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Introduction

In this paper, we are interested in using high-frequency data based measures to forecast future variance. A common practice is to approximate the latent daily integrated variance by realized measures like realized variance [START_REF] Andersen | The Distribution of Realized Exchange Rate Volatility[END_REF]) or robustto-noise measures [START_REF] Zhang | A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data[END_REF]; [START_REF] Barndorff-Nielsen | Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise[END_REF]; [START_REF] Jacod | Microstructure Noise in the Continuous Case: The Pre-Averaging Approach[END_REF]), and then to estimate a simple autoregressive regression of these realized measures by OLS to get a forecast of the integrated variance. This autoregressive regression is often misspecified because the dynamics of an integrated variance is more complex than a simple autoregressive process. For instance, if the true instantaneous (or spot) variance is a square-root process, then the integrated and realized variances are ARMA (1,1) processes [START_REF] Barndorff-Nielsen | Econometric Analysis of Realized Volatility and Its Use in Estimating Stochastic Volatility Models[END_REF]; Meddahi (2003)). Even if the autoregression model is misspecified, it still provides a very accurate forecast because integrated variance as well as high-frequency realized measures are persistent and therefore, few lags suffice to predict well future volatility (Andersen et al. (2003); [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF]).

On the other hand, the GARCH approach [START_REF] Engle | Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation[END_REF]; [START_REF] Bollerslev | Generalized Autoregressive Conditional Heteroskedasticity[END_REF]) based on parametric models of daily data provides very useful information about the variance process. One of them, which is a primary interest in this paper, is fat tails. When one estimates a daily GARCH model on stock returns or exchange rates, one often finds that the returns' fourth moment is not bounded or close to being unbounded. If the fourth moment of the returns is unbounded, then the second moment of the daily realized variance defined as the sum of intra-daily squared returns is also unbounded. Consequently, the interpretation of the autoregressive regression and the OLS estimation, based on L 2 projections, is questionable. Likewise, relying on Gaussian limit theory, the delivered forecast and all the statistical tools, used to assess the quality of the forecast, could be invalid.

The doubt about the finiteness of the returns' fourth moment is based on a parametric model of the volatility. In contrast, an important contribution of the highfrequency volatility literature is that the availability of a lot of data allows one to get non-parametric measures of the variance without relying on parametric models for the volatility. It is therefore necessary to assess the finiteness of the second moment of realized measures in a non-parametric way. The solution hinges on a non-parametric estimation of tail indexes. We use [START_REF] Hill | A Simple General Approach to Inference About the Tail of a Distribution[END_REF] estimator for our data, and we get the same result. More precisely, we find that the Hill estimator of the tail index of the daily returns is close to four, while it is close to two for the daily realized variance, and two other popular measures which are robust in the presence of jumps, namely the bipower variance of Barndorff-Nielsen andShephard (2004b, 2006) and the threshold variance estimator of [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF]Jacod ( , 2012) ) and [START_REF] Mancini | Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps[END_REF].

In this paper, we revisit the results of the autoregressive regression of the variance process like [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF] when the second moment of the spot variance is possibly unbounded, which implies that the second moment of integrated and realized variances are unbounded.1 When the instantaneous variance has an unbounded second moment, then the results in [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF] are no longer valid because one cannot compute the population autoregression parameters.

We study empirical regressions instead of population regressions. More precisely, we analyze the asymptotic behavior of the OLS estimator of the autoregressions. We consider autoregressions of three variables: the spot variance, the integrated variance and the realized variance. Of course, the first two autoregressions are not feasible because the variables are not observed, but still the two autoregressions provide good benchmarks. In particular, the third autoregression will try to mimic the second one.

The asymptotic behavior of an OLS estimator under fat tails is ambiguous; it could be deterministic or random. For instance, when one considers an autoregressive process of order one with i.i.d. errors and unbounded variance, the OLS estimator is consistent whether the autoregressive parameter is smaller than one [START_REF] Hannan | Autoregressive Processes with Infinite Variance[END_REF]; [START_REF] Knight | Rate of Convergence of Centered Estimates of Autoregressive Parameters for Infinite Variance Autoregressions[END_REF]) or equals one [START_REF] Chan | On the First-Order Autoregressive Process with Infinite Variance[END_REF]; [START_REF] Phillips | Time Series Regression with a Unit Rot and Infinite-Variance Errors[END_REF]). Likewise, when one considers an infinite MA process with i.i.d. errors and unbounded variance and assumes some summability restrictions, the empirical autocorrelation parameters converge to deterministic values; see (Brockwell and Davis, 1991, p. 538).

In contrast, when one considers an ARCH or GARCH process, the empirical autocorrelation parameters of the squared process converge to random variables when the fourth moment of the process is unbounded [START_REF] Davis | The Sample Autocorrelations of Heavy-Tailed Processes with Applications to ARCH[END_REF]; [START_REF] Mikosch | Limit Theory for the Sample Autocorrelations and Extremes of a GARCH (1, 1) Process[END_REF]).

When we study the autoregressions, we consider two types of asymptotic approaches. Two time-dimension parameters will play a role in these asymptotic analyses: ∆ which is the length of sub-periods and the time span denoted T . In the first asymptotic approach, we assume that ∆ → 0 while T is fixed or diverges to ∞. We consider this type of asymptotic approach because we want to characterize the behavior of the OLS estimators without making a parametric model assumption as in [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF]. In the second asymptotic approach, we keep ∆ fixed and allow T → ∞ at the cost of making a parametric assumption of the variance diffusion process.

In the first asymptotic analysis with ∆ → 0, we characterize the behavior of the OLS estimators of the three regressions' slopes. When the spot variance process has a bounded second moment, we prove that the OLS estimators converge to finite quantities, which are the same ones as the population parameters derived in [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF]. In contrast, when the spot variance has an unbounded second moment, we prove that the OLS estimators converge to random variables. Both the simulations and the comparison with the results in [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF], when the spot variance has a finite second moment, corroborate the good quality of our approach.

These results are obviously negative. Providing positive results in a general context is not easy because one needs to specify the object of interest. We therefore consider a class of variance models based on diffusion processes having an affine form of drift, where the class includes GARCH and CEV processes, with possibly unbounded second moment. For this semiparametric class of models, we follow the literature on regressions with fat tails like [START_REF] Blattberg | Regression with Non-Gaussian Stable Disturbances: Some Sampling Results[END_REF] and [START_REF] Samorodnitsky | Asymptotic Distributions of Unbiased Linear Estimators in the Presence of Heavy-Tailed Stochastic Regressors and Residuals[END_REF] by considering instrumental variable (IV) estimations. We prove that the IV estimators become consistent estimators of the drift parameters when instruments are chosen appropriately. [START_REF] Samorodnitsky | Asymptotic Distributions of Unbiased Linear Estimators in the Presence of Heavy-Tailed Stochastic Regressors and Residuals[END_REF] studied the estimation of linear regression models where the explanatory and the noise variables have fat tails. It considered estimators that have an instrumental variable interpretation where the instrument is a signed power of the explanatory variable, with the OLS being a particular case. The choice of the power is selected for either efficiency purposes or for getting an estimator with a normal asymptotic distribution, which is often not the case of the OLS estimator when it is consistent. However, in this paper, we select the instruments for consistency purposes of the drift parameters. The asymptotic distribution of the estimator as well as the efficiency question are not studied and left for future research.

When ∆ is fixed, unlike the asymptotics with ∆ → 0, we need a conditional moment restriction for the asymptotics of IV estimators. It is well known that for a stationary diffusion with affine drift, the conditional mean is affine as long as the diffusion has a bounded second moment (see [START_REF] Meddahi | Temporal Aggregation of Volatility Models[END_REF]). We prove that for a GARCH diffusion, the result is still valid when the second moment is unbounded. We then show that the IV estimation with adequate instruments leads to consistent estimators of the drift parameters, and we provide a feasible inference under additional restrictions. A particular instrument we study is the sign of the lagged value of the centered spot variance, corresponding to power zero of the signed power instrument mentioned above. This estimator was first proposed by [START_REF] Cauchy | On a new formula for solvingthe problem of interpolation in a manner applicable to physical investigations[END_REF], and is often referred to as the "Cauchy estimator" (see, e.g., [START_REF] So | Cauchy Estimators for Autoregressive Processes with Applications to Unit Root Tests and Confidence Intervals[END_REF]; [START_REF] Phillips | Nonlinear instrumental variable estimation of an autoregression[END_REF]; [START_REF] Choi | A reexamination of stock return predictability[END_REF] for recent uses of the Cauchy estimator).

Interestingly, Jean-Marie Dufour used the sign-based methods in several studies for inference purposes, especially for exact inference in a finite sample. In particular, he used such an approach in [START_REF] Coudin | Finite-sample distribution-free inference in linear median regressions under heteroscedasticity and non-linear dependence of unknown form[END_REF]Dufour (2009, 2017) in order to provide inferences about the slope parameter in a linear regression model without making moment restrictions on the disturbance errors and therefore allowing for fat tails. The assumption made in these papers is a median restriction on the errors conditional on the explanatory variables. In other words, we are using the same approach with a slightly different framework because we assume that the (conditional) first moment of the errors exists and equals zero, but we do not make assumptions on higher moments.

The paper is organized as follows. The next section provides the setup, an empirical motivation for fat tails, and various regressions. In Section 3, we analyze the asymptotic behavior of the OLS estimators when ∆ → 0. Section 4 studies the IV estimation. In Section 5, we analyze the volatility regressions under a fixed ∆, and provide a feasible inference based on instrumental variables. Section 6 provides simulations to assess the finite sample properties of the estimators, while the last section concludes. All the proofs are provided in an Online Appendix.

Throughout the paper we use "P T ∼ Q T " to denote

P T = Q T (1 + o(1)). Similarly, "P T ∼ p Q T " and "P T ∼ d Q T " mean P T = Q T (1 + o p (1)) and P T = d Q T (1 + o p (1)),
respectively. These notations, as well as other standard notations used in asymptotics, will be used frequently throughout the paper without further references.

