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LARGE-TIME BEHAVIOR OF COMPRESSIBLE POLYTROPIC FLUIDS
AND NONLINEAR SCHRÖDINGER EQUATION

RÉMI CARLES, KLEBER CARRAPATOSO, AND MATTHIEU HILLAIRET

Abstract. In this paper we analyze the large-time behavior of weak solutions to poly-
tropic fluid models possibly including quantum and capillary effects. Formal a priori
estimates show that the density of solutions to these systems should disperse with time.
Scaling appropriately the system, we prove that, under a reasonable assumption on
the decay of energy, the density of weak solutions converges in large times to an un-
known profile. In contrast with the isothermal case, we also show that there exists a
large variety of asymptotic profiles. We complement the study by providing existence
of global-in-time weak solutions satisfying the required decay of energy. As a byproduct
of our method, we also obtain results concerning the large-time behavior of solutions to
nonlinear Schrödinger equation, allowing the presence of a semi-classical parameter as
well as long range nonlinearities.
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1. Introduction

We consider isentropic compressible fluid models describing the evolution of the density
and velocity field of a fluid on the whole space R

d, given by

∂tρ+ div(ρu) = 0,(1.1)

∂t(ρu) + div(ρu⊗ u) + ∇P (ρ) = div

(

ε2

2
K[ρ] + ν

√
ρS[ρ, u]

)

.(1.2)

Here t ∈ R+ is the time variable and x ∈ R
d is the spatial variable, ρ = ρ(t, x) : R+ ×R

d →
R+ is the density of the fluid, u = u(t, x) : R+ ×R

d → R
d is the velocity field, and P (ρ) is
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2 R. CARLES, K. CARRAPATOSO, AND M. HILLAIRET

the pressure which depends on the density. The terms appearing on the right-hand side
of (1.2) account for quantum correction and diffusion term, respectively. More precisely,
we consider constants ε > 0 and ν > 0 and

(1.3)
1

2
K[ρ] =

1

4
ρ∇2 log ρ =

1

2
(
√
ρ∇2√

ρ− ∇√
ρ⊗ ∇√

ρ),

(1.4) S[ρ, u] =
√
ρ∇su,

where ∇su = 1
2(∇u + ∇u⊤) denotes the symmetric part of the gradient. We also denote

below ∇au = 1
2(∇u − ∇u⊤) the skew-symmetric one. We emphasize that we have split

the term ρ∇su =
√
ρ
√
ρ∇su in preparation for the following computations. We emphasize

also that we allow the parameters ε and ν to vanish separately or simultaneously. We will
classically refer to the equations obtained according to these cases as:

• Euler: ε = ν = 0.
• Euler-Korteweg: ε > 0 = ν.
• (Quantum) Navier-Stokes: ν > 0 = ε.
• (Quantum) Navier-Stokes-Korteweg: ν > 0 and ε > 0.

As for the pressure, we shall consider hereafter laws corresponding to polytropic fluids

(1.5) P (ρ) = ργ with γ > 1.

We refer the reader to [6, 24, 1] for more details on the modeling. In previous studies
[5, 6], we focused on the particular case γ = 1, which corresponds to isothermal fluids.
Our main motivation herein is to show that some tools of these former analyses extend
to the polytropic case and yield relevant information on the large-time behavior of the
density ρ.

1.1. Main results. System (1.1)–(1.2) has, at least formally, two fundamental properties:
the conservation of mass

(1.6)

∫

Rd
ρ(t, x) dx =

∫

Rd
ρ0(x) dx ∀t > 0,

and the energy identity

(1.7) E[ρ, u](t) + ν

∫ t

0
D[ρ, u](s) ds = E0 ∀t > 0,

where the energy E = E[ρ, u] is defined by

(1.8) E[ρ, u] :=
1

2

∫

Rd
(ρ|u|2 + ε2|∇√

ρ|2) dx+
1

γ − 1

∫

Rd
ργ dx,

and its dissipation by

(1.9) D[ρ, u] := ν

∫

Rd
ρ|∇su|2 dx.

For sufficiently localized solutions (ρ, u) of (1.1)–(1.2) we have also at hand alternative
functionals which are well-suited for the study of large-time behavior. First, we observe
that

d

dt

∫

Rd
ρ|x|2 = −

∫

Rd
div(ρu)|x|2 = 2

∫

Rd
ρu · x,

and Cauchy-Schwarz inequality yields

d

dt

∫

Rd
ρ|x|2 6 2

(
∫

Rd
ρ|x|2

)1/2 (∫

Rd
ρ|u|2

)1/2

.

In view of the above energy identity, we infer, for all t > 0,

(1.10)

∫

Rd
ρ|x|2(t) 6 C(E0)(1 + t2),
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for some constant C(E0) > 0 depending on the energy E0 of the initial data. Second,
defining the functional

B[ρ, u] :=
1

2

∫

Rd

(

ρ

∣

∣

∣

∣

u− x

t

∣

∣

∣

∣

2

+ ε2|∇√
ρ|2
)

+
1

γ − 1

∫

Rd
ργ ,

we may adapt computations of [20, Section 4] (see also [25]) to obtain that, for some
constant C > 0:

(1.11) B[ρ, u](t) 6
C(E0)

(1 + t)min(2,d(γ−1))
+

Cν

1 + t
, ∀ t > 0.

For completeness we provide an exhaustive proof of this estimate in Appendix A. From
(1.11) we infer that the Lγ-norm of ρ has to decay to zero with time. Since the total
mass is conserved in view of (1.6), we expect the density of solutions to (1.1)-(1.2) to
disperse. To give relevant information on the asymptotic state of the density, we consider
the (L1-unitary in space) rescaling

R(t, x) = τd(t)ρ(t, τ(t)x), ∀ t > 0,

for some well-chosen scaling-parameter family t 7→ τ(t). In order to compel with the energy
bounds (1.10)-(1.11), one notices that a natural choice is

(1.12) τ(t) ∼ t.

The precise choice of τ will be motivated by the fact that our approach relies on compact-
ness properties requiring a priori estimates of the form (1.11). Typically, in the case ν = 0,
we use different choices whether γ is smaller or larger than 1 + 2/d.

In the case of isothermal models γ = 1, we showed that, by choosing the scaling τ as
solution to an appropriate differential equation (which can be inferred via a parallel with
nonlinear Schrödinger equations), we may not only analyze the asymptotics of solutions to
(1.1)-(1.2) but also identify new energy estimates crucial to the construction of a Cauchy
theory for this system (see [5, 6]). Such ideas were already hinted in [20]. Following these
previous approaches, we propose to introduce the scaling function τ as follows. We fix
α > 0 and compute τ : R+ → R+ as the solution of

(1.13) τ̈ =
α

2τ1+α
, τ(0) = 1, τ̇(0) = 0.

Its large time behavior turns out to be independent of α > 0:

Lemma 1.1. Let α > 0. The ordinary differential equation (1.13) has a unique, global,
smooth solution τ ∈ C∞(R;R+). In addition, its large time behavior is given by

τ̇(t) −→
t→∞

1, hence τ(t) ∼
t→∞

t.

The proof is postponed to Appendix B. Define the new unknowns (R,U) by

(1.14) ρ(t, x) =
1

τ(t)d
R

(

t,
x

τ(t)

)

, u(t, x) =
1

τ(t)
U

(

t,
x

τ(t)

)

+
τ̇(t)

τ(t)
x.

This change of unknowns does not affect the initial data:

R(0, x) = ρ(0, x), U(0, x) = u(0, x).

In terms of (R,U) = (R(t, y), U(t, y)), system (1.1)–(1.2) then becomes,

∂tR+
1

τ2
div(RU) = 0(1.15)

∂t(RU) +
1

τ2
div(RU ⊗ U) +

α

2τα
yR+

1

τd(γ−1)
∇Rγ(1.16)

=
1

τ2
div

(

ε2

2
K[R] + ν

√
RS[R,U ]

)

+
ντ̇

τ
∇R,

with K and S defined as previously. Since τ depends on some parameter α, so do the new
unknowns R and U , and the system (1.15)-(1.16). However, since the large-time behavior
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of τ does not depend on α > 0 (see Lemma 1.1), the different changes of unknowns
describe the same quantities asymptotically. The precise value of α is motivated by the
a priori estimates we obtain for (R,U). Yet, the analysis could be performed for various
α’s, and since the large-time behavior of (R,U) should be independent of α, one expects
that α-dependent terms in (1.15)-(1.16) will be subdominant in large times.

