
HAL Id: hal-03142459
https://hal.science/hal-03142459v1

Preprint submitted on 16 Feb 2021 (v1), last revised 28 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Oracle Proofs of Proximity to Algebraic
Geometry Codes

Sarah Bordage, Jade Nardi

To cite this version:
Sarah Bordage, Jade Nardi. Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes.
2021. �hal-03142459v1�

https://hal.science/hal-03142459v1
https://hal.archives-ouvertes.fr

Interactive Oracle Proofs of Proximity to Algebraic Geometry
Codes

Sarah Bordage∗1, 2 and Jade Nardi †2, 1

1LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris
2Inria

February 16, 2021

Abstract

In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes.
An AG code C = C(C,P, D) is a vector space associated to evaluations on P of functions in
the Riemann-Roch space LC(D). The problem of testing proximity to an error-correcting code
C consists in distinguishing between the case where an input word, given as an oracle, belongs
to C and the one where it is far from every codeword of C. AG codes are good candidates to
construct short proof systems, but there exists no efficient proximity tests for them. We aim to
fill this gap.

We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes
by generalizing an IOPP for Reed-Solomon codes, known as the FRI protocol [BBHR18]. We
identify suitable requirements for designing efficient IOPP systems for AG codes. Our approach
relies on Kani’s result that splits the Riemann-Roch space of any invariant divisor under a group
action on a curve into several explicit Riemann-Roch spaces on the quotient curve [Kan86].
Under some hypotheses, a proximity test to C can thus be reduced to one to a simpler code C ′.
Iterating this process thoroughly, we end up with a membership test to a code with significantly
smaller length. In addition to proposing the first proximity test targeting AG codes, our IOPP
admits quasilinear prover arithmetic complexity and sublinear verifier arithmetic complexity
with constant soundness for meaningful classes of AG codes. As a concrete instantiation, we
study AG codes on Kummer curves, which are potentially much longer than Reed-Solomon
codes. For this type of curves, we manage to extend our generic construction to reach a strictly
linear proving time and a strictly logarithmic verification time.

∗sarah.bordage@lix.polytechnique.fr
†jade.nardi@inria.fr

1

sarah.bordage@lix.polytechnique.fr
jade.nardi@inria.fr

1 Introduction
Under the generic term of arithmetization ([LFKN90]), algebraic techniques for constructing proof
systems using properties of low-degree polynomials have emerged from the study of interactive
proofs (IPs, [GMR85]). Arithmetization techniques have been enhanced and fruitfully applied
to other broad families of proof systems since then, including probabilistically checkable proofs
(PCPs, [BFLS91, AS92, ALM+98]). To construct a proof system for a non-deterministic relation
R, arithmetization transforms any instance-witness pair (x,w) into a word that belongs to a certain
error-correcting code C if (x,w) ∈ R, and is very far from C otherwise.

Since the seminal works of Kilian [Kil92] and Micali [Mic95], a lot of efforts have been put into
making PCPs efficient enough to obtain practical sublinear non-interactive arguments for delegating
computation. In search of reducing the work required to generate such probabilistic proofs, as well
as the communication complexity of succinct arguments based on them, Interactive Oracle Proofs
(IOPs) have been introduced as a generalization of both PCPs, IPs and IPCPs ([KR08]).

Considering for the first time univariate polynomials instead of multivariate ones, [BS08, Din07]
constructed a PCP with quasilinear proof length and constant query complexity. Since then, ef-
ficient transparent and zero-knowledge non-interactive arguments have been designed by relying
on Reed-Solomon (RS) codes, including [AHIV17], [BBHR19], [BCR+19], [BCG+19], [KPV19],
[COS20] – to mention only the most recent ones. At some point, aforementioned sublinear argu-
ments require a proximity test to RS codes. As a solution, one can use a prover-efficient Reed-
Solomon IOP of Proximity, which is an interactive variant of PCP of Proximity introduced by
[BCG+17]. The state-of-the-art IOPP for RS codes is known as the FRI protocol ([BBHR18],
further improved in [BKS18], [BGKS20], [BCI+20]).

In 2013, [BKK+13] construct a PCP with linear proof length and sublinear query complexity for
boolean circuit satisfiability by relying on AG codes. More precisely, for any ε > 0 and instances of
size n, their PCP has length 2O(1/ε)n and query complexity nε. When aiming at optimal proof length
and query complexity as small as possible, this result remains the state-of-the-art PCP construction.
By using AG codes, the authors of [BKK+13] reduce the field size to a constant, which avoids a
logarithmic blowup in proof bit-length (occuring e.g. in [BS08] when using univariate polynomials
of degree m to encode binary strings of length m). In [BKK+13], the authors point out that they
are not able to apply proof composition ([AS92]) to reduce the query complexity of their PCP
because decision complexity of the PCP verifier is too large (polynomial in the query complexity).

Improving on [BKK+13], [BCG+17] construct an interactive oracle proof (IOP, [BCS16, RRR16])
for boolean circuit satisfiability with linear proof length and constant query complexity. However,
prover and verifier complexities are still super-linear. The IOP of [BCG+17] invokes the sumcheck
protocol [LFKN90] on O(1)-wise tensor product of AG codes, which exponentially deteriorates
the rate of the base code. Then, they use Mie’s PCP of Proximity for non-deterministic languages
[Mie09] to test proximity to the tensored code. Both constructions benefit from the use of AG codes
to get constant size alphabet and linear proof bit-lengths. However, prover and verifier running
times prevent them to be implemented for verifying meaningful computations.

A recent work of [RR20] constructs an IOPP for any deterministic language which can be decided
in time poly(n) and space no(1), with constant round, constant query complexity and linear proof
length. However, prover’s running time is poly(n). We exhibit families of AG codes for which one
can construct a proximity test with linear proving time and logarithmic verification.

The FRI protocol for RS proximity testing admits linear prover time, logarithmic verifier time
and logarithmic query complexity. A natural question is whether one can construct an IOPP
targeting AG codes with similar efficiency parameters. Indeed, AG codes [Gop77], as evaluations of
a set of functions at some designated points on a given curve, extend the notion of Reed-Solomon

2

codes and inherit many of their interesting properties. A key feature for a family of codes to
be suitable for arithmetization is a multiplication property [Mei13], namely the component-wise
multiplication of two codewords results in codewords in a code whose minimum distance is still
good. This multiplication property actually emulates multiplication of low-degree polynomials.
AG codes not only feature this multiplication property but may also have arbitrary large length
given a fixed finite field F, unlike RS codes. For concrete efficiency, complexity measures such as
proof length, query complexity, prover time and verifier time are closely examined and reducing
the size of the alphabet has a direct impact on the binary complexities.

Keeping applications to proof systems in mind, it can be noticed that the running time of the
prover is bounded from below by the time needed to encode codewords during arithmetization.
Prover complexity is actually the main bottleneck in deploying zero-knowledge proof systems for
large computations. In this direction, one-point AG codes on some family of curves, including
Kummer type curves, are especially appealing. For instance, they have recently been shown to
have subquadratic encoding [BRS20].

We dedicate a part of our study to the particular case of AG codes on Kummer type curves.
To encourage the search for suitable families of AG codes, we study generic conditions that are
conducive to proximity testing. By constructing an efficient IOPP for AG codes, we hope that
it opens up new possibilities for designing efficient probabilistic proof systems with short proofs,
without requiring tensor product codes. A first step in this direction could be to use the IOP of
[BCG+17] as a starting point, or to find an analogue of the univariate sumcheck protocol introduced
by [BCR+19].

1.1 Definition of an IOPP for a code C

Let C be an evaluation code with evaluation domain S of size n and alphabet Σ (i.e., C ⊆ ΣS).
Throughout this paper, we measure the distance between u, u′ ∈ ΣS with the relative Hamming
distance ∆, namely the ratio of coordinates in which they differ. For a code C ⊆ ΣS , the distance of
u from C, denoted ∆(u,C), is the minimal distance between u and a codeword of C. For u ∈ ΣS ,
if ∆(u,C) > δ, we say that u is δ-far from C and δ-close otherwise. As mentioned earlier, we
address the problem of proximity testing to a code C, i.e. given a code C and assuming a verifier
has oracle access to a function f : S → Σ, distinguish between the case where f ∈ C and f is δ-far
from C. In this paper, we focus on the case where C is an AG code. We recall that an algebraic
geometry (AG) code C = C(C,P, D) is a vector space formed by the evaluations on P ⊂ C of
functions in the Riemann-Roch space LC(D). We address this problem in the IOP model, which
has demonstrated to be particularly promising for the design of proof systems in the past few years.

We are specifically interested in public-coin IOP of Proximity (IOPP) for a family of evaluation
codes C , thereby we specify our definition for this particular setting. An IOPP (P,V) for a code C
is a pair of randomized algorithms, where both P (the prover) and V (the verifier) receive as explicit
input the specification of a code C ⊆ ΣS . We define the input size to be n = |S|. Furthermore, a
purported codeword f : S → Σ is given as explicit input to P and as an oracle to V. The prover
and the verifier interact over at most r(n) rounds and during this conversation, P seeks to convince
V that the purported codeword f belongs to the code C.

At each round, the verifier sends a message chosen uniformly and independently at random,
and the prover answers with an oracle. Verifier’s queries to the prover’s messages are generated by
public randomness and performed after the end of the interaction with the prover. Thus, such an
IOPP is in particular a public-coin protocol (or Arthur-Merlin [Bab85]).

Let us denote 〈P↔ V〉 ∈ {accept, reject} the output of V after interacting with P. The notation

3

Vf means that f is given as an oracle input to V. We say that a pair of randomized algorithms
(P,V) is an IOPP system for the code C ⊆ ΣS with soundness error s : (0, 1] → [0, 1], if the
following conditions hold:

Perfect completeness: If f ∈ C, then Pr[〈P(C, f)↔ Vf (C)〉 = accept] = 1.

Soundness: For any function f ∈ ΣS such that δ := ∆(f, C) > 0 and any unbounded malicious
prover P∗, Pr[〈P∗ ↔ Vf (C)〉 = accept] ≤ s(δ).

The length of any prover message is expressed in number of symbols of an alphabet a(n). The
sum of lengths of prover’s messages define the proof length l(n) of the IOPP. The query complexity
q(n) is the total number of queries made by the verifier to both the purported codeword f and the
oracle sent by the prover during the interaction. The prover complexity tp(n) is the time needed
to generate prover messages during the interaction (which does not include the input function f).
The verifier complexity tv(n) is the time spent by the verifier to make her decision when queries
and query-answers are given as inputs.

Let RC be the relation consisting of instance-witness pairs (C, f) where C ⊂ ΣS lies in C and
f : S → Σ. We say that RC belongs to the complexity class IOPP[a, r, l, q, δ, s] if on inputs of size
n, there is an IOPP system testing proximity of f to C with alphabet a(n), round complexity r(n),
proof length l(n), query complexity q(n), proximity parameter δ(n) and soundness error s(n).

1.2 Our results
Let us review the main contributions of this paper.

Construction of an IOPP for foldable AG codes. Firstly, we give a criterion for building
an efficient IOPP for AG codes. Let C0 be a curve defined over a finite field F, D0 a divisor on the
curve C0 and P0 ⊂ C(F). This defines an AG code C0 = C(C0,P0, D0). We construct a sequence of
curves

C0 C1 C2 · · · Cr,
π0 π1 π2 πr−1

and a sequence of AG codes Ci := C(Ci,Pi, Di) of decreasing length to turn the proximity test of
the function f (0) = f to C0 into a membership test of a function f (r) in Cr. The above sequence of
curve is designed so that Ci+1 arises as the quotient of the curve Ci by a cyclic group Z/piZ under
the quotient map πi. We show that such a procedure is possible if a large enough solvable group G
acts on the curve C0 and under some hypotheses on the divisor D0 overviewed in Section 1.3.2 and
detailed in Section 3.1. A code fulfilling all the conditions we require will be called foldable.

Next, we construct an IOPP for testing proximity to any foldable AG code C(C0,P0, D0) of
blocklength n with linear proof length, sublinear query complexity and constant soundness. Effi-
ciency parameters of this protocol, called AG-IOPP, are captured by the following theorem, which
is proved in Theorem 4.6.

Theorem 1.1 (informal). Let RC be the relation of instance-witness pairs ((C0,P0, D0), f
(0)) such

that C0 = C(C0,P0, D0) is a foldable AG code and f (0) ∈ C0. We denote n = |P0|. As C0 is a
foldable code, there is a solvable group G acting on C0. Assume there exists e ∈ (0, 1) such that
|G| > ne. For every proximity parameter δ ∈ (0, 1), there exists a public-coin IOPP system (P,V)

4

with perfect completeness putting RC in the complexity class

IOPP

alphabet a(n) = F
randomness k(n) = O(log n)
rounds r(n) = O(log n)
proof length l(n) = O(n)
query complexity q(n) = O(n1−e)
proximity parameter δ(n) = δ
soundness error s(n) = 1/2

.

We emphasize that the larger is the group G acting on C0 compared to n, the smaller are the
query complexity and the verifier decision complexity of the protocol.

AG-IOPP with linear prover and logarithmic verifier on Kummer curves. When C0 is
a Kummer curve of the form yN = f(x), we show how to choose P0 and D0 to make the AG code
C0 = C(C0,P0, D0) foldable. We benefit from the action of the group Z/NZ on C0 that yields a
quotient curve C0/(Z/NZ) isomorphic to the projective line. This enables us to define a sequence
of codes (Ci)0≤i≤s such that the code Cs is a Reed-Solomon code of dimension (degD0)/N + 1,
which is itself a foldable AG code. Leveraging this fact, we extend the IOPP for generic foldable
AG codes to construct a very effective AG-IOPP for codes on Kummer curves, with linear prover
running time and strictly logarithmic verification (with respect to the blocklength of the first code).
Theorem 1.2 is thus an improvement over Theorem 1.1 for the special case of Kummer curve.

Theorem 1.2 (informal). Let RC′ be the relation of instance-witness pairs ((C0,P0, D0), f
(0)) such

that C0 = C(C0,P0, D0) is a foldable AG code, C0 is a Kummer curve of equation C0 : yN = f(x)
such that deg f ≡ −1 mod N , N is a smooth integer, coprime with |F|, and f (0) ∈ C0. We denote
n = |P0|. For every proximity parameter δ ∈ (0, 1), there exists a public-coin IOPP system (P,V)
with perfect completeness putting RC′ in the complexity class

IOPP

alphabet a(n) = F
randomness k(n) = O(log n)
rounds r(n) = O(log n)
proof length l(n) = O(n)
query complexity q(n) = O(log n)
proximity parameter δ(n) = δ
soundness error s(n) = 1/2

.

Prover complexity is tp(n) = O(n) and verifier decision complexity is tv(n) = O(log n).

It is worth noting that the Hermitian curve defined over Fq2 by yq+1 = xq + x satisfies the
hypotheses of the previous theorem. It is well known to be maximal, i.e. it has the maximum
number of rational points with respect to its geometry. We thus provide family of codes much
longer than Reed-Solomon codes that are endowed with a proximity test as efficient as the FRI
protocol.

Remark 1.3 (On the concrete size of non-interactive arguments). Our public-coin IOPP can
be compiled into a non-interactive argument via [BCS16]’s transformation, which consists in first
applying Kilian’s compiler [Kil92] at each round of interaction to commit to oracle f (i) using a
Merkle hash tree represented by its root rt(i). As in FRI, each set of pi points in Pi that have
the same image by πi is represented by a single leaf of the Merkle tree rt(i). Then, following

5

Micali’s scheme [Mic95], such an interactive argument is turned into a non-interactive one by asking
the prover to simulate the verifier’s random messages [BCS16]. Each simulated-query answer to
oracle f (i) is accompanied with a Merkle proof of size log

(
1
pi
|Pi|
)

. The resulting communication
complexity is linear in q(n) and logarithmic in both l(n) and the field size |F| (see [BCS16] for
further details).

1.3 Technical overview
Our IOPP construction relies on the generalization of the FRI protocol to AG codes. Let us
first recall some ideas behind the construction of FRI protocol (see e.g. [BKS18] for a detailed
presentation). Then we shall describe how we tailor these ideas and which difficulties arise to
construct our IOPP.

1.3.1 The FRI protocol for RS proximity testing

Let k be a positive integer and ρ ∈]0, 1[such that ρ = 2−k. The FRI protocol allows to check
proximity to the Reed-Solomon code RS [F,P, ρ] :=

{
f ∈ FP | deg f < ρ |P|

}
by testing proximity

to RS [F,P ′, ρ] with |P ′| < |P|. The FRI protocol considers a family of linear maps FP → FP ′ which
randomly “fold” any function in FP into a function in FP ′ . We present in a simplified way three
key ingredients that enable the FRI protocol to work.

1. Splitting of polynomials. The FRI protocol is based on the following observation: for any
polynomial f of degree deg f < ρn, there exist two polynomials g, h of degree < 1

2ρn such
that

f(x) = g
(
x2
)
+ x · h

(
x2
)
. (1)

One may view such a decomposition as the result of the splitting of the space of polynomials
of degree less than ρn into two copies of the space of polynomials of degree less than ρn/2.

2. Randomized folding. Choose P to be a multiplicative group of order 2r generated by ω ∈ F.
Then, define P ′ = 〈ω2〉 = {x2 | x ∈ P}. Set π : F → F to be the map defined by π(x) = x2,
observe that π(P) = P ′. Moreover, |P ′| = |P| /2. The structure of the evaluation domain will
allow to reduce the problem of proximity to one of half the size at each round of interaction.
Based on the decomposition (1), define a folding operator Fold [·, z] : FP → FP ′ for any z ∈ F
as follows:

Fold [f, z] := g + zh.

If deg f < ρn, both functions g : P ′ → F and h : P ′ → F belong to RS [F,P ′, ρ]. Then for any
random challenge z ∈ Fq, the operator Fold [·, z] maps RS [F,P, ρ] into RS [F,P ′, ρ].

3. Distance preservation after folding. Except with small probability over z, we have that if
∆(f,RS [F,P, ρ]) ≥ δ, then

∆
(
Fold [f, z] ,RS

[
F,P ′, ρ

])
≥ (1− o(1))δ.

The protocol then goes as follows: the verifier sends a random challenge z ∈ F and the prover
answers with an oracle function f ′ : P ′ → F, which is expected to be equal to Fold [f, z] : P ′ → F.
At the next round, f ′ becomes the function to be folded, and the process is repeated for r rounds.
Each round reduces the problem by half, eventually leading to a function f (r) evaluated over a small
enough evaluation domain. This induces a sequence of Reed-Solomon codes of strictly decreasing

6

length. The code rate remains unchanged, and so does the relative minimum distance. The final
test consists in testing that f (r) belongs to the last RS code.

Perfect completeness follows from Item 2. Prover and verifier efficiencies of the FRI protocol
come from the possibility of determining any value of Fold [f, z] at a point y ∈ P ′ with exactly two
values of f , namely on the set π−1({y}). Consequently, a single test of consistency between f and
f ′ requires only two queries to f and one query to f ′.

Soundness of the protocol relies notably on Item 3. It is proved using results about distance
preservation under random linear combinations, that could be roughly stated as follows: “Let
V ⊂ Fn

q be a linear code and g, h ∈ Fn
q . As long as δ is small enough, if we have ∆(g + zh, V) ≤ δ

for enough values z ∈ Fq, then both g and h are δ′-close to V , where δ′ = (1 − o(1))δ.” (see
[BBHR18, BKS18, BGKS20, BCI+20]). Based on that, one can deduce that if Fold [f, z] = g + zh
is δ-close to V for enough values of z, then both g and h are δ′-close from V . The idea of the proof
of Item 3 is to exhibit a codeword which is δ-close from f , based on the decomposition of Item 1.

Remark 1.4. We point out that Item 3 holds because the functions g and h appearing in the
decomposition (1) have exactly the same degree. This arises from the crucial fact that the FRI
protocol considers only RS code of dimension a power of 2. This means that the RS code is defined
by polynomials of degree at most an odd bound.

Let us give glimpse of what happens when f is expected to have degree at most an even integer,
say 2d. The degrees of the functions g and h appearing in the decomposition of f (Item 1) are
respectively deg g ≤ d and deg h ≤ d − 1. Therefore, if deg f ≤ 2d, then g + zh corresponds to a
polynomial of degree ≤ d. However, knowing that g + zh is a polynomial of degree ≤ d with high
probability on z only tells us that both g and h are of degree ≤ d, which is not enough to deduce
that f has degree ≤ 2d and not 2d+1. It is worth noting that words corresponding to a polynomial
of degree 2d+ 1 are among the farthest words from the RS code of degree ≤ 2d. In the univariate
case, one can overcome this obstacle by supposing not only deg g, deg h ≤ d but also deg(νh) ≤ d
for a degree-1 polynomial function ν. This implies that deg h < d, hence deg f ≤ 2d.

1.3.2 Our IOPP for AG proximity testing

Let C be a curve defined over a finite field F and C = C(C,P, D) be an AG code. We aim to adapt
the three ingredients of the FRI protocol to the AG context.

Group actions and Riemann-Roch spaces. The splitting of the polynomial f into an even
and an odd part in Item 1 comes from the action of a multiplicative group of order 2 on the eval-
uation set P. This observation is also true with the actual FRI protocol, which sets π to be an
affine subspace polynomial. This phenomenon occurs in a more general framework. As soon as a
group Γ acts on the curve C, its action naturally extends on the functions on C. The representation
theory expresses any Riemann-Roch space associated to a Γ-invariant divisor on C as a sum of
vector spaces that Kani [Kan86] proved to arise from some Riemann-Roch spaces on the quotient
curve C/Γ through the projection map π : C → C/Γ.

Let us state Kani’s result for a cyclic group Γ = 〈γ〉 of prime order p. The theorem first states
that there exists a function µ on C such that γ · µ = ζµ where ζ is a primitive pth root of unity.
Then, for any divisor D that is Γ-invariant, any function f in the Riemann-Roch space LC(D) can

7

be uniquely written

f =

p−1∑
j=0

µjfj ◦ π with fj ∈ LC/Γ(Ej), (2)

where the divisors Ej on the quotient curve are explicitly expressed in terms of the divisor D, the
projection π and the function µ (see Theorem 2.2 for details).

Assume that no point of P is fixed by Γ, i.e. for every P ∈ P and j ∈ {1, . . . , p− 1}, γj ·P 6= P .
Set P ′ = π(P). Polynomial interpolation enables the determination of fj(P) for any point P ∈ P ′

with exactly p values of f , namely on the set π−1({P}). This means that the decomposition (2)
can be written for any function in FP , not only for elements of LC(D).

Folding operator. From the decomposition (2) above, we want to define a family of folding op-
erators (Fold [·, z])z∈F from FP to FP ′ and a code C ′ = C(C/Γ,P ′, D′) such that Fold [·, z] (C) ⊆ C ′.

In a first approach, one could choose to define the folding operators similarly to the FRI protocol
by setting for z ∈ F, Fold [f, z] =

∑p−1
j=0 z

jfj where the functions fj come from the decomposition
(2) of f ∈ FP . With this definition, the code C ′ has to be associated to a divisor D′ on C/Γ such
that each Riemann-Roch space LC/Γ(Ej) can be embedded into LC/Γ(D

′). Note that we would
like the rates of C and C ′ to be roughly equal to prevent the relative minimum distance from
dropping. In other words, we need LC/Γ(D

′) to be not too large with respect to the components
LC/Γ(Ej). The best scenario is when the divisor D yields a decomposition of LC(D) as p “copies”
of the same Riemann-Roch space, as it is the case with Reed-Solomon codes of dimension a power
of 2. Unfortunately, to the best of our knowledge, it is unlikely that all divisors Ej involved in the
decomposition of f (Equation (2)) are the same (or even equivalent) if C is not the projective line.
We are then facing an issue analogous to the one described in Remark 1.4 on P1.

Therefore, such a choice of the folding operators does not guarantee the soundness of our
protocol. We thus aim to adapt the idea at the end of Remark 1.4 to the AG setting. We introduce
some balancing functions νj such that, for every fj ∈ C ′, if the product νjfj also lies in C ′, then
the function fj belongs to the desired Riemann-Roch space LC/Γ(Ej). Defining such a balancing
function νj is tantamount to specify its pole order at the points supporting the divisor D′. The
existence of all the functions νj thus depends on the Weierstrass semigroup of these points (see
[HKT13, Section 6.6] for definition) and does not hold for any divisor D′. If such functions exist
for a divisor D′, we say that D′ is compatible with D. Finding a convenient divisor D′ compatible
with a given divisor D is definitely the trickiest part in defining the folding operators properly.

To preserve soundness, we ask for D′ to coincide with the divisor Ej with the largest Riemann-
Roch space. Without loss of generality, we assume that D′ = E0. If E0 is D-compatible, we shall
embed additional terms in the folding operators to take account of the balancing functions. We
shall use more randomness so as not to double the degree in z to avoid a loss in soundness. For
(z1, z2) ∈ F2, we set

Fold [f, (z1, z2)] =

p−1∑
j=0

zj1fj +

p−1∑
j=1

zj2νjfj .

We prove that Fold [·, (z1, z2)] (C) ⊆ C ′, the function Fold [f, (z1, z2)] ∈ FP ′ can be locally computed
from p values of f , and Fold [·, (z1, z2)] preserves the distance to the code.

Sequence of “foldable” AG codes. With the goal of iterating the folding process in mind, we
assume that the base curve C is endowed with a suitable acting group G that we decompose into
smaller groups to fragment its action and create intermediary quotients

8

C0 C1 C2 · · · Cr,
π0 π1 π2 πr−1

where the morphism πi : Ci → Ci+1 is the quotient map by a cyclic group Γi ' Z/piZ. A condition
on the group G to have such a sequence is the solvability.

A code C = C(C,P, D) is said to be a foldable AG code (Definition 3.4) if we are able to construct
a sequence of AG codes Ci := C(Ci,Pi, Di) that support a family of randomized folding operators
Fold [·, z] : FPi → FPi+1 with the desirable properties for our IOPP (i.e. Fold [·, z] (Ci) = (Ci+1),
local computability, distance preservation to the code). Moreover, to ensure that the last code Cr

has sufficiently small length and to obtain an IOPP with sublinear query complexity, we require
the size of G to be greater than |P|e for a certain e ∈ (0, 1). Details are provided in Section 3.

1.4 Future works: other families of foldable AG codes
To take maximal advantage from working on AG codes rather than Reed-Solomon codes, we are
inclined to apply the AG-IOPP to very long codes from maximal curves. Many works has been
carried out on codes from the Hermitian curve [YB92, SG93, LSH97, Ren04, Mat05], and other
maximal curves [CRL90, FG10, BMZ18a, BMZ18b]. One direction towards new efficient foldable
codes is investigating these codes to study their foldability. This requires a large enough solvable
subgroup G of the automorphism groups of maximal curves, which are very rich and comprehensively
described in the literature [GMP12, Mon20]. Once the group G is chosen, the most intricate point
to determine some conditions on the divisor D to construct an interesting sequence of divisors that
fulfils the compatibility constraints. This is closely related to Weierstrass semigroups, as illustrated
in Example 3.11 for the Kummer case, which have been carefully investigated on maximal curves
in aforementioned works to display codes with excellent parameters.

Another promising research direction is exploiting the similarity of settings between foldable
codes and (asymptotically good) towers of curves. We recall that a tower of curves consists of an
infinite sequence of curves

C0 ← C1 ← . . .← Cn ← . . .

such that the number of rational points of the nth curve tends to infinity as n tends to infinity.
They play a prominent role in the history of AG codes as they define codes with outstanding length
and correction capacity [TVZ82, BBGS14]. In the AG-IOPP, we start from a proximity problem
on a code C on a curve C = C0 and we create a sequence of curves to simplify this problem. By
examining the Galois groups of the extensions in a given tower [BB09, BB11], we could process
backwards: if one wants to test proximity to an AG-code from one of the curves Cn, we could fold
all the way down the tower to the curve C0.

Finally, we chose here to ask each intermediary quotient to be cyclic essentially to split the action
of G as much as possible and to easily ensure an efficient local computability at each step. However,
Kani’s result [Kan86], from which we designed the folding operators, does not only hold for cyclic
groups. If local computability can be preserved in a more general setting - e.g. by multivariate
polynomial interpolation -, the hypotheses of the AG-IOPP could be relaxed to broaden the variety
of foldable codes.

1.5 Organization of the paper
In Section 2, we gather some basic notions and definitions around AG codes. Section 3 establishes
a valid framework for constructing AG-IOPP. We define foldable AG codes and study the example
of Kummer type curves which provide a setting checking all the aforementioned requirements. Our
IOPP construction for foldable AG codes is presented in Section 4 and a specialized variant for

9

Kummer curves is discussed in Section 5. Properties of those IOPPs are respectively stipulated in
Theorem 4.6 and Theorem 5.2. Section 6 is quite technical and is dedicated to soundness analysis.

2 Preliminaries
2.1 Definitions and notations
We start with some reminders on important terms and notations related to the theory of AG codes.
We refer readers to [TVN07, Sti93] for further details on these notions. We will always use F to
denote a finite field.

Functions and divisors on algebraic curves. Let C be an algebraic curve defined over a field
F. We denote by C(F) the set of its F-rational points and Aut(C) its automorphism group.

A divisor D on C is a formal sum of points D =
∑

nPP . We say that the divisor D is effective
if nP ≥ 0 for every point P . The degree of D equals degD :=

∑
nP . The support of D Supp(D) is

the set of points P for which the coefficient nP is non zero.
The set of divisors on the curve C forms an additive group, denoted by Div(C). It is endowed

with a partial order relation ≤ such that D ≤ D′ if D′−D is effective. An element f of the function
field F(C) of the curve C defines a divisor

(f) =
∑
P

vP (f)P

where vP (f) is the valuation of the function f at the point P . We denote by (f)0 and (f)∞ the
effective divisors such that (f) = (f)0 − (f)∞. They correspond to the loci of zeroes and poles
respectively.

Let ϕ : C → C′ be a map between two algebraic curves. It induces a pull-back map ϕ∗ : F(C′)→
F(C) defined by ϕ∗f = f ◦ ϕ for f ∈ F(C′). For D =

∑
P npP ∈ Div(C), the push-forward of D is

the divisor on C′ defined by π∗(D) =
∑

P nPϕ(P).
The Riemann-Roch space of a divisor D ∈ Div(C) is the vector space defined by

LC(D) = {f ∈ F(C) | (f) +D ≥ 0} ∪ {0}.

The subscript specifying the curve in LC(D) is omitted when it is clear from the context. If D′ ≤ D′,
then LC(D) ⊆ LC(D

′).
As usual, given a real number x, bxc denotes the biggest integer less than or equal to x and dxe

the smallest integer bigger than or equal to x.

Definition 2.1. Let D =
∑

nPP ∈ Div(C). For any positive integer n, we denote by
⌊
1
nD
⌋
∈ Div(C)

the divisor defined by ⌊
1

n
D

⌋
:=
∑⌊nP

n

⌋
P.

Algebraic geometry codes. Take D ∈ Div(C) and P ⊂ C(F) of size n := |P| such that
Supp(D) ∩ P = ∅. The Algebraic Geometry (AG) code C = C(C,P, D) is defined as the image
under the evaluation map

ev : L(D)→ Fn.

10

The integer n is called the length of C. The dimension of C is defined as its dimension as F-vector
space. We denote by ∆(C) the relative minimum distance of C, i.e.

∆(C) = min
{
∆(c, c′) | c, c′ ∈ C and c 6= c′

}
.

In particular, AG codes on C = P1 correspond to Reed-Solomon codes.
Throughout this paper, the term code will refer to a linear code, i.e. a linear subspace of Fn,

where n is the length of the code.
The AG code C is said to be one-point if the support of D consists in a single point. By the

Riemann-Roch theorem, if degD ≥ 2g − 1 where g is the genus of the curve C, then dimLC(D) =
degD − g + 1. Moreover, if degD < n, the evaluation map is injective and the Riemann-Roch
theorem gives the dimension of the associated AG code. In this case, the minimum distance is
bounded from below by n− degD.

The divisor D will always be chosen so that the map ev is injective. Therefore, the elements of
Fn will be regarded as functions in FP and elements of C simply as functions in the Riemann-Roch
space L(D).

Group and action. A finite group G is said to be solvable if there exists a sequence of subgroups
of G

G = G0 ◃ G1 ◃ · · · ◃ Gr = 1,

such that Gi+1 is a normal subgroup of Gi and each factor group Gi/Gi+1 is a cyclic group of prime
order. Such a sequence is called a composition series. If G is solvable, its cardinality equals the
product of the sizes of the factor groups.

Let C be an algebraic curve. A group Γ is said to act on the curve C if Γ is a subgroup of the
automorphism group Aut(C). The stabilizer of a point P ∈ C is the subgroup

ΓP = {γ ∈ Γ | γ · P = P} ⊂ Γ.

A divisor D =
∑

P nPP ∈ Div(C) is said to be Γ-invariant is nP = nγ·P for all P ∈ C and γ ∈ Γ.
The action of Γ on C gives a projection π : C → C/Γ onto the quotient curve C/Γ. A point

Q ∈ C/Γ is called a ramification point is the number of preimages of Q by π is not equal to |Γ|.
Equivalently, Q is a ramification point if one of its preimages has a non trivial stabilizer.

2.2 Splitting Riemann-Roch spaces according to a cyclic group of automor-
phisms

Let X be a smooth irreducible curve over a field F and let Γ be a cyclic group of order m generated
by an element γ. Assume that m and the characteristic of F are coprime and consider ζ a primitive
mth root of unity.

Set Y := X/Γ and π : X → Y be the canonical projection morphism.
Fix a Γ-invariant divisor D ∈ Div(X). We want to exhibit a relation between the Riemann-Roch

space LX (D) and some Riemann-Roch spaces on Y. The group Γ acts on the vector space LX (D)
via γ · f = f ◦ γ. By the representation theory,

LX (D) =
m−1⊕
j=0

LX (D)j ,

where LX (D)j := {g ∈ LX (D) | γ · g = ζjg}.
One of the key ingredients of this section is a theorem due to Kani [Kan86], which we reformulate

here in the case where Γ is cyclic.

11

Theorem 2.2 ([Kan86]). Assume that Γ = 〈γ〉 is cyclic of order m, coprime with |F|.

• There exists a function µ ∈ F(X) such that γ · µ = ζµ,

• LX (D)j ' µjπ∗
(
LY

(⌊
1

m
π∗ (D + j(µ))

⌋))
,

where the floor function of a divisor is given in Definition 2.1.

One can reformulate the second item of Theorem 2.2 as follows: for every f ∈ L(D), there exist
m functions fj ∈ L(Ej) such that f =

∑m
j=1 µ

jfj ◦ π, where Ej =
⌊

1
mπ∗ (D + j(µ))

⌋
.

Remark 2.3. When dealing with univariate polynomials, the theorem of Kani [Kan86] is equivalent
to the splitting of a polynomial into an even part and an odd part, which plays a crucial role in
the FRI protocol. It also specifies the degree of each part.

The set of polynomials of degree (less than or equal to) d is isomorphic to the Riemann-Roch
space LP1(dP∞) on P1 where the point P∞ can be chosen as P∞ = [0 : 1].

Now, let us consider the involution γ defined by γ : [X0 : X1] 7→ [−X0 : X1]. It generates
a group isomorphic to Z/2Z and the quotient of P1 by this group is obtained as the image by
π : [X0 : X1] 7→ [X2

0 : X2
1].

The divisor D := dP∞ is invariant under γ and the function x = X0
X1

satisfies the first item of
Theorem 2.2 and (x) = P0 − P∞ where P0 = [1 : 0]. Noticing that π∗(P∞) = P∞ and π∗(P0) = P0,
we get ⌊

1

2
π∗(D + (x))

⌋
=

⌊
1

2
((d− 1)P∞ + P0)

⌋
=

⌊
d− 1

2

⌋
P∞

and the Riemman-Roch space LP1(dP∞) is split into two parts:

LP1(dP∞) = π∗LP1

(⌊
d

2

⌋
P∞

)
+ xπ∗LP1

(⌊
d− 1

2

⌋
P∞

)
.

We recover the decomposition of a polynomial of degree d into an even part of and an odd one of
respective degrees

⌊
d
2

⌋
and

⌊
d−1
2

⌋
.

Broadly speaking, Theorem 2.2 expresses a Riemann-Roch space on a curve as sum of some
Riemann-Roch spaces on the quotient curve that depend on the zeroes and poles of the function
µ, including the ramification points of π according to the following lemma.

Lemma 2.4. Assume that Γ = 〈γ〉 is a cyclic group of order m. Let P be a point of X whose
stabilizer ΓP is non trivial. Then P ∈ Supp(µ).

Proof. By hypothesis, there exists j ∈ {1, . . . ,m− 1} such that γj ∈ ΓP . Then

(γj · µ)(P) = ζjµ(P) by definition of µ in Th. 2.2,
= µ(P) because γj ∈ ΓP .

Since ζj 6= 1, the point P is either a pole or a zero of µ.

Remark 2.5. In Remark 2.3 the ramification points of π are precisely P0 and P∞, which are
invariant under γ. Both points are zero or poles of x. Moreover, one can easily see that any
suitable choice for µ would be an odd polynomial of x.

12

3 Foldable AG codes
In this section, we display a workable setting for the construction of an IOPP system (P,V) to test
whether a given function f : P → F is close to the evaluation of a function in a given Riemann-Roch
space. As the idea is to iteratively reduce the problem of testing proximity to C(C,P, D) to testing
proximity to a smaller AG code, we introduce a sequence of suitable AG codes of decreasing length.

3.1 Valid setting of AG codes for IOPP
3.1.1 Sequence of curves

Fix a curve C defined over F and a finite solvable group G ⊆ Aut(C) whose order is coprime with
the characteristic of F. By solvability of G, there exists a composition series, i.e. a sequence of
subgroups of G

G = G0 ◃ G1 ◃ · · · ◃ Gr = 1, (3)
such that Gi+1 is a normal subgroup of Gi and the factor group Γi := Gi/Gi+1 ' Z/piZ is a cyclic
group of prime order pi. Moreover the cardinality of G equals |G| =

∏r−1
i=0 pi. We say that r is the

length of the composition series of G.
A sequence like (3) may not be unique but another sequence of this type would have the same

length and the same set of factor groups, up to permutation, by the Jordan–Hölder theorem.
The group Γ0 acts on C0 := C, as a quotient of G. We thus define the quotient curve C1 := C0/Γ0.

The group Γ1 is constant on the orbits under Γ0. Repeating the process for every i ∈ {0, . . . , r − 1}
defines a sequence of curves recursively as follows:

C0 := C and Ci+1 = Ci/Γi.

We denote by πi : Ci → Ci+1 the canonical projection modulo the action of Γi.

C0 C1 · · · Ci Ci+1 · · · Cr

Γ0

π0

Γ1

π1 πi

Γi

πi+1

Γi+1

πr−1 (4)

Even if the sequence of curves (4) depends on the composition series (3) of G, the last curve Cr is
always isomorphic to the quotient C/G.

Definition 3.1. A sequence of curves constructed as above will be called a (C,G)-sequence.

3.1.2 Sequence of codes

Let (Ci) be a (C,G)-sequence. For any i ∈ {0, . . . , r − 1}, the factor group Γi which acts on the
curve Ci is cyclic of order pi. Write ζi for a primitive pthi root of unity and Γi = 〈γi〉.

For i ∈ {0, . . . , r}, we aim to define an AG code Ci ⊂ FPi associated to a divisor Di ∈ Div(Ci)
on an evaluation set Pi. The rest of this subsection is dedicated to the choice of the divisors Di

and the sets Pi.

Evaluation points. From a set P0 ⊂ C(F), we want to define a sequence of set of points
(Pi) ⊂ Ci(F) recursively by Pi+1 = πi(Pi).

For the consistency of our protocol, we need for each i ∈ {0, . . . , r − 1} that every point in Pi+1

admits exactly pi preimages under πi. Since the last curve Cr is isomorphic to the quotient C/G, it
is necessary and sufficient that the first set P0 ⊂ C0 is a union of G-orbits of size |G|, i.e. that G
acts freely on P0.

13

Divisors. Fix a divisor D0 ∈ Div(C0), not only globally Γ0-invariant but also supported by Γ0-
fixed points. This way, the support of D0 does not meet the set P0.

To make our protocol complete and sound, we need to choose at each step a divisor which is
compatible with the previous one in the sense of the following definition.

Definition 3.2. Let Di ∈ Div(Ci) and µi ∈ F(Ci) such that

γi · µi = ζiµi. (5)

For any j ∈ {0, . . . , pi − 1}, we define the divisor

Ei,j :=

⌊
1

pi
πi∗(Di + j(µi))

⌋
∈ Div(Ci+1). (6)

A divisor Di+1 ∈ Div(Ci+1) is said to be compatible with (Di, µi) if all the following assertions
hold.

1. Di+1 is supported by Γi+1-fixed points,

2. for every j ∈ {0, . . . , pi − 1}, Ei,j ≤ Di+1,

3. for every j ∈ {0, . . . , pi − 1}, there exists a function νi+i,j ∈ F(Ci+1) such that

(νi+i,j)∞ = Di+1 − Ei,j . (7)

The divisors Ei,j in (6) coincide with those in Theorem 2.2 and thus satisfy

LCi(Di) =

pi−1⊕
j=0

µj
iπ

∗
i LCi+1(Ei,j). (8)

The first requirement ensures that the support of Di+1 does not intersect with the set of evaluation
points Pi+1. The second one implies that L(Ei,j) ⊆ L(Di+1). The last condition means that for
every fj ∈ L(Ei,j), the function νi+1,jfj lies in L(Di+1).

Among those three requirements, the third is definitely the most compelling and requires some
geometric knowledge about the curves Ci. Indeed, on a general curve, not every effective divisor
is the poles locus of a function and characterizing which effective divisors arise this way is at the
heart of the Weierstrass gaps theory. Nonetheless, the existence of the balancing functions νi+1,j

happens to be the main ingredient in Lemma 6.4, which takes a prominent role in the construction
of the folding operators.

Definition 3.3 ((µi)-compatibility). Let (Ci) be a (C,G)-sequence. For every i ∈ {0, . . . , r − 1},
take µi ∈ F(Ci) satisfying (5). A sequence of divisor (Di) ∈ Div(Ci) is said to be (µi)-compatible if
for every i ∈ {0, . . . , r − 1}, the divisor Di+1 is (Di, µi)-compatible.

We have now described all the key components to formally define the notion of foldable codes.
However, to ensure a good soundness of the protocol, we add a constraint on each divisor Di+1

regarding Di. Indeed, as illustrated by Example 3.11, even though there exists a (Di, µi)-compatible
divisor Di+1, its degree may be unexpectedly substantial, which would likely deteriorate the relative
minimum distance of Ci+1. We thus demand Di+1 to be equal to one of the divisors Ei,j (6) that
appear in the decomposition (8) of LCi(D).

14

Definition 3.4 (Foldable AG codes). Let C = C(C,P, D) be an AG-code. This code is said to be
foldable if the following conditions are satisfied.

• There exists a finite solvable group G ∈ Aut(C) that acts freely on P : a composition series
of G (3) provides a (C,G)-sequence of curves (Ci);

• There exists e ∈ (0, 1) such that |G| > |P|e;

• There exist a sequence (µi) ∈ F(Ci) satisfying (5) and a sequence (Di) ∈ Div(Ci) that is
(µi)-compatible such that for every i ∈ {0, . . . , r − 1},

∃ j ∈ {0, . . . , pi − 1} such that Di+1 = Ei,j , (9)

where the divisors Ei,j are defined as per Definition 3.2.

Example 3.5 (RS codes are foldable AG codes.). Assume the characteristic of F is larger than 2.
Let P ⊂ F such that |P| = 2r for a certain integer r. We observe that for any degree bound d, the
RS code

V :=
{
f ∈ FP ; deg f ≤ d

}
= C(P1,P, dP∞)

is a foldable AG code. By iterating the observation made in Example 2.3, we recover the construc-
tion of the RS proximity test of [BBHR18]. Firstly, the finite solvable Z/2rZ of size |P| acts on
P1 via [X0 : X1] 7→ [X0, ξX1], where ξ is a primitive 2r-th root unity. It clearly fulfils the two first
items of Definition 3.4. When considering its composition series

Z/2rZ ◃ Z/2r−1Z ◃ · · · ◃ 1 (10)

and the action of the corresponding factor group Γ = 〈γ〉 ' Z/2Z, we obtain a trivial sequence of
curves (Ci) with Ci = P1. Next, consider the sequence (µi) with µi = µ = x := X1

X0
, then γµ = −µ.

Set d0 := d, and for any i ∈ {0, . . . , r − 1}, di+1 :=
⌊
di
2

⌋
. Note that there exists r′ < r such that

dr′ , . . . , dr are all equal to 0. The sequence (Di) with Di =
⌊
di
2

⌋
P∞ is (µi)-compatible (Definition

3.2), by letting νi+1,j to be the constant function equal to 1 if
⌊
di
2

⌋
=
⌊
di−1
2

⌋
, and νi+1,j : x 7→ x

otherwise.

3.2 Foldable AG codes on Kummer curves
Let us consider a Kummer curve over a finite field F defined by an equation of the form

C : yN = f(x) =

m∏
ℓ=1

(x− αℓ) (11)

where f is a degree m separable polynomial of F[X] and gcd(N,m) = 1. Let us denote by Pℓ the
point (αℓ, 0) and P∞ the unique point of C lying on the line at infinity.

Sequence of curves. Assume that gcd(N, |F|) = 1. The group Z/NZ acts on C via the morphism
(x, y) 7→ (x, ζy) where ζ is a primitive N th root of unity. The cyclic group Z/NZ is solvable: writing
the prime decomposition of N =

∏r−1
i=0 pi gives the following sequence of subgroups

Z/NZ ◃ Z/N1Z ◃ Z/N2Z ◃ · · · ◃ Z/Nr−1Z ◃ 1, (12)

15

where

Ni =

r−1∏
j=i

pj . (13)

The i-th factor group Γi is isomorphic to Z/piZ. It is spanned by γi : (x, y) 7→ (x, ζiy) where ζi is
a primitive pthi root of unity.

Set C0 := C. By Section 3.1, the composition series (12) gives a sequence of curves (Ci) in which
the ith curve is defined by

Ci : yNi = f(x). (14)

and has genus
gi =

(Ni − 1)(m− 1)

2
.

The last curve Cr has genus 0 and is isomorphic to the projective line P1. These successive quotients
provide a sequence of projections πi : Ci → Ci+1 defined by πi(x, y) = (x, ypi):

C0 . . . Ci Ci+1 . . . Cr ' P1.

γ0

π0 πi

γi

πi+1

γi+1

πr−1

Example 3.6. The Hermitian curve defined over Fq2 by

C0 : yq+1 = xq + x. (15)

is a well-studied particular case of Kummer type curve. In this case, every curve in a (C,G)-sequence
is maximal over Fq2 [Lac87, Proposition 6], i.e.

∣∣Ci(Fq2)
∣∣ = q2 + 1 + 2giq.

Stabilized points. Let us denote P i
∞ the unique point at infinity on the curve Ci. One can easily

check that P i
∞ :=

{
(1 : 0 : 0) if N > m
(0 : 1 : 0) otherwise. Note that N and m are assumed coprime and thus are

never equal.
The points of C0 whose stabilizer under Z/NZ is non trivial are in fact fixed by Z/NZ and

consist precisely in P1, . . . , Pℓ and P i
∞.

Determination of the functions µi. To construct a valid sequence of divisors, we have to
exhibit for each step i ∈ {0, . . . , r − 1} a function µi ∈ F(Ci) satisfying γi ·µi = ζiµi. If its existence
is given by Theorem 2.2, one can easily check that

µi = y (16)

fits. Maharaj [Mah04] proved Theorem 2.2 on Kummer curve for this particular choice.

An example of a sequence of (y)-compatible divisors. In order to investigate (y)-compatible
sequence, we need to handle the divisor associated to y and some other elementary functions on
each curve Ci, described for instance in [MQS15].

Lemma 3.7 ([MQS15]). On Ci for every i ∈ {0, . . . , r − 1}, we have

1. (x− αℓ) = Ni(Pℓ − P i
∞),

2. (y) = P1 + · · ·+ Pm −mP i
∞.

16

We now give sufficient conditions on the curve C0 and the first divisor D0 to get a sequence of
(y)-compatible divisors.

Lemma 3.8. Set D0 =

m∑
ℓ=1

a0,ℓPℓ + b0P
0
∞ ∈ Div(C0).

Assume that m ≡ −1 mod N and that the integers a0,1, . . . , a0,m, b0 are all divisible by N . For
every i ∈ {0, . . . , r − 1}, set Di+1 =

Di
pi

. Then, the divisor Di+1 is (Di, y)-compatible.

Proof. For i ∈ {1, . . . , r}, let us set ai,ℓ =
ai−1,ℓ

pi−1
and bi =

bi−1

pi−1
such that Di =

∑m
ℓ=1 ai,ℓPℓ + biP

i
∞.

Fix i ∈ {0, . . . , r − 1}. The divisor Di is supported only by Γi-fixed points.
For any j ∈ {0, . . . , pi − 1}, we have

Ei,j =

⌊
1

pi
πi∗(Di + j(y))

⌋
=

m∑
ℓ=1

⌊
ai,ℓ + j

pi

⌋
Pℓ +

⌊
bi − jm

pi

⌋
P i+1
∞ .

Since Ni divides N , we have m ≡ −1 mod Ni. Write m = κiNi − 1 with κi ≥ 1.
The hypothesis on the integers a0,1, . . . , a0,m, b0 entails⌊

ai,ℓ + j

pi

⌋
= ai+1,ℓ +

⌊
j

pi

⌋
= ai+1,ℓ⌊

bi − jm

pi

⌋
= bi+1 −

jκiNi

pi
+

⌊
j

pi

⌋
= bi+1 − jκiNi+1.

Then Ei,j = Di+1−jκiNi+1P
i+1
∞ . In particular, Di+1 = Ei,0 and Ei,j ≤ Di+1. Any νi+1,j := (x− α)κij

with α ∈ {α1, . . . , αm} gives the last condition on Di+1 for it to be (Di, µi)-compatible by Definition
3.2, i.e. Di+1 − Ei,j = (νi+1,j)∞.

We have gathered all the components to exhibit a foldable code on a family of Kummer curves.

Proposition 3.9. Let C0 be a Kummer curve defined by (11) with m ≡ −1 mod N . Take an
evaluation set P0 ⊆ C0(F)\{P1, . . . , Pm, P 0

∞} formed by Z/NZ-orbits. Take D0 ∈ Div(C0) satisfying
hypothesis of Lemma 3.8. If N > ne for some e ∈ (0, 1), then the AG code C = C(C0,P0, D0) is
foldable.

Remark 3.10. The condition on the coefficients of D0 can be loosen while the previous statement
still holds. If a0,1, . . . , a0,m, b0 are divisible by

∏r−2
i=0 pi and not necessarily by pr−1, we choose

ar,ℓ =
⌈
ar−1,ℓ

pr−1

⌉
and br =

⌊
br−1

pr−1

⌋
for the coefficients of Dr. The first two conditions of Definition

3.2 are satisfied. The last curve Cr being isomorphic to P1, the last requirement of Definition 3.2 is
directly implied by the second one.

Lemma 3.8 provides sufficient conditions to make Ci+1 as small as possible compared to Ci by
choosing Di+1 among the divisors Ei,j , as required for a sequence of foldable codes by Definition
3.4. Ignoring the additional condition (9) can make the code Ci+1 grow drastically, as illustrated
by the next example.

Example 3.11. Over F8, consider yN = xm + x where N = 9 and m = 5. Then m 6≡ −1 mod N
and N = p0p1 with p0 = p1 = 3. For D0 = 18P 0

∞, we have

E0,0 =

⌊
18

3

⌋
P 1
∞ = 6P 1

∞, E0,1 =

⌊
18− 5

3

⌋
P 1
∞ = 4P 1

∞, E0,2 =

⌊
18− 2× 5

3

⌋
P 1
∞ = 2P 1

∞.

17

Choosing D1 = E0,0 would satisfy the first and the second conditions of Definition 3.2 to be
(D0, y)-compatible but not the third one. One can reasonably ask the support of D1 to consist only
in π0(P

0
∞) = P 1

∞, as one-point codes are generally better understood. The Weierstrass gap theory
on Kummer curves (e.g. [MQS15, Theorem 3.2]) entails that if a function on C1 : y3 = x5 + x has
a pole locus of the form αP 1

∞, then α ∈ 3Z+ + 5Z+. Therefore the smallest divisor of the form
D1 = d1P

1
∞ that is (D0, y)-compatible is D1 = 12P 1

∞. With such a choice of divisors, the code C0

of dimension 15 is folded into the code C1 of dimension 12 whereas the length of C1 is the third of
the length of C0.

To estimate the parameters of the code by using the Riemnann-Roch theorem, we shall rely on
the following result.

Lemma 3.12. Assume that 2(g0 − 1) < deg(D0) (resp. deg(D0) < n0). Then for every i ∈
{0, . . . , r}, 2(gi − 1) < deg(Di) (resp. deg(Di) < ni).

Proof. It is enough to notice that for every i ∈ {0, . . . , r − 1},

degDi+1 =
degDi

pi
, ni+1 =

deg ni

pi
, and gi+1 ≤

gi
pi
.

In other words, if the degree of the first divisor is such that we can estimate the parameters of
C0 thanks to Riemann-Roch Theorem, then we handle the parameters of all the sequence of codes.

Proposition 3.13. If deg(D0) < n0, then for every i ∈ {0, . . . , r}, the code Ci has length ni

and minimum relative distance ∆(Ci) = 1 − degD0

n0
. In particular, the RS code Cr has length n0

N ,
dimension degD0

N + 1 and relative minimum distance 1− degD0

n0
.

Moreover, if 2(g0 − 1) < deg(D0), for every i ∈ {0, . . . , r}, the code Ci has dimension degDi −
gi + 1.

Proof. The length of Ci is ni by construction and its dimension is given by the Riemann-Roch
theorem. So let us prove the statement concerning the relative minimum distance.

First notice that ni = pini+1 and deg(Di) = pi deg(Di+1) so 1− degDi

ni
= 1− degD0

n0
.

For i = r, the code Cr is a Reed-Solomon code of degree 0 ≤ deg(Dr) < nr by Lemma 3.12 and
has the expected relative minimum distance.

Now assume that ∆(Ci+1) equals 1− degD0

n0
and let us prove that so does ∆(Ci).

On the one hand, the divisor Di+1 corresponds to Ei,0 then for every f ∈ Ci+1, f ◦ πi ∈ Ci.
In addition, the weight of f ◦ πi in Ci is pi times the weight of f in Ci+1. Since ni = pini+1, we
have ∆(Ci) ≤ ∆(Ci+1). On the other hand, as deg(Ci) < ni, we have ∆(Ci) ≥ 1 − degDi

ni
, which

concludes the proof.

4 IOPP for foldable AG codes
Now that we have determined the needed properties of an AG-code to be foldable, we construct
the fundamental building block of our IOPP by generalizing the so-called algebraic hash function
of [BKS18] to the AG codes setting, and we refer to it as the folding operator. Next, we provide
a formal description of the IOPP system (P,V) and state the theorem capturing its efficiency
properties.

18

4.1 Folding operators
Let C0 = C(C0,P0, D0) be a code satisfying Definition 3.4. We consider its associated (C,G)-
sequence of curves (Ci) and its sequence of divisors (Di). By Definition 3.4, the divisor Di+1 in the
general case is equal to one of the divisors Ei,j . From now on, we assume without loss of generality
(see Remark 4.3) that for every i ∈ {0, . . . , r − 1},

Di+1 = Ei,0. (17)

To test proximity of a function f (0) : P0 → F to C0, we aim to inductively reduce the problem
to a smaller one, consisting of testing proximity to the code Ci = C(Ci,Pi, Di). Broadly speaking,
our goal is to define from any function f (i) : Pi → F a function f (i+1) : Pi+1 → F such that the
relative distance ∆(f (i+1), Ci+1) is roughly equal to ∆(f (i), Ci).

Fix i ∈ {0, . . . , r − 1} and let f : Pi → F be an arbitrary function.

Notation 4.1 (Interpolation polynomial). For each P ∈ Pi+1, let us denote SP := π−1
i ({P}) the

set of pi distinct preimages of P and consider

If,P (X) :=

pi−1∑
j=0

Xjaj,P (18)

the univariate polynomial over F of degree less than pi which interpolates the set of points{
(µi(P̂), f(P̂)); P̂ ∈ SP

}
. Then for every j ∈ {0, . . . , pi − 1}, we define the function

fj :

{
Pi+1 → F,
P 7→ aj,P .

(19)

Given f : Pi → F, the idea is to define pi functions fj : Pi+1 → F, where |Pi+1| = |Pi|
pi

such
that f corresponds to the evaluation of a function in L(Di) if and only if each fj coincides with a
function in L(Ei,j) ⊂ L(Di+1). Instead of testing for each j ∈ {0, . . . , pi − 1} whether fj ∈ Ci+1,
we reduce those pi claims to a single one, by taking a random linear combination of the fj ’s, which
we referred to as a folding of f . By linearity of the codes, such a combination of the fj ’s belongs
to Ci+1 whenever f ∈ Ci (see Proposition 4.5 below). However, for soundness analysis, one needs
to ensure that no fj corresponds to a function lying in L(Di+1) \ L(Ei,j). Some safeguards are
embedded into the folding operation by introducing the balancing functions νi+1,j from Definition
3.2 in the second term of the sum in Equation (20).

Definition 4.2 (Folding operator). For any z = (z1, z2) ∈ F2, we define the folding of f to be the
function Fold [f, z] : Pi+1 → F such that

Fold [f, z] :=

pi−1∑
j=0

zj1fj +

pi−1∑
j=1

zj2νi+1,jfj (20)

where the functions fj are defined in Equation (19) and the functions νi+j,j in Definition 3.2.

Remark 4.3. As said earlier and for the sake of clarity, we present our construction assuming that
Di+1 = Ei,0. When Di+1 = Ei,ji for a certain ji 6= 0, the second term of the folding operator can
be adjusted as follows, without affecting any of our subsequent statements:

Fold [f, z] :=

pi−1∑
j=0

zj1fj +

ji−1∑
j=0

zj+1
2 νi+1,jfj +

pi−1∑
j=ji+1

zj2νi+1,jfj .

19

For foldable AG codes on Kummer curves (Section 3.2), we underline that Lemma 3.8 actually
ensures that Di+1 = Ei,0 for every i ∈ {0, . . . , r − 1}.

Given the pi points ((µi(P̂), f(P̂)))
P̂∈SP

, one can determine the coefficients (aj,P)0≤j<p of If,P
defined in (18) by polynomial interpolation. Recalling that for each P ∈ Pi+1, we have fj(P) = aj,P ,
we get the following lemma. This lemma will allow to obtain efficient prover time and fast verifier
decision complexity.

Lemma 4.4 (Locality). Let z ∈ F2. For each P ∈ Pi+1, the value of Fold [f, z] (P) can be computed
with exactly pi queries to f , namely at the points π−1

i ({P}).

We now show a key property of the folding operator for the completeness of our IOPP.

Proposition 4.5 (Completeness). Let z ∈ F2. If f ∈ Ci, then Fold [f, z] ∈ Ci+1.

Proof. Write z = (z1, z2). If f ∈ Ci, it coincides with a function of L(Di). By definition of the
divisors Ei,j and Theorem 2.2, there exist some functions f̃j ∈ L(Ei,j) such that

f =

pi−1∑
j=0

µj
i f̃j ◦ πi.

Let P ∈ Pi+1. For any P̂ ∈ SP ,

Fold
[
f, (µi(P̂), 0)

]
(P) = If,P (µi(P̂)) = f(P̂) =

pi−1∑
j=0

µi(P̂)j f̃j(P).

Moreover, for all P ∈ Pi+1, polynomials If,P (X),Fold [f, (X, 0)] (P) ∈ F[X] are of degree less
than pi and agree on

{
µi(P̂); P̂ ∈ SP

}
of size pi, therefore they are equal. In particular,

Fold
[
f, (µi(P̂), 0)

]
(P) =

pi−1∑
j=0

µi(P̂)jfj(P).

Thus, for all P ∈ Pi+1,
pi−1∑
j=0

µi(P̂)j(f̃j(P)− fj(P)) = 0

and the polynomial
pi−1∑
j=0

Xj(f̃j(P)− fj(P))

of degree less than pi is zero on at least
∣∣∣{µi(P̂);P ∈ Pi+1

}∣∣∣ = pi points. Hence, for every
j ∈ {0, . . . , pi − 1}, the function fj defined in Equation (19) coincides with f̃j and

Fold [f, z] :=

pi−1∑
j=0

zj1f̃j +

pi−1∑
j=1

zj2νi+1,j f̃j

where f̃j ∈ L(Ei,j) ⊆ L(Di+1) and νi+1,jfj ∈ L(Di+1), by definition of the divisors Ei,j , Di+1 and
the functions νi+1,j (see Definition 3.2). Thus each term of Fold [f, z] lies in the vector space Ci+1,
which concludes the proof.

20

4.2 Description of the AG-IOPP for foldable AG codes
Let C0 = C(C0,P0, D0) be a foldable AG code over an alphabet F. We formally describe our IOPP
system (PAG,V) for testing proximity of a function f (0) : P0 → F to C0. As in the FRI protocol, our
AG-IOPP is divided in two phases, referred to as COMMIT and QUERY and respectively outlined
in Figure 1 and Figure 2. Before any interaction, P and V agree on:

– a (C,G)-sequence of curves (Ci), for which we denote the length of the composition serie of G
by r.

– a sequence of functions (µi) ∈ F(Ci) satisfying (5),
– a sequence of codes (Ci) where for each i ∈ {0, . . . , r}, Ci = (Ci,Pi, Di) and Ci,Pi and Di are

defined as per Section 3.1,
– a sequence of balancing functions (νi+1)0≤i<r of pi-tuples of functions in F(Ci+1) such that
νi+1 = (νi+1,j)0<j<pi and νi+1,j satisfies (7).

We recall that the choice of a sequence (Ci) induces a sequence of projections πi : Ci → Ci+1.

COMMIT phase. The COMMIT phase (Figure 1) is an interaction over r rounds between P and
V. For each round i ∈ {0, . . . , r − 1}, the verifier samples a random challenge z(i) ∈ F2. As an
answer, the prover gives oracle access to function f (i+1) : Pi+1 → F, which is expected to be equal
to Fold

[
f (i), z(i)

]
. To compute the values of f (i+1) on Pi+1, an honest prover P exploits the fact

that the folding of f (i) is locally computable (Lemma 4.4). Namely, for each P ∈ Pi+1, P computes
the coefficients (aj,P)0≤j<p of If (i),P ∈ F[X] from f (i)

SP
, evaluates νi+1,j at P , and set

Fold
[
f (i), z(i)

]
(P) :=

pi−1∑
j=0

(
z
(i)
1

)j
aj,P +

pi−1∑
j=1

(
z
(i)
2

)j
νi+1,j(P)aj,P .

COMMIT Phase
(interactive)

Common input: C0 a foldable AG code defined by (F, C0,P0, D0), r a number of rounds, (Ci)
a sequence of codes, (νi+1)0≤i<r and (µi) some sequences of functions.
Prover’s input: f (0) : P0 → F.
Output: a sequence of oracle functions (f (0), . . . , f (r)) ∈ FP1

q × . . .× FPr
q .

1. For each round i from 0 to r − 1 :

(a) V picks uniformly at random z(i) in F2 and sends it to P,
(b) P computes f (i+1) = Fold

[
f (i), z(i)

]
,

(c) P gives oracle access to f (i+1) : Pi+1 → F.

Figure 1: AG Codes IOPP – COMMIT Phase

QUERY phase. (Figure 2) During the QUERY phase, one of the two tasks of the verifier V is to
check that each pair of successive oracle functions (f (i), f (i+1)) is consistent. A standard idea is to

21

check that the equality
f (i+1) = Fold

[
f (i), z(i)

]
(21)

holds at a random point in Pi+1. By leveraging the local property of the folding operator, such
a test requires only pi queries to f (i) and 1 query to f (i+1). As in [BBHR18], we call this step
of verification a round consistency test. This test corresponds to the block inside Step 1.(b) of
the QUERY phase in Figure 2. The verifier begins by sampling at random Q0 ∈ P0 and once
this is done, all the locations of the round consistency tests run inside the current query test are
determined. More specifically, for each round i, V defines Qi+1 := πi(Qi) to be the random point
where Equation (21) is checked. Through this process, the round consistency tests are correlated
to improve soundness. Such a query test can be seen as a global consistency test, similar to the
one of the FRI protocol. For the final test, V reads f (r) : Pr → F in its entirety to test if f (r) ∈ Cr.

QUERY Phase:
(run by V only)

Input: (the first four items must correspond to the COMMIT phase)
– C0 an AG code defined by (F, C0,P0, D0), r a number of rounds,
– sequence of codes (Ci), sequences of functions (νi+1) and (µi),
– transcript including z(0), . . . , z(r−1) ∈ F2,
– oracle functions f (0), f (1), . . . , f (r−1), f (r),
– α repetition parameter.

Output: accept or reject.

1. Repeat α times the following query test:

(a) Pick Q0 ∈ P0 uniformly at random.
(b) For i = 0 to r − 1, run the following round consistency test:

i. Define Qi+1 ∈ Pi+1 by Qi+1 = πi(Qi),
ii. Query f (i+1) to get f (i+1)(Qi+1) and query f (i) at points Q̂ ∈ SQi+1 ,
iii. Compute the value Fold

[
f (i), z(i)

]
(Qi+1),

iv. If f (i+1)(Qi+1) 6= Fold
[
f (i), z(i)

]
(Qi+1), then return reject.

2. Final test: return acccept if and only if f (r) ∈ Cr.

Figure 2: AG Codes IOPP – QUERY Phase

4.3 Properties of the AG-IOPP
For any ε ∈ (0, 1], let Jε : [0, 1] → [0, 1] be the function such that Jε(λ) = 1 −

√
1− (1− ε)λ and

denote J l
ε = Jε ◦ · · · ◦ Jε︸ ︷︷ ︸

l times

.

Theorem 4.6. Let C0 = C(C0,P0, D0) be a foldable AG code of length n := |P0|. By definition,
C0 admits a solvable group G ∈ Aut(C0) such that |G| > ne for a certain e ∈ (0, 1) and induces

22

a sequence of codes (Ci). Denote pmax the largest integer of the prime decomposition of |G|,
λ := mini∆(Ci) and γ := min

(
Jpmax
ε (λ), 12(λ+ ε

2)
)
.

The protocol described in Figures 1-2 is an IOPP system (P,V) for C0 satisfying:

Perfect completeness: If f (0) ∈ C0 and f (1), . . . , f (r) are honestly generated by the prover, the
verifier outputs accept with probability 1.

Soundness: Assume f (0) is δ-far from C0 and let ε ∈ (0, 1). With probability at least 1−errcommit

over the randomness of the verifier during the COMMIT phase, where

errcommit ≤ log n
pmax − 1

|F|

(
4

ε

)pmax+1

,

and for any oracles f (1), . . . , f (r) adaptively chosen by a possibly dishonest prover P∗, the
probability that the verifier V outputs accept after a single query test is at most

errquery(δ) ≤ (1−min(δ, γ) + ε log n).

Overall, for any prover P∗, the soundness error err(δ) after α repetitions of the QUERY phase
satisfies

err(δ) ≤ errcommit + (errquery(δ))α

< log n
pmax − 1

|F|

(
4

ε

)pmax+1

+ (1−min(δ, γ) + ε log n)α.

Moreover, the IOPP system is public-coin, has round complexity r(n) < log n and proof length
l(n) < n. The verifier sends k(n) < 2 log n random field elements and makes q(n) < αpmax log n+ n1−e

queries.

Proposition 4.7. If pmax = 2 and ε < 1/3, soundness error of the IOPP provided by Theorem 4.6
satisfies

err(δ) ≤ 8 log n

ε2
+ (1−min(δ, 1− (1− λ+ ε)

1
3) + ε log n)α.

The proof of Proposition 4.7 directly follows the analysis of Section 6 and is sketched in Appendix
B.

Remark 4.8. When δ < γ, error probability during the QUERY phase is roughly (1− δ)α. Thus,
when targeting a fixed soundness error 2−κ, the ability to take a large proximity parameter δ yields
to a smaller number of repetitions α. Hence, larger threshold γ is desirable to get better soundness
error for a single query test. The value of this constant appears in soundness analysis from [BKS18,
Theorem 4.5] for pmax ≥ 2 and [BGKS20, Lemma 3.2] for pmax = 2 (see Section 6 and Appendix B).
Improving such results for AG codes would lead to greater threshold γ, which would allow to take
a smaller repetition parameter α when targeting soundness error 2−κ. As a result, this would also
reduce the total number of queries q(n) stated in Theorem 4.6 and leads to shorter non-interactive
arguments (cf. Remark 1.3).

We break down the proof of Theorem 4.6 into two parts, the first one is given below. The
second part, dedicated to soundness error, is covered by Section 6.

23

4.4 Proof of Theorem 4.6 - Part 1 (all but soundness)
(Perfect completeness) Let us assume that f (0) ∈ C0. For i < r−1, by letting f (i+1) = Fold

[
f (i), z(i)

]
,

the testing relation of the step 1.(b).iv. of the QUERY phase is satisfied by definition of Fold
[
f (i), z(i)

]
.

Furthermore, recalling Proposition 4.5, we have that for all i, if f ∈ Ci then Fold
[
f (i), z(i)

]
∈ Ci+1

for any z(i) ∈ F2
q . Thus the final test also passes, since f (r) ∈ Cr. Therefore, the verifier accepts at

the end of the QUERY phase.

(Round complexity) We have that
r−1∏
i=0

pi =
n

nr
, where nr = |Pr| = n

|G| < n1−e. For every i ∈

{0, . . . , r − 1}, 2 ≤ pi ≤ pmax. Therefore r(n) ≤ log2 n− log2 nr < log2 n.

(Randomness complexity) The randomness complexity is k(n) = 2r(n) < 2 log2 n.

(Query complexity) Notice that for i ∈ {0, . . . , r − 2}, f (i+1)(Qi+1) is reused for the next round
consistency test. Hence, q(n) = α

(∑r−1
i=0 pi

)
+ n1−e ≤ αrpmax + n1−e.

(Proof length) The total proof length l(n) is the sum of the lengths of all the oracles provided by
P during the COMMIT phase, counted in field elements. Denoting ti+1 :=

∏i
j=0 pj , we notice that

|Pi+1| = |Pi|
pi

= |P0|
ti+1

. Thus, we have

l(n) =
r∑

i=1

|Pi| =
r∑

i=1

|P0|
ti
≤ n

r∑
i=1

1

2i
= n

(
1− 1

2r

)
< n.

5 IOPP for AG codes on Kummer curves
In this section, we extend the AG-IOPP defined in Section 4.2 for the valid setting of Kummer
curves (described in Section 3.2).

5.1 Description of the AG-IOPP for AG codes on Kummer curves
Assume C0 = C(C0,P0, D0) is a foldable AG code of blocklength n0 = |P0| on a Kummer curve C0
(cf. Proposition 3.9). This means that C0 is defined by an equation yN = f(x), where f ∈ F[X]
is a separable degree-m polynomial, m ≡ −1 mod N , N is coprime with |F|, |P0| = αN for some
integer α, and degD0 < αN . Assume α is a power of 2 and N is a η-smooth integer for a small
fixed parameter η ∈ N.

We consider a sequence of codes (Ci) as provided by Section 3.2. Proposition 3.13 states that
the relative minimum distances of the codes Ci are all equal to ∆(C0) = 1− degD0

αN . Therefore, the
ordering on the integers involved in the prime decomposition

∏s−1
i=0 pi of N does not impact the

parameters of the protocol. Moreover, the code Cs = C(Cs,Ps, Ds) corresponds to a RS code

Cs = RS

[
F,Ps,

degD0

N

]
=

{
f : Ps → F; deg f ≤ degD0

N

}
of blocklength |Ps| = α, which is itself a foldable AG code (see Example 3.5). Taking this into
consideration, we want to iterate the folding operation until we get a RS code of dimension 1, as it
is done in the FRI protocol [BBHR18]. As in Example 3.5, we set d0 = degD0

N and define di+1 =
⌊
di
2

⌋
for any integer i. Set s′ the smallest integer such that ds′ = 0. Then, we consider the sequence of

24

codes (Cs+i)1≤i≤s′ when applying the construction described in Section 3.1 to the initial code Cs.
Letting r = s+ s′, we iteratively reduce the proximity test to the code C0 to a membership test to
the code Cr, which is a Reed-Solomon code of dimension 1. If f (0) ∈ C0, then f (r) is expected to
be a constant function, and this can be tested in a trivial way. We can leverage the fact that Cr is
a Reed-Solomon code to extend the protocol described in Section 4.2. We obtain a r-rounds IOPP
system (P,V) for C0, which is described in Figures 3 (COMMIT phase) and 4 (QUERY phase).

COMMIT Phase

Common input: C0 a foldable AG code on a Kummer curve defined by (F, C0,P0, D0), r a
number of rounds, (Ci) a sequence of codes, (νi+1)0≤i<r some balancing functions.
Prover’s input: f (0) : P0 → F.
Output: a sequence of oracle functions (f (0), . . . , f (r−1)) ∈ FP1 × . . .× FPr−1 and β ∈ F.

1. For each round i from 0 to r − 1 :

(a) V picks uniformly at random z(i) in F2 and sends it to P,
(b) P computes f (i+1) = Fold

[
f (i), z(i)

]
,

(c) If i < r − 1: P gives oracle access to f (i+1) : Pi+1 → F.
(d) If i = r − 1: P commits to β ∈ F (if f (0) ∈ C0, then f (r) is supposed to be constant

equal to β).

Figure 3: IOPP for AG codes on Kummer curves - COMMIT Phase

25

QUERY Phase:

Input: (the first four items must correspond to the COMMIT phase)
– C0 an AG code defined by (F, C0,P0, D0), r a number of rounds,
– sequence of codes (Ci) and balancing functions (νi+1),
– transcript including z(0), . . . , z(r−1) ∈ F2,
– oracle functions f (0), f (1), . . . , f (r−1) and a constant β ∈ F,
– α repetition parameter.

Output: accept or reject.

1. Repeat α times the following query test:

(a) Pick Q0 ∈ P0 uniformly at random.
(b) For i = 0 to r − 1, run the following round consistency test:

i. Define Qi+1 ∈ Pi+1 by Qi+1 = πi(Qi),
ii. Query f (i+1) to get f (i+1)(Qi+1) and query f (i) at points Q̂ ∈ SQi+1 ,

(if i = r − 1, set f (r)(Qr) = β)
iii. Compute the value Fold

[
f (i), z(i)

]
(Qi+1),

iv. If i < r − 1: return reject if and only if f (i+1)(Qi+1) 6= Fold
[
f (i), z(i)

]
(Qi+1)

v. If i = r − 1: return reject if and only if β 6= Fold
[
f (i), z(i)

]
(Qi+1)

2. Return acccept.

Figure 4: IOPP for AG codes on Kummer curves - QUERY Phase

Example 5.1. On Fq2 with q = 261 − 1 (9th Mersenne prime), we consider the curve

C0 : yN = x3 + x

where N = 2r with r = 16. It is maximal [TT14] of genus g = N − 1. We consider the code C0

associated to D0 = 217P 0
∞ on an evaluation set P0 ⊂ C0(Fq2) of size n = 220. Its dimension equals

dimC0 = 216 + 2 and its relative minimum distance λ is bounded from below by 1 − 2−3. Take
ε = 2−6.5. By Proposition 4.7,

errcommit ≤
8r∣∣Fq2
∣∣ ε2 ≤ 23+4+13−121 = 2−101

errquery(δ) ≤ (1− δ + rε)

where 1− δ = (1− λ+ ε)
1
3 ≤ 0.51432. Hence

errquery(δ) ≤ 0.51432 +
16

26.5
≈ 0.6910.

By running the QUERY phase with repetition parameter α ≥ 190, we get (errquery)α ≤ 2−101 and
err(δ) ≤ 2−100. The last code Cr is a small Reed-Solomon code of length nr = 24 and dimension 2.
The total number of rounds of the IOPP is thus R = r + 1.

26

5.2 Properties of the AG-IOPP with Kummer curves
Theorem 5.2 (Kummer case). Let C = (C0,P0, D0) be a foldable AG code on a Kummer curve
satisfying the hypotheses of Proposition 3.9 with N a η-smooth integer. Denote n = |P0|. The IOPP
(P,V) described in Section 5.1 satisfies Theorem 4.6. Moreover, each oracle f (i) with 1 ≤ i < r− 1
can be honestly computed using O(|Pi|) arithmetic operations. Overall, prover arithmetic complexity
is tp(n) = O(n) and verifier arithmetic complexity is tv(n) = O(log n).

Proof. (Round complexity) We have that
s−1∏
i=0

pi =
n

ns
, where ns = |Ps|. For every i ∈ {0, . . . , s− 1},

2 ≤ pi ≤ η. Therefore r ≤ log2 n − log2 ns. Moreover, 2s
′ ≤ ns, thus the round complexity is

r(n) = r = s+ s′ ≤ log2 n.

(Randomness complexity) The randomness complexity is k(n) ≤ 2r(n) ≤ 2 log2 n.

(Query complexity) Notice that for i ∈ {0, . . . , R− 2}, f (i+1)(Qi+1) is reused for the next round
consistency test. Hence, q(n) ≤ αrη + 1 ≤ αη log2 n+ 1.

(Proof length) The total proof length l(n) is the sum of the lengths of all the oracles provided
by P during the COMMIT phase, counted in field elements. Recall that |P0| = 2l

∏s−1
i=0 pi for a

certain integer l > s′. For i ∈ {r, . . . , r − 1}, set pi = 2. Denoting ti+1 :=
∏i

j=0 pj , we notice that
|Pi+1| = |Pi|

pi
= |P0|

ti+1
. Thus, we have

l(n) =
r∑

i=1

|Pi| =
r∑

i=1

|P0|
ti
≤ n

r∑
i=1

1

2i
= n

(
1− 1

2r

)
< n.

(Prover complexity) By assumption, we have maxi pi ≤ η for a given parameter η ∈ N. Fix a
round index i < r − 1, we start by bounding the number of operations of the ith step of the
COMMIT phase. To simplify notation, denote f = f (i). For any z = (z1, z2) ∈ F2, computing
the successive powers (zj1, z

j
2)0≤j<pi takes 2(pi − 2) multiplications. For each P ∈ Pi+1, an honest

prover must compute the coefficients (aj,P)0≤j,<P of the polynomial If,P (X) of degree deg If,P < pi

from the interpolation set
{
(µi(P̂), f(P̂)) | P̂ ∈ SP

}
of size pi. Since µi = y, computing µi(P̂)

for P̂ ∈ SP is done for free. Moreover, the values of µi on SP form a geometric progression of
common ratio ζi. Monomial interpolation at pi points in a geometric progression sequence can be
done using Li := 2M(pi) + O(pi) operations (see [BS05, Proposition 5]), where M(pi) denotes the
cost of multiplying univariate polynomials of degree less than pi and is known to be Õ(pi), hence
Li = Õ(pi). Thus, evaluating f0, . . . , fpi−1 on Pi+1 can be done in |Pi+1| Õ(pi) operations.
Letting νi+1,j be as defined in proof of Lemma 3.8, the sequence of functions (νi+1,j)0<j<pi can
be evaluated at the same point P ∈ Pi+1 in time O(logm+ pi) using exponentiation by squaring.
Remark that the multi-evaluation of νi+1,j does not depend on the interaction and can be precom-
puted. Thus, the evaluations of νi+1,1, . . . νi+1,pi−1 on Pi+1 are obtained with O((logm+pi) |Pi+1|)
operations.
Overall, one can honestly evaluate Fold [f, z] : Pi+1 → F with Oη,m(|Pi+1|) operations in F. We
showed previously that

∑R−1
i=1 |Pi| < n, thus when summing over R − 1 rounds, we get that the

cost of (honestly) generating the oracles f (1), . . . , f (R−1) is Oη,m(n).
Finally, prover complexity is tp(n) = Oη,m(n).

27

(Verifier decision complexity) Verifier complexity is inferred from the previous discussion about
prover complexity. For each round, the verifier computes the successive powers of z1 and z2,
interpolates If,P for a point P ∈ Pi+1 in Õ(pi) operations, evaluates (νi+1,j)0<j<pi at point P
in O(logm + pi) operations, then computes Fold [f, z] (P) in a number of operations which is
independent of n. Hence, verifier complexity for repetition parameter α is tv(n) = Oη,m(α log(n)).

(Soundness) Soundness analysis is carried out in Section 6. In particular, in Section 6.2, we set
f (r) to be the constant function equal to β. Thus f (r) ∈ Cr, and the verifier accepts if and only if
all round consistency tests passes.

6 Soundness analysis
We move to the analysis of the soundness error stated in Theorem 4.6. We conduct our analysis
using techniques similar to [BGKS20, Section 5.5]. In the first subsection, we establish a result
about distance preservation of the folding operation (Corollary 6.3), which will be used in the
second subsection to bound the probability of error of the verifier.

6.1 Preliminaries
Roughly speaking, we want to show that, if f is δ-far from Ci, then the folding Fold [f, z] of f is
almost δ-far from Ci+1 with high probability over z ∈ F2. For soundness analysis, it will be easier
to show a weighted version of such statement.

Definition 6.1 (Weighted agreement). For any function η ∈ [0, 1]D, we define the η-agreement of
two functions u, v ∈ FP by

ωη(u, v) :=
1

|P|
∑
P∈P

u(P)=v(P)

η(P).

Given V ⊂ FP and u ∈ FP , we set

ωη(u, V) := max
v∈V

ωη(u, v).

Notice that since η ∈ [0, 1]P , we have for any V ⊂ FP and any u ∈ FP ,

ωη(u, V) ≤ 1−∆(u, V). (22)

We now state a preliminary result concerning the weighted agreement on a low-degree parametrized
curve. Proof builds upon the one of [BKS18, Theorem 4.5] and is given in Appendix A.

Proposition 6.2. Let η ∈ [0, 1]P and ε, δ > 0 such that and δ < J l
ε(λ). Let u0, . . . , ul−1 ∈ FP such

that

Pr
z∈F

[
ωη

(
l−1∑
i=0

ziui, V

)
> 1− δ

]
≥ l − 1

|F|

(
2

ε

)l+1

, (23)

then there exists T ⊂ P , and v0, . . . , vl−1 ∈ V such that:

•
∑

P∈T η(P) ≥ (1− δ − ε)|P|

• for each i, ui T = vi T .

28

Here, for a function u ∈ FP , u T ∈ FT corresponds to the function obtained by restriction on
T ⊂ P.

As mentioned earlier, soundness analysis relies on the relation between the weighted agreement
of f to Ci and the weighted agreement of the folding of f to Ci+1, constrained by the next corollary.

Corollary 6.3. Fix i ∈ {0, . . . , r − 1}. For a function η : Pi → [0, 1], define θ : Pi+1 → [0, 1] by

∀P ∈ Pi+1, θ(P) :=
1

pi

∑
P̂∈SP

η(P̂).

Let λi be the minimal relative distance of Ci. Fix ε ∈ (0, 1[and δ < min
(
Jpi
ε (λi),

1
2

(
λi +

ε
2

))
. For

any function f : Pi → F such that ωη(f, Ci) < 1− δ, we have

Pr
z∈F2

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] ≤ pi − 1

|F|

(
4

ε

)pi+1

.

Proving Corollary 6.3 requires the lemma stated next. We prove Corollary 6.3, then prove
Lemma 6.4.

Lemma 6.4. Let i ∈ {0, . . . , r − 1}, Di ∈ Div(Ci) and µi ∈ F(Ci) satisfying Equation (5). Consider
a divisor Di+1 ∈ Div(Ci+1) that is (Di, µi)-compatible in the sense of Definition 3.2.

Fix j ∈ {0, . . . , pi − 1}. Then a function g ∈ F(Ci+1) belongs to L(Ei,j) if and only if both
functions g and gνi+1,j belong to L(Di+1).

Proof of Corollary 6.3. Let f : Pi → F be an arbitrary function. According to Equation (19), there
exist pi function fj : Pi+1 → F such that for any z = (z1, z2) ∈ F2,

Fold [f, z] =

pi−1∑
j=0

zj1fj +

pi−1∑
j=1

zj2νi+1,jfj .

Rewrite Fold [f, z] as a polynomial in z2, i.e. Fold [f, z] = fz1 + z2f
′
1 + · · · + zpi−1

2 f ′
pi−1 where we

set fz1 :=
∑pi−1

j=0 zj1fj and f ′
j := νi+1,jfj . Finally, set

K :=
pi − 1

2|F|

(
4

ε

)pi+1

.

Let us prove the corollary by contrapositive: assume that

Pr
z∈F2

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > 2K

or in other words that Pr
z1∈F

[
Pr
z2∈F

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K

]
> K.

Fix z1 ∈ F such that Prz2∈F [ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K. By Proposition 6.2, there
exist vz1 , v

′
1, . . . , v

′
pi−1 ∈ Ci+1 and T ′ ⊂ P such that

–
∑

P∈T ′ θ(P) ≥ (1− δ + ε
2) |Pi+1|,

– vz1 T ′ = fz1 T ′ ,

– for each j ∈ {1, . . . , pi − 1}, v′j T ′ = f ′
j T ′ .

29

In particular, ωθ(fz1 , Ci+1) ≥ ωθ(fz1 , vz1) =
1

|Pi+1|
∑
P∈T ′

θ(P) ≥ 1− δ +
ε

2
.

It means that

Pr
z1∈F

[
ωθ(fz1 , Ci+1) ≥ 1− δ +

ε

2

]
≥ Pr

z1∈F

[
Pr
z2∈F

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K

]
> K.

The polynomial form of fz1 in z1 enables us to reapply Proposition 6.2: there exist v0, v1, . . . , vpi−1 ∈ Ci+1

and T ⊂ P such that

–
∑

P∈T θ(P) ≥ (1− δ) |Pi+1|,

– for each j ∈ {0, . . . , pi − 1}, vj T = fj T .

On T ′ ∩T , we thus have v′j T ′∩T = f ′
j T ′∩T = (νi+1,jfj) T ′∩T = (νi+1,jvj) T ′∩T . The cardinality of

T ′ ∩ T satisfies

|T ′ ∩ T | = |T ′|+ |T | − |T ′ ∪ T | ≥
∑
P∈T ′

θ(P) +
∑
P∈T

θ(P)− |Pi+1| ≥ (1− 2δ +
ε

2
)|Pi+1|.

The assumption on δ ensures that 2δ− ε
2 < λi+1 where λi+1 is the minimal distance of Ci+1, hence

the codewords of Ci+1 associated to v′j and νi+1,jvj are equals for every j ∈ {0, . . . , pi − 1}. This
implies that both functions vj and νi+1,jvj belong to L(Di+1). By Lemma 6.4, we get that the
function vj lies in L(Ei,j).

Now let us define v : Pi → F by

∀Q ∈ Pi, v(Q) :=

pi−1∑
j=0

µj
i (Q)vj ◦ πi(Q).

By definition of the divisors Ei,j (6), the function v belong to L(Di). Now let us prove that it
agrees with f on ST :=

⊔
P∈T SP .

Let P ∈ T and P̂ ∈ SP .

f(P̂) = If,P (µi(P̂)) =

pi−1∑
j=0

µi(P̂)jfj(P) by definition of If,P ,

=

pi−1∑
j=0

µi(P̂)jvj ◦ πi(P̂) since fj T = vj T and P = πi(P̂),

= v(P̂).

As a result, since v ∈ Ci, we can conclude that

ωη(f, Ci) ≥ ωη(f, v) ≥
1

|Pi|
∑
P∈T

∑
P̂∈SP

η(P̂) =
1

|Pi+1|
∑
P∈T

θ(P) ≥ 1− δ.

Proof of Lemma 6.4. Assume that g ∈ L(Ei,j). Then the second and third items of Definition 3.2
ensure that g and gνi+1,j lie in L(Di+1).

30

Conversely, assume that g and gνi+1,j belong to L(Di+1) and write Di+1 =
∑

nPP . The
hypotheses on g imply that g ∈ L(Di+1)∩L(Di+1− (νi+1,j)). By [MP93, Lemma 2.6], the function
g belongs to L(D′

i+1), where the divisor D′
i+1 is defined by

D′
i+1 :=

∑
P

n′
PP where n′

P := min(nP , nP + vP (νi+1,j)).

Then D′
i+1 = Di+1 − (νi+1,j)∞ = Ei,j by the third item of Definition 3.2.

6.2 Proof of Theorem 4.6 (part 2: soundness)
Let (f (i))1≤i≤r be the output of the COMMIT phase. For simplicity, assume the repetition parameter
is set to α = 1. The soundness error for α > 1 directly follows from this case.

Let Q0 ∈ P0 be the point selected at random by the verifier at the beginning of the QUERY
phase. We recall that Q0 defines a sequence (Qi)1≤i≤r satisfying Qi+1 = πi(Qi). In particular,
Qi ∈ SQi+1 , where SQi+1 = π−1

i {(Qi+1)}. The verifier accepts if both

1. for all i ∈ {0, . . . , r − 1}, f (i+1)(Qi+1) = Fold
[
f (i), z(i)

]
(Qi+1),

2. f (r) ∈ Cr.

Notice that if f (r) /∈ Cr, the verifier rejects with probability 1. So from now on, we assume
f (r) ∈ Cr.

Coloring the graph induced by prover’s oracles. Consider the (r+1)-layered graph G with
vertex set P0 t P1 t · · · t Pr and edges from Pi+1 ∈ Pi+1 to Pi ∈ Pi if and only if πi(Pi) = Pi+1.
For any edge of G, we say that Pi+1 is a parent of Pi. Any pair of points sharing the same parent
are said to be siblings. For any point Pr ∈ Pr, denote G Pr the subgraph of G corresponding to the
complete tree with root Pr. Notice that the trees G Pr are disjoint.

A query test starts by selecting a leaf Q0 ∈ P0. This leaf belongs to a tree G Pr for a certain
Pr ∈ Pr, and the verifier queries one set of siblings at each layer i ∈ {0, . . . , r − 1} of G Pr . We
referred to such a subset of vertices of G as the path from Q0 to Pr (a path to Pr does not include
Pr).

We now color each vertex of G according to its success in passing the round consistency test.
For i ∈ {0, . . . , r − 1}, a vertex Pi ∈ Pi is colored green if

f (i+1)(πi(Pi)) = Fold
[
f (i), z(i)

]
(πi(Pi))

and colored red otherwise. Notice that Pi gets the same color than its siblings. The verifier outputs
accept if and only if every vertex along the queried path from Q0 to Pr is green.

Tracking agreement between f (i) and the folding of f (i−1). Define η(0) : P0 → {0, 1} by
setting η(0)(P) = 1 if and only if P ∈ P0 is green. For all i ∈ {1, . . . , r}, define a function

η(i) : Pi → (0, 1)

such that η(i)(P) is equal to the fraction of leaves P0 ∈ P0 for which the path from P0 to P contains
only green vertices. By construction the probability errquery that the verifier accepts during the
QUERY phase is given by

errquery =
1

nr

∑
P∈Pr

η(r)(P),

31

where ni denotes the size of Pi. For i ∈ {0, . . . , r}, let us set
ωf (i) := ωη(i)(f

(i), Ci),

where the η-agreement function ωη is defined in Definition 6.1. Since f (r) ∈ Cr, observe that
errquery = ωf (r) . (24)

For i ∈ {0, . . . , r − 1}, let E(i+1) ⊆ Pi+1 be the set of coordinates where f (i+1) differs from
Fold

[
f (i), z(i)

]
, i.e. E(i+1) :=

{
P ∈ Pi+1 | ∀P̂ ∈ SP , P̂ is red

}
. Define θ(i+1) : Pi+1 → (0; 1) such

that
θ(i+1)(P) =

1

pi

∑
P̂∈SP

η(i)(P̂).

Denoting 1E(i+1) the indicator function of E(i+1) ⊆ Pi+1, we observe that

η(i+1) = (1− 1E(i+1)) θ(i+1). (25)
Define β(i+1) := ωθ(i+1)

(
Fold

[
f (i), z(i)

]
, Ci+1

)
which, by Equation (25), satisfies

β(i+1) ≥ ωf (i+1) . (26)

Let ε′ ∈ (0, ε). Set δ(i) = min(1 − ωf (i) , J
pi
ε (λi)) − ε′. Then δ(i) fulfills all the hypotheses of

Corollary 6.3 and

Pr
z(i)

[
β(i+1) > max

(
ωf (i) , 1− Jpi

ε (λi)
)
+ ε
]
≤ pi − 1

|F|

(
4

ε− ε′

)pi+1

.

Thus, for all i ∈ {0, . . . , r − 1}, we get that

Pr
z(i)

[
β(i+1) > max

(
ωf (i) , 1− Jpi

ε (λi)
)
+ ε
]
≤ pi − 1

|F|

(
4

ε

)pi+1

.

by making ε′ going to 0, by continuity of the right hand-side at ε 6= 0.

Let λ := min(∆(Ci)) and pmax = max(pi). Since the function Jpi
ε is strictly increasing and the

sequence of functions (J l
ε)l is decreasing, we have for all i ∈ {0, . . . , r − 1},

Pr
z(i)

[β(i+1) > max
(
ωf (i) , 1− Jpmax

ε (λ)
)
+ ε] ≤ pmax − 1

|F|

(
4

ε

)pmax+1

.

From Equation (26), we deduce that for all i ∈ {0, . . . , r − 1},

Pr
z(i)

[
ωf (i+1) > max

(
ωf (i) , 1− Jpmax

ε (λ)
)
+ ε
]
≤ pmax − 1

|F|

(
4

ε

)pmax+1

. (27)

Set errcommit := r pmax−1
|F|

(
4
ε

)pmax+1. Thus, from Equation (27) and by union bound, we get that

Pr
z(0),...,z(r−1)

[
ωf (r) ≤ max

(
ωf (0) , 1− Jpmax

ε (λ)
)
+ rε

]
≥ 1− errcommit. (28)

Recall that ωf (0) ≤ 1−∆(f (0), C0) < 1−δ and errquery = ωf (r) (from Equation (24)). We deduce
that with probability at least 1 − errcommit over the verifier random choices during the COMMIT
phase, the probability that the verifier accepts during the QUERY phase is at most

errquery = ωf (r) ≤ max(ωf (0) , 1− Jpmax
ε (λ)) + rε

< 1−min (δ, Jpmax
ε (λ)) + rε.

This concludes the proof of soundness of Theorem 4.6.

32

Acknowledgments
The first author benefits from the support of the Chair “Blockchain & B2B Platforms”, led by l’X
– École Polytechnique and the Fondation de l’École Polytechnique, sponsored by Capgemini. The
second author thanks Marc Perret for his precious advices in the early days of this project.

References
[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.

Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 2087–2104. ACM, 2017.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof Verification and the Hardness of Approximation Problems. 45(3):501–555, 1998.
extended version of FOCS’92.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs; A New Charac-
terization of NP. In 33rd Annual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer So-
ciety, 1992.

[Bab85] László Babai. Trading Group Theory for Randomness. In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8,
1985, Providence, Rhode Island, USA, pages 421–429. ACM, 1985.

[BB09] Alp Bassa and Peter Beelen. On the Construction of Galois Towers. Contemporary
mathematics, 487:9–20, 2009.

[BB11] Alp Bassa and Peter Beelen. The Galois closure of Drinfeld modular towers. Journal
of Number Theory, 131(3):561–577, 2011.

[BBGS14] Alp Bassa, Peter Beelen, Arnaldo Garcia, and Henning Stichtenoth. An Improvement
of the Gilbert–Varshamov Bound Over Nonprime Fields. IEEE Transactions on Infor-
mation Theory, 60(7):3859–3861, 2014.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1–14:17, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable Zero Knowl-
edge with No Trusted Setup. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, volume
11694 of Lecture Notes in Computer Science, pages 701–732. Springer, 2019.

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive Oracle Proofs with Constant Rate and Query Complexity. In
44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, pages 40:1–40:15, 2017.

33

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and
Nicholas Spooner. Linear-Size Constant-Query IOPs for Delegating Computation. In
Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
II, volume 11892 of Lecture Notes in Computer Science, pages 494–521. Springer, 2019.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity Gaps for Reed-Solomon Codes. IACR Cryptol. ePrint Arch., 2020:654, 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume 11476
of Lecture Notes in Computer Science, pages 103–128. Springer, 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Compu-
tations in Polylogarithmic Time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
Sampling Outside the Box Improves Soundness. In 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA, pages 5:1–5:32, 2020.

[BKK+13] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant Rate PCPs for Circuit-SAT with Sublinear Query Complexity. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 320–329. IEEE Computer Society, 2013.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-Case to Average Case
Reductions for the Distance to a Code. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 24:1–24:23, 2018.

[BMZ18a] Daniele Bartoli, Maria Montanucci, and Giovanni Zini. AG codes and AG quantum
codes from the GGS curve. Designs, Codes and Cryptography, 86(10):2315–2344, Octo-
ber 2018.

[BMZ18b] Daniele Bartoli, Maria Montanucci, and Giovanni Zini. Multi point AG codes on the
GK maximal curve. Designs, Codes and Cryptography, 86(1):161–177, January 2018.

[BRS20] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast Encoding of AG Codes
over Cab Curves, 2020.

[BS05] Alin Bostan and Eric Schost. Polynomial evaluation and interpolation on special sets
of points. Journal of Complexity, 21(4):420–446, 2005.

34

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with Polylog Query Complexity. SIAM
J. Comput., 38(2):551–607, 2008.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and Trans-
parent Recursive Proofs from Holography. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science,
pages 769–793. Springer, 2020.

[CRL90] M. Carral, D. Rotillon, and A. Thiong Ly. Codes defined from some maximal curves.
Journal of Pure and Applied Algebra, 67(3):247–257, 1990.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[FG10] Stefania Fanali and Massimo Giulietti. One-Point AG Codes on the GK Maximal
Curves. IEEE Transactions on Information Theory, 56(1):202–210, January 2010.

[GMP12] Robert Guralnick, Beth Malmskog, and Rachel Pries. The Automorphism Groups of a
Family of Maximal Curves. Journal of Algebra, 361:92–106, 2012.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of
Interactive Proof-Systems (Extended Abstract). In Robert Sedgewick, editor, Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 291–304. ACM, 1985.

[Gop77] Valerii Denisovich Goppa. Codes associated with divisors. Problemy Peredachi Infor-
matsii, 13(1):33–39, 1977.

[HKT13] J. W. P. Hirschfeld, G. Korchmáros, and F. Torres. Algebraic Curves over a Finite
Field. Princeton University Press, Princeton, 25 Mar. 2013.

[Kan86] Ernst Kani. The Galois-module structure of the space of holomorphic differentials of a
curve. Journal für die reine und angewandte Mathematik, 367:187–206, 1986.

[Kil92] Joe Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992.

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transpar-
ent SNARKs from List Polynomial Commitment IOPs. IACR Cryptol. ePrint Arch.,
2019:1400, 2019.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Col-
loquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track
B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptogra-
phy Foundations, volume 5126 of Lecture Notes in Computer Science, pages 536–547.
Springer, 2008.

35

[Lac87] Gilles Lachaud. Sommes d’Eisenstein et nombre de points de certaines courbes al-
gébriques sur les corps finis. C. R. Acad. Sci. Paris, 305, 01 1987.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods
for Interactive Proof Systems. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 2–10. IEEE
Computer Society, 1990.

[LSH97] John Little, Keith Saints, and Chris Heegard. On the structure of Hermitian codes.
Journal of Pure and Applied Algebra, 121(3):293–314, 1997.

[Mah04] Hiren Maharaj. Code Construction on Fiber Products of Kummer Covers. Information
Theory, IEEE Transactions on, 50:2169 – 2173, 10 2004.

[Mat05] Gretchen L. Matthews. Weierstrass Semigroups and Codes from a Quotient of the
Hermitian Curve. Designs, Codes and Cryptography, 37(3):473–492, 2005.

[Mei13] Or Meir. IP = PSPACE Using Error-Correcting Codes. SIAM J. Comput., 42(1):380–
403, 2013.

[Mic95] Silvio Micali. Computationally-Sound Proofs. In Johann A. Makowsky and Elena V.
Ravve, editors, Proceedings of the Annual European Summer Meeting of the Association
of Symbolic Logic, Logic Colloquium 1995, Haifa, Israel, August 9-18, 1995, volume 11
of Lecture Notes in Logic, pages 214–268. Springer, 1995.

[Mie09] Thilo Mie. Short PCPPs Verifiable in Polylogarithmic Time with O(1) Queries. Annals
of Mathematics and Artificial Intelligence, 56(3–4):313–338, August 2009.

[Mon20] Maria Montanucci. On algebraic curves with many automorphisms in characteristic p.
arXiv preprint arXiv:2001.07514, 2020.

[MP93] Carlos Munuera and Ruud Pellikaan. Equality of geometric Goppa codes and equiva-
lence of divisors. Journal of Pure and Applied Algebra, 90(3):229 – 252, 1993.

[MQS15] Ariane M. Masuda, Luciane Quoos, and Alonso Sepúlveda. One- and Two-Point Codes
over Kummer Extensions. arXiv e-prints, page arXiv:1510.06425, October 2015.

[Ren04] Jian Ren. On the structure of Hermitian codes and decoding for burst errors. IEEE
Transactions on Information Theory, 50(11):2850–2854, 2004.

[RR20] Noga Ron-Zewi and Ron D. Rothblum. Local Proofs Approaching the Witness Length
[extended abstract]. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 846–857. IEEE,
2020.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors,
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62. ACM, 2016.

[SG93] B.Z. Shen and M.J. Ganley. On encoding and decoding of the codes from Hermitian
curves. 1993.

36

[Sti93] Henning Stichtenoth. Algebraic function fields and codes. Universitext. Springer, 1993.

[TT14] Saeed Tafazolian and Fernando Torres. On the curve yn = xm + x over finite fields.
Journal of Number Theory, 145:51–66, 2014.

[TVN07] Michael Tsfasman, Serge Vladut, and Dmitry Nogin. Algebraic Geometric Codes: Basic
Notions. American Mathematical Society, USA, 2007.

[TVZ82] M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink. Modular curves, Shimura curves, and
Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109:21–28, 1982.

[YB92] Tomik Yaghoobian and Ian F. Blake. Hermitian codes as generalized Reed-Solomon
codes. Designs, Codes and Cryptography, 2(1):5–17, 1992.

A Proof of Proposition 6.2
Proposition 6.2 is a weighted version of [BKS18, Theorem 4.5]. We only highlight the changes to
be made in the proof of [BKS18, Theorem 4.5].

For z ∈ F and (v0, . . . , vl−1) ∈ V l, let us set vz :=
l−1∑
i=0

zivi. Rewriting the proof of Theorem 4.5

[BKS18] with setting
A = {z ∈ F | ωη (uz, V) > 1− δ}

provides v0, . . . , vl−1 ∈ V and a set

C := {z ∈ F | ωη (uz, vz) > 1− δ} ⊂ A

with cardinality |C| > l−1
ε . Let us set T := {P ∈ P | ui T = vi T for all i}. Therefore

1− δ <
1

|C|
∑
z∈C

ωη (uz, vz)

=
1

|C| × |P|
∑
z∈C

∑
P∈P

η(P)1uz(P)=vz(P)

=
1

|P|
∑
P∈P

η(P)
1

|C|
∑
z∈C

1uz(P)=vz(P)

Notice that if there exists i ∈ {0, . . . , l − 1} such that ui which does not coincide with vi, the
number of z ∈ F such that uz(P) = vz(P) is at most l − 1. Then

1− δ ≤ 1

|P|
∑
P∈T

η(P) +
1

|P|
∑

P∈C\T

η(P)
l − 1

|C|

≤ 1

|P|
∑
P∈T

η(P) + ε,

which gives the first item of the proposition.

37

B Improved soundness for pmax = 2

In the case where pi = 2 for every i, a stronger bound on soundness can be obtained, as stated
in Proposition 4.7. We give a sketch of proof, starting from the result of [BGKS20, Lemma 3.2]
and applying exactly the same analysis as in Section 6. The expression of Fold [f, z] : Pi+1 → F in
when pmax = 2 is

Fold [f, (z1, z2)] = f0 + z1f1 + z2νi+1,1f1. (29)

By applying to [BGKS20, Lemma 3.2] the same reasoning than the one applied for proof of
Proposition 6.2, we get the following proposition.

Proposition B.1. Let η ∈ [0, 1]P and ε, δ > 0 with ε < 1/3 and δ < 1 − (1 − λ + ε)1/3, where
λ = ∆(V). Let u0, u1 ∈ FP such that

Pr
z∈F

[ωη (u0 + zu1, V) > 1− δ] ≥ 2

ε2|F|
, (30)

then there exists T ⊂ P , and v0, v1 ∈ V such that:

•
∑

P∈T η(P) ≥ (1− δ − ε)|P|

• for each i, ui T = vi T .

This yields an analogous of Corollary 6.3, stated next.

Corollary B.2. Fix i ∈ {0, . . . , r − 1}. For a function η : Pi → [0, 1], define θ : Pi+1 → [0, 1] by

∀P ∈ Pi+1, θ(P) :=
1

pi

∑
P̂∈SP

η(P̂).

Let λi be the minimal relative distance of Ci. Fix ε ∈
(
0, 13
)

and δ < min
(
1− (1− λi + ε)1/3, 12

(
λi +

ε
2

))
.

For any function f : Pi → F such that ωη(f, Ci) < 1− δ, we have

Pr
z∈F2

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] ≤ 8

ε2|F|
.

After making the substitutions related to the above statements in Section 6.2, we set

errcommit = r
8

ε2|F|
,

and with probability at least 1 − errcommit, the verifier accepts on input f such that ∆(f, C0) > δ
with probability at most

errquery < 1−min
(
δ, 1− (1− λmin + ε)1/3

)
+ rε.

38

	Introduction
	Definition of an IOPP for a code C
	Our results
	Technical overview
	The FRI protocol for RS proximity testing
	Our IOPP for AG proximity testing

	Future works: other families of foldable AG codes
	Organization of the paper

	Preliminaries
	Definitions and notations
	Splitting Riemann-Roch spaces according to a cyclic group of automorphisms

	Foldable AG codes
	Valid setting of AG codes for IOPP
	Sequence of curves
	Sequence of codes

	Foldable AG codes on Kummer curves

	IOPP for foldable AG codes
	Folding operators
	Description of the AG-IOPP for foldable AG codes
	Properties of the AG-IOPP
	Proof of Theorem 4.6 - Part 1 (all but soundness)

	IOPP for AG codes on Kummer curves
	Description of the AG-IOPP for AG codes on Kummer curves
	Properties of the AG-IOPP with Kummer curves

	Soundness analysis
	Preliminaries
	Proof of Theorem 4.6 (part 2: soundness)

	Proof of Proposition 6.2
	Improved soundness for pmax = 2