Model and Preliminaries

Spot, Integrated and Realized Variances

We consider a price process (P t , 0 ≤ t ≤ T ) defined on a filtered probability space (Ω, F, (F t ) t≥0 , P). Our basic assumption is that P t is a Brownian semimartingale with the following form:

d log(P t ) = D t dt + V 1/2 t dW P t ,
where W P t is a Brownian motion, D t and V t are adapted processes with càdlàg paths. For a ∆-interval, we define the spot variance (v i ), integrated variance (x i ) and realized variance (y i ) of the price process (P t ) as δ) is the δ-period return defined as r (δ) (i-1)∆+jδ = log(P (i-1)∆+jδ ) -log(P (i-1)∆+(j-1)δ ) for j = 1, • • • , n with nδ = ∆. It is well known that the realized variance y is a noisy measure of the integrated variance x, and satisfies

v i = V i∆ , x i = 1 ∆ i∆ (i-1)∆ V t dt, y i = 1 ∆ n j=1 r (δ) (i-1)∆+jδ 2 , (2.1) 
for i = 1, • • • , N with N ∆ = T , where r (
(n/2) 1/2 (y i -x i ) → d η i N(0, 1), (2.2)
where

η 2 i = ∆ -1 i∆ (i-1)∆ V 2 t dt, as n → ∞ for fixed ∆ and for each i = 1, • • • , N .
See, e.g., Barndorff-Nielsen and Shephard (2004a). Moreover, the convergence (2.2) holds jointly for [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF].

i = 1, • • • , N if T = N ∆ is fixed (see, e.g.,
In this paper, we analyze the asymptotic properties of various estimators for the volatility regression. Specifically, we consider the autoregression

z i+1 = α z + β (k) z z i-k + u i+1 with k ≥ 0 (2.3)
for z = v, x, y, and estimate the slope coefficient β (k) z using OLS or IV method. Our asymptotics for z = v, x involve two parameters, the sampling interval ∆ and the time span T , and it is developed under the assumption that ∆ → 0 and T → ∞ simultaneously. On the other hand, the asymptotics for z = y involve three parameters, the sampling interval ∆ at low-frequency, the sampling interval δ at high-frequency, and the time span T . In this case, the asymptotics are developed under the assumption that δ/∆ → 0, ∆ → 0 and T → ∞ simultaneously.

To effectively analyze the large T asymptotics, we assume that the underlying variance process V is a diffusion process on D = (v, v) ⊂ R driven by

dV t = µ(V t )dt + σ(V t )dW t , (2.4)
where W is a Brownian motion, and µ and σ are respectively drift and diffusion functions of V . To obtain more explicit asymptotic results, we mainly consider a pure diffusion V without having leverage effects, i.e., each of V and D is independent of W P , unless we mention that they are dependent. We believe that the implications of our results under no leverage effect remain valid for the model with leverage effects. We let s be the scale function defined as

s(v) = v y exp - x y 2µ(z) σ 2 (z) dz dx, (2.5) 
where the lower limits of the integrals can be arbitrarily chosen to be any point y ∈ D. Defined as such, the scale function s is uniquely identified up to any increasing affine transformation, i.e., if s is a scale function, then so is as + b for any constants a > 0 and -∞ < b < ∞. We also define the speed density

m(v) = 1 (σ 2 s )(v) (2.6)
on D, where s is the derivative of s, often called the scale density, which is assumed to exist. The speed density is defined to be the measure on D given by the speed density with respect to the Lebesgue measure. Throughout this paper, we assume Assumption 2.1. (a) σ 2 (v) > 0 for all v ∈ D, and (b) µ(v)/σ 2 (v) and 1/σ 2 (v) are locally integrable at every v ∈ D.

Assumption 2.1 provides a simple sufficient set of conditions to ensure that a weak solution to the stochastic differential equation (2.4) exists uniquely up to an explosion time. See, e.g., Theorem 5.5.15 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. Note, under Assumption 2.1, that both the scale function s and speed density m are well defined, and that the scale function is strictly increasing, on D. Consequently, the natural scale diffusion V s of V , where V s = s(V ), is well defined with speed density m s = (m/s ) • s -1 . It follows immedaitely from Ito's lemma that the natural scale diffusion V s has no drift term. Following [START_REF] Kim | Asymptotics for Recurrent Diffusions with Application to High Frequency Regression[END_REF], we use the natural scale representation in the development of our long span asymptotics.

Population Regressions with GARCH Diffusions

In this section, we study the volatility regressions in population when E(V 2 t ) < ∞ as did [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF]. These authors considered the Eigenfunction Stochastic Volatility (ESV) model of [START_REF] Meddahi | An Eigenfunction Approach for Volatility Modeling[END_REF] to derive analytical forecast results. Examples of ESV include the square-root model, the log-normal stochastic volatility model and the GARCH diffusion model. We focus here on the GARCH diffusion model of [START_REF] Nelson | ARCH Models as Diffusion Approximations[END_REF] because it allows for unbounded second moments while the two other examples do not. More precisely, we assume that the spot variance V t , defined on (0, ∞), is given by

dV t = κ(µ -V t )dt + σV t dW t .
(2.7) When V t is assumed to be stationary, one can easily prove that the second moment of V t is bounded if and only if σ 2 < 2κ. [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF] computed the population values of the autocovariances of spot (v), integrated (x) and realized variances (y) under E(V 2 t ) < ∞. From these quantities, one gets the corresponding autoregressive coefficients β v , β x and β y . In particular, one has

GARCH Diffusions with

E(V 2 t ) < ∞
β v = exp(-κ∆), β x = 1 2 (1 -exp(-κ∆)) 2 exp(-κ∆) + κ∆ -1 , β y = a 2 1 ∆ 2 κ 2 (1 -exp(-κ∆)) 2 V ar(y) ,
where

V ar(y) = 2 a 2 1 ∆ 2 κ 2 (exp(-κ∆) + κ∆ -1) + 4 δ∆ a 2 0 δ 2 2 + a 2 1 κ 2 (exp(-κδ) + κδ -1) , with a 0 = E(V t ) = µ and a 2 1 = V ar(V t ) = µ 2 σ 2 /(2κ -σ 2
). One should notice that in this example, the spot variance is an AR(1) process while both integrated and realized variances are ARMA(1,1) processes. In addition, the three processes have the same autoregressive root which equals exp(-κ∆).

When ∆ is small, one gets

β v = 1 -κ∆ + o(∆), β x = 1 - 2 3 κ∆ + o(∆).
Likewise, when both ∆ and δ/∆ are small, one gets

β y = 1 - 2 3 κ∆ -2 δ ∆ E(V 2 t ) V ar(V t ) + o(∆) + o(δ/∆) with V ar(V t ) = µ 2 σ 2 /(2κ -σ 2 ) and E(V 2 t ) = 2κµ 2 /(2κ -σ 2 ).
It is interesting to notice that, as δ/∆, ∆ → 0, we have

β v -1 ∼ -∆κ, β x -1 ∼ -∆ 2 3 κ, β y -1 ∼ -∆ 2 3 κ -4 δ ∆ κ σ 2 , (2.8)
that is, integrated variance has a larger first order autocorrelation than the spot and realized variances.

GARCH Diffusions with

E(V t ) < ∞
One can easily prove that

V t+∆ = µ + exp(-κ∆)(V t -µ) + ε t+∆ , ε t+∆ = σ t+∆ t exp(-κ(t + ∆ -u))V u du. When E(V 2 t ) < ∞, ε t+∆ is a martingale-difference-sequence (m.d.s.), which implies that E[V t+∆ | V t ] = µ + exp(-κ∆)(V t -µ).
(2.9)

However, the m.d.s. result is not valid when E(V2 t ) = ∞ because t+∆ 0 exp(-κ(t+∆u))V u du is not a martingale but a local martingale. Interestingly, we are able to prove that (2.9) is still valid when V t is a stationary GARCH diffusion with E(V t ) < ∞, whether E(V 2 t ) is finite or not. 2

Lemma 2.1. For any ∆ > 0, we have

E[(v i+1 -µ) -exp(-κ∆)(v i -µ)|v i ] = 0.
(2.10)

When E(V 2 t ) < ∞, the previous result implies that V t is an AR(1), from which one can estimate exp(-κ∆) by using an autoregression of order one of the spot variance. However, both the integrated and realized variances are ARMA(1,1) processes, which implies that first order autoregressions of these variables will not deliver a consistent estimator of the autoregressive parameter exp(-κ∆). However, Meddahi (2003) derived multi-period moment restrictions fulfilled by the integrated and realized variances when E(V 2 t ) < ∞. The following result proves that these multi-period moment restrictions are still valid when E(V 2 t ) = ∞.

Proposition 2.2. Let ∆ > 0. (a) For z = v, x, we have

E[(z i+1 -µ) -exp(-κ∆)(z i -µ)|z i-1 ] = 0.
(2.11) (b) If D t = 0 almost surely for all t ≥ 0, then the result in Part (a) holds for z = y.

Proposition 2.2 will allow us to estimate consistently the coefficient exp(-κ∆) even when E(V 2 t ) = ∞ by using the following corollary:

Corollary 2.3. Let r : R → R be bounded such that E[(z i -µ)r(z i-1 -µ)] = 0 for a given ∆ > 0. If D t = 0 almost surely for all t ≥ 0, we have for z = v, x, y that E[(z i+1 -µ)r(z i-1 -µ)] E[(z i -µ)r(z i-1 -µ)]
= exp(-κ∆).

Empirical Evidence of Fat Tails

We now assess the magnitude of tails of empirical data. We use trade data on the SPDR S&P 500 ETF (SPY), which is an exchange traded fund (ETF) that tracks the S&P 500 index. Our primary sample comprises 10 years of trade data on SPY starting from June 15, 2004 through June 13, 2014 as available in the New York Stock Exchange Trade and Quote (TAQ) database. This tick-by-tick dataset has been cleaned according to the procedure outlined by [START_REF] Barndorff-Nielsen | Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise[END_REF]. We also remove short trading days leaving us with 2,497 days of trade data. In addition, we consider three subperiods: Before Crisis, from June We estimate the tail index of the daily open-to-close returns and daily realized variance based on five minutes intra-day returns. Because we could have jumps that may affect the tail of the realized variance data, we also consider daily bipower variation which is a consistent estimator of integrated variance under the presence of jumps (see Barndorff-Nielsen and Shephard (2003, 2004b, 2006); [START_REF] Barndorff-Nielsen | A central limit theorem for realised power and bipower variations of continuous semimartingales[END_REF]; Barndorff-Nielsen et al. ( 2006)) as well as the threshold estimator of integrated variance (see [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF]Jacod ( , 2012)); [START_REF] Mancini | Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps[END_REF]; [START_REF] Jacod | Quarticity and other functionals of volatility: efficient estimation[END_REF]).

We estimate the tail index by using [START_REF] Hill | A Simple General Approach to Inference About the Tail of a Distribution[END_REF] estimator. Let (X i ) n i=1 be a stationary time series with

P[X i > x] ∼ x -α (x), x → ∞,
for some slowly varying function . The Hill's estimator for α -1 which arose in the i.i.d. context as a conditional MLE is defined as

h = 1 k n kn i=1 log(X (i) /X (kn) ),
where (

X (i) ) n i=1 is the order statistics X (n) ≤ • • • ≤ X (kn) ≤ • • • ≤ X (1) for some k n ≤ n such that k n → ∞ and k n /n → 0 as n → ∞.
The results by [START_REF] Hsing | On Tail Index Estimation Using Dependent Data[END_REF] and [START_REF] Resnick | Consistency of Hill's Estimator for Dependent Data[END_REF] indicate that the Hill estimator is asymptotically quite robust with respect to deviations from independence; Resnick and Stȃricȃ (1998) prove consistency under ARCH-type dependence. See also [START_REF] Hill | On Tail Index Estimation for Dependent, Heterogeneous Data[END_REF] for some other processes including ARFIMA, FIGARCH, explosive GARCH, nonlinear ARMA-GARCH and etc.

