tn(z). Since Tn(z) ∈ conv

(

{x11, . . . , x
1
n}

)

, then

un ∈ X1. Fenchel-Young equality once again implies that 〈x, un〉 = ϕn(x) + ϕ∗
n(un). This gives that

ϕn(x) ≤ sup
u∈X̊1

{

〈u, x〉 − ϕ∗
n(u)

}

= ϕ̃n(x),

where ϕ̃n is the Legendre transform of

ϕ̃∗
n : u 7→

{

ϕ∗
n(u) if u ∈ X̊1,

+∞ otherwise.

Since ∇ϕ∗ is the Brenier map from µ1 to µ0, then Theorem 2.8 in Del Barrio et al. [2019] implies that

limn→+∞ ϕ∗
n(u) = ϕ∗(u) = limn→+∞ ϕ̃∗

n(u) for every u ∈ X̊1. Outside X̊1 we have ϕ̃∗
n(u) = +∞ =

ϕ∗(u) by definition. Hence, the sequence {ϕ̃∗
n}n∈N converges point-wise to ϕ∗ over R

d. According to
Theorem 7.17 in together with Theorem 11.34 in Rockafellar and Wets [2009] the same convergence holds
for their conjugates. This means that for any x ∈ R

d we have limn→+∞ ϕ̃n(x) = ϕ(x). This leads to

ρ(x) ≤ ϕ(x) for every x ∈ R
d, hence ρ = ϕ. We conclude, using Theorem 25.7 in Rockafellar [1970], that

Tn = ∇ϕn converges uniformly to T = ∇ϕ over compact sets of Rd, in particular over X0 if it is compact.
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Step 3: Uniform convergence on R
d. Further assume that the support X1 is a strictly convex set. To prove

the result it suffices to show that, for every w ∈ R
d,

sup
x∈Rd

|〈T n(x) − T (x), w〉| −−−−−→
n→+∞

0.

Let’s assume that on the contrary, there exist ε > 0, w 6= 0, and {xn}n∈N ⊂ R
d such that

|〈Tn(xn)− T (xn), w〉| > ε (11)

for all n. Necessarily, the sequence {xn}n∈N is unbounded. If not, we could extract a convergent subsequence
so that, by using the point-wise convergence and the continuity of the transport functions, the left-term of (11)
would tend to zero. Taking subsequences if necessary, we can assume that xn = λnun where limn→+∞ un =
u where un, u ∈ ∂X1 and 0 < λn → +∞. By compactness of X1 and Proposition 4, Tn(xn) → z ∈ X1 and
T (xn) → y ∈ ∂X1. Let τ > 0 so that by monotonicity

〈Tn(xn)− Tn(τun), (λn − τ)un〉 ≥ 0.

For n large enough so that λn > τ we have

〈Tn(xn)− T (τun), un〉+ 〈T (τun)− Tn(τun), un〉 ≥ 0.

The second term tends to zero, leading to

〈z − T (τu), u〉 ≥ 0.

As this holds for any τ > 0, we can take τn = λn → +∞ to get

〈z − y, u〉 ≥ 0. (12)

According to Proposition 4, u ∈ NX1
(y) with u 6= 0. In particular, as z ∈ X1, we have that 〈u, z − y〉 ≤ 0,

which implies that 〈u, z − y〉 = 0. This means that u ⊥ z − y and u ∈ NX1
(y). Hence, z − y belongs to the

tangent plane of ∂X1 at y while z ∈ X1. Besides, X1 is strictly convex, implying that z = y. This contradicts
at the limit with (11).

B Proof of Section 3

Proof of Proposition 1.

Proof. Note that

F−(h, T ) = {h(x, 0) = 0 and h(T (x), 1) = 1} = {h(T (x), 1) = 1} − {h(x, 0) = 1 and h(T (x), 1) = 1}.

Similarly

F+(h, T ) = {h(x, 0) = 1 and h(T (x), 1) = 0} = {h(x, 0) = 1} − {h(x, 0) = 1 and h(T (x), 1) = 1}.

Taking the measures we get

µ0(F
−)− µ0(F

+) = µ0({x ∈ R
d | h(T (x), 1) = 1})− µ0({x ∈ R

d | h(x, 0) = 1}).

Using the fact that T♯µ0 = µ1 we have

14
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µ0({x ∈ R
d | h(T (x), 1) = 1}) = µ1({x ∈ R

d | h(x, 1) = 1}).

This leads to

µ0(F
−)− µ0(F

+) = µ1({x ∈ R
d | h(x, 1) = 1})− µ0({x ∈ R

d | h(x, 0) = 1}).

Which concludes the proof.

Proof of Proposition 2.

Proof. Let ⋆ ∈ {−,+}. The empirical probability of the Flip Set is

|F ⋆m(h, T )|

m
=

1

m

m
∑

i=1

1F⋆(h,T )(x
0
i ).

By the strong law of large numbers,

1

m

m
∑

i=1

1F⋆(h,T )(x
0
i )

µ0−a.s.
−−−−−→
m→+∞

Eµ0
[1F⋆(h,T )(X)] = µ0(F

⋆(h, T )).

This concludes the first part of the proof. We now turn to the Transparency Report, and show the convergence
of the mean difference vector, as the proof is equivalent for the mean sign vector. The empirical estimator
can be written as

∆⋆
diff,m(h, T ) =

m

|F ⋆m(h, T )|
×m−1

m
∑

i=1

1F⋆(h,T )(x
0
i )
(

x0i − T (x0i )
)

.