The analogues of (1.6), (1.8) and (1.9) in terms of the new unknown (R,U) are the
following. First, for fixed t, the map ρ(t, ·) 7→ R(t, ·) preserves the L1-norm, hence (1.6)
becomes

(1.17)

∫

Rd
R(t, y)dy =

∫

Rd
ρ0(x)dx.

Define the pseudo-energy E [R,U ] by

(1.18)

E [R,U ] =
1

2τ2

∫

Rd

(

R|U |2 + ε2|∇
√
R|2

)

dy +
α

4τα

∫

Rd
|y|2R dy

+
1

(γ − 1)τd(γ−1)

∫

Rd
Rγ dy,

as well as its nonnegative dissipation D by
(1.19)

D[R,U ] =
τ̇

τ

{

1

τ2

∫

Rd

(

R|U |2 + ε2|∇
√
R|2

)

dy +
α2

4τα

∫

Rd
|y|2R dy +

d

τd(γ−1)

∫

Rd
Rγ dy

}

+
ν

τ4

∫

Rd
R|∇sU |2.

We obtain, at least formally, the following pseudo-energy identity

(1.20)
d

dt
E [R,U ] + D[R,U ] = −ν τ̇

τ3

∫

Rd
R divU dy.

We remark that E does not correspond to the energy E written in the (R,U) variables.
These formal identities imply that densities (R(t, ·))t>0 are positive with finite mass and
second order momentum. An appropriate functional space to tackle the large-time behav-
ior is then the set of positive measures on R

d. Up to a scaling argument – which may only
change the amplitude of pressure law and Korteweg terms – we restrict to the case where
(R(t, ·))t>0 is a family of probability measures.

Notations. We use classical notations C∞
c (Rd), S(Rd) for smooth functions with com-

pact support and Schwartz space. Notations Lp(Rd) (resp. Hs(Rd),Wm,p(Rd)) refer
to Lebesgue (resp. Sobolev spaces). We shall make repeated use of Bochner spaces
Lp(0,∞;Lq(Rd)), of Lp(0,∞;Hs(Rd)), and their local-in-time variants. In the space
L∞

loc(0,∞;Wm,p(Rd)) we denote C([0,∞);Lp(Rd)−w) the subspace of continuous functions

when endowing Lp(Rd) with its weak topology. The space D′(Ω) is made of distributions
on the open set Ω (not to be confused with D). We denote by P(Rd) the set of probabil-
ity measures on R

d. More generally, for j ∈ N, Pj(R
d) denotes the space of probability

measures on R
d with finite momentum of order j.

1.1.1. Rigidity result. Our main contribution consists in analyzing large-time properties
of potential weak solutions to (1.15)-(1.16). Building up on our previous construction

in [6] we consider weak solutions which read (
√
R,

√
RU) and that enjoy the following

properties:

(H1)
√
R ∈ L∞(0,∞;L2(Rd)) ∩ L∞

loc(0,∞;L2γ(Rd)), ε
√
R ∈ L∞

loc(0,∞;H1(Rd)), with
R(t, ·) ∈ P2(Rd) for a.e. t > 0,

(H2)
√
RU ∈ L∞

loc(0,∞;L2(Rd)),
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(H3) There exists T ∈ L2
loc(0,∞;L2(Rd)), such that



































∂tR+
1

τ2
div(

√
R

√
RU) = 0

∂t(
√
R

√
RU) +

1

τ2
div(

√
RU ⊗

√
RU) +

α

2τα
yR+

1

τd(γ−1)
∇Rγ

=
1

τ2
div

(

ε2

2
K + ν

√
RTs

)

+
ντ̇

τ
∇R,

holds in D′((0,∞) × R
d) with the compatibility conditions, if to be required:

K = (
√
R∇2

√
R− ∇

√
R⊗ ∇

√
R), T =

(

∇(
√
R

√
RU) − 2∇

√
RU ⊗ ∇

√
R
)

.

For legibility, we have written equations in terms of R in this definition whereas, since
√
R

is the involved unknown, these quantities must be computed in terms of
√
R. Similarly,

U is not an appropriate unknown in our framework. So, we do not write the quantity√
R∇U but the symbol T which plays its role, hence our second compatibility condition in

(H3). As previously, the exponent s denotes the symmetric part of T. Such assumptions
are also inspired by the definition of weak solution in [6, Definition 1.1] (isothermal case),
as in [1, Definition 2.1]), with further momenta requirements for the density (see also [16]
in the case of the torus).

To complete the set of assumptions, it is mandatory to enforce in one way or another the
decay properties inherited from (1.20) (as it is classical for weak solutions to dissipative
systems). By abuse of notations, we keep the symbols E for energy and D for its dissipation,

though they will be computed in terms of
√
R,

√
RU and T (and not R and U which are

not the good unknowns in this weak-solution framework). Our last requirement builds on
the following formal analysis. First we bound the right-hand side in (1.20) as follows:

d

dt
E + D 6 ν

τ̇

τ3

(
∫

Rd
R dy

)1/2 (∫

Rd
|Ts|2 dy

)1/2

6 2ν
(τ̇)2

τ2

∫

Rd
R dy +

ν

2τ4

∫

Rd
|Ts|2 dy,

which implies

d

dt
E +

1

2
D 6 2ν

(τ̇)2

τ2
.

Remarking that
∫∞

0
(τ̇ (t))2

τ(t)2 dt < ∞ (see Lemma 1.1), we already obtain that

(1.21) sup
t>0

E(t) +

∫ ∞

0
D(t) dt 6 C(E0),

where C(E0) > 0 is a constant depending on the pseudo-energy of the initial data E0. This
yields at first that D is in L1(0,∞). Observing from (1.19) that

D[R,U ] > α
τ̇

τ
E [R,U ],

we therefore deduce the following differential inequality

(1.22)
d

dt
E 6 − τ̇

τ
αE + 2ν

(τ̇ )2

τ2
,

which entails after integration that, for all t > 0 (the outcome is slightly different whether
α 6= 1 or α = 1),

(1.23) E(t) 6 C0

(

1

1 + tα
+

ν

1 + t
(1α6=1 + log(1 + t) 1α=1)

)

.
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We note that, when ν > 0 and α > 1, these computations only yield a bound on the growth
of the second order momentum of R(t). This can be improved thanks to the following
remark. By multiplying the momentum equation with |y|2 we have formally that:

d

dt

∫

Rd
|y|2R dy =

2

τ2

∫

Rd
Ry · U dy,

which implies

d

dt

∫

Rd
|y|2Rdy 6

2

τ2

(
∫

Rd
R|y|2 dy

)
1
2
(
∫

Rd
R|U |2 dy

)
1
2

,

and thus

(1.24) d

dt

(
∫

Rd
|y|2R dy

)
1
2

6
1

τ

(

1

τ2

∫

Rd
R|U |2 dy

)
1
2

6
C

τ

√
E .

The combined decay of E and growth of τ entail finally that the second order momentum
of R remains bounded whatever the value of α.

Eventually, these formal considerations lead us to the following last assumption:

(H4) Set α = min(2, d(γ − 1)). Introducing E ,D as defined previously (see (1.18) and
(1.19)), there exists a constant C0 > 0 such that:

E(t) 6 C0

(

1

(1 + t)α
+

ν

(1 + t)
(1α6=1 + log(1 + t) 1α=1)

)

, ∀ t > 0,(1.25)

sup
t>0

(
∫

Rd
|y|2R(t, y)dy

)

+

∫ ∞

0
D(t) dt 6 C0.(1.26)

More details on the derivation of (1.25)-(1.26) are given in Section 4. With these as-
sumptions, our main result yields a description of the large-time behavior of the density
R(t) = [

√
R(t)]2. This is the content of the following theorem:

Theorem 1.2. Assume that (
√
R,

√
RU) is a global weak solution to (1.15)–(1.16) such

that (H1)–(H4) hold true. There exists R∞ ∈ P2(Rd) such that

R(t, ·) ⇀ R∞ in P(Rd).

We have in addition R∞ ∈ L1(Rd) (at least) in the following cases:

• ε = ν = 0 and 1 < γ 6 1 + 2/d,
• ε > 0, ν = 0 and γ > 1,
• ε > 0, ν > 0 and 1 < γ 6 1 + 1/d.

We obtain in the course of the proof an explicit polynomial rate of convergence from
R(t, ·) to R∞. Reconstructing the solution (ρ, u) from (R,U) via the formulas (1.14), we
infer

lim
t→∞

τd(t)ρ(t, τ(t)·) = R∞ in P(Rd).

We emphasize that contrary to the isothermal case γ = 1, where, as proven in [5], the
only possible R∞ is given by

R∞(y) =
‖ρ0‖L1(Rd)

πd/2
e−|y|2,

in the polytropic case γ > 1, the range of the map ρ0 7→ R∞ is very broad. In the case of
the Euler equation, we have, as established in [5] by adapting the approach from [20]:

Proposition 1.3. Let ε = ν = 0, 1 < γ 6 1 + 2/d and s > d/2 + 1. There exists η > 0
such that if 0 6 a∞ ∈ Hs(Rd) is such that ‖a∞‖Hs(Rd) 6 η, then there exists a solution to

(1.1)-(1.2) which is global in time, with
∥

∥

∥

∥

ρ(t, x) − 1

td
R∞

(

x

t

)
∥

∥

∥

∥

L∞(Rd)∩L1(Rd)
−→
t→∞

0, R∞ := a
2

γ−1
∞ .

In the case of the Euler-Korteweg system, we will prove (for a different range of γ):
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Proposition 1.4. Let ε > 0 = ν,

γ > 3 if d = 1, 1 +
4

d+ 2
< γ < 1 +

4

(d− 2)+
if d > 2.

For any a∞ ∈ S(Rd), there exists a solution to (1.1)-(1.2) such that
∥

∥

∥

∥

ρ(t, x) − 1

td
R∞

(

x

t

)∥

∥

∥

∥

L1(Rd)
−→
t→∞

0, R∞ := |a∞|2.

This result is a direct consequence of scattering theory for nonlinear Schrödinger equa-
tions, as discussed more precisely in Section 3.3.

1.1.2. Existence results. The second natural contribution consists in making sure that the
assumptions of Theorem 1.2 are not empty.

Theorem 1.5. In the three following cases, initial data (ρ0, u0) yield at least one global

weak solution (
√
R,

√
RU) to (1.15)-(1.16) satisfying the assumptions of Theorem 1.2:

(i) Euler equations. Assume ε = ν = 0. Let γ > 1, s > d/2 + 1 and r0 ∈ Hs(Rd)
such that r0 > 0 is compactly supported with ‖r0‖Hs(Rd) sufficiently small. Then, assume

ρ0(x) = r0(x)
2

γ−1 , and u0 satisfies D2u0 ∈ Hs−1(Rd), Du0 ∈ L∞(Rd), and there exists
δ > 0 such that for all x ∈ R

d, dist(Sp(Du0(x),R−) > δ.

(ii) Euler-Korteweg equations. Assume ε > 0, ν = 0 and 1 < γ < 1 + 4
(d−2)+

, and

there exists

ψ0 ∈ Σ := {f ∈ H1(Rd), x 7→ xf(x) ∈ L2(Rd)},
such that ρ0 = |ψ0|2, ρ0u0 = ε Im(ψ̄0∇ψ0).

(iii) Quantum Navier-Stokes equations. Assume d 6 3, γ > 1, ν > 0 and ε > 0. Let
(ρ0, u0) satisfy:

(1 + |x| + |u0|)√ρ0 ∈ L2(Rd), ρ0 ∈ Lγ(Rd),
√
ρ0 ∈ H1(Rd).

We remind that the change of unknown from small-letter to capital-letter unknowns
does not affect initial data. In particular, depending on the case, we may prefer to solve
the small-letter system (1.1)-(1.2) and then apply the change of unknown to yield weak
solutions satisfying (H1)-(H4) or directly work on the scaled system (1.15)-(1.16) with the
capital-letter unknowns. More details are given in Section 4.

1.2. Nonlinear Schrödinger equation. It is well-known (see e.g. [2, 7]) that the Euler-
Korteweg equation is intimately related to the nonlinear Schrödinger equation (NLS)

(1.27) iε∂tψ
ε +

ε2

2
∆ψε = λ|ψε|2σψε, ψε

|t=0 = ψε
0 ∈ H1(Rd),

through the Madelung transform,

(1.28) ρ = |ψε|2, ρu = ε Im
(

ψ̄ε∇ψε
)

, with λ =
γ

γ − 1
, σ =

γ − 1

2
.

We emphasize the dependence of ψε upon ε through the notation, for the limit ε → 0
corresponds to the semi-classical limit, and will be discussed in the present paper. The
Cauchy problem (1.27) is easier than its fluid mechanical counterpart: if λ > 0 and
0 < σ < 2

(d−2)+
(defocusing, energy-subcritical nonlinearity), then (1.27) has a unique

solution

ψε ∈ C(R;H1(Rd)) ∩ L
4σ+4

dσ

loc (R;L2σ+2(Rd)).

See e.g. [8]. If in addition x 7→ xψε
0 ∈ L2(Rd), then this integrability property is propagated

by the flow. The analogue of the evolution of B[ρ, u] was discovered by Ginibre and
Velo [10], and goes under the name of pseudo-conformal conservation law.
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Theorem 1.6. Let d > 1, ε, λ > 0, 0 < σ < 2
(d−2)+

, and

ψε
0 ∈ Σ := {f ∈ H1(Rd), x 7→ xf(x) ∈ L2(Rd)}.

Rescale the function ψε to Ψε via

(1.29) ψε(t, x) =
1

τ(t)d/2
Ψε
(

t,
x

τ(t)

)

e
i

τ̇(t)
τ(t)

|x|2

2ε ‖ψε
0‖L2(Rd),

where τ(t) is a scaling like before (in particular, τ(t) ∼ t as t → ∞). There exists
Rε

∞ ∈ P2(Rd) such that

|Ψε(t, ·)|2 ⇀ Rε
∞ in P(Rd).

More details are given in Section 3. At this stage, we emphasize the fact that σ is
arbitrarily small. In particular, for 0 < σ 6 1/d, the nonlinearity is long range, in the
sense that no standard scattering result is possible: fix ε > 0, and assume that there exists
ψε

+ ∈ L2(Rd) such that

(1.30)
∥

∥

∥ψε(t) − eiε t
2

∆ψε
+

∥

∥

∥

L2(Rd)
−→
t→∞

0,

then necessarily ψε ≡ 0, from [3]. On the other hand, it is a common belief that long
range effects affect only the behavior of the phase, at leading order, meaning that the
dispersion is the same as in the linear case. Indeed, for σ > 1/d, under the assumptions
of Theorem 1.6, there exists ψε

+ (with in particular ‖ψε
+‖L2(Rd) = ‖ψε

0‖L2(Rd)) such that

(1.30) holds ([22]), and recall that in L2(Rd) (see e.g. [21]),

eiε t
2

∆f(x) ∼
t→∞

1

(εt)d/2
f̂

(

x

εt

)

ei
|x|2

2εt .

Therefore, for ε > 0 fixed, Theorem 1.6 shows that long range effects do not alter the
standard dispersion.

1.3. Outline of the paper. In brief, the paper splits into 3 sections and 2 appendices. In
Section 2 we provide a proof of Theorem 1.2. The next section is devoted to the analysis
of nonlinear Schrödinger equations to provide the examples of Proposition 1.4. We
complement the analysis in Section 4 with the proof of the existence result Theorem 1.5.
The two appendices are devoted to the formal computation of decay estimate (1.11), and
to the properties of the scaling parameter families (τ(t))t>0, respectively.

2. Proof of Theorem 1.2

We consider non-negative parameters ε, ν, and assume that (
√
R,

√
RU) is a global weak

solution to (1.15)-(1.16) in the sense of (H1)-(H3), enjoying the decay properties (H4).

As a preliminary, we note from (H4) that
(
∫

Rd
|y|2R(t, y)dy

)

t>0
is bounded.

So the family of probability densities (R(t, ·))t>0 is tight and precompact in P(Rd). Remark
that this already implies that there is some sequence of times (tn)n>0 with tn → ∞ as
n → ∞, such that (R(tn, ·))n>0 converges weakly in P(Rd) to some probability measure
R∞. Unlike in the isothermal case, we have not been able to identify a limiting equation
for R∞, which could make it possible to infer uniqueness of the accumulation point (R(t, ·)
might keep oscillating as t → ∞). However, given the uniform bound on (R(t, ·)) in
P2(Rd), our proof reduces to obtaining convergence in some sufficiently large dual space.
To this end, we will make repeated use of the following lemma:

Lemma 2.1. Let T > 0, m ∈ N and (p, q) ∈ (1,∞). Assume that X ∈ L∞(0, T ;Lp(Rd))
satisfies ∂tX ∈ L1(0, T ;W−m,q(Rd)). Then there holds:

• X ∈ C([0, T ];Lp(Rd) − w)
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• for arbitrary ϕ ∈ C∞
c (Rd) there holds:

[
∫

Rd
X(·, y)ϕ(y)dy

]t2

t1

=
〈

∂tX, (t, y) 7→ ϕ(y)1[t1 ,t2](t)
〉

∀ 0 6 t1 < t2 6 T.

This lemma is part of the folklore and is stated without proof. Formally, it is tempting
to invoke (1.15) and use Cauchy-Schwarz inequality to obtain

∫

Rd
R|U |dy 6

(
∫

Rd
Rdy

)1/2 (∫

Rd
R|U |2dy

)1/2

. τ.

Then one may want to write, in view of (1.15),

‖∂tR‖W −1,1(Rd) =
1

τ2
‖ div(RU)‖W −1,1(Rd) 6

1

τ2
‖RU‖L1(Rd) .

1

τ
.

We see that we barely miss integrability on the right hand side, due to a logarithmic
divergence. Also, this estimate implicitly relies on duality properties of W−1,1, which
is a delicate matter. To overcome these issues, we estimate ∂tR at a lower regularity
level in order to obtain integrability in time, and we consider estimates related to Lp

spaces with 1 < p < ∞ (for reflexivity), and p > d so we can use Sobolev embeddings
W s,p(Rd) ⊂ W s−1,∞(Rd). This again reduces the level of regularity at which we estimate
∂tR. More precisely, we estimate ‖∂tR‖W −4,p′ for d < p < ∞, in Proposition 2.3 below.

The core of the proof is then two successive applications of Lemma 2.1. First, we
obtain:

Proposition 2.2. Let γ∗ = 2γ/(γ+1). There holds RU =
√
R

√
RU ∈ C([0,∞);Lγ∗ (Rd)−

w) and, given p > d, there exists Kp > 0 depending on C0 in (H4) and α, p, ε, ν for which:

∣

∣

∣

∣

∫

Rd
RU · w

∣

∣

∣

∣

6 Kp

(

(1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0(1 + t)1/2
)

‖w‖W 3,p(Rd),

for all w ∈ [C∞
c (Rd)]d.

Proof. Since we have RU ∈ L∞
loc(0,∞);Lγ∗ (Rd)), a direct application of Lemma 2.1 yields

our result if we prove, for any t > 0, that:

|〈∂t(RU), w〉| 6 Kp

(

(1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0(1 + t)1/2
)

sup
s∈(0,t)

‖w(s, ·)‖W 3,p(Rd)

for arbitrary w ∈ C∞
c ((0, t) × R

d)d. To this respect, we will make repeated use without
mention of the property, stemming from (1.23):

∫ t

0
E(s) ds 6 C0

∫ t

0

[

1

(1 + s)α
+

ν

(1 + s)
(1α6=1 + log(1 + s)1α=1)

]

ds

6 Kp

(

(1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0

√
1 + t

)

.

So, given t > 0 and w ∈ C∞
c ((0, t) × R

d)d, we apply (1.16) to split:

〈∂t(RU), w〉 =
5
∑

k=1

〈Li, w〉,
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where:

〈L1, w〉 = −
∫ t

0

1

τ2

∫

Rd
(
ε2

2
K + ν

√
RS) : ∇w,

〈L2, w〉 = −
∫ t

0

ντ̇

τ

∫

Rd
R divw,

〈L3, w〉 =

∫ t

0

1

τ2

∫

Rd

√
RU ⊗

√
RU : ∇w,

〈L4, w〉 = −
∫ t

0

α

2τα

∫

Rd
Ry · w,

〈L5, w〉 =

∫ t

0

1

τd(γ−1)

∫

Rd
Rγ · divw.

We now estimate these five terms independently.

Concerning L1, we split L1 = L1[K] + L1[S] with obvious notations. First we bound:

|〈L1[K], w〉| =

∣

∣

∣

∣

∣

∫ t

0

ε2

2τ2

∫

Rd

(√
R∇2

√
R− ∇

√
R⊗ ∇

√
R
)

: ∇w
∣

∣

∣

∣

∣

.

∫ t

0

1

τ2

∫

Rd

(

|ε∇
√
R|2|∇w| + ε

√
R|ε∇

√
R||∇2w|

)

.

∫ t

0

(

ε2

τ2

∫

Rd
|∇

√
R|2 +

ε2

τ2

∫

Rd
R

)

sup
[0,t]

‖w‖W 2,∞(Rd).

We remind here that R is a probability measure and the definition (1.18) of E . This entails
by Sobolev embedding that:

|〈L1[K], w〉| 6 Cp

(

∫ t

0
E +

ε2

τ2

)

sup
[0,t]

‖w‖W 3,p(Rd)

6 Kp

(

(1 + t)(1−α)+ + log(1 + t) 1α=1 + 1ν>0

√
1 + t

)

sup
[0,t]

‖w‖W 3,p(Rd),

where we used that τ−1 decays like 1/(1 + t) to integrate 1/τ2. Similarly, we apply the
control induced by D to bound:

|〈L1[S], w〉| 6
∫ t

0

ν

τ2

∫

Rd

√
RS : ∇w

6
√
ν

∫ t

0

(

ν

τ4

∫

Rd
|Ts|2

)1/2 (∫

Rd
R

)1/2

sup
[0,t]

‖∇w‖L∞(Rd)

6 Cp

√
νt

(
∫ ∞

0
D
)

1
2

sup
[0,t]

‖w‖W 2,p(Rd).

Combining the previous two estimates yields finally:

(2.1) |〈L1, w〉| 6 Kp

(

(1 + t)(1−α)+ + log(1 + t) 1α=1 + 1ν>0

√
1 + t

)

sup
[0,t]

‖w‖W 3,p(Rd).

To handle L2, we use that R has constant mass and the growth of τ at infinity:

|〈L2, w〉| 6
∣

∣

∣

∣

∫ t

0

ντ̇

τ

∫

Rd
R divw

∣

∣

∣

∣

6 Cν

∫ t

0

1

τ
sup
[0,t]

‖ divw‖L∞(Rd) 6 Kpν ln(1 + t) sup
[0,t]

‖w‖W 2,p .
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We proceed with L3. First, we make controlled quantities appear via Hölder inequality:

|〈L3, w〉| 6
∣

∣

∣

∣

∫ t

0

1

τ2

∫

Rd

√
RU ⊗

√
RU : ∇w

∣

∣

∣

∣

6

∫ t

0

1

τ2

∫

Rd
|
√
RU |2 sup

[0,t]
‖∇w‖L∞(Rd)

6

(
∫ t

0
E ds

)

sup
[0,t]

‖∇w‖L∞(Rd)

6 Kp

(

(1 + t)(1−α)+ + log(1 + t) 1α=1 + 1ν>0

√
1 + t

)

sup
[0,t]

‖w‖W 2,p(Rd).

Concerning L4, we have

|〈L4, w〉| 6 1

2

∫ t

0

α

τα

(
∫

Rd
R

)1/2 (∫

Rd
R|y|2

)1/2

sup
[0,t]

‖w‖L∞(Rd)

6
1

2

(
∫ t

0

1

τα/2

√
E ds

)

sup
[0,t]

‖w‖W 1,p(Rd)

6 Kp

(
∫ t

0

(

1

(1 + s)α
+
ν(1 + ln(1 + s))

(1 + s)(1+α)/2

)

ds

)

sup
[0,t]

‖w‖W 1,p(Rd)

6 Kp

(

(1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0

√
1 + t

)

sup
[0,t]

‖w‖W 1,p(Rd).

Finally, for L5, we obtain directly that:

|〈L5, w〉| 6 (γ − 1)

(
∫ t

0
E ds

)

sup
[0,t]

‖ divw‖L∞

6 Kp

(

(1 + t)(1−α)+ + log(1 + t) 1α=1 + 1ν>0

√
1 + t

)

sup
[0,t]

‖w‖W 2,p(Rd).

This completes the proof. �

We apply now this control of RU in order to handle ∂tR. We have:

Proposition 2.3. For arbitrary φ ∈ C∞
c (Rd) the function

Rφ : t 7→
∫

Rd
R(t, y)φ(y)dy

enjoys the properties:

i) Rφ ∈ C([0,∞)),
ii) Rφ converges to some limit R∞

φ as t → ∞, satisfying:

|R∞
φ | 6 Cp,∞‖φ‖W 4,p(Rd),

for a constant Cp,∞ depending on p > d, but independent of φ.

This latter result shows the convergence of (R(t, ·))t>0 through the mapping φ 7→ R∞
φ

in W−4,p′
(Rd). This mapping is bound to be a probability measure thanks to the tightness

of (R(t, ·))t>0. Hence, the proof of this proposition ends up this part.

Proof. Similarly to the previous proof, we have here that R ∈ L∞
loc(0,∞;Lγ(Rd)) and,

thanks to Equation (1.15) with (H2), there holds: ∂tR ∈ L1
loc(0,∞;W−1,γ′

∗ (Rd)) (where
γ′

∗ is the conjugate exponent of γ∗). Applying Lemma 2.1, we have then that, for arbitrary
φ ∈ C∞

c (Rd) and t1 < t2 there holds Rφ ∈ C([0,∞)) and

Rφ(t2) −Rφ(t1) =

∫ t2

t1

1

τ2
RU · ∇φ.
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In this equality, we apply the bound of Proposition 2.2 with p > d. This yields:

|Rφ(t2) −Rφ(t1)|

6 Kp

(

∫ t2

t1

(1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0(1 + t)1/2

τ(t)2
dt

)

‖∇φ‖W 3,p(Rd).

Since τ ∼ t for large t, we obtain that

t 7→ (1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0(1 + t)1/2

τ(t)2
∈ L1([0,∞)).

By a standard domination argument, we infer the conclusions of our proposition: Rφ

admits a limit R∞
φ when t → ∞, and

|R∞
φ | 6

∣

∣

∣

∣

∫

Rd
R(0, ·)φ

∣

∣

∣

∣

+Kp

(

∫ ∞

0

(1 + t)(1−α)+ + log(1 + t)1α=1 + 1ν>0(1 + t)1/2

τ(t)2
dt

)

‖φ‖W 4,p(Rd)

6 Cp,∞‖φ‖W 4,p(Rd).

�

As a straightforward corollary to the above computations, we also have the following
convergence result for any p > d:

‖R(t, ·) −R∞‖W −4,p′ (Rd) 6 Kp

(

1

(1 + t)min(α,1)
+

ln(1 + t)

(1 + t)
1α=1 +

1ν>0√
1 + t

)

, ∀ t > 0.

Furthermore, for sufficiently small γ, we can also state more properties of the asymptotic
R∞. Indeed, from (H4) we infer that:

∫

Rd
Rγ(t, ·) 6 C0τ

d(γ−1)
(

1

(1 + t)α
+

ν

(1 + t)
(1α6=1 + log(1 + t)1α=1)

)

∀ t > 0.

Consequently, when ν > 0, if d(γ − 1) 6 1 (i.e. γ < 1 + 1/d and α = d(γ − 1)) we
obtain that (R(t, ·))t>0 is bounded in Lγ(Rd). While, when ν = 0, the same holds true
for d(γ − 1) 6 2 i.e. γ 6 1 + 2/d. In both cases, the uniform Lγ-bound ensures that the
asymptotic profile R∞ is not only a probability measure but also an L1-function. Finally,
when ε > 0, ν = 0 and γ > 1 + 2/d, we have α = 2 and from (H4) we obtain

ε2

2

∫

Rd
|∇

√
R(t, ·)|2 6 C0

τ2(t)

(1 + t)2
∀ t > 0,

which implies that (∇
√
R(t, ·))t>0 is bounded in L2(Rd) and thus that R∞ ∈ L1(Rd) also

in this case.

3. Nonlinear Schrödinger equation

3.1. A priori estimates. For τ solution to (1.13), and ψε solution to (1.27) with ψε
0 ∈ Σ

as defined in Theorem 1.6, Ψε given by (1.29) solves

(3.1) iε∂tΨ
ε +

ε2

2τ(t)2
∆Ψε =

α

τ(t)2α

|y|2
2

Ψε +
µε

τ(t)dσ
|Ψε|2σΨε, Ψε

|t=0 =
ψε

0

‖ψε
0‖L2(Rd)

,

where
µε = λ‖ψε

0‖2σ
L2(Rd).

The pseudo-energy for Ψε is

(3.2)

Eε(Ψε) =
ε2

2τ(t)2
‖∇Ψε(t)‖2

L2(Rd) +
α

τ(t)2α

∫

Rd
|y|2|Ψε(t, y)|2dy

+
µε

(σ + 1)τ(t)dσ

∫

Rd
|Ψε(t, y)|2σ+2dy,
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and satisfies
d

dt
Eε(Ψε) + Dε(Ψε) = 0,

where the dissipation is given by

(3.3)

Dε(Ψε) =
τ̇

τ

(

ε2

τ(t)2
‖∇Ψε(t)‖2

L2(Rd) +
α2

τ(t)2α

∫

Rd
|y|2|Ψε(t, y)|2dy

+
dσµε

(σ + 1)τ(t)dσ

∫

Rd
|Ψε(t, y)|2σ+2dy

)

.

In the case of the nonlinear Schrödinger equation, justifying the above identity is standard
at the level of regularity that we consider, and we refer to [8] for details. We infer:

Proposition 3.1. Let d > 1, ε, λ > 0, 0 < σ < 2
(d−2)+

, and ψε
0 ∈ Σ. Then for τ solution

to (1.13) with α = min
(

dσ
2 , 1

)

, the function Ψε defined by (1.29) satisfies

Eε(Ψε(t)) 6
Eε(Ψε(0))

τ(t)min(2,dσ)
, ∀t > 0,

∫ ∞

0
Dε(Ψε(t))dt < ∞,

where Eε is given by (3.2) and Dε is given by (3.3).

The above proposition provides the same a priori estimates as we have used in the case
of the Euler-Korteweg system. More precisely, for (ρ, u) related to ψε thanks to Madelung
transform like in (1.28), we note that Madelung transform for Ψε provides

Rε = |Ψε|2, RεU ε = ε Im
(

Ψ̄ε∇Ψε
)

,

and thus, (ρ, u) and (Rε, U ε) are related through

ρ(t, x) =
1

τ(t)d
Rε
(

t,
x

τ(t)

)

, u(t, x) =
1

τ(t)
U ε
(

t,
x

τ(t)

)

+
τ̇(t)

τ(t)
x,

which is exactly (1.14). Theorem 1.6 then appears as a direct consequence of Theorem 1.2
in the Euler-Korteweg case.

3.2. Interpretation. We now comment on some consequences of Proposition 3.1.

3.2.1. Long range scattering. Suppose ε = 1. In the case σ > 2/d, a complete scattering
theory is available for (1.27), in the sense that given ψ0 ∈ Σ, there exists ψ+ ∈ Σ such
that

∥

∥

∥e−i t
2

∆ψ(t) − ψ+

∥

∥

∥

Σ
−→
t→∞

0, ‖f‖2
Σ := ‖f‖2

L2(Rd) + ‖∇f‖2
L2(Rd) + ‖xf‖2

L2(Rd).

As a matter of fact, the same is true under the weaker assumption σ > σ0(d) for some
1/d < σ0(d) < 2/d; see e.g. [8]. A weaker convergence (in L2(Rd) instead of Σ, with
ψ+ ∈ L2(Rd), [22], and even ψ+ ∈ H1(Rd), [9]) holds for σ > 1/d. For 0 < σ 6 1/d, long
range effects are present, as evoked in the introduction. In the case of (1.27), the long range
effects are understood only in the critical case σ = 1/d: see [15] and references therein.
See also [18] and references therein for the existence of wave operators (Cauchy problem
with prescribed behavior at t = ∞ instead of t = 0) in the case σ = 1/d. It seems that
so far, the long range scattering has not been studied for (1.27) in the case 0 < σ < 1/d.
The lack of regularity of the nonlinearity is an important technical difficulty, which was
bypassed in the analogous case of (generalized) Hartree nonlinearities, see [11, 12, 13] and
references therein.

In the case 0 < σ 6 1/d, Proposition 3.1 yields, for ε = 1,
∫

Rd
|y|2|Ψ(t, y)|2dy + ‖Ψ(t)‖2σ+2

L2σ+2(Rd)
. 1, ∀t > 0,

and Theorem 1.6 shows the convergence of |Ψ(t, ·)|2 in the limit t → ∞, indicating that
for the full range 0 < σ 6 1/d, long range effects do not affect the dispersive behavior,
and present at leading order only in a phase modification.
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3.2.2. Semi-classical limit. Consider the limit ε → 0 in (1.27), for initial data under a
WKB form,

ψε
0(x) = a0(x)eiφ0(x)/ε,

with a0 and φ0 smooth and independent of ε, φ0 being real-valued. In particular, the
L2-norm of ψε

0 is independent of ε. Proposition 3.1 then yields, in the case 0 < σ 6 1/d,

(3.4)

∫

Rd
|y|2|Ψε(t, y)|2dy + ‖Ψε(t)‖2σ+2

L2σ+2(Rd)
6 C0, ∀t > 0,

for some C0 > 0 independent of ε. This estimate indicates dispersive properties which are
uniform in ε, a phenomenon which cannot hold in the linear case

iε∂tψ
ε
lin +

ε2

2
∆ψε

lin = V (x)ψε
lin, ψε

0(x) = a0(x)eiφ0(x)/ε,

where the formation of caustics is incompatible with (3.4). Indeed in the linear case, the
rapid oscillation are described, initially, by a Hamilton-Jacobi equation, whose solution
may become singular in finite time, precisely on the caustic set: this geometrical phe-
nomenon coincides with the amplification of the order of magnitude of ψε

lin in the limit
ε → 0. In the case of (1.27), the Hamilton-Jacobi equation is replaced by a compressible
Euler equation ((1.1)-(1.2) with ε = ν = 0, where λ, σ and γ are related like in (1.28)),
whose solution may develop singularities in finite time, from [17]. However, there is no
amplification of Ψε, at least in L2 ∩ L2σ+2. This suggests that the notion of caustic must
be adapted in this case, for the geometrical phenomenon and the analytical phenomenon,
which coincide in the linear case, no longer do: the nonlinearity in (1.27) prevents the
amplification phenomenon.

3.3. Proof of Proposition 1.4. Proposition 1.4 is actually valid for more general profiles,
a∞ ∈ Σ. Let ε > 0 = ν, γ like in Proposition 1.4, and a∞ ∈ Σ. Define ψε

+ by

a∞(x) =
1

εd/2
ψ̂ε

+

(

x

ε

)

, where f̂(ξ) =
1

(2π)d/2

∫

Rd
e−ix·ξf(x)dx, f ∈ S(Rd).

Since Σ = H1 ∩ F(H1), ψε
+ ∈ Σ. Standard scattering theory for NLS (see e.g. [8, 9])

implies that there exists a unique solution ψε ∈ C(R+; Σ) ∩ L
4σ+4

dσ (R+;L2σ+2(Rd)) to
(1.27), with

λ =
γ

γ − 1
> 0, σ =

γ − 1

2
,

such that

‖e−iε t
2

∆ψε(t) − ψ+‖Σ −→
t→∞

0.

Since eiε t
2

∆ is unitary on L2(Rd), this implies

‖ψε(t) − eiε t
2

∆ψ+‖L2(Rd) −→
t→∞

0.

On the other hand (see e.g. [21]),

‖eiε t
2

∆ψε
+ −A(ψε

+)(t)‖L2(Rd) −→
t→∞

0, where A(ψ+)(t, x) =
1

(iεt)d/2
ψ̂ε

+

(

x

εt

)

ei
|x|2

2εt

=
1

(it)d/2
a∞

(

x

t

)

ei
|x|2

2εt .

We infer, from Cauchy–Schwarz and triangle inequalities,
∥

∥

∥

∥

∥

|ψε(t)|2 − 1

td

∣

∣

∣

∣

a∞

(

x

t

)∣

∣

∣

∣

2
∥

∥

∥

∥

∥

L1(Rd)

=
∥

∥

∥|ψε(t)|2 −
∣

∣A(ψε
+)(t)

∣

∣

2
∥

∥

∥

L1(Rd)

6
(

‖ψε(t)‖L2(Rd) +
∥

∥A(ψε
+)(t)

∥

∥

L2(Rd)

)

∥

∥ψε(t) −A(ψε
+)(t)

∥

∥

L2(Rd)

6 2‖ψε
+‖L2(Rd)

∥

∥ψε(t) −A(ψε
+)(t)

∥

∥

L2(Rd) −→
t→∞

0,
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hence Proposition 1.4 by defining (ρ, u) by Madelung transform (1.28), so it solves the
Euler-Korteweg system.

4. Proof of Theorem 1.5

We end the paper with the proof of Theorem 1.5. This section is split into three
subsections corresponding to the three different cases in Theorem 1.5.

4.1. Euler. The first case of Theorem 1.5 is simply a reformulation of the main result from
[14]. The assumption made on u0 ensures that the (multidimensional) Burgers equation

∂tū+ ū · ∇ū = 0, ū|t=0 = u0,

has a unique, global solution for t > 0. A typical example is u0(x) = x. Then [14,
Theorem 1] asserts that the Euler equation (1.1)-(1.2) has a global smooth solution such
that

ρ
γ−1

2 , u− ū ∈ Cj([0,∞[;Hs−j(Rd)), j = 0, 1.

At this level of regularity, the unknowns (R,U) obtained from (ρ, u) through the change
of unknown (1.14) satisfy a fortiori (H1)–(H3). Moreover, when α = min(2, d(γ − 1)) all
the formal manipulations leading to (1.21)-(1.23) and (1.24) are rigorously justified, and
so (H4) is satisfied too.

Remark 4.1. In [20], the assumption on γ is restricted to 1 < γ 6 1 + 2/d, ρ0 need not be
compactly supported, and the assumption on u0 reads v0 ∈ Hs(Rd) with ‖v0‖Hs(R) ≪ 1,

where v0(x) = u0(x) − x. The conclusion is then the same as above, with ū replaced by

ū(t, x) =
x

t+ 1
,

which is a particular solution of the Burgers equation. Therefore, the assumption on ρ0 is
slightly weaker, but the assumption on u0 appears to be a particular case of the framework
considered in [14].

4.2. Euler-Korteweg. The second case of Theorem 1.5 is a consequence of Madelung
transform (1.28) and of the identities presented in Section 3. Indeed the assumption
1 < γ < 1 + 4

(d−2)+
from Theorem 1.5 corresponds to 0 < σ < 2

(d−2)+
in (1.27), with λ > 0

(referred to as defocusing case). Since we assume ψ0 ∈ Σ, standard Cauchy theory for
(1.27) (see e.g. [8]) yields the existence of a unique solution

ψε ∈ C(R; Σ) ∩ L
4σ+4

dσ

loc (R;L2σ+2(Rd)).

In particular, we also have

Ψε ∈ C(R; Σ) ∩ L
4σ+4

dσ

loc (R;L2σ+2(Rd)).

As noticed in Section 3, R = |Ψε|2 and RU = ε Im(Ψ̄ε∇Ψε), and (H1)–(H3) are satisfied.
In addition (see [2] or [7]),

ε2|∇Ψε|2 = |ε∇
√
R|2 +R|U |2.

Therefore (3.2) corresponds exactly to (1.18), and Proposition 3.1 shows that (H4) is
satisfied.

4.3. Navier-Stokes. We proceed with case (iii) of Theorem 1.5 and consider the Navier-
Stokes system with capital-letter unknowns (1.15)-(1.16) in dimension d 6 3, where ν > 0
and ε > 0. We note that, up to time-dependent scaling terms, this system is similar to the
barotropic quantum Navier-Stokes(-Korteweg) system. Construction of weak solution to
this system is by now well-documented [23, 16, 6, 1] (see also [19]). We emphasize that one
of the specificities of [6] is to construct solutions on R

d, instead of Td like in most of the
references. This approach has been used in [1] in the polytropic case on R

d. In particular,
it is possible to reproduce the strategy of [6] to yield our existence result. Some parts of
the proof can even be reproduced mutatis mutandis from [23, 16]. As a consequence, we
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do not give precise details on the proof. We only perform the formal energy estimates
justifying our definition of weak solutions, give a scheme of the proof and explain how
(H4) is achieved.

4.3.1. Definition of weak solutions. The system (1.15)-(1.16) is classically endowed with
conservation (1.17) and dissipation estimate (1.20). Such estimates are not sufficient to
build up a satisfactory weak solution theory. These pieces of information are complemented
with the decay of the by-now called “BD-entropy” (see [4], among others). To construct
this new quantity, we differentiate (1.15) with respect to space, and find:

(4.1) ∂t (R∇ lnR) +
1

τ2
div(R∇ ln(R) ⊗ U) +

1

τ2
div(R∇U) = 0.

The key-remark from [4] here is that the last term in this equation may combine with
the Newtonian tensor in the momentum equation (1.16). So, we multiply (4.1) by ν and
combine with (1.16). Denoting V = U + ν ln(R), we obtain:

(4.2) ∂t(RV ) +
1

τ2
div(RV ⊗ U) +

α

2τα
yR+

1

τd(γ−1)
∇Rγ

=
1

τ2
div

(

ε2

2
K[R] + ν

√
RA[R,U ]

)

+
ντ̇

τ
∇R,

where A =
√
R∇aU. We perform then a classical energy estimate on this new equation by

multiplying with V/τ2. The two first terms yield the time-derivative of the kinetic energy
associated with V. The other terms are integrating by parts by splitting V = U + ν ln(R)
and remarking that, for symmetry reasons, we have:

A[R,U ] : ∇2 ln(R) = 0.

Eventually, we obtain:

d

dt
EBD[R,U ] + DBD[R,U ] =

ανd

2τ2+α

∫

R+
ντ̇

τ3

∫

R divU,

where the BD-entropy is defined by

EBD[R,U ] :=
1

2τ2

∫

(

R|U + ν∇ logR|2 + ε2|∇
√
R|2

)

+
α

4τα

∫

|y|2R

+
1

(γ − 1)τd(γ−1)

∫

Rγ ,

and the associated nonnegative dissipation is given by

DBD[R,U ] :=
τ̇

τ

[

1

τ2

∫

(

R|U |2 + ε2|∇
√
R|2

)

+
α2

4τα

∫

|y|2R+
d

τd(γ−1)

∫

Rγ

]

,

+
ν

τ4

∫

R|∇aU |2 +
νε2

τ4

∫

R|∇2 logR|2 +
4ν

τd(γ−1)+2

∫

|∇Rγ/2|2.

With this further remark we can now set a definition of weak solution on the basis of all
the a priori bounded energy/entropy/dissipations:

Definition 4.2. Assume ν > 0, γ > 1 and ε > 0. Let (
√
R0,Λ0 = (

√
RU)0) ∈ L2(Rd) ×

L2(Rd). We call global weak solution to (1.15)-(1.16), associated to the initial data

(
√
R0,Λ0 = (

√
RU)0), any pair (R,U) such that there exists a collection (

√
R,

√
RU,K,T)

satisfying



LARGE-TIME BEHAVIOR OF COMPRESSIBLE FLUIDS 17

i) The following regularities:

(〈y〉 + |U |)
√
R ∈ L∞

loc

(

0,∞;L2(Rd)
)

, ∇
√
R ∈ L∞

loc

(

0,∞;L2(Rd)
)

,
√
R ∈ L∞

loc(0,∞;L2γ(Rd)) ∇Rγ/2 ∈ L2
loc(0,∞;L2(Rd)),

ε∇2
√
R ∈ L2

loc(0,∞;L2(Rd)),
√
ε∇R1/4 ∈ L4

loc(0,∞;L4(Rd)),

T ∈ L2
loc(0,∞;L2(Rd)),

with the compatibility conditions
√
R > 0 a.e. on (0,∞) × R

d,
√
RU = 0 a.e. on {

√
R = 0}.

ii) The following equations in D′((0,∞) × R
d)

(4.3)



































∂t

√
R+

1

τ2
div(

√
RU) =

1

2τ2
Trace(T),

∂t(RU) +
1

τ2
div(

√
RU ⊗

√
RU) + 2y|

√
R|2 + ∇

(

|
√
R|2

)

= div

(

ε2

2τ2
K +

ν

τ2

√
RS

)

+
ντ̇

τ
∇R,

with S the symmetric part of T and the compatibility conditions:
√
RT = ∇(

√
R

√
RU) − 2

√
RU ⊗ ∇

√
R ,(4.4)

K =
√
R∇2

√
R− ∇

√
R⊗ ∇

√
R .(4.5)

iii) For any ψ ∈ C∞
0 (Rd),

lim
t→0

∫

Rd

√
R(t, y)ψ(y) dy =

∫

Rd

√

R0(y)ψ(y) dy,

lim
t→0

∫

Rd

√
R(t, y)(

√
RU)(t, y)ψ(y) dy =

∫

Rd

√

R0(y)Λ0(y)ψ(y) dy.

We point out that this definition is readily adapted from [6, Definition 1.1], where the
isothermal case γ = 1 is considered. It is also similar to [1, Definition 2.1]. The third
existence statement in Theorem 1.5 is then a straightforward consequence of:

Proposition 4.3. Assume ν > 0, γ > 1 and ε > 0. Let (
√
R0,Λ0 = (

√
RU)0) ∈ L2(Rd) ×

L2(Rd) satisfy the compatibility conditions
√

R0 > 0 a.e. on R
d, (

√
RU)0 = 0 a.e. on {

√

R0 = 0},
as well as E [R0, U0] < ∞, EBD[R0, U0] < ∞. There exists at least one global weak solution
to (1.15)-(1.16), which satisfies moreover the conservation of mass and condition (H4).

We stress that, in this definition, we set:

R0 =
√

R0
2
, U0 =

(
√
RU)0√
R0

1√
R0>0.

This is the common way to define functions of R and U in such a framework. In particular,
the definition of the velocity-field U is satisfactory since we enforce the condition

√
RU = 0

under the condition
√
R = 0 in our construction and assumptions.

4.3.2. Condition (H4) and roadmap of the proof of Proposition 4.3. The proof of Propo-
sition 4.3 follows the compactness approach of [6] relying on the key-ingredients provided
by [23, 16]. We point out that one important novelty of [6] was to treat the isothermal
case while the ingredients of [23, 16] handle the precise polytropic case that we consider
herein. Consequently, we only point out the roadmap of the proof herein and refer the
reader to these previous references for more details on the different ingredients, and how
to combine them.
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The first step of the proof consists in solving a regularized version of (1.15)-(1.16) on
a torus of arbitrary size ℓ > 1, denoted by T

d
ℓ . This regularized version is associated

with parameters r = (r0, r1) ∈ (0,∞)2, δ := (δ1, δ2) ∈ (0,∞)2, (η1, η2) ∈ (0,∞)2 and
involves a “cold-pressure” exponent l ∈ (0,∞) that has to be chosen sufficiently large.
This regularized system reads:

∂tR+
1

τ2
div(RU) =

δ1

τ2
∆R,(4.6)

∂t(RU) +
1

τ2
div(RU ⊗ U) +

α

2τα
yR+

1

τd(γ−1)
∇Pc(R)(4.7)

+
r0

τ2
U +

r1

τ2
R|U |2U +

δ1

τ2
(∇R · ∇)U

=
ε2

2τ2
R∇

(

∆
√
R√
R

)

+
ν

τ2
div(RDU) +

ντ̇

τ
∇R+

δ2

τ2
∆2U +

η2

τ2
R∇∆2s+1R,

where:

Pc(R) = Rγ − η1

Rl
.

By a suitable truncation/regularization of the initial condition, the regularized system is
solved when completed with initial data (R0, U0) satisfying:

(4.8) R0 ∈ C∞(Td
ℓ ), U0 ∈ L2(Td

ℓ ), inf
y∈Td

ℓ

R0(y) > θ > 0.

The remaining steps of the analysis consist in letting successively |δ| → 0, |η| → 0 and
then |r| → 0, ℓ → ∞ (and possibly ε → 0). The following lemma ensures that assumption
(H4) is satisfied at the level of the approximation:

Lemma 4.4. Given initial data (R0, U0) satisfying (4.8), there exists a global solution
(R,U) to (4.6)-(4.7) associated to (R0, U0) on the torus T

d
ℓ , which satisfies moreover the

conservation of mass and the decay estimate (H4).

The property (H4) being stable by weak convergence, the solution we construct inherits
this property.

Proof. As in [6, Section 2], existence of solutions to (4.6)-(4.7) (with regularized initial
data) is obtained via a Faedo-Galerkin approach. Namely, the velocity-field U is first
chosen in a finite-dimensional subspace of L2(Td

ℓ ), Equation (4.7) being projected on this
subspace, and (4.6) solved independently via a fixed-point argument. Again, we argue at
the level of the finite-dimensional approximation, the same inequalities being satisfied by
any limit of these approximations.

Since the continuity equation (4.6) is satisfied pointwise, we have readily:
∫

Td
ℓ

R(t, ·) =

∫

Td
ℓ

R0, ∀ t > 0.

Here R0 should be thought of as the regularized initial data, but the regularization proce-
dure ensures convergence of the mass of the regularized approximation to the mass of R0.
We obtain (1.17).

At the level of the projection, all solutions are smooth in space and C1 in time. Mul-
tiplying (4.7) by U is then fully justified. Similarly to the computation of dissipation
estimate for the full system, we obtain (see also [6, Proposition 2.6]) the following decay
estimate:

(4.9)
d

dt
Ereg[R,U ] + Dreg[R,U ] =

αdδ1

2τ2+α

∫

R− ντ̇

τ3

∫

R divU
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where:

Ereg[R,U ] =
1

2τ2

∫

Td
ℓ

(

R|U |2 + ε2|∇
√
R|2 + η2

∫

Td
ℓ

|∇∆sR|2
)

+
α

4τα

∫

Td
ℓ

R|y|2 +
1

τd(γ−1)

∫

Td
ℓ

(

1

γ − 1
Rγ +

η1

l + 1

1

Rl

)

,

and

Dreg[R,U ] =
τ̇

τ

[

1

τ2

∫

Td
ℓ

(

R|U |2 + ε2|∇
√
R|2 + η2|∇∆sR|2

)

+
α2

4τα

∫

Td
ℓ

R|y|2 +
d(γ − 1)

τd(γ−1)

∫

Td
ℓ

(

1

γ − 1
Rγ +

η1

l + 1

1

Rl

)

]

+
ν

τ4

∫

Td
ℓ

R|DU |2 +
δ2

τ4

∫

Td
ℓ

|∆U |2 +
δ1η2

τ4

∫

Td
ℓ

|∆s+1R|2

+
δ1

τ2+d(γ−1)

∫

Td
ℓ

(

γRγ−2 +
η1l

Rl+2

)

|∇R|2

+
r0

τ4

∫

Td
ℓ

|U |2 +
r1

τ4

∫

Td
ℓ

R|U |4 +
δ1ε

2

2τ4

∫

Td
ℓ

R|∇2 logR|2.

At this point, we adapt the arguments of the introduction. First we remark that the
right-hand side RHS of (4.9) satisfies:

(4.10) RHS 6

(

αd

τ2+α
+ ν

(

τ̇

τ

)2
)

∫

Td
ℓ

R0 +
1

2
Dreg[R,U ].

Again, here R0 should be the regularized initial data but the approximation procedure
ensures convergence of the initial data in a sense that is sufficient to guarantee that all
constants involving initial data are bounded by a constant depending on the initial data
of the target system (see [6, Section 4.2]). In particular, the mass of the initial data can
be assumed to be bounded by a constant C0 depending only on initial data.

The inequality (4.9) then yields:

d

dt
Ereg[R,U ] + Dreg[R,U ] 6 C0

(

αdδ1

τ2+α
+ ν

(

τ̇

τ

)2
)

.

When δ1 < ν, we can bound the right-hand side with a constant Cα depending only on α:

αdδ1

τ2+α
+ ν

(

τ̇

τ

)2

6
Cαν

τ2
.

Integration in time yields an L1(0,∞)-bound on Dreg[R,U ]. We can then choose α =
min(2, d(γ − 1)) and argue as in the introduction that:

Dreg[R, 0] > α
τ̇

τ
Ereg[R,U ],

to yield that Ereg[R,U ] satisfies (1.25), and reproduce the computations of (1.24). We
finally conclude that (H4) is satisfied by remarking that:

E 6 Ereg[R,U ], D 6 Dreg[R,U ].

�
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Appendix A. Computations of formal energy estimates

In this section, we consider (ρ, u) a solution to (1.1)-(1.2) and justify that at least
formally, the decay estimate (1.11) should be satisfied. Define the functional

A[ρ, u] := t2E[ρ, u] −
∫

Rd
tρu · x+

1

2

∫

Rd
ρ|x|2

=
1

2

∫

Rd

(

ρ |tu− x|2 + t2ε2|∇√
ρ|2
)

+
t2

γ − 1

∫

Rd
ργ ,

where we recall that the energy E[ρ, u] is defined in (1.8). A straightforward computation
gives us

d

dt
A[ρ, u] = 2tE[ρ, u] + t2

d

dt
E[ρ, u] − t

∫

Rd
ρ|u|2 − td

∫

Rd
ργ

− tε2
∫

Rd
|∇√

ρ|2 + tν

∫

Rd
ρdiv u.

Thanks to (1.7) we then get

d

dt
A[ρ, u] =

t

γ − 1
(2 − d(γ − 1))

∫

Rd
ργ − t2D[ρ, u] + tν

∫

Rd
ρdivu.

We now define the functional

B[ρ, u] :=
1

t2
A[ρ, u] =

1

2

∫

Rd

(

ρ

∣

∣

∣

∣

u− x

t

∣

∣

∣

∣

2

+ ε2|∇√
ρ|2
)

+
1

γ − 1

∫

Rd
ργ

and we obtain, using previous computation, that

d

dt
B[ρ, u] =

1

t

(2 − d(γ − 1))

γ − 1

∫

Rd
ργ −D[ρ, u] +

1

t
ν

∫

Rd
ρdiv u

− 2

t3
1

2

∫

Rd
ρ|tu− x|2 − 2

t3
t2ε2

2

∫

Rd
|∇√

ρ|2 − 2

t3
t2

γ − 1

∫

Rd
ργ

= −d

t

∫

Rd
ργ − 1

t

∫

Rd
ρ

∣

∣

∣

∣

u− x

t

∣

∣

∣

∣

2

− ε2

t

∫

Rd
|∇√

ρ|2 −D[ρ, u] +
1

t
ν

∫

Rd
ρdiv u.

We identify in last expression the terms in the definition of B[ρ, u], hence, using that
1
t ν
∫

Rd ρdiv u 6 ν
2t2

∫

Rd ρ+ ν
2

∫

Rd ρ|∇su|2 and the conservation of mass, we deduce

d

dt
B[ρ, u] 6 −min(2, d(γ − 1))

t
B[ρ, u] +

Cν

t2
− 1

2
D[ρ, u]

for some constant C > 0. Therefore, for t > 0, one has

(A.1) B[ρ, u](t) 6
C(E0)

(1 + t)min(2,d(γ−1))
+

Cν

1 + t
.

Appendix B. Proof of Lemma 1.1

Proof. The local existence stems directly from the Cauchy-Lipschitz theorem. The only
possible obstruction to the global propagation of regularity is the cancellation of τ , which
is impossible in view of the relation, obtained after multiplication of (1.13) by τ̇ and
integration:

τ̇(t)2 = 1 − 1

τ(t)α
.

This implies τ(t) > 1. Therefore, τ ∈ C∞(R;R+). The equation shows that τ is strictly
(but not uniformly) convex. If it was bounded, τ(t) 6M , then we would have

τ̈(t) >
α

2M1+α
> 0,

hence a contradiction after two integrations. Therefore, τ(tn) → ∞ for some sequence
tn → ∞, and since τ is convex, τ(t) → ∞ as t → ∞. Hence τ̇(t)2 → 1, and since τ is
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necessarily increasing for t > 0, τ̇(t) → 1, and the comparison of diverging integrals yields
τ(t) ∼

t→∞
t. �
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