Valid standard errors of the Hill estimator are available only for some specific models with serial correlation. Therefore, we will not provide any of them. Instead, we follow the literature by providing Hill's plots, that is by varying the integer k n . A flat area is viewed as a good estimator of the tail index. As usual, we truncate k n . In practice we start with k = 25.

Figure 1 (a) depicts the Hill index of the returns and three volatility measures over the whole period for k n between 25 and 500. The left panel provides the estimator for the returns, which is clearly below four. The right panel depicts the tail index of the three volatility measures. The plots suggest that the tail of these measures is below two. Observe that the three plots have flat areas, with a tail index between 1.2 and 1.4. One should notice that the plots for the three volatility measures are quite close.

The period considered in the previous figure includes the financial crisis. A natural question is whether the strong empirical evidence of fat tails is driven by the crisis' period. We therefore carry the Hill estimators for the periods before, during, and after crisis, as explained above. Given the length of the crisis period (185 trading days), we vary k n from 25 to 150. Clearly, the crisis period exhibits fatter tails than the other two periods for the four variables. However, both the periods before and after the crisis suggest very fat tails with a tail index slightly below four for the returns and around two for the three volatility measures. Therefore, the evidence of fat tails and unbounded second moment for the volatility measures is quite strong.

Least Square Estimates

In this section, we consider the OLS estimator β(k)

z for β (k) z in (2.3) given by β(k) z = N -1 i=k+1 (z i-k -z N )z i+1 N -1 i=k+1 (z i-k -z N ) 2
where z N is the sample mean of (z i-k :

i = k + 1, • • • , N -1). For k = 0, we simply write β (0) z = β z and β(0) z = βz .

Primary Asymptotics

Recall that T = N ∆ and ∆ = nδ. For our asymptotics here we let δ/∆, ∆ → 0, with T being fixed or T → ∞ simultaneously as δ/∆, ∆ → 0. In case we have δ/∆, ∆ → 0 and T → ∞ simultaneously, we assume that δ/∆, ∆ → 0 sufficiently fast relative to T → ∞. It is indeed more relevant in a majority of practical applications, which rely on observations collected at small sampling intervals over moderately long span.

In our asymptotics, we frequently deal with various functional transforms of D and V over time interval [0, T ]. To effectively handle such functional transforms, we define

T D = max 0≤t≤T |D t | and T V (f ) = max 0≤t≤T |f (V t )|
for some function f : D → R. We also denote by ι the identity function on D, and

ι(v) = v for all v ∈ D. Consequently, we have T V (ι) = max 0≤t≤T |V t |
for the identity function. Obviously, T D and T V (ι) are the asymptotic orders of extremal process of D and V , respectively. The order of the extremal process is known for a wide class of diffusions. For instance, under some regularity conditions, the extremal process of a stationary diffusion V is of order O p (s -1 (T )), where s is the scale function of V , to which the reader is referred, e.g., [START_REF] Davis | Maximum and Minimum of One-Dimensional Diffusions[END_REF]. More generally, we may obtain the exact rate of T V (f ) from the asymptotic behavior of extremal process. In particular, if f is regularly varying and c T is the order of the extremal process, then the asymptotic order of T V (f ) is given by O p (f (c T )).

Assumption 3.1. (a) σ 2 is twice continuously differentiable on D, and (b) for f = µ, σ 2 , σ 2 , σ 2 and ι, there is a locally bounded function ω :

D → R such that |f (v)| ≤ ω(v) for all v ∈ D.
The differentiability condition of σ 2 in Assumption 3.1 (a) is routinely assumed in the study of diffusion models. Under Assumption 3.1 (a), the majorizing function ω in Assumption 3.1 (b) always exists as long as µ is locally bounded.

Assumption 3.2. For ω in Assumption 3.1, ∆T V (ω 8 )T 2 log(T /∆) → p 0. Assumption 3.3. For ω in Assumption 3.1, (δ/∆)T V (ω 8 )T 2 log 3 (T /δ) → p 0. Assumption 3.4. (δ/∆)T 4 D T → p 0. Assumption 3.5. (δ/∆ 2 ) = O(1).
Assumption 3.2 is similar to Assumption 5.1 in [START_REF] Kim | Asymptotics for Recurrent Diffusions with Application to High Frequency Regression[END_REF], and provides a sufficient condition for our primary asymptotics of spot variance (v i ) and integrated variance (x i ). On the other hand, the asymptotics of realized variance (y i ) involve three parameters, δ, ∆ and T , and require Assumptions 3.3-3.5 in addition to Assumption 3.2. The role of Assumption 3.3 is to analyze the asymptotic effect of the errors (x i -y i ) in the OLS estimates. On the other hand, Assumption 3.4 is a condition to control the effects from the drift part (D t ) in (P t ) so that (D t ) has no asymptotic impact in the asymptotics of the OLS estimates with (y i ). Lastly, Assumption 3.5 is to exclude less interesting cases where the errors (x i -y i ) dominate the signals (x i ) in the OLS estimates with (y i ). In particular, if δ/∆ 2 → ∞, then the error components may have bigger stochastic order than the signals.

Assumptions 3.2-3.4 make it necessary to have ∆ → 0 and δ/∆ → 0. For a fixed T , a set of necessary and sufficient conditions for Assumptions 3.2-3.4 is ∆ → 0 and (δ/∆) log 3 (1/δ) → 0. Our asymptotics in the paper are derived under the conditions ∆ → 0, δ/∆ → 0 and T → ∞ jointly. For Assumptions 3.2-3.4 to hold, it requires ∆ → 0 and δ/∆ → 0 sufficiently fastly as T → ∞. For instance, (i) Assumption 3.2 holds as long as ∆ = O(T -2-), and (ii) Assumptions 3.3-3.4 hold as long as (δ 1-/∆)T 2+ for some > 0, if V and D are bounded with T V (ω 8 ) = O p (1) and T D = O p (1). For example, if daily realized variances (y i ) are obtained using 5 minutes returns over five years, then δ/∆ = 1/288, ∆ = 1/250 and T = 5. In this case, both ∆T 2 and (δ/∆)T 2 are small (∆T 2 = 1/10 and (δ/∆)T 2 = 25/288). Our asymptotics in this section hold jointly in δ, ∆ and T under Assumptions 3.1-3.5, and we do not use sequential asymptotics, requiring δ/∆ → 0, ∆ → 0 and T → ∞ sequentially.

To effectively explain our asymptotics, we apply the summation by parts to the numerator of β(k) z , and rewrite it as

β(k) z -1 = 1 2 k j=0 (z 2 N -j -z 2 1+j ) -z N (z N -j -z 1+j ) N -1 i=k+1 (z i-k -z N ) 2 - 1 2 N -1 i=k+1 (z i+1 -z i-k ) 2 N -1 i=k+1 (z i-k -z N ) 2 . (3.1)
For each term in (3.1), we have the following continuous time approximations when ∆ → 0 and δ/∆ → 0 such that Assumptions 3.1 and 3.2 holds.

Lemma 3.1. Let Assumptions 3.1-3.5 hold.

(a) For k ≥ 0, we have

k j=0 (z 2 N +j -z 2 1+j ) -z N (z N +j -z 1+j ) ∼ p (1 + k) V 2 T -V 2 0 -V T (V T -V 0 ) , N -1 i=k+1 (z i-k -z N ) 2 ∆ ∼ p T 0 (V t -V T ) 2 dt,
where

V T = T -1 T 0 V t dt, for z = v, x, y. (b) For k ≥ 0, we have N -1 i=k+1 (z i+1 -z i-k ) 2 ∼ p N -1 i=1 (z i+1 -z i ) 2 + k N -1 i=1 (v i+1 -v i ) 2
for z = v, x, y, and

N -1 i=1 (z i+1 -z i ) 2 ∼ p      [V ] T , for z = v (2/3)[V ] T , for z = x (2/3)[V ] T + (4δ/∆ 2 ) T 0 V 2 t dt, for z = y. (3.2) Remark 3.1. (a)
The continuous time approximations of the sum of squared increments (SSI), N -1 i=k+1 (z i+1 -z i ) 2 , in Lemma 3.1 (b) are depending upon z. 3 In partic-ular, we have

N -1 i=k+1 (x i+1 -x i ) 2 < N -1 i=k+1 (v i+1 -v i ) 2 , (3.3) N -1 i=k+1 (x i+1 -x i ) 2 < N -1 i=k+1 (y i+1 -y i ) 2 (3.4)
with probability approaching one as δ/∆, ∆ → 0 under Assumptions 3.1-3.5. An intuitive explanation for the inequalities in (3.3) and (3.4) are as follow. We can naturally expect that the integrated variance (x i ) has a smoother sample path compare to that of the spot variance (v i ). As a result, the SSI of (x i ) tends to be smaller than that of (v i ), and we have the first inequality in (3.3). This downward bias is often referred to as smoothing bias. For the use of this terminology, see [START_REF] Stoker | Smoothing Bias in Density Derivative Estimation[END_REF] in nonparametric density estimations, and Aït-Sahalia et al. ( 2013) and [START_REF] Mykland | Assessment of Uncertainty in High Frequency Data: The Observed Asymptotic Variance[END_REF] in the high frequency setting. On the other hand, the realized variance (y i ) is a noisy measure of the integrated variance (x i ), and the error component in (y i ) generates additional variations. Consequently, a sample path of (y i ) becomes rougher compare to that of (x i ), and hence, (3.4) holds.

(b) Unlike Lemma 3.1 (b), the continuous time approximations in Lemma 3.1 (a) are identical for all z = v, x, y. The results in Lemma 3.1 (a) are well expected since |z i -V (i-1)∆ | → p 0 for all z as long as δ/∆ and ∆ are sufficiently small relative to T .

(c) It follows from Lemma 3.1 with k = 0 that

N -1 i=1 (z i -z N )(z i+1 -z i ) = 1 2 {z 2 N -z 2 1 -z N (z N -z 1 )} - 1 2 N -1 i=1 (z i+1 -z i ) 2 ∼ p 1 2 {V 2 T -V 2 0 -V T (V T -V 0 )} -      (1/2)[V ] T , for z = v (1/3)[V ] T , for z = x (1/3)[V ] T + (2δ/∆ 2 ) T 0 V 2 t dt, for z = y =      T 0 (V t -V T )dV t , for z = v T 0 (V t -V T )dV t + (1/6)[V ] T , for z = x T 0 (V t -V T )dV t + (1/6)[V ] T -(2δ/∆ 2 ) T 0 V 2 t dt, for z = y, (3.5)
where the last equality follows from Ito's lemma, as δ/∆, ∆ → 0 under Assumptions 3.1-3.5. The result (3.5) for z = v is quite natural and expected by the asymptotic negligibility of discretization errors when ∆ → 0. In a similar argument, one may expect

N -1 i=1 (z i -z N )(z i+1 -z i ) ∼ p T 0 (V t -V T )dV t for z = x, y (3.6) since sup 0≤i≤N |z i -v i | → p 0 as δ/∆, ∆ → 0.
However, we have (3.5), and the conjecture (3.6) is not true. This is not surprising at all since the convergence of stochastic process does not necessarily imply the convergence of stochastic integral associated with the stochastic process (see, e.g., [START_REF] Kurtz | Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations[END_REF]). In particular, the different asymptotics depending on z in (3.5) are caused by the fact that the SSIs of x and y are biased estimators for the quadratic variation [V ] of V , whereas the SSI of v is unbiased.

The primary asymptotics for β(k)

z can be easily obtained by successively applying Lemma 3.1 and Ito's lemma to (3.1).

Proposition 3.2. Under Assumptions 3.1-3.5, we have

βv -1 ∼ p ∆ T 0 (V t -V T )dV t T 0 (V t -V T ) 2 dt , βx -1 ∼ p ∆ T 0 (V t -V T )dV t + (1/6)[V ] T T 0 (V t -V T ) 2 dt , βy -1 ∼ p ∆ T 0 (V t -V T )dV t + (1/6)[V ] T -(2δ/∆ 2 ) T 0 V 2 t dt T 0 (V t -V T ) 2 dt and β(k) z -1 ∼ p ( βz -1) + k( βv -1).
Remark 3.2. (a) As explained in Remark 3.1 (a), (x i ) has smoother sample paths than (v i ), and hence, we have (3.3). In Proposition 3.2, we have βv < βx which implies that (x i ) tends to have more persistent sample paths than (v i ). This result is a consequence of (3.3). Moreover, βy is downward biased with βy < βx which is induced by the errors in (y i ).4 

(b) Note that Assumptions 3.3-3.5 do not necessarily imply δ/∆ 2 → 0. Therefore, the speeds of δ → 0 and ∆ → 0 are important in the asymptotic negligibility of the estimation errors of (y i ). In particular, if δ/∆ 2 → 0 sufficiently quickly, then the errors of (y i ) become asymptotically negligible, and hence, we may have βy -1 ∼ p βx -1. In Section 4.3, we analyze the asymptotics negligibility of the estimation errors of (y i ) for more general class of estimators, including the OLS and IV estimators, under the presence of leverage effects.

Long Span Asymptotics

The primary asymptotics in Proposition 3.2 do not require T → ∞. In particular, if T is fixed, then (N/T )( βz -1) = (1/∆)( βz -1) is random for all z = v, x, y, and is determined by a particular realization of the underlying variance process V . Under the fixed T asymptotic scheme, the law of motion of V is less important. In particular, the results in Proposition 3.2 require neither certain moment conditions nor stationarity. However, the underlying probabilistic structure of V is crucial in the development of the large T asymptotics.

In our long span asymptotics, we only consider a stationary diffusion V to effectively analyze consequences of fat tails in the volatility regressions. Throughout the paper we assume that the scale function s in (2.5) and the speed density m in (2.6) satisfy the following conditions:

Assumption 3.6. (a) s(v) = -∞ and s(v) = ∞, and (b) D m(v)dv < ∞.
Under Assumption 3.6 (a), V becomes recurrent. Moreover, Assumption 3.6 implies that V is positive recurrent. Positive recurrent diffusions have time invariant distributions, and if they are started from the time invariant distributions they become stationary. The time invariant density of the positive recurrent diffusion V is given by π(v) = m(v)/ D m(v)dv. Therefore, conditions on unconditional moments are characterized by corresponding m-integrability conditions. For instance,

E(f (V t )) < ∞ if and only if f is m-integrable, since E(f (V t )) = D f (v)π(v)dv and π(v) = m(v)/ D m(v)dv with D m(v)dv < ∞.
Since we allow fat tails, we consider not only integrable functions but also nonintegrable functions with respect to the speed density m of V . We will not require any regularity conditions for m-integrable functions. To effectively analyze m-nonintegrable functions, however, we need some regularity conditions. Following [START_REF] Kim | Asymptotics for Recurrent Diffusions with Application to High Frequency Regression[END_REF], it will be maintained throughout the paper that all m-nonintegrable functions f are m-regularly varying, i.e., mf is regularly varying on D. For a m-nonintegrable function f , we say that f is m-strongly nonintegrable if f is not m-integrable for any slowly varying function on D. On the other hand, we say that f is m-nearly integrable if f is m-integrable for some slowly varying function on D.

We assume that Assumption 3.7. (a) s is regularly varying or rapidly varying with index c = -1, (b) σ 2 is regularly varying, and (c) f = σ 2 , ι 2 is either m-integrable or m-strongly nonintegrable.

Assumption 3.7 (a) and (b) appear in Kim and Park (2018), and are mild enough to include most diffusion processes used in practice. The reader is also referred to [START_REF] Bingham | Regular Variation[END_REF] for more discussions about the regularly and rapidly varying functions. In Assumption 3.7 (c), we assume that σ 2 and ι 2 are m-strongly nonintegrable as long as they are not m-integrable. This assumption is a technical condition to simplify our discussions below. Our subsequent theory can also be developed under the m-near integrablility at the cost of more involved analysis (see Kim andPark (2017, 2018) for the related discussions).

In the following, we let f s = f • s -1 for any function f on D other than m.5 Moreover, for a regularly varying function f on R, we define its limit homogeneous function f as f (λv)/f (λ) → f (v) as λ → ∞ for all v = 0.

We define numerical sequences p T and q T as

p T = T T 2 (m s σ 2 s )(T ) if σ 2 is m-integrable if σ 2 is m-strongly nonintegrable q T = T T 2 (m s ι 2 s )(T ) if ι 2 is m-integrable if ι 2 is m-strongly nonintegrable,
and let

P = E(σ 2 (V t )) τ 0 m s σ 2 s (B t )dt if σ 2 is m-integrable if σ 2 is m-strongly nonintegrable Q = E(V 2 t ) τ 0 m s ι 2 s (B t )dt if ι 2 is m-integrable if ι 2 is m-strongly nonintegrable S = E(V 2 t ) -(E(V t )) 2 τ 0 m s ι 2 s (B t )dt if ι 2 is m-integrable if ι 2 is m-strongly nonintegrable,
where B is Brownian motion and τ = inf{t L(t, 0) > 1/ D m(v)dv } with Brownian local time L(•, 0) of B at the origin (i.e., L(t, 0) = lim →0 (2 ) -1 t 0 1{|B s | < }ds). Under Assumption 3.7, both (p T , q T ) and (P, Q, S) are well defined (see [START_REF] Kim | Asymptotics for Recurrent Diffusions with Application to High Frequency Regression[END_REF]).

Lemma 3.3. Let Assumption 3.7 hold. As T → ∞, we have T p T /q T → ∞ and

1 p T [V ] T → d P, 1 p T T 0 (V t -V T )dV t → d - P 2 , 1 q T T 0 V 2 t dt → d Q, 1 q T T 0 (V t -V T ) 2 dt → d S.
Under the m-integrability of f = ι 2 , σ 2 , Lemma 3.3 becomes a standard law of large numbers of stationary diffusions. However, if f = ι 2 , σ 2 is not m-integrable, the standard limit theory is not applicable and we have completely different limit theory. In particular, the limit distribution τ 0 m s f s (B t )dt is not Gaussian and is highly nonstandard. Moreover, the normalizing sequence T 2 (m s f s )(T ) diverges faster than T since the function m s f s becomes a regularly varying function with index c > -1 as long as f is not m-integrable and Assumption 3.7 holds. The reader is referred to [START_REF] Kim | Asymptotics for Recurrent Diffusions with Application to High Frequency Regression[END_REF] for more detailed discussions about the asymptotics of diffusion functionals.

The long span asymptotics for βz follow immediately from Proposition 3.2 with Lemma 3.3.

Theorem 3.4. Let Assumptions 3.1-3.7 hold. As δ/∆, ∆ → 0 and T → ∞, we have

βv -1 ∼ d -∆ p T q T P 2S , βx -1 ∼ d -∆ p T q T P 3S , βy -1 ∼ d -∆ p T q T P 3S - δ ∆ 2Q S .
As shown in Lemma 3.3 that P , Q and S become constants only when both ι 2 and σ 2 are m-integrable. The relation ∼ d in Theorem 3.4 becomes ∼ p if P , Q and S are all constants. On the other hand, if ι 2 and σ 2 are not m-integrable, then P , Q and S remain random. In this case, Theorem 3.4 implies that βz -1 is random for all small ∆.

Remark 3.3. The results in Theorem 3.4 can be applied to a broad class of volatility processes used in the literature.

(a) If both σ 2 and ι 2 are m-integrable, then p T = q T = T and

βv -1 ∼ p -∆ E(σ 2 (V t )) 2V ar(V t ) , βx -1 ∼ p 2 3 ( βv -1), βy -1 ∼ p ( βx -1) - δ ∆ 2E(V 2 t ) V ar(V t )
.

(b) For a stationary Ornstein-Uhlenbeck process V , given as

dV t = κ(µ -V t )dt + σdW t , we have E(σ 2 (V t )) = σ 2 , V ar(V t ) = σ 2 /(2κ) and E(V 2 t ) = σ 2 /(2κ) + µ 2 . Therefore, βv -1 ∼ p -∆κ, βx -1 ∼ p -∆ 2 3 κ, βy -1 ∼ p -∆ 2 3 κ -2 δ ∆ 1 + 2κµ 2 σ 2 . (3.7) (c) Let V be a stationary GARCH diffusion (2.7) with σ 2 < 2κ so that E(V 2 t ) < ∞. In this case, we have E(σ 2 (V t )) = σ 2 E(V 2 t ), V ar(V t ) = µ 2 σ 2 /(2κ -σ 2 ) and E(V 2 t ) = 2κµ 2 /(2κ -σ 2 )
, and hence, Theorem 3.4 implies

βv -1 ∼ p -∆κ, βx -1 ∼ p -∆ 2 3 κ, βy -1 ∼ p -∆ 2 3 κ -4 δ ∆ κ σ 2 . (3.8)
It is interesting to note that the results (3.8) are the same as (2.8) for population regressions derived by [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF].

(d) Let V be a stationary GARCH diffusion (2.7) with 2κ < σ 2 so that E(

V 2 t ) = E(σ 2 (V t )) = ∞.
In this case, p T = σ 2 q T and P = Q = S, and therefore, we have

βv -1 ∼ p -∆ 1 2 σ 2 , βx -1 ∼ p -∆ 1 3 σ 2 , βy -1 ∼ p -∆ 1 3 σ 2 -2 δ ∆ .
(3.9)

Under E(V 2 t ) < ∞, as shown in Remark 3.3 (c), the limits of ( βz -1)/∆ are mainly determined by the mean reversion parameter κ in the drift function µ(v). Under E(V 2 t ) = ∞, the limits ( βz -1)/∆ are still constant, but they are determined by the diffusion parameter σ 2 in the diffusion function σ 2 (v).

We also note that GARCH diffusion is a special example that ( βz -1)/∆ has a degenerated constant limit even under E(V 2 t ) = ∞, which is induced by the relationship v 2 ∝ σ 2 (v) between the quadratic function v 2 and the diffusion function σ 2 (v). For any other models which do not satisfy ι 2 (v) ∝ σ 2 (v) asymptotically, ( βz -1) has a random limit, after proper normalization, as long as E(V 2 t ) = ∞ or E(σ 2 (V t )) = ∞. This is the case for the CEV process considered below.

(e) Let V be a stationary CEV process

dV t = κ(µ -V t )dt + σV γ t dW t .
If κ, µ, σ > 0 and 1

< γ < 3/2, then E(V 2 t ) = ∞ and E(σ 2 (V t )) = ∞ since m(v) ∼ v -2γ as v → ∞.
For the CEV process, we have

p T = σT 2 (m s ι 2γ s )(T ), q T = T 2 (m s ι 2 s )(T ), P = τ 0 m s ι 2γ s (B t )dt, Q = S = τ 0 m s ι 2 s (B t )dt,
where p T /q T = σι 2γ-2 s (T ) → ∞ as T → ∞, since γ > 1 and ι s = s -1 is monotonically increasing by the recurrence property. Clearly, P = S for any γ ∈ (1, 3/2), and hence, P/S remains random unlike the GARCH diffusion. Therefore, βz -1 has random limit for all sufficiently small ∆. (f) Our example in Remark 3.3 (d) should be contrasted to the limit theory for the sample autocorrelations of GARCH(1,1) processes with fat tails obtained in [START_REF] Mikosch | Limit Theory for the Sample Autocorrelations and Extremes of a GARCH (1, 1) Process[END_REF]. Let

X i = σ i Z i with σ 2 i = α 0 + β 1 σ 2 i-1 + α 1 X 2 i-1 for i = 1, 2, • • • , N,
where (Z i ) is a sequence of i.i.d. symmetric random variables with EZ 2 i = 1. Under some assumptions, which imply that the vector (X i , σ i ) is regularly varying with index p > 0, it is shown that for p ∈ (0, 4) the variance process (σ 2 i ) has unbounded variance and satisfies, for any k ≥ 1,

N -k i=1 X 2 i X 2 i+k N i=1 X 4 i -1, N -k i=1 σ 2 i σ 2 i+k N i=1 σ 4 i -1 ∼ d Σ 1,X 2 -Σ 0,X 2 Σ 0,X 2 , Σ 1,σ 2 -Σ 0,σ 2 Σ 0,σ 2 ,
where the limit distribution is nondegenerated since the vector (Σ m,X 2 , Σ m,σ 2 ) m=0,1 is p/2-stable. This contrasts with our result for a GARCH diffusion with unbounded variance (see Remark 3.3 (d)), in which ( βz -1)/∆ has a constant limit for z = v, x.

We think that the difference between our results and those of [START_REF] Mikosch | Limit Theory for the Sample Autocorrelations and Extremes of a GARCH (1, 1) Process[END_REF] is due to the fact that we allow ∆ → 0. We conjecture that the result would be the same when ∆ is fixed.

Instrumental Variable Estimations

In this section we will study various IV estimators of β

(k) z in (2.
3). When one has a model like

z i+1 = α + βz i + u i+1 , |β| ≤ 1
where (u i ) is i.i.d. with possible fat tails, it is well known that in general the OLS estimator of β is consistent (see [START_REF] Hannan | Autoregressive Processes with Infinite Variance[END_REF]; [START_REF] Knight | Rate of Convergence of Centered Estimates of Autoregressive Parameters for Infinite Variance Autoregressions[END_REF] for |β| < 1, and [START_REF] Chan | On the First-Order Autoregressive Process with Infinite Variance[END_REF]; [START_REF] Phillips | Time Series Regression with a Unit Rot and Infinite-Variance Errors[END_REF] for β = 1). However, the OLS is not necessarily efficient and its asymptotic distribution could be non-Gaussian. An alternative method that could lead to more efficient estimators or asymptotically Gaussian ones is to consider a signed power estimator defined as

6 β = sign(z i ) | z i | c (z i+1 -zN ) sign(z i ) | z i | c (z i -zN ) .
The reader is referred to [START_REF] Samorodnitsky | Asymptotic Distributions of Unbiased Linear Estimators in the Presence of Heavy-Tailed Stochastic Regressors and Residuals[END_REF] for the asymptotics of OLS and the signed power estimator. One can easily prove that this estimator is indeed the empirical counterpart of the IV estimator defined by

E 1 sign(z i )|z i | c (z i+1 -α -βz i ) = 0.
Typically, the power c is smaller than one in order to reduce the tails of the moments involved in the estimation method. An extreme case is the Cauchy estimator which corresponds to c = 0, that is when the instrument equals the sign of z i .

In the following subsection, we will study IV estimators of β

(k) z in (2.3) which have the form β(k) z = N -1 i=k+1 r(z i-k )(z i+1 -z N ) N -1 i=k+1 r(z i-k )(z i-k -z N )
, where we use a functional transformation r(z i-k ) of z i-k as an instrument. We prove below that the IV estimator, with a proper choice of instrument, is robust to fat tails. Interestingly, Jean-Marie Dufour used the sign-based methods in several studies for inference purposes, especially for exact inference in finite sample. In particular, he used such an approach in [START_REF] Coudin | Finite-sample distribution-free inference in linear median regressions under heteroscedasticity and non-linear dependence of unknown form[END_REF]Dufour (2009, 2017) in order to provide inference about the slope parameter in a linear regression model without making moment restrictions on the disturbance errors and therefore allowing for fat tails. The assumption made in these papers is a median restriction on the errors conditional on the explanatory variables. In other words, we are using the same approach with a slightly different framework because we assume that the conditional first moment of the errors exists and equals zero, but we do not make assumptions on higher moments.

IV Estimator β(k) z with a Current Instrument

Let r be continuously differentiable, and define r 1 (z) = z z 0 r(x)dx for some z 0 ∈ D. Then, by Taylor expansion, we have

k j=0 (r 1 (z N -j ) -r 1 (z 1+j )) = N -1 i=k+1 (r 1 (z i+1 ) -r 1 (z i-k )) = N -1 i=k+1 r(z i-k )(z i+1 -z i-k ) + 1 2 N -1 i=k+1 r (z * i-k )(z i+1 -z i-k ) 2 for (z * i ) N -1 i=1 such that z * i ∈ [z i-k , z i+1 ].
Using the expansion, we may rewrite β(k)

z as β(k) z -1 = k j=0 (r 1 (z N -j ) -r 1 (z 1+j )) N -1 i=k+1 r(z i-k )(z i-k -z N ) - 1 2 N -1 i=k+1 r (z * i-k )(z i+1 -z i-k ) 2 N -1 i=k+1 r(z i-k )(z i-k -z N ) . (4.1)
As in Lemma 3.1, we may obtain the continuous time approximation for each term in (4.1). For the approximation, we require The role of Assumption 4.1 is similar to Assumption 3.1, and make it convenient to develop the continuous time approximations if combined with the conditions on δ, ∆ and T in Assumptions 3.2-3.5. (a) For k ≥ 0, we have

k j=0 (r 1 (z N -j ) -r 1 (z 1+j )) ∼ p (1 + k)(r 1 (V T ) -r 1 (V 0 )), N -1 i=k+1 r(z i-k )(z i-k -z N )∆ ∼ p T 0 r(V t )(V t -V T )dt for z = v, x, y. (b) For k ≥ 0, we have N -1 i=k+1 r (z * i-k )(z i+1 -z i-k ) 2 ∼ p N -1 i=1 r (z i )(z i+1 -z i ) 2 + k N -1 i=1 r (v i )(v i+1 -v i ) 2
for z = v, x, y, and

N -1 i=1 r (z i )(z i+1 -z i ) 2 ∼ p      T 0 r (V t )d[V ] t , for z = v (2/3) T 0 r (V t )d[V ] t , for z = x (2/3) T 0 r (V t )d[V ] t + (4δ/∆ 2 ) T 0 r (V t )V 2 t dt, for z = y (c) We have βv -1 ∼ p ∆ T 0 r(V t )dV t T 0 r(V t )(V t -V T )dt , βx -1 ∼ p ∆ T 0 r(V t )dV t + (1/6) T 0 r (V t )d[V ] t T 0 r(V t )(V t -V T )dt , βy -1 ∼ p ∆ T 0 r(V t )dV t + (1/6) T 0 r (V t )d[V ] t -(2δ/∆ 2 ) T 0 r (V t )V 2 t dt T 0 r(V t )(V t -V T )dt and β(k) z -1 ∼ p ( βz -1) + k( βv -1).
We note that if r(z) = z, then β(k) z instead of r(z i-k ), then the results in Proposition 4.1 (c) hold with r(V t -V T ) and r (V t -V T ) in place of r(V t ) and r (V t ), respectively. Now we develop the large T asymptotics of βz . To effectively control the fat tails in V , we impose the following conditions on r.

Assumption 4.2. The function r :

D → R satisfies that E[r(V t )], E[r(V t )V t ], E[r (V t )V 2 t ], and E[r (V t )σ 2 (V t )] are all bounded, and E[r(V t )V t ] -E[r(V t )]E[V t ] = 0.
Assumption 4.2 provides simple sufficient conditions to ensure that the IV estimator βz has a constant limit involving parameters in µ and σ 2 . An example of r satisfying Assumption 4.2 is r(v) = arctan(v). Clearly, r is monotonically increasing, bounded and continuously differentiable with r

(v) = 1/(1 + v 2 ). Therefore, Assumption 4.2 holds if E|V t | < ∞ and E[r (V t )σ 2 (V t )] < ∞. When D = (0, ∞) and r(v) = arctan(v), we have E[r (V t )σ 2 (V t )] < ∞ as long as σ 2 (v)/v 3 = O(v ) as v → ∞ for some > 0.
Theorem 4.3. Let Assumptions 3.1-3.5 and 4.1-4.2 hold.

If E|V t | < ∞, then βv -1 ∼ p -∆ 1 2 E[r (V t )σ 2 (V t )] E[r(V t )V t ] -E[r(V t )]E[V t ] , βx -1 ∼ p -∆ 1 3 E[r (V t )σ 2 (V t )] E[r(V t )V t ] -E[r(V t )]E[V t ] , βy -1 ∼ p -∆ 1 3 E[r (V t )σ 2 (V t )] E[r(V t )V t ] -E[r(V t )]E[V t ] - δ ∆ 2E[r (V t )V 2 t ] E[r(V t )V t ] -E[r(V t )]E[V t ] .
As well expected, βz -1 has a well defined constant limit under the moment conditions in Assumption 4.2. For a given parametric diffusion model, we may explicitly compute the limit of βz -1. As an example, we consider a stationary diffusion V defined on D = (0, ∞) having a linear drift

dV t = κ(µ -V t )dt + σ(V t )dW t (4.2) with E(V t ) = µ and σ 2 (v)/v 2 = O(1) as v → ∞.
Corollary 4.4. Let Assumptions 3.1-3.5 and 4.1-4.2 hold for V in (4.2). Then

E[r (V t )σ 2 (V t )] E[r(V t )V t ] -E[r(V t )]E[V t ] = 2κ and 1 ∆ ( βv -1) → p -κ.
regardless of the finiteness of

E(V 2 t ). Moreover, if V in (4.2) is a GARCH diffusion with σ 2 (v) = σ 2 v 2 , then E[r (V t )V 2 t ] E[r(V t )V t ] -E[r(V t )]E[V t ] = 2 κ σ 2 and βx -1 ∼ p -∆ 2 3 κ, βy -1 ∼ p -∆ 2 3 κ -4 δ ∆ κ σ 2
regardless of the finiteness of E(V 2 t ).

Corollary 4.4 implies that the IV estimates βz do not depend on the finiteness of E(V 2 t ), and are equivalent to those of the OLS estimates βz in (3.7), which are obtained under E(V 2 t ) < ∞. In contrast, the OLS estimates βz have different limits depending upon E(V 2 t ) < ∞ holds or not (see the discussions in Remark 3.3 (c) and (d)). Therefore, we may say that the instrumental variable approach can effectively control the fat tails as long as r is appropriately chosen.

If the transformation r satisfies some additional integrability conditions, we may obtain the asymptotic normality of the IV estimator. For the asymptotic normality, we may use the asymptotics of the centered additive functionals (see, e.g., [START_REF] Mandl | Analytical Treatment of One-Dimensional Markov Processes[END_REF]; van der Vaart and van Zanten ( 2005)) so that we have

√ T 1 T T 0 (r σ 2 )(V t )dt -E[r (V t )σ 2 (V t )] → d N(0, Σ r ), (4.3)
provided that the asymptotic variance

Σ r = 4 D m(v)dv D v v (r σ 2 )(v) -E[r (V t )σ 2 (V t )] π(u)du 2 ds(v)
is finite, where m, π and s are the speed density, time invariant distribution and scale function, respectively. Therefore, if r is appropriately chosen such that Σ r < ∞, we may deduce from Proposition 4.1 (c), Assumption 4.2 and (4.3) that

√ T βv -1+ ∆ 2 E[r (V t )σ 2 (V t )] E[r(V t )V t ]-E[r(V t )]E[V t ] → d (2E[r(V t )V t ]-E[r(V t )]E[V t ]) -1 N(0, Σ r ), √ T βx -1+ ∆ 3 E[r (V t )σ 2 (V t )] E[r(V t )V t ]-E[r(V t )]E[V t ] → d (3E[r(V t )V t ]-E[r(V t )]E[V t ]) -1 N(0, Σ r ),
and βy -1 has the same asymptotic distribution as βx -1 if δ/∆ 2 → 0. On the other hand, if r does not satisfy Σ r < ∞, then (4.3) does not hold, and the limit distributions of βz -1 are not Gaussian (see Theorem 3.6 of [START_REF] Kim | Asymptotics for Recurrent Diffusions with Application to High Frequency Regression[END_REF]). Heuristically, we may consider the Cauchy estimator by using r(z -z N ), where r(z) = sign(z), as an instrument in βz . Clearly, r is not differentiable, and hence, our results Proposition 4.1 and Theorem 4.3 are not directly applicable. By the standard approximation method with Tanaka's formula, however, we may obtain the asymptotics of the Cauchy estimator. Given Proposition 4.1 (c), we conjecture that

βv -1 ∼ p ∆ T 0 sign(V t -V T )dV t T 0 |V t -V T |dt , βx -1 ∼ p βv -1 + ∆ 3 σ 2 (V T )L V (T, V T ) T 0 |V t -V T |dt , βy -1 ∼ p βx -1 - 4δ ∆ (V T ) 2 L V (T, V T ) T 0 |V t -V T |dt , where L V (•, v) is the local time of V at v ∈ D, defined as L V (T, v) = lim →0 (2 ) -1 T 0 1{|V t - v| < }dt.
The large T asymptotics then follow immediately from the law of large numbers, and they are given by βv

-1 ∼ p -∆ σ 2 (µ)π(µ) E|V t -µ| , βx -1 ∼ p -∆ 2σ 2 (µ)π(µ) 3E|V t -µ| , βy -1 ∼ p ( βx -1)- 4δ ∆ µ 2 π(µ) E|V t -µ| , since V T → p E[V t ] = µ, T -1 L V (T, V T ) → p π(µ), T -1 T 0 |V t -V T |dt → p E|V t -µ| and 1 T T 0 sign(V t -V T )dV t → p -σ 2 (µ)π(µ).
If V is a GARCH diffusion, it can be shown as in Corollary 4.4 that

σ 2 (µ)π(µ) E|V t -µ| = κ, µ 2 π(µ) E|V t -µ| = κ σ 2 .
Therefore, we conjecture that Corollary 4.4 holds even when the Cauchy estimator is used. We will formally analyze the asymptotics, under a fixed ∆, of the Cauchy estimator in Section 5.2.

IV Estimator β(k) z with a Lagged Instrument

In the GARCH diffusion case, Corollary 4.4 means that the proposed IV estimator converges to the object of interest when one uses the spot variance while one gets a bias estimation when one uses integrated or realized variance. The reason is that the integrated and realized variances are ARMA(1,1) processes and therefore this IV estimator converges to the first order autocorrelation (when the second moment of these variables are bounded). As mentionned above, a solution to this problem is to consider the multi-period moment restriction (2.11), which in turn corresponds to consider a lagged instrument in the estimation of β

(k)
z in (2.3). More precisely, in this subsection we study the estimator β(k)

z defined as β(k) z = N -1 i=k+2 r(z i-k-1 )(z i+1 -z N ) N -1 i=k+2 r(z i-k-1 )(z i-k -z N )
.

In other words, the IV estimator β(k) z studied in the previous subsection uses r(z i-k ) as an instrument for (z i-k -z N ), whereas β(k) z employs r(z i-k-1 ) as an instrument for the same object (z i-k -z N ).

For the asymptotics, we write

β(k) z -1 = N -1 i=k+2 r(z i-k-1 )(z i+1 -z i-k ) N -1 i=k+2 r(z i-k-1 )(z i-k -z N ) = N -1 i=k+2 r(z i-k-1 )(z i+1 -z i-k-1 ) N -1 i=k+2 r(z i-k-1 )(z i-k -z N ) - N -1 i=k+2 r(z i-k-1 )(z i-k -z i-k-1 ) N -1 i=k+2 r(z i-k-1 )(z i-k -z N ) ≡ φ (k) z -ψ (k) z . (4.4)
For the denominator of φ with a fixed k ≥ 0, we may show that

N -1 i=k+2 r(z i-k-1 )(z i-k -z N )∆ ∼ p N -1 i=k+2 r(z i-k )(z i-k -z N )∆ ∼ p T 0 r(V t )(V t -V T )dt
as long as δ/∆ and ∆ are sufficiently small. We then may deduce from Proposition 4.1 with (4.1) that

φ (k) z ∼ p ∆ N -1 i=k+2 r(z i-k-1 )(z i+1 -z i-k-1 ) N -1 i=k+2 r(z i-k-1 )(z i-k-1 -z N )∆ ∼ p β(1+k) z -1, ψ (k) z ∼ p ∆ N -1 i=k+2 r(z i-k-1 )(z i-k -z i-k-1 ) N -1 i=k+2 r(z i-k-1 )(z i-k-1 -z N )∆ ∼ p β(0) z -1
as long as δ/∆ and ∆ are sufficiently small. We formally have Theorem 4.5. Let Assumptions 3.1-3.5 and 4.1 hold. For z = v, x, y, we have

β(k) z -1 ∼ p ( β(1+k) z -1) -( β(0) z -1) ∼ p (1 + k)( βv -1).
Unlike βz and βz , the limits of βz -1 are given by βv -1 regardless of z = v, x, y. Consequently, if V is a linear drift diffusion in (4.2), then ( βz -1)/∆ → p -κ for all z = v, x, y, rather than the limits of βz in Corollary 4.4. Therefore, we may say that the IV estimator βz is a consistent estimator for the mean reversion parameter κ of linear drift diffusions, and is robust to not only fat tails in V but also errors (v i -x i ) and (v i -y i ) in, respectively, the integrated variance and realized variance.

For the linear transformation r(z) = z, we may easily see that βz = βz . In this case, the IV estimator βz becomes a simple IV estimator with an instrument z i-1 for (z i -z N ), and it follows from Theorem 4.5 that

β(k) z -1 ∼ p (1 + k)( βv -1) (4.5) 
for z = v, x, y. If Assumption 3.7 holds in addition to the conditions in Theorem 4.5, then (4.5) becomes βz -1 ∼ d -∆(p T /q T )(P/(2S)) for z = v, x, y by Theorem 3.4. On the other hand, Assumption 4.2 holds for r(z) = z if and only if E(V 2 t ) and E(σ 2 (V t )) are finite. Consequently, when r(z) = z, we have ( βz -1)/∆ → p -κ for a linear drift diffusion (4.2) satisfying either

E(V 2 t ) = ∞ or E(σ 2 (V t )) = ∞. For instance, a GARCH diffusion satisfies ( βz -1)/∆ → p -κ if E(V 2 t ) < ∞ with σ 2 < 2κ, whereas ( βz -1)/∆ → p -σ 2 /2 if E(V 2 t ) = ∞ with 2κ < σ 2 .
As a conclusion of this section, let us remark that there is a large literature considering autoregressions in discrete time models and allowing for heavy tails. In particular, Hill (2015) and [START_REF] Hill | GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference[END_REF] propose a robust generalized empirical likelihood (GEL) method for estimation and inference of an autoregression that may have a heavy tailed heteroscedastic error. We expect that the GEL estimator can also be robust to fat tails in continuous time models. However, it is questionable whether the GEL estimator can be robust to the non-Markovianity of (x i ) and (y i ) in our framework. We leave the asymptotic properties of GEL methods in volatility regression for future research.

Asymptotic Negligibility of Errors in Realized Variance

In the previous subsections, we analyze the asymptotic behaviors of the IV estimators under the assumption that each of V and D is independent of W P . In reality, however, it is widely believed that there exists the leverage effect, which corresponds to a negative correlation between past returns and future volatility. As an extension of our previous results, we allow arbitrary dependences among V , D and W P , and analyze the asymptotic negligibility of the errors in the realized variance.

Assumption 4.3. (a) For ω in Assumption 3.1, (δ/∆ 2 )T V (ω 6 )T log 3 (T /δ) → p 0, and (b) ∆T 2 D → p 0.
It can be seen from the primary asymptotics in Proposition 4.1 (c) that the impact of errors in (y i ) may become asymptotically negligible as long as δ/∆ 2 → 0 sufficiently quickly. Assumption 4.3 (a) is a sufficient condition for the asymptotic negligibility of the error, and requires faster rate of convergence δ → 0 than Assumption 3.3. On the other hand, Assumption 4.3 (b) has a similar role to Assumption 3.4, and provides a sufficient condition for the asymptotic negligibility of the drift part (D t ) in the IV estimation with (y i ).

Proposition 4.6. Under Assumptions 3.1-3.2, 4.1, and 4.3,

β(k) y -1 ∼ p β(k) x -1 and β(k) y -1 ∼ p β(k) x -1. Unlike Proposition 4.1 (c), β (k) 
y becomes asymptotically equivalent to β(k)

x regardless of the presence of leverage effects, especially, when δ/∆ 2 → 0 sufficiently quickly. It is also true that, under the conditions in Proposition 4.6,

β(k) y -1 ∼ p β(k) x -1 since β(k) z is a special case of β(k) z with r(z) = z.

Volatility Regressions Under Fixed ∆

In this section, we consider a volatility regression under fixed ∆, and provide an IV based inference procedure.

IV Based Inference

Motivated by the multi-period moment restriction (2.11) for GARCH diffusions, we consider a stationary time series (z i ), defined on

D z = (z, z), satisfy E|z i | < ∞ and E[(z i+1 -µ z ) -β z (z i -µ z )|G i-1 ] = 0, (5.1) 
where G i-1 is the sigma-field generated by (z i-k , k = 1, 2, • • • ). For a GARCH diffusion (2.7), µ z = µ and β z = exp(-κ∆) for z = v, x as well as for z = y if D t = 0 almost surely.

An equivalent representation of (z i ) satisfying the multi-period moment restriction (5.1) is that

z i+1 = α z + β z z i + u i+1 with α z = µ z (1 -β z ), E(u i+1 |G i-1 ) = 0.
(5.2)

Clearly, (z i ) can be non-autoregressive since we allow E(u i+1 |z i ) = 0. Now we propose an IV based inference procedure for β z in (5.2). We consider a measurable function r : D l z → R for some 1 ≤ l < ∞, and construct the IV estimator as

βz = N -1 i=l+1 r(Z i-1,i-l )(z i+1 -z N ) N -1 i=l+1 r(Z i-1,i-l )(z i -z N )
, where Z i-1,i-l = (z i-1 , z i-2 , • • • , z i-l ) .

Assumption 5.1. There exists a measurable function r :

D l z → R for some 1 ≤ l < ∞ such that (a) E|r(Z i-1,i-l )(z i -µ z )| < ∞ with E[r(Z i-1,i-l )(z i -µ z )] = 0, and (b) E(r 2 (Z i-1,i-l )z 2 i+1 ), E(r 2 (Z i-1,i-l )z 2 i ) < ∞.
Assumption 5.1 is quite general and includes the situations where

E(z 2 i ) = ∞. If r is bounded, then E[r(Z i-1,i-l )(z i -µ z )] is well defined since E|z i | < ∞,
and hence, Assumption 5.1 (a) is always satisfied as long as r is bounded such that the identification condition E[r(Z i-1,i-l )(z i -µ z )] = 0 is met. However, Assumption 5.1 (b) imposes more restrictions on the tail behaviors of the function r.

Under Assumption 5.1 with some regularity conditions, we have

1 N N -1 i=l+1 r(Z i-1,i-l )u i+1 → p E[r(Z i-1,i-l )u i+1 ] = 0, (5.3) 1 N N -1 i=l+1 r(Z i-1,i-l )(z i -µ z ) → p E[r(Z i-1,i-l )(z i -µ z )],
(5.4)

1 N N -1 i=l+1 r 2 (Z i-1,i-l )u 2 i+1 → p E[r 2 (Z i-1,i-l )u 2 i+1 ],
(5.5)

1 N 1/2 N -1 i=l+1 r(Z i-1,i-l )u i+1 → d N(0, E[r 2 (Z i-1,i-l )u 2 i+1 ]) (5.6)
due to the LLN and the martingale CLT. 

√ N ( βz -β z ) → d N(0, Σ l (r)), where Σ l (r) = E[r 2 (Z i-1,i-l )u 2 i+1 ] E[r(Z i-1,i-l )(z i -µ z )] 2 ,
and Σl (r) → p Σ l (r), where

Σl (r) = N N -1 l+1 r 2 (Z i-1,i-l )ǔ 2 i+1 N -1 l+1 r(Z i-1,i-l )(z i -zN ) 2 with ǔi+1 = (z i+1 -zN ) -βz (z i -zN ).
Theorem 5.1 (a) implies that βz → p β z as long as r is bounded. For a GARCH diffusion, in particular, β z = exp(-κ∆) for z = v, x, y, and hence, the IV estimator βz for z = v, x, y with instrument r(z i-1 -z N ) has the same limit exp(-κ∆) as long as r is bounded. So the Cauchy estimator with r(z) = sign(z) becomes consistent for exp(-κ∆).

If we further impose some restrictions on the tail behaviors of r, then the IV estimator βz is asymptotically normal as shown in Theorem 5.1 (b). In GARCH diffusion example, Assumption 5.1 (b) holds for z = v, x if r(z) ∼ sign(z)|z| c with c < -1/2. Clearly, r(z) = sign(z) does not satisfy Assumption 5.1 (b) unless z has finite variance, and hence, the Cauchy estimator is not asymptotically normal, though it is consistent, under E(V 2 t ) = ∞.

5.2. Fixed ∆ and Small ∆ Asymptotics for GARCH Diffusion

In Section 4.2, we obtained general asymptotics of the IV estimator βz , which is robust to fat tails as well as errors in observed variance measures, in particular, under the assumption that ∆ → 0. In our asymptotics, the main motivation of introducing the small ∆ assumption is to effectively handle general variance processes V having potentially unbounded moments. In practice, however, the volatility measure, (x i ) or (y i ), is often computed on a daily basis, and ∆ is commonly fixed to a length of day. Under the fixed ∆, one may be interested in the quality of our approximation based on ∆ → 0.

To see the usefulness of our asymptotics under ∆ → 0, we again consider a GARCH diffusion (2.7). It then follows from Theorem 5.1 that the fixed ∆ asymptotics are approximately equivalent to the asymptotics obtained under ∆ → 0 since exp(-κ∆) = 1 -κ∆ + o(∆), and the leading term 1 -κ∆ is equivalent to the limit of βz obtained under ∆ → 0 in Theorem 4.5. We also note that our asymptotics of βz in Section 3 provide the same results as those derived by [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF] when the required moments are satisfied. Therefore, we may conclude that our asymptotics, obtained under ∆ → 0, provide a useful asymptotic approximation at least for some popular models.

Given the asymptotic assumption of ∆ → 0 as well as continuity of the sample path of V , two consecutive measures z i+1 and z i are supposed to be very close for z = v, x, y. Consequently, we always have unit roots in z = v, x, y, and βz , βz , βz → p 1 as long as ∆ → 0 sufficiently quickly, as derived in the previous sections. Indeed, there are many evidences supporting the unit-root like behavior in volatility regressions. In the empirical studies in [START_REF] Hansen | Estimating the persistence and the autocorrelation function of a time series that is measured with error[END_REF], for instance, volatility regressions at daily frequency are considered for 29 assets in the Dow Jones industrial average. The range of parameter estimates for the coefficient of the first order autoregression with realized variances are [0.611, 0.887] for the OLS and [0.895, 1.037] for the IV with a lagged realized variance as instrument. They also find that the volatility processes are highly persistent, and they fail to reject the unit root hypothesis at the 1% level for some volatility processes.

Simulations

In this section, we study by simulation the behavior of the Hill tail index estimator as well as the OLS and some IV estimators. For our simulations, we use the GARCH diffusion (2.7) with three sets of parameters. The first one is (κ 0 , µ 0 , σ 2 0 ) = (0.0350, 0.6360, 0.0207) which implies that the corresponding V t has a finite second moment since ψ 0 = σ 2 0 /(2κ 0 ) = 0.296 < 1. This set of parameters was used by Andersen and [START_REF] Andersen | Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts[END_REF] as implied from the (weak) daily GARCH(1,1) model estimates for the DM/dollar from 1987 through 1992 using the temporal aggregation results of [START_REF] Drost | Temporal Aggregation of Garch Processes[END_REF] and [START_REF] Drost | Closing the GARCH Gap: Continuous Time GARCH Modeling[END_REF]; the same parameters were used by [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF].

To consider a process with an unbounded variance, we consider two other sets of parameters by keeping the same κ 0 and µ 0 , while we multiply σ 2 0 by 4 and 16, corresponding to ψ 0 = 1.183 and ψ 0 = 4.732, that is (κ 0 , µ 0 , σ 2 0 ) = (0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312). Clearly, the third model has thicker tails than the second one.

The simulation samples are generated by the Euler discretization at 10 seconds for T = 250, 500, 1000 days corresponding to 1, 2 and 4 years. We assume that the market is open 24 hours. For each day (∆ = 1), we set the daily spot variance as the spot variance at the end of the day, while we compute the integrated variance by the numerical integration of the simulated spot variance process at 10 seconds. As for the realized variance, we analyze the frequency effects by considering three different frequencies: 10 minutes (δ/∆ = 1/144), 5 minutes (δ/∆ = 1/288) and 1 minute (δ/∆ = 1/1440). For each sample, we get rid of the first five days to reduce the effect of the initial value, and we do 10,000 replications.

Tail Index

We start by studying the properties of the Hill estimator by estimating the tail index of the returns, spot and integrated volatility of the GARCH diffusion model. In an important contribution, [START_REF] Nelson | ARCH Models as Diffusion Approximations[END_REF] proved that when the length of time between observations goes to zero, the returns follow (up to a scaling factor) a Student distribution with degree of freedom ν 0 = 2 + 4κ 0 /σ 2 0 = 2 + 2/ψ 0 . Consequently, the tail index of the return is ν 0 which equals 8.75 for Model 1, 3.69 for Model 2 and 2.43 for Model 3.

Likewise, the stationary distribution of any stationary scalar diffusion process is well known and proportional to the speed density function m(•) defined in (2.6). One can easily show that m(v) ∼ v -2-1/ψ 0 when v → ∞, implying that the tail index of the spot variance V t equals 1 + 1/ψ 0 . Consequently, the tail index of the returns equals the double of the spot variance's tail index when the length of time between observations goes to zero.

Unfortunately we do not know the tail indexes of the integrated and realized variances. There is no general result connecting the tail of a process with the tail of the temporal aggregation version of it.

Figure 2 depicts the average estimator of the tail index of the returns, the spot variance, the integrated variance and the three realized volatility measures of the three models. The averages are computed over 10,000 replications of samples with 1,000 observations each. The top-left panel in Figure 2 depicts the tail index of daily returns. If Nelson's approximation is good, the true tail index should be 8.75 for Model 1, 3.69 for Model 2, and 2.43 for Model 3. The simulations suggest that there is negative bias in the Hill estimator, which is quite small for low values of k (we do not use the subscript n) and increases when k increases. However the order of the tails is coherent across models. The bias is maybe genuine, or because Nelson's approximation is not good for our sample frequency. The middle-left panel in Figure 2 depicts the tail index of the spot variance. The tail index should be 4.38 for Model 1, 1.85 for Model 2, and 1.22 for Model 3. There is clearly a positive bias when k is small and the bias decreases when k is moderately large. Again, the order of the tails is coherent across models with the right magnitudes. The bottom-left panel in Figure 2 depicts the tail index of the integrated variance for which we do not know the true tail index. The plots are quite similar to those of the spot variance. The right panels in Figure 2 depict the tail index of the three realized volatility measures for which we do not know the true index. The graphs are close to those of the integrated variance, especially for the bottom-right panel that corresponds to realized variance computed with 1-minute returns.

OLS and IV Estimations

We now turn to study the empirical distributions of the OLS and IV estimators. We keep the three models of the GARCH diffusion (2.7), with three sample sizes, 250, 500, and 1,000.

We start by considering the regression

v i+1 = α + βv i + u i+1 , with v i = V i∆ .
We will focus on the slope parameter β. It is well known that β equals exp(-κ∆) when the spot variance has a finite second moment. However, we proved in (2.10) that the same result holds when V t is stationary and has a finite first moment. Therefore, the slope of interest is exp(-κ∆) for the three models considered in this section. When ∆ is fixed and the second moment of V t is bounded, the OLS estimator of β is consistent. Characterizing the fixed ∆ asymptotics of the OLS is difficult when the second moment of V t is not finite. However, we may deduce from Theorem 3.4 (see also Remark 3.3 (d)) that the OLS is inconsistent. However, IV method is consistent when the Cauchy estimator is used.

The left column in Figure 3 depicts the empirical distribution of the OLS and IV estimators of the slope coefficient. The top panel deals with Model 1 for which the second moment is bounded, while the middle and bottom panels deal respectively with Models 2 and 3 for which the second moment of V t is unbounded. The figures are coherent with the theory. For Model 1 (top-left panel), both OLS and IV estimators look consistent with better properties when the sample size increases. However, the OLS estimator presents a bias and looks inconsistent, as expected by our theory, for Model 2 (middle-left panel) and especially Model 3 (bottom-left panel) which present very fat tails. In contrast, the Cauchy estimator looks consistent for the two models, even though there is some bias that decreases when the sample sizes increases.

In practice, the spot variance process is not observed. It is therefore important to focus on feasible methods based on the observed realized variance processes. Accordingly, we consider the multi-period moment restriction (2.11) which is always valid for the spot and integrated variances, and is valid for the realized variance when the drift D t is zero as in our simulations.7 Consequently, we consider the moment condition

E[r(z i-2 )(z i -α -βz i-1 )] = 0,
where z i is either the spot, the integrated or one of the three realized variance measures. We consider two IV estimators: the first one is r(z i-2 ) = z i-2 while the second one is the sign of z i-2 minus its empirical mean, that is the Cauchy estimator. For the second and third models, the first IV estimator with r(z i-2 ) = z i-2 does not fulfill the restriction E[| r(z i-2 )(z i -α -βz i-1 ) |] < ∞, and hence, we may deduce from (3.9) and (4.5) that it is not consistent for exp(-κ∆), even when ∆ → 0. However, the corresponding estimator is consistent for the first model. The second IV estimator is the Cauchy one and leads to a consistent estimator for the three models.

The right column of Figure 3 andFigures 4-5 depict respectively the empirical distribution of the slope's estimator for the five volatility measures listed above. For all figures, the Cauchy instrument based estimator looks consistent whether E(V 2 t ) < ∞ (top panels) or not (middle and bottom panels), which is coherent with the theory. Importantly, the estimator based on observed volatility measures is consistent, which is practically more relevant. As expected, the IV estimator with r(z i-2 ) = z i-2 looks consistent only for Model 1 (top panels), but it looks inconsistent for Models 2 and 3 (middle and bottom panels), with a larger bias for Model 3 (bottom panels).

Conclusion

Fat tails are a well-known empirical fact of financial returns. Surprisingly, the realized volatility literature has ignored this fact. After showing empirically that the second moment of several realized variance measures is probably unbounded, we theoretically studied the limiting behavior of the OLS estimator of simple autoregressions of a spot, integrated and realized variances. We proved that when the second moment of the spot variance is unbounded, the OLS estimators converge to random variables. Our theory is also valid when the second moment of the spot variance is bounded. In this case, the OLS estimates converge to finite and deterministic quantities which are the same ones derived by [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF] in population regressions. Our theoretical results are based on asymptotic approximations. Both the simulations and the comparison with the results in [START_REF] Andersen | Analytical Evaluation of Volatility Forecasts[END_REF] when the spot variance has a finite second moment corroborate the good quality of our approach.

In order to derive more positive results, we considered a GARCH diffusion process with an unbounded second moment for the variance process and then we provided a consistent estimation method based on an instrumental variable approach where the instrument is the sign of the lagged value of the variable of interest.

There is an important question that should be addressed. It concerns the forecast that one should compute under fat tails in a non-parametric setting. Various approaches could be considered like different loss functions or nonlinear transforms of the variable of interest. This question is currently under investigation. Figure 2 depicts the average estimator of the tail indexes over 10,000 simulations of a sample with 1,000 observations of the GARCH diffusion model. Three designs are considered: Model 1 corresponds to (κ 0 , µ 0 , σ 2 0 ) = (0.0350, 0.6360, 0.0207), while Models 2 and 3 correspond respectively to (0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312).

Left Column: The first panel depicts the tail index of daily returns; the second panel depicts the tail index of the daily spot volatility while the third one depicts the tail of the daily integrated volatility.

Right Column: The three panels depict the tail index of the daily realized volatility (RV) with different frequencies: the first panel with 10 minute-returns RV; the second panel with 5 minutereturns RV; the last panel with 1 minute-returns RV. Left Column: The OLS and IV estimators of the autoregression of order one. The instrument of the IV estimator is the sign of the centered lagged value of the spot volatility.

Right Column: Two IV estimators are considered for the multi-period-moment restrictions. The first instrument is the two lags of spot volatility, while the second instrument is the sign of the centered value of the first instrument.

  Figure 1 (b) depicts the Hill index of the returns on the left panel and the realized volatility on the right panel for the three periods, while Figure 1 (c) depicts those of the bipower (left panel) and threshold (right panel) measures.

  Assumption 4.1. (a) r is three times continuously differentiable on R with r (z) > 0 for all z ∈ R, and (b) r and its derivatives are all majorized by the function ω in Assumption 3.1.

  Proposition 4.1. Let Assumptions 3.1-3.5 and 4.1 hold.

  1 (a) and (b) are generalizations of Lemma 3.1 (a) and (b), respectively. Similarly, Proposition 4.1 (c) is a generalization of Proposition 3.2. Moreover, one may want to adjust the sample mean of z i in the IV estimation by using r(z i-k -z N ) as an instrument for β(k) z instead of r(z i-k ). The following corollary provides the corresponding asymptotic approximations of the IV estimators β(k) z . Corollary 4.2. Let the conditions in Proposition 4.1 holds. If r(z i-k -z N ) is used as an instrument for β(k)

  Theorem 5.1. (a) If Assumption 5.1 (a) and (5.3)-(5.4) hold, then βz → p β z . (b) If Assumption 5.1 and (5.3)-(5.6) hold, then
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 1 Fig. 1. Estimation of Tail Indexes (a) Returns and volatility measures

Figure 1

 1 Figure 1 (a): The first panel depicts the tail index of the daily return (open-to-close), and the second panel depicts the tail index of the realized volatility, the bipower and the threshold volatility measure.

Figure 1

 1 Figure 1 (b): The first panel depicts the tail index of the daily return (open-to-close), and the second panel depicts the tail index of the realized volatility.

Figure 1

 1 Figure 1 (c): The first panel depicts the tail index of the bipower volatility measure (open-to-close), and the second panel depicts the tail index of the threshold volatility measure.

Fig. 2 .

 2 Fig. 2. Tail indexes for returns and volatility measures of GARCH diffusions

Fig. 3 .

 3 Fig. 3. OLS and IV estimations with spot volatility (a) Model 1 (κ 0 , µ 0 , σ 2 0 ) = (0.0350, 0.6360, 0.0207)

When one considers a continuous time model without jumps and without market microstructure noise, the fourth moment of the intra-day returns is unbounded if and only if the second moment of the instantaneous variance is infinite.

We are very grateful to Jean Jacod for providing us the proof of the result.

Note that (3.2) is an extension of the "integral-to-spot device" in[START_REF] Mykland | Assessment of Uncertainty in High Frequency Data: The Observed Asymptotic Variance[END_REF] to the large T setting.

A similar downward bias in volatility regressions, but for a discrete time ARMA process, can be found in[START_REF] Hansen | Estimating the persistence and the autocorrelation function of a time series that is measured with error[END_REF].

In Section 2.1, m s is defined as m s = (m/s ) • s -1 which is the speed density of natural scale diffusion V s = s(V ) of the underlying diffusion V .

The signed power estimator can be modified by replacing sign(z i )|z i | c with sign(z i -zN )|z i -zN | c so that the resulting estimator can adjust its sample mean.

The presence of a drift will introduce a small bias that will disappear when the length of the intra-day returns δ goes to zero.
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Figure 4 depicts the empirical distribution of the IV estimators for the multi-period-moment restrictions of daily spot volatility of the GARCH diffusion model. The figures are based on 10,000 simulations for three different sample sizes (250, 500 and 1,000). Two IV estimators are considered for the multi-period-moment restrictions. The first instrument is the two lags of spot volatility, while the second instrument is the sign of the centered value of the first instrument. The left and right columns are for the integrated and 1-minute realized volatilities, respectively. Figure 5 depicts the empirical distribution of the IV estimators for the multi-period-moment restrictions of daily spot volatility of the GARCH diffusion model. The figures are based on 10,000 simulations for three different sample sizes (250, 500 and 1,000). Two IV estimators are considered for the multi-period-moment restrictions. The first instrument is the two lags of spot volatility, while the second instrument is the sign of the centered value of the first instrument. The left and right columns are for the 5-minutes and 10-minutes realized volatilities, respectively.