Then, by the strong law of large numbers we have

m

|F ⋆m(h, T )|
×m−1

m
∑

i=1

1F⋆(h,T )(x
0
i )
(

x0i − T (x0i )
) µ0−a.s.
−−−−−→
m→+∞

1

µ0(F ⋆(h, T ))

∫

F⋆(h,T )

(

x− T (x)
)

dµ0(x),

where by definition

1

µ0(F ⋆(h, T ))

∫

F⋆(h,T )

(

x− T (x)
)

dµ0(x) = ∆⋆
diff(h, T ).

The proof for the Reference Vectors is identical, even simpler as h is not involved.

Proof of Proposition 3.

Proof. Throughout this proof, we work with a given realization Tn0,n1
:= T

(ω)
n0,n1

of the random estimator
for an unimportant arbitrary ω ∈ Ω. Without loss of generality, consider that H0 is open and H1 is closed.
Recall that by T -admissibility, the sequence Tn0,n1

(x) converges for µ0-almost every x. We aim at showing
that for µ0-almost every x

h̃(Tn0,n1
(x)) −−−−−−−→

n0,n1→+∞
h̃(T (x)).

For any x ∈ X0 there are only two different cases.

15
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Case 1: For any n0 and n1 large enough, Tn0,n1
(x) ∈ H1. Then at the limit, T (x) ∈ H1, meaning that the

expected convergence holds for this x.

Case 2: For any n0 and n1 large enough, Tn0,n1
(x) ∈ H0. Then at the limit, either T (x) ∈ H0 or T (x) ∈

H1. If T (x) ∈ H0, the expected convergence holds for this x. If T (x) ∈ H1, necessarily T (x) ∈ H0 ∩ H1.

As µ1(H0 ∩H1) = 0 and µ1 = µ0 ◦ T−1, this only occurs for x in a µ0-negligible set.

Any other cases would contradict with the convergence of Tn0,n1
(x). Consequently, the expected conver-

gence holds µ0-almost everywhere.

Proof of Theorem 2.

Proof. In this proof as well we work with a given realization Tn0,n1
:= T

(ω)
n0,n1

of the random estimator for an
unimportant arbitrary ω ∈ Ω. Let’s show the result for ⋆ = − as the proof is equivalent for ⋆ = +. Because
h is binary, the probability of the Flip Set can be written as

µ0(F
−(h, Tn0,n1

)) = Eµ0
[1{F−(h,Tn0,n1

)}] =

∫

[1− h(x, 0)]h(Tn0,n1
(x), 1)dµ0(x).

Note that the integrated function [1− h(·, 0)]h(Tn0,n1
(·), 1) is dominated by the constant 1. Then, it follows

from Proposition 3 that this sequence of functions converges µ0-almost everywhere to [1− h(·, 0)]h(T (·), 1)
when n0, n1 → +∞. By the dominated convergence theorem, we conclude that

µ0(F
−(h, Tn0,n1

)) −−−−−−−→
n0,n1→+∞

µ0(F
−(h, T )).

We now turn to the mean difference vector,

∆−
diff(h, Tn0,n1

) =
1

µ0(F−(h, Tn0,n1
))

∫

F−(h,Tn0,n1
)

(

x− Tn0,n1
(x)

)

dµ0(x).

We already proved that the left fraction converges to µ0(F
−(h, T ))−1. To deal with the integral, we exploit

once again the fact that h is binary to write

∫

F−(h,Tn0,n1
)

(

x− Tn0,n1
(x)

)

dµ0(x) =

∫

[1− h(x, 0)]h(Tn0,n1
(x), 1)

(

x− Tn0,n1
(x)

)

dµ0(x).

Note that the sequence of functions x 7→ x − Tn0,n1
(x) converges µ0-almost everywhere to x 7→ x − T (x).

This is where 3 comes into play to ensure the convergence µ0-everywhere of the integrated function. This
enables to apply the dominated convergence theorem to conclude that

∆−
diff(h, Tn0,n1

) −−−−−−−→
n0,n1→+∞

∆−
diff(h, T ).

We finally address the case of the mean sign vector:

∆−
sign(h, Tn0,n1

) =

∫

[1− h(x, 0)]h(Tn0,n1
(x), 1)sign

(

x− Tn0,n1
(x)

)

dµ0(x).

The approach is the same as for the mean difference vector. The only crucial distinction to handle is the
convergence of the sequence x 7→ sign

(

x−Tn0,n1
(x)

)

to x 7→ sign
(

x−T (x)
)

, which is not trivial as the sign
function is discontinuous wherever a coordinate of its argument equals zero. We follow a similar reasoning
as for the proof of Proposition 3 to show the convergence µ0-almost everywhere. The only pathological case
happens when x− T (x) ends up on a canonical axis, that is to say when x ∈ Λk(T ). If Assumption 1 holds,
this occurs only for x in a µ0-negligible set. Consequently, for µ0-almost every x
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sign
(

x− Tn0,n1
(x)

)

−−−−−−−→
n0,n1→+∞

sign
(

x− T (x)
)

.

To conclude, we apply Proposition 3 along with the dominated convergence theorem to obtain

∆−
sign(h, Tn0,n1

) −−−−−−−→
n0,n1→+∞

∆−
sign(h, T ).

The proof for the Reference Vectors is identical, even simpler as h is not involved.